|  | /* | 
|  | * Copyright 2018 Red Hat Inc. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|  | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | 
|  | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | 
|  | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | 
|  | * OTHER DEALINGS IN THE SOFTWARE. | 
|  | */ | 
|  | #include "nouveau_svm.h" | 
|  | #include "nouveau_drv.h" | 
|  | #include "nouveau_chan.h" | 
|  | #include "nouveau_dmem.h" | 
|  |  | 
|  | #include <nvif/event.h> | 
|  | #include <nvif/object.h> | 
|  | #include <nvif/vmm.h> | 
|  |  | 
|  | #include <nvif/class.h> | 
|  | #include <nvif/clb069.h> | 
|  | #include <nvif/ifc00d.h> | 
|  |  | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/hmm.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/rmap.h> | 
|  |  | 
|  | struct nouveau_svm { | 
|  | struct nouveau_drm *drm; | 
|  | struct mutex mutex; | 
|  | struct list_head inst; | 
|  |  | 
|  | struct nouveau_svm_fault_buffer { | 
|  | int id; | 
|  | struct nvif_object object; | 
|  | u32 entries; | 
|  | u32 getaddr; | 
|  | u32 putaddr; | 
|  | u32 get; | 
|  | u32 put; | 
|  | struct nvif_event notify; | 
|  | struct work_struct work; | 
|  |  | 
|  | struct nouveau_svm_fault { | 
|  | u64 inst; | 
|  | u64 addr; | 
|  | u64 time; | 
|  | u32 engine; | 
|  | u8  gpc; | 
|  | u8  hub; | 
|  | u8  access; | 
|  | u8  client; | 
|  | u8  fault; | 
|  | struct nouveau_svmm *svmm; | 
|  | } **fault; | 
|  | int fault_nr; | 
|  | } buffer[1]; | 
|  | }; | 
|  |  | 
|  | #define FAULT_ACCESS_READ 0 | 
|  | #define FAULT_ACCESS_WRITE 1 | 
|  | #define FAULT_ACCESS_ATOMIC 2 | 
|  | #define FAULT_ACCESS_PREFETCH 3 | 
|  |  | 
|  | #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a) | 
|  | #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a) | 
|  |  | 
|  | struct nouveau_pfnmap_args { | 
|  | struct nvif_ioctl_v0 i; | 
|  | struct nvif_ioctl_mthd_v0 m; | 
|  | struct nvif_vmm_pfnmap_v0 p; | 
|  | }; | 
|  |  | 
|  | struct nouveau_ivmm { | 
|  | struct nouveau_svmm *svmm; | 
|  | u64 inst; | 
|  | struct list_head head; | 
|  | }; | 
|  |  | 
|  | static struct nouveau_ivmm * | 
|  | nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst) | 
|  | { | 
|  | struct nouveau_ivmm *ivmm; | 
|  | list_for_each_entry(ivmm, &svm->inst, head) { | 
|  | if (ivmm->inst == inst) | 
|  | return ivmm; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define SVMM_DBG(s,f,a...)                                                     \ | 
|  | NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a) | 
|  | #define SVMM_ERR(s,f,a...)                                                     \ | 
|  | NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a) | 
|  |  | 
|  | int | 
|  | nouveau_svmm_bind(struct drm_device *dev, void *data, | 
|  | struct drm_file *file_priv) | 
|  | { | 
|  | struct nouveau_cli *cli = nouveau_cli(file_priv); | 
|  | struct drm_nouveau_svm_bind *args = data; | 
|  | unsigned target, cmd, priority; | 
|  | unsigned long addr, end; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | args->va_start &= PAGE_MASK; | 
|  | args->va_end = ALIGN(args->va_end, PAGE_SIZE); | 
|  |  | 
|  | /* Sanity check arguments */ | 
|  | if (args->reserved0 || args->reserved1) | 
|  | return -EINVAL; | 
|  | if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK)) | 
|  | return -EINVAL; | 
|  | if (args->va_start >= args->va_end) | 
|  | return -EINVAL; | 
|  |  | 
|  | cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT; | 
|  | cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK; | 
|  | switch (cmd) { | 
|  | case NOUVEAU_SVM_BIND_COMMAND__MIGRATE: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT; | 
|  | priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK; | 
|  |  | 
|  | /* FIXME support CPU target ie all target value < GPU_VRAM */ | 
|  | target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT; | 
|  | target &= NOUVEAU_SVM_BIND_TARGET_MASK; | 
|  | switch (target) { | 
|  | case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME: For now refuse non 0 stride, we need to change the migrate | 
|  | * kernel function to handle stride to avoid to create a mess within | 
|  | * each device driver. | 
|  | */ | 
|  | if (args->stride) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Ok we are ask to do something sane, for now we only support migrate | 
|  | * commands but we will add things like memory policy (what to do on | 
|  | * page fault) and maybe some other commands. | 
|  | */ | 
|  |  | 
|  | mm = get_task_mm(current); | 
|  | if (!mm) { | 
|  | return -EINVAL; | 
|  | } | 
|  | mmap_read_lock(mm); | 
|  |  | 
|  | if (!cli->svm.svmm) { | 
|  | mmap_read_unlock(mm); | 
|  | mmput(mm); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (addr = args->va_start, end = args->va_end; addr < end;) { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long next; | 
|  |  | 
|  | vma = find_vma_intersection(mm, addr, end); | 
|  | if (!vma) | 
|  | break; | 
|  |  | 
|  | addr = max(addr, vma->vm_start); | 
|  | next = min(vma->vm_end, end); | 
|  | /* This is a best effort so we ignore errors */ | 
|  | nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr, | 
|  | next); | 
|  | addr = next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME Return the number of page we have migrated, again we need to | 
|  | * update the migrate API to return that information so that we can | 
|  | * report it to user space. | 
|  | */ | 
|  | args->result = 0; | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | mmput(mm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unlink channel instance from SVMM. */ | 
|  | void | 
|  | nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst) | 
|  | { | 
|  | struct nouveau_ivmm *ivmm; | 
|  | if (svmm) { | 
|  | mutex_lock(&svmm->vmm->cli->drm->svm->mutex); | 
|  | ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst); | 
|  | if (ivmm) { | 
|  | list_del(&ivmm->head); | 
|  | kfree(ivmm); | 
|  | } | 
|  | mutex_unlock(&svmm->vmm->cli->drm->svm->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Link channel instance to SVMM. */ | 
|  | int | 
|  | nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst) | 
|  | { | 
|  | struct nouveau_ivmm *ivmm; | 
|  | if (svmm) { | 
|  | if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL))) | 
|  | return -ENOMEM; | 
|  | ivmm->svmm = svmm; | 
|  | ivmm->inst = inst; | 
|  |  | 
|  | mutex_lock(&svmm->vmm->cli->drm->svm->mutex); | 
|  | list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst); | 
|  | mutex_unlock(&svmm->vmm->cli->drm->svm->mutex); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Invalidate SVMM address-range on GPU. */ | 
|  | void | 
|  | nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit) | 
|  | { | 
|  | if (limit > start) { | 
|  | nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR, | 
|  | &(struct nvif_vmm_pfnclr_v0) { | 
|  | .addr = start, | 
|  | .size = limit - start, | 
|  | }, sizeof(struct nvif_vmm_pfnclr_v0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn, | 
|  | const struct mmu_notifier_range *update) | 
|  | { | 
|  | struct nouveau_svmm *svmm = | 
|  | container_of(mn, struct nouveau_svmm, notifier); | 
|  | unsigned long start = update->start; | 
|  | unsigned long limit = update->end; | 
|  |  | 
|  | if (!mmu_notifier_range_blockable(update)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit); | 
|  |  | 
|  | mutex_lock(&svmm->mutex); | 
|  | if (unlikely(!svmm->vmm)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Ignore invalidation callbacks for device private pages since | 
|  | * the invalidation is handled as part of the migration process. | 
|  | */ | 
|  | if (update->event == MMU_NOTIFY_MIGRATE && | 
|  | update->owner == svmm->vmm->cli->drm->dev) | 
|  | goto out; | 
|  |  | 
|  | if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) { | 
|  | if (start < svmm->unmanaged.start) { | 
|  | nouveau_svmm_invalidate(svmm, start, | 
|  | svmm->unmanaged.limit); | 
|  | } | 
|  | start = svmm->unmanaged.limit; | 
|  | } | 
|  |  | 
|  | nouveau_svmm_invalidate(svmm, start, limit); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&svmm->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nouveau_svmm_free_notifier(struct mmu_notifier *mn) | 
|  | { | 
|  | kfree(container_of(mn, struct nouveau_svmm, notifier)); | 
|  | } | 
|  |  | 
|  | static const struct mmu_notifier_ops nouveau_mn_ops = { | 
|  | .invalidate_range_start = nouveau_svmm_invalidate_range_start, | 
|  | .free_notifier = nouveau_svmm_free_notifier, | 
|  | }; | 
|  |  | 
|  | void | 
|  | nouveau_svmm_fini(struct nouveau_svmm **psvmm) | 
|  | { | 
|  | struct nouveau_svmm *svmm = *psvmm; | 
|  | if (svmm) { | 
|  | mutex_lock(&svmm->mutex); | 
|  | svmm->vmm = NULL; | 
|  | mutex_unlock(&svmm->mutex); | 
|  | mmu_notifier_put(&svmm->notifier); | 
|  | *psvmm = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | nouveau_svmm_init(struct drm_device *dev, void *data, | 
|  | struct drm_file *file_priv) | 
|  | { | 
|  | struct nouveau_cli *cli = nouveau_cli(file_priv); | 
|  | struct nouveau_svmm *svmm; | 
|  | struct drm_nouveau_svm_init *args = data; | 
|  | int ret; | 
|  |  | 
|  | /* We need to fail if svm is disabled */ | 
|  | if (!cli->drm->svm) | 
|  | return -ENOSYS; | 
|  |  | 
|  | /* Allocate tracking for SVM-enabled VMM. */ | 
|  | if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL))) | 
|  | return -ENOMEM; | 
|  | svmm->vmm = &cli->svm; | 
|  | svmm->unmanaged.start = args->unmanaged_addr; | 
|  | svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size; | 
|  | mutex_init(&svmm->mutex); | 
|  |  | 
|  | /* Check that SVM isn't already enabled for the client. */ | 
|  | mutex_lock(&cli->mutex); | 
|  | if (cli->svm.cli) { | 
|  | ret = -EBUSY; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* Allocate a new GPU VMM that can support SVM (managed by the | 
|  | * client, with replayable faults enabled). | 
|  | * | 
|  | * All future channel/memory allocations will make use of this | 
|  | * VMM instead of the standard one. | 
|  | */ | 
|  | ret = nvif_vmm_ctor(&cli->mmu, "svmVmm", | 
|  | cli->vmm.vmm.object.oclass, MANAGED, | 
|  | args->unmanaged_addr, args->unmanaged_size, | 
|  | &(struct gp100_vmm_v0) { | 
|  | .fault_replay = true, | 
|  | }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | mmap_write_lock(current->mm); | 
|  | svmm->notifier.ops = &nouveau_mn_ops; | 
|  | ret = __mmu_notifier_register(&svmm->notifier, current->mm); | 
|  | if (ret) | 
|  | goto out_mm_unlock; | 
|  | /* Note, ownership of svmm transfers to mmu_notifier */ | 
|  |  | 
|  | cli->svm.svmm = svmm; | 
|  | cli->svm.cli = cli; | 
|  | mmap_write_unlock(current->mm); | 
|  | mutex_unlock(&cli->mutex); | 
|  | return 0; | 
|  |  | 
|  | out_mm_unlock: | 
|  | mmap_write_unlock(current->mm); | 
|  | out_free: | 
|  | mutex_unlock(&cli->mutex); | 
|  | kfree(svmm); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Issue fault replay for GPU to retry accesses that faulted previously. */ | 
|  | static void | 
|  | nouveau_svm_fault_replay(struct nouveau_svm *svm) | 
|  | { | 
|  | SVM_DBG(svm, "replay"); | 
|  | WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object, | 
|  | GP100_VMM_VN_FAULT_REPLAY, | 
|  | &(struct gp100_vmm_fault_replay_vn) {}, | 
|  | sizeof(struct gp100_vmm_fault_replay_vn))); | 
|  | } | 
|  |  | 
|  | /* Cancel a replayable fault that could not be handled. | 
|  | * | 
|  | * Cancelling the fault will trigger recovery to reset the engine | 
|  | * and kill the offending channel (ie. GPU SIGSEGV). | 
|  | */ | 
|  | static void | 
|  | nouveau_svm_fault_cancel(struct nouveau_svm *svm, | 
|  | u64 inst, u8 hub, u8 gpc, u8 client) | 
|  | { | 
|  | SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client); | 
|  | WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object, | 
|  | GP100_VMM_VN_FAULT_CANCEL, | 
|  | &(struct gp100_vmm_fault_cancel_v0) { | 
|  | .hub = hub, | 
|  | .gpc = gpc, | 
|  | .client = client, | 
|  | .inst = inst, | 
|  | }, sizeof(struct gp100_vmm_fault_cancel_v0))); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm, | 
|  | struct nouveau_svm_fault *fault) | 
|  | { | 
|  | nouveau_svm_fault_cancel(svm, fault->inst, | 
|  | fault->hub, | 
|  | fault->gpc, | 
|  | fault->client); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nouveau_svm_fault_priority(u8 fault) | 
|  | { | 
|  | switch (fault) { | 
|  | case FAULT_ACCESS_PREFETCH: | 
|  | return 0; | 
|  | case FAULT_ACCESS_READ: | 
|  | return 1; | 
|  | case FAULT_ACCESS_WRITE: | 
|  | return 2; | 
|  | case FAULT_ACCESS_ATOMIC: | 
|  | return 3; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | nouveau_svm_fault_cmp(const void *a, const void *b) | 
|  | { | 
|  | const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a; | 
|  | const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b; | 
|  | int ret; | 
|  | if ((ret = (s64)fa->inst - fb->inst)) | 
|  | return ret; | 
|  | if ((ret = (s64)fa->addr - fb->addr)) | 
|  | return ret; | 
|  | return nouveau_svm_fault_priority(fa->access) - | 
|  | nouveau_svm_fault_priority(fb->access); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nouveau_svm_fault_cache(struct nouveau_svm *svm, | 
|  | struct nouveau_svm_fault_buffer *buffer, u32 offset) | 
|  | { | 
|  | struct nvif_object *memory = &buffer->object; | 
|  | const u32 instlo = nvif_rd32(memory, offset + 0x00); | 
|  | const u32 insthi = nvif_rd32(memory, offset + 0x04); | 
|  | const u32 addrlo = nvif_rd32(memory, offset + 0x08); | 
|  | const u32 addrhi = nvif_rd32(memory, offset + 0x0c); | 
|  | const u32 timelo = nvif_rd32(memory, offset + 0x10); | 
|  | const u32 timehi = nvif_rd32(memory, offset + 0x14); | 
|  | const u32 engine = nvif_rd32(memory, offset + 0x18); | 
|  | const u32   info = nvif_rd32(memory, offset + 0x1c); | 
|  | const u64   inst = (u64)insthi << 32 | instlo; | 
|  | const u8     gpc = (info & 0x1f000000) >> 24; | 
|  | const u8     hub = (info & 0x00100000) >> 20; | 
|  | const u8  client = (info & 0x00007f00) >> 8; | 
|  | struct nouveau_svm_fault *fault; | 
|  |  | 
|  | //XXX: i think we're supposed to spin waiting */ | 
|  | if (WARN_ON(!(info & 0x80000000))) | 
|  | return; | 
|  |  | 
|  | nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000); | 
|  |  | 
|  | if (!buffer->fault[buffer->fault_nr]) { | 
|  | fault = kmalloc(sizeof(*fault), GFP_KERNEL); | 
|  | if (WARN_ON(!fault)) { | 
|  | nouveau_svm_fault_cancel(svm, inst, hub, gpc, client); | 
|  | return; | 
|  | } | 
|  | buffer->fault[buffer->fault_nr] = fault; | 
|  | } | 
|  |  | 
|  | fault = buffer->fault[buffer->fault_nr++]; | 
|  | fault->inst   = inst; | 
|  | fault->addr   = (u64)addrhi << 32 | addrlo; | 
|  | fault->time   = (u64)timehi << 32 | timelo; | 
|  | fault->engine = engine; | 
|  | fault->gpc    = gpc; | 
|  | fault->hub    = hub; | 
|  | fault->access = (info & 0x000f0000) >> 16; | 
|  | fault->client = client; | 
|  | fault->fault  = (info & 0x0000001f); | 
|  |  | 
|  | SVM_DBG(svm, "fault %016llx %016llx %02x", | 
|  | fault->inst, fault->addr, fault->access); | 
|  | } | 
|  |  | 
|  | struct svm_notifier { | 
|  | struct mmu_interval_notifier notifier; | 
|  | struct nouveau_svmm *svmm; | 
|  | }; | 
|  |  | 
|  | static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni, | 
|  | const struct mmu_notifier_range *range, | 
|  | unsigned long cur_seq) | 
|  | { | 
|  | struct svm_notifier *sn = | 
|  | container_of(mni, struct svm_notifier, notifier); | 
|  |  | 
|  | if (range->event == MMU_NOTIFY_EXCLUSIVE && | 
|  | range->owner == sn->svmm->vmm->cli->drm->dev) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * serializes the update to mni->invalidate_seq done by caller and | 
|  | * prevents invalidation of the PTE from progressing while HW is being | 
|  | * programmed. This is very hacky and only works because the normal | 
|  | * notifier that does invalidation is always called after the range | 
|  | * notifier. | 
|  | */ | 
|  | if (mmu_notifier_range_blockable(range)) | 
|  | mutex_lock(&sn->svmm->mutex); | 
|  | else if (!mutex_trylock(&sn->svmm->mutex)) | 
|  | return false; | 
|  | mmu_interval_set_seq(mni, cur_seq); | 
|  | mutex_unlock(&sn->svmm->mutex); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = { | 
|  | .invalidate = nouveau_svm_range_invalidate, | 
|  | }; | 
|  |  | 
|  | static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm, | 
|  | struct hmm_range *range, | 
|  | struct nouveau_pfnmap_args *args) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * The address prepared here is passed through nvif_object_ioctl() | 
|  | * to an eventual DMA map in something like gp100_vmm_pgt_pfn() | 
|  | * | 
|  | * This is all just encoding the internal hmm representation into a | 
|  | * different nouveau internal representation. | 
|  | */ | 
|  | if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) { | 
|  | args->p.phys[0] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | page = hmm_pfn_to_page(range->hmm_pfns[0]); | 
|  | /* | 
|  | * Only map compound pages to the GPU if the CPU is also mapping the | 
|  | * page as a compound page. Otherwise, the PTE protections might not be | 
|  | * consistent (e.g., CPU only maps part of a compound page). | 
|  | * Note that the underlying page might still be larger than the | 
|  | * CPU mapping (e.g., a PUD sized compound page partially mapped with | 
|  | * a PMD sized page table entry). | 
|  | */ | 
|  | if (hmm_pfn_to_map_order(range->hmm_pfns[0])) { | 
|  | unsigned long addr = args->p.addr; | 
|  |  | 
|  | args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) + | 
|  | PAGE_SHIFT; | 
|  | args->p.size = 1UL << args->p.page; | 
|  | args->p.addr &= ~(args->p.size - 1); | 
|  | page -= (addr - args->p.addr) >> PAGE_SHIFT; | 
|  | } | 
|  | if (is_device_private_page(page)) | 
|  | args->p.phys[0] = nouveau_dmem_page_addr(page) | | 
|  | NVIF_VMM_PFNMAP_V0_V | | 
|  | NVIF_VMM_PFNMAP_V0_VRAM; | 
|  | else | 
|  | args->p.phys[0] = page_to_phys(page) | | 
|  | NVIF_VMM_PFNMAP_V0_V | | 
|  | NVIF_VMM_PFNMAP_V0_HOST; | 
|  | if (range->hmm_pfns[0] & HMM_PFN_WRITE) | 
|  | args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W; | 
|  | } | 
|  |  | 
|  | static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm, | 
|  | struct nouveau_drm *drm, | 
|  | struct nouveau_pfnmap_args *args, u32 size, | 
|  | struct svm_notifier *notifier) | 
|  | { | 
|  | unsigned long timeout = | 
|  | jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); | 
|  | struct mm_struct *mm = svmm->notifier.mm; | 
|  | struct page *page; | 
|  | unsigned long start = args->p.addr; | 
|  | unsigned long notifier_seq; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = mmu_interval_notifier_insert(¬ifier->notifier, mm, | 
|  | args->p.addr, args->p.size, | 
|  | &nouveau_svm_mni_ops); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (true) { | 
|  | if (time_after(jiffies, timeout)) { | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | notifier_seq = mmu_interval_read_begin(¬ifier->notifier); | 
|  | mmap_read_lock(mm); | 
|  | ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE, | 
|  | &page, drm->dev); | 
|  | mmap_read_unlock(mm); | 
|  | if (ret <= 0 || !page) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_lock(&svmm->mutex); | 
|  | if (!mmu_interval_read_retry(¬ifier->notifier, | 
|  | notifier_seq)) | 
|  | break; | 
|  | mutex_unlock(&svmm->mutex); | 
|  | } | 
|  |  | 
|  | /* Map the page on the GPU. */ | 
|  | args->p.page = 12; | 
|  | args->p.size = PAGE_SIZE; | 
|  | args->p.addr = start; | 
|  | args->p.phys[0] = page_to_phys(page) | | 
|  | NVIF_VMM_PFNMAP_V0_V | | 
|  | NVIF_VMM_PFNMAP_V0_W | | 
|  | NVIF_VMM_PFNMAP_V0_A | | 
|  | NVIF_VMM_PFNMAP_V0_HOST; | 
|  |  | 
|  | ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL); | 
|  | mutex_unlock(&svmm->mutex); | 
|  |  | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | out: | 
|  | mmu_interval_notifier_remove(¬ifier->notifier); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int nouveau_range_fault(struct nouveau_svmm *svmm, | 
|  | struct nouveau_drm *drm, | 
|  | struct nouveau_pfnmap_args *args, u32 size, | 
|  | unsigned long hmm_flags, | 
|  | struct svm_notifier *notifier) | 
|  | { | 
|  | unsigned long timeout = | 
|  | jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); | 
|  | /* Have HMM fault pages within the fault window to the GPU. */ | 
|  | unsigned long hmm_pfns[1]; | 
|  | struct hmm_range range = { | 
|  | .notifier = ¬ifier->notifier, | 
|  | .default_flags = hmm_flags, | 
|  | .hmm_pfns = hmm_pfns, | 
|  | .dev_private_owner = drm->dev, | 
|  | }; | 
|  | struct mm_struct *mm = svmm->notifier.mm; | 
|  | int ret; | 
|  |  | 
|  | ret = mmu_interval_notifier_insert(¬ifier->notifier, mm, | 
|  | args->p.addr, args->p.size, | 
|  | &nouveau_svm_mni_ops); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | range.start = notifier->notifier.interval_tree.start; | 
|  | range.end = notifier->notifier.interval_tree.last + 1; | 
|  |  | 
|  | while (true) { | 
|  | if (time_after(jiffies, timeout)) { | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | range.notifier_seq = mmu_interval_read_begin(range.notifier); | 
|  | mmap_read_lock(mm); | 
|  | ret = hmm_range_fault(&range); | 
|  | mmap_read_unlock(mm); | 
|  | if (ret) { | 
|  | if (ret == -EBUSY) | 
|  | continue; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_lock(&svmm->mutex); | 
|  | if (mmu_interval_read_retry(range.notifier, | 
|  | range.notifier_seq)) { | 
|  | mutex_unlock(&svmm->mutex); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | nouveau_hmm_convert_pfn(drm, &range, args); | 
|  |  | 
|  | ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL); | 
|  | mutex_unlock(&svmm->mutex); | 
|  |  | 
|  | out: | 
|  | mmu_interval_notifier_remove(¬ifier->notifier); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nouveau_svm_fault(struct work_struct *work) | 
|  | { | 
|  | struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work); | 
|  | struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]); | 
|  | struct nvif_object *device = &svm->drm->client.device.object; | 
|  | struct nouveau_svmm *svmm; | 
|  | struct { | 
|  | struct nouveau_pfnmap_args i; | 
|  | u64 phys[1]; | 
|  | } args; | 
|  | unsigned long hmm_flags; | 
|  | u64 inst, start, limit; | 
|  | int fi, fn; | 
|  | int replay = 0, atomic = 0, ret; | 
|  |  | 
|  | /* Parse available fault buffer entries into a cache, and update | 
|  | * the GET pointer so HW can reuse the entries. | 
|  | */ | 
|  | SVM_DBG(svm, "fault handler"); | 
|  | if (buffer->get == buffer->put) { | 
|  | buffer->put = nvif_rd32(device, buffer->putaddr); | 
|  | buffer->get = nvif_rd32(device, buffer->getaddr); | 
|  | if (buffer->get == buffer->put) | 
|  | return; | 
|  | } | 
|  | buffer->fault_nr = 0; | 
|  |  | 
|  | SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put); | 
|  | while (buffer->get != buffer->put) { | 
|  | nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20); | 
|  | if (++buffer->get == buffer->entries) | 
|  | buffer->get = 0; | 
|  | } | 
|  | nvif_wr32(device, buffer->getaddr, buffer->get); | 
|  | SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr); | 
|  |  | 
|  | /* Sort parsed faults by instance pointer to prevent unnecessary | 
|  | * instance to SVMM translations, followed by address and access | 
|  | * type to reduce the amount of work when handling the faults. | 
|  | */ | 
|  | sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault), | 
|  | nouveau_svm_fault_cmp, NULL); | 
|  |  | 
|  | /* Lookup SVMM structure for each unique instance pointer. */ | 
|  | mutex_lock(&svm->mutex); | 
|  | for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) { | 
|  | if (!svmm || buffer->fault[fi]->inst != inst) { | 
|  | struct nouveau_ivmm *ivmm = | 
|  | nouveau_ivmm_find(svm, buffer->fault[fi]->inst); | 
|  | svmm = ivmm ? ivmm->svmm : NULL; | 
|  | inst = buffer->fault[fi]->inst; | 
|  | SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm); | 
|  | } | 
|  | buffer->fault[fi]->svmm = svmm; | 
|  | } | 
|  | mutex_unlock(&svm->mutex); | 
|  |  | 
|  | /* Process list of faults. */ | 
|  | args.i.i.version = 0; | 
|  | args.i.i.type = NVIF_IOCTL_V0_MTHD; | 
|  | args.i.m.version = 0; | 
|  | args.i.m.method = NVIF_VMM_V0_PFNMAP; | 
|  | args.i.p.version = 0; | 
|  |  | 
|  | for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) { | 
|  | struct svm_notifier notifier; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | /* Cancel any faults from non-SVM channels. */ | 
|  | if (!(svmm = buffer->fault[fi]->svmm)) { | 
|  | nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]); | 
|  | continue; | 
|  | } | 
|  | SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr); | 
|  |  | 
|  | /* We try and group handling of faults within a small | 
|  | * window into a single update. | 
|  | */ | 
|  | start = buffer->fault[fi]->addr; | 
|  | limit = start + PAGE_SIZE; | 
|  | if (start < svmm->unmanaged.limit) | 
|  | limit = min_t(u64, limit, svmm->unmanaged.start); | 
|  |  | 
|  | /* | 
|  | * Prepare the GPU-side update of all pages within the | 
|  | * fault window, determining required pages and access | 
|  | * permissions based on pending faults. | 
|  | */ | 
|  | args.i.p.addr = start; | 
|  | args.i.p.page = PAGE_SHIFT; | 
|  | args.i.p.size = PAGE_SIZE; | 
|  | /* | 
|  | * Determine required permissions based on GPU fault | 
|  | * access flags. | 
|  | */ | 
|  | switch (buffer->fault[fi]->access) { | 
|  | case 0: /* READ. */ | 
|  | hmm_flags = HMM_PFN_REQ_FAULT; | 
|  | break; | 
|  | case 2: /* ATOMIC. */ | 
|  | atomic = true; | 
|  | break; | 
|  | case 3: /* PREFETCH. */ | 
|  | hmm_flags = 0; | 
|  | break; | 
|  | default: | 
|  | hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mm = svmm->notifier.mm; | 
|  | if (!mmget_not_zero(mm)) { | 
|  | nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | notifier.svmm = svmm; | 
|  | if (atomic) | 
|  | ret = nouveau_atomic_range_fault(svmm, svm->drm, | 
|  | &args.i, sizeof(args), | 
|  | ¬ifier); | 
|  | else | 
|  | ret = nouveau_range_fault(svmm, svm->drm, &args.i, | 
|  | sizeof(args), hmm_flags, | 
|  | ¬ifier); | 
|  | mmput(mm); | 
|  |  | 
|  | limit = args.i.p.addr + args.i.p.size; | 
|  | for (fn = fi; ++fn < buffer->fault_nr; ) { | 
|  | /* It's okay to skip over duplicate addresses from the | 
|  | * same SVMM as faults are ordered by access type such | 
|  | * that only the first one needs to be handled. | 
|  | * | 
|  | * ie. WRITE faults appear first, thus any handling of | 
|  | * pending READ faults will already be satisfied. | 
|  | * But if a large page is mapped, make sure subsequent | 
|  | * fault addresses have sufficient access permission. | 
|  | */ | 
|  | if (buffer->fault[fn]->svmm != svmm || | 
|  | buffer->fault[fn]->addr >= limit || | 
|  | (buffer->fault[fi]->access == FAULT_ACCESS_READ && | 
|  | !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) || | 
|  | (buffer->fault[fi]->access != FAULT_ACCESS_READ && | 
|  | buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH && | 
|  | !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) || | 
|  | (buffer->fault[fi]->access != FAULT_ACCESS_READ && | 
|  | buffer->fault[fi]->access != FAULT_ACCESS_WRITE && | 
|  | buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH && | 
|  | !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If handling failed completely, cancel all faults. */ | 
|  | if (ret) { | 
|  | while (fi < fn) { | 
|  | struct nouveau_svm_fault *fault = | 
|  | buffer->fault[fi++]; | 
|  |  | 
|  | nouveau_svm_fault_cancel_fault(svm, fault); | 
|  | } | 
|  | } else | 
|  | replay++; | 
|  | } | 
|  |  | 
|  | /* Issue fault replay to the GPU. */ | 
|  | if (replay) | 
|  | nouveau_svm_fault_replay(svm); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc) | 
|  | { | 
|  | struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify); | 
|  |  | 
|  | schedule_work(&buffer->work); | 
|  | return NVIF_EVENT_KEEP; | 
|  | } | 
|  |  | 
|  | static struct nouveau_pfnmap_args * | 
|  | nouveau_pfns_to_args(void *pfns) | 
|  | { | 
|  | return container_of(pfns, struct nouveau_pfnmap_args, p.phys); | 
|  | } | 
|  |  | 
|  | u64 * | 
|  | nouveau_pfns_alloc(unsigned long npages) | 
|  | { | 
|  | struct nouveau_pfnmap_args *args; | 
|  |  | 
|  | args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL); | 
|  | if (!args) | 
|  | return NULL; | 
|  |  | 
|  | args->i.type = NVIF_IOCTL_V0_MTHD; | 
|  | args->m.method = NVIF_VMM_V0_PFNMAP; | 
|  | args->p.page = PAGE_SHIFT; | 
|  |  | 
|  | return args->p.phys; | 
|  | } | 
|  |  | 
|  | void | 
|  | nouveau_pfns_free(u64 *pfns) | 
|  | { | 
|  | struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns); | 
|  |  | 
|  | kfree(args); | 
|  | } | 
|  |  | 
|  | void | 
|  | nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm, | 
|  | unsigned long addr, u64 *pfns, unsigned long npages) | 
|  | { | 
|  | struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns); | 
|  | int ret; | 
|  |  | 
|  | args->p.addr = addr; | 
|  | args->p.size = npages << PAGE_SHIFT; | 
|  |  | 
|  | mutex_lock(&svmm->mutex); | 
|  |  | 
|  | ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, | 
|  | struct_size(args, p.phys, npages), NULL); | 
|  |  | 
|  | mutex_unlock(&svmm->mutex); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id) | 
|  | { | 
|  | struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; | 
|  |  | 
|  | nvif_event_block(&buffer->notify); | 
|  | flush_work(&buffer->work); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id) | 
|  | { | 
|  | struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; | 
|  | struct nvif_object *device = &svm->drm->client.device.object; | 
|  |  | 
|  | buffer->get = nvif_rd32(device, buffer->getaddr); | 
|  | buffer->put = nvif_rd32(device, buffer->putaddr); | 
|  | SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put); | 
|  |  | 
|  | return nvif_event_allow(&buffer->notify); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id) | 
|  | { | 
|  | struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; | 
|  | int i; | 
|  |  | 
|  | if (!nvif_object_constructed(&buffer->object)) | 
|  | return; | 
|  |  | 
|  | nouveau_svm_fault_buffer_fini(svm, id); | 
|  |  | 
|  | if (buffer->fault) { | 
|  | for (i = 0; buffer->fault[i] && i < buffer->entries; i++) | 
|  | kfree(buffer->fault[i]); | 
|  | kvfree(buffer->fault); | 
|  | } | 
|  |  | 
|  | nvif_event_dtor(&buffer->notify); | 
|  | nvif_object_dtor(&buffer->object); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id) | 
|  | { | 
|  | struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; | 
|  | struct nouveau_drm *drm = svm->drm; | 
|  | struct nvif_object *device = &drm->client.device.object; | 
|  | struct nvif_clb069_v0 args = {}; | 
|  | int ret; | 
|  |  | 
|  | buffer->id = id; | 
|  |  | 
|  | ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args, | 
|  | sizeof(args), &buffer->object); | 
|  | if (ret < 0) { | 
|  | SVM_ERR(svm, "Fault buffer allocation failed: %d", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | nvif_object_map(&buffer->object, NULL, 0); | 
|  | buffer->entries = args.entries; | 
|  | buffer->getaddr = args.get; | 
|  | buffer->putaddr = args.put; | 
|  | INIT_WORK(&buffer->work, nouveau_svm_fault); | 
|  |  | 
|  | ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0, | 
|  | &buffer->notify); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | buffer->fault = kvcalloc(buffer->entries, sizeof(*buffer->fault), GFP_KERNEL); | 
|  | if (!buffer->fault) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return nouveau_svm_fault_buffer_init(svm, id); | 
|  | } | 
|  |  | 
|  | void | 
|  | nouveau_svm_resume(struct nouveau_drm *drm) | 
|  | { | 
|  | struct nouveau_svm *svm = drm->svm; | 
|  | if (svm) | 
|  | nouveau_svm_fault_buffer_init(svm, 0); | 
|  | } | 
|  |  | 
|  | void | 
|  | nouveau_svm_suspend(struct nouveau_drm *drm) | 
|  | { | 
|  | struct nouveau_svm *svm = drm->svm; | 
|  | if (svm) | 
|  | nouveau_svm_fault_buffer_fini(svm, 0); | 
|  | } | 
|  |  | 
|  | void | 
|  | nouveau_svm_fini(struct nouveau_drm *drm) | 
|  | { | 
|  | struct nouveau_svm *svm = drm->svm; | 
|  | if (svm) { | 
|  | nouveau_svm_fault_buffer_dtor(svm, 0); | 
|  | kfree(drm->svm); | 
|  | drm->svm = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | nouveau_svm_init(struct nouveau_drm *drm) | 
|  | { | 
|  | static const struct nvif_mclass buffers[] = { | 
|  | {   VOLTA_FAULT_BUFFER_A, 0 }, | 
|  | { MAXWELL_FAULT_BUFFER_A, 0 }, | 
|  | {} | 
|  | }; | 
|  | struct nouveau_svm *svm; | 
|  | int ret; | 
|  |  | 
|  | /* Disable on Volta and newer until channel recovery is fixed, | 
|  | * otherwise clients will have a trivial way to trash the GPU | 
|  | * for everyone. | 
|  | */ | 
|  | if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL) | 
|  | return; | 
|  |  | 
|  | if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL))) | 
|  | return; | 
|  |  | 
|  | drm->svm->drm = drm; | 
|  | mutex_init(&drm->svm->mutex); | 
|  | INIT_LIST_HEAD(&drm->svm->inst); | 
|  |  | 
|  | ret = nvif_mclass(&drm->client.device.object, buffers); | 
|  | if (ret < 0) { | 
|  | SVM_DBG(svm, "No supported fault buffer class"); | 
|  | nouveau_svm_fini(drm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0); | 
|  | if (ret) { | 
|  | nouveau_svm_fini(drm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SVM_DBG(svm, "Initialised"); | 
|  | } |