| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * access_tracking_perf_test | 
 |  * | 
 |  * Copyright (C) 2021, Google, Inc. | 
 |  * | 
 |  * This test measures the performance effects of KVM's access tracking. | 
 |  * Access tracking is driven by the MMU notifiers test_young, clear_young, and | 
 |  * clear_flush_young. These notifiers do not have a direct userspace API, | 
 |  * however the clear_young notifier can be triggered by marking a pages as idle | 
 |  * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to | 
 |  * enable access tracking on guest memory. | 
 |  * | 
 |  * To measure performance this test runs a VM with a configurable number of | 
 |  * vCPUs that each touch every page in disjoint regions of memory. Performance | 
 |  * is measured in the time it takes all vCPUs to finish touching their | 
 |  * predefined region. | 
 |  * | 
 |  * Note that a deterministic correctness test of access tracking is not possible | 
 |  * by using page_idle as it exists today. This is for a few reasons: | 
 |  * | 
 |  * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This | 
 |  *    means subsequent guest accesses are not guaranteed to see page table | 
 |  *    updates made by KVM until some time in the future. | 
 |  * | 
 |  * 2. page_idle only operates on LRU pages. Newly allocated pages are not | 
 |  *    immediately allocated to LRU lists. Instead they are held in a "pagevec", | 
 |  *    which is drained to LRU lists some time in the future. There is no | 
 |  *    userspace API to force this drain to occur. | 
 |  * | 
 |  * These limitations are worked around in this test by using a large enough | 
 |  * region of memory for each vCPU such that the number of translations cached in | 
 |  * the TLB and the number of pages held in pagevecs are a small fraction of the | 
 |  * overall workload. And if either of those conditions are not true (for example | 
 |  * in nesting, where TLB size is unlimited) this test will print a warning | 
 |  * rather than silently passing. | 
 |  */ | 
 | #include <inttypes.h> | 
 | #include <limits.h> | 
 | #include <pthread.h> | 
 | #include <sys/mman.h> | 
 | #include <sys/types.h> | 
 | #include <sys/stat.h> | 
 |  | 
 | #include "kvm_util.h" | 
 | #include "test_util.h" | 
 | #include "memstress.h" | 
 | #include "guest_modes.h" | 
 | #include "processor.h" | 
 |  | 
 | /* Global variable used to synchronize all of the vCPU threads. */ | 
 | static int iteration; | 
 |  | 
 | /* Defines what vCPU threads should do during a given iteration. */ | 
 | static enum { | 
 | 	/* Run the vCPU to access all its memory. */ | 
 | 	ITERATION_ACCESS_MEMORY, | 
 | 	/* Mark the vCPU's memory idle in page_idle. */ | 
 | 	ITERATION_MARK_IDLE, | 
 | } iteration_work; | 
 |  | 
 | /* The iteration that was last completed by each vCPU. */ | 
 | static int vcpu_last_completed_iteration[KVM_MAX_VCPUS]; | 
 |  | 
 | /* Whether to overlap the regions of memory vCPUs access. */ | 
 | static bool overlap_memory_access; | 
 |  | 
 | struct test_params { | 
 | 	/* The backing source for the region of memory. */ | 
 | 	enum vm_mem_backing_src_type backing_src; | 
 |  | 
 | 	/* The amount of memory to allocate for each vCPU. */ | 
 | 	uint64_t vcpu_memory_bytes; | 
 |  | 
 | 	/* The number of vCPUs to create in the VM. */ | 
 | 	int nr_vcpus; | 
 | }; | 
 |  | 
 | static uint64_t pread_uint64(int fd, const char *filename, uint64_t index) | 
 | { | 
 | 	uint64_t value; | 
 | 	off_t offset = index * sizeof(value); | 
 |  | 
 | 	TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value), | 
 | 		    "pread from %s offset 0x%" PRIx64 " failed!", | 
 | 		    filename, offset); | 
 |  | 
 | 	return value; | 
 |  | 
 | } | 
 |  | 
 | #define PAGEMAP_PRESENT (1ULL << 63) | 
 | #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1) | 
 |  | 
 | static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva) | 
 | { | 
 | 	uint64_t hva = (uint64_t) addr_gva2hva(vm, gva); | 
 | 	uint64_t entry; | 
 | 	uint64_t pfn; | 
 |  | 
 | 	entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize()); | 
 | 	if (!(entry & PAGEMAP_PRESENT)) | 
 | 		return 0; | 
 |  | 
 | 	pfn = entry & PAGEMAP_PFN_MASK; | 
 | 	__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN"); | 
 |  | 
 | 	return pfn; | 
 | } | 
 |  | 
 | static bool is_page_idle(int page_idle_fd, uint64_t pfn) | 
 | { | 
 | 	uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64); | 
 |  | 
 | 	return !!((bits >> (pfn % 64)) & 1); | 
 | } | 
 |  | 
 | static void mark_page_idle(int page_idle_fd, uint64_t pfn) | 
 | { | 
 | 	uint64_t bits = 1ULL << (pfn % 64); | 
 |  | 
 | 	TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8, | 
 | 		    "Set page_idle bits for PFN 0x%" PRIx64, pfn); | 
 | } | 
 |  | 
 | static void mark_vcpu_memory_idle(struct kvm_vm *vm, | 
 | 				  struct memstress_vcpu_args *vcpu_args) | 
 | { | 
 | 	int vcpu_idx = vcpu_args->vcpu_idx; | 
 | 	uint64_t base_gva = vcpu_args->gva; | 
 | 	uint64_t pages = vcpu_args->pages; | 
 | 	uint64_t page; | 
 | 	uint64_t still_idle = 0; | 
 | 	uint64_t no_pfn = 0; | 
 | 	int page_idle_fd; | 
 | 	int pagemap_fd; | 
 |  | 
 | 	/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */ | 
 | 	if (overlap_memory_access && vcpu_idx) | 
 | 		return; | 
 |  | 
 | 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); | 
 | 	TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle."); | 
 |  | 
 | 	pagemap_fd = open("/proc/self/pagemap", O_RDONLY); | 
 | 	TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap."); | 
 |  | 
 | 	for (page = 0; page < pages; page++) { | 
 | 		uint64_t gva = base_gva + page * memstress_args.guest_page_size; | 
 | 		uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva); | 
 |  | 
 | 		if (!pfn) { | 
 | 			no_pfn++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (is_page_idle(page_idle_fd, pfn)) { | 
 | 			still_idle++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		mark_page_idle(page_idle_fd, pfn); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Assumption: Less than 1% of pages are going to be swapped out from | 
 | 	 * under us during this test. | 
 | 	 */ | 
 | 	TEST_ASSERT(no_pfn < pages / 100, | 
 | 		    "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.", | 
 | 		    vcpu_idx, no_pfn, pages); | 
 |  | 
 | 	/* | 
 | 	 * Check that at least 90% of memory has been marked idle (the rest | 
 | 	 * might not be marked idle because the pages have not yet made it to an | 
 | 	 * LRU list or the translations are still cached in the TLB). 90% is | 
 | 	 * arbitrary; high enough that we ensure most memory access went through | 
 | 	 * access tracking but low enough as to not make the test too brittle | 
 | 	 * over time and across architectures. | 
 | 	 * | 
 | 	 * When running the guest as a nested VM, "warn" instead of asserting | 
 | 	 * as the TLB size is effectively unlimited and the KVM doesn't | 
 | 	 * explicitly flush the TLB when aging SPTEs.  As a result, more pages | 
 | 	 * are cached and the guest won't see the "idle" bit cleared. | 
 | 	 */ | 
 | 	if (still_idle >= pages / 10) { | 
 | #ifdef __x86_64__ | 
 | 		TEST_ASSERT(this_cpu_has(X86_FEATURE_HYPERVISOR), | 
 | 			    "vCPU%d: Too many pages still idle (%lu out of %lu)", | 
 | 			    vcpu_idx, still_idle, pages); | 
 | #endif | 
 | 		printf("WARNING: vCPU%d: Too many pages still idle (%lu out of %lu), " | 
 | 		       "this will affect performance results.\n", | 
 | 		       vcpu_idx, still_idle, pages); | 
 | 	} | 
 |  | 
 | 	close(page_idle_fd); | 
 | 	close(pagemap_fd); | 
 | } | 
 |  | 
 | static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall) | 
 | { | 
 | 	struct ucall uc; | 
 | 	uint64_t actual_ucall = get_ucall(vcpu, &uc); | 
 |  | 
 | 	TEST_ASSERT(expected_ucall == actual_ucall, | 
 | 		    "Guest exited unexpectedly (expected ucall %" PRIu64 | 
 | 		    ", got %" PRIu64 ")", | 
 | 		    expected_ucall, actual_ucall); | 
 | } | 
 |  | 
 | static bool spin_wait_for_next_iteration(int *current_iteration) | 
 | { | 
 | 	int last_iteration = *current_iteration; | 
 |  | 
 | 	do { | 
 | 		if (READ_ONCE(memstress_args.stop_vcpus)) | 
 | 			return false; | 
 |  | 
 | 		*current_iteration = READ_ONCE(iteration); | 
 | 	} while (last_iteration == *current_iteration); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = vcpu_args->vcpu; | 
 | 	struct kvm_vm *vm = memstress_args.vm; | 
 | 	int vcpu_idx = vcpu_args->vcpu_idx; | 
 | 	int current_iteration = 0; | 
 |  | 
 | 	while (spin_wait_for_next_iteration(¤t_iteration)) { | 
 | 		switch (READ_ONCE(iteration_work)) { | 
 | 		case ITERATION_ACCESS_MEMORY: | 
 | 			vcpu_run(vcpu); | 
 | 			assert_ucall(vcpu, UCALL_SYNC); | 
 | 			break; | 
 | 		case ITERATION_MARK_IDLE: | 
 | 			mark_vcpu_memory_idle(vm, vcpu_args); | 
 | 			break; | 
 | 		}; | 
 |  | 
 | 		vcpu_last_completed_iteration[vcpu_idx] = current_iteration; | 
 | 	} | 
 | } | 
 |  | 
 | static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration) | 
 | { | 
 | 	while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) != | 
 | 	       target_iteration) { | 
 | 		continue; | 
 | 	} | 
 | } | 
 |  | 
 | /* The type of memory accesses to perform in the VM. */ | 
 | enum access_type { | 
 | 	ACCESS_READ, | 
 | 	ACCESS_WRITE, | 
 | }; | 
 |  | 
 | static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description) | 
 | { | 
 | 	struct timespec ts_start; | 
 | 	struct timespec ts_elapsed; | 
 | 	int next_iteration, i; | 
 |  | 
 | 	/* Kick off the vCPUs by incrementing iteration. */ | 
 | 	next_iteration = ++iteration; | 
 |  | 
 | 	clock_gettime(CLOCK_MONOTONIC, &ts_start); | 
 |  | 
 | 	/* Wait for all vCPUs to finish the iteration. */ | 
 | 	for (i = 0; i < nr_vcpus; i++) | 
 | 		spin_wait_for_vcpu(i, next_iteration); | 
 |  | 
 | 	ts_elapsed = timespec_elapsed(ts_start); | 
 | 	pr_info("%-30s: %ld.%09lds\n", | 
 | 		description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec); | 
 | } | 
 |  | 
 | static void access_memory(struct kvm_vm *vm, int nr_vcpus, | 
 | 			  enum access_type access, const char *description) | 
 | { | 
 | 	memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100); | 
 | 	iteration_work = ITERATION_ACCESS_MEMORY; | 
 | 	run_iteration(vm, nr_vcpus, description); | 
 | } | 
 |  | 
 | static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus) | 
 | { | 
 | 	/* | 
 | 	 * Even though this parallelizes the work across vCPUs, this is still a | 
 | 	 * very slow operation because page_idle forces the test to mark one pfn | 
 | 	 * at a time and the clear_young notifier serializes on the KVM MMU | 
 | 	 * lock. | 
 | 	 */ | 
 | 	pr_debug("Marking VM memory idle (slow)...\n"); | 
 | 	iteration_work = ITERATION_MARK_IDLE; | 
 | 	run_iteration(vm, nr_vcpus, "Mark memory idle"); | 
 | } | 
 |  | 
 | static void run_test(enum vm_guest_mode mode, void *arg) | 
 | { | 
 | 	struct test_params *params = arg; | 
 | 	struct kvm_vm *vm; | 
 | 	int nr_vcpus = params->nr_vcpus; | 
 |  | 
 | 	vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1, | 
 | 				 params->backing_src, !overlap_memory_access); | 
 |  | 
 | 	memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main); | 
 |  | 
 | 	pr_info("\n"); | 
 | 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory"); | 
 |  | 
 | 	/* As a control, read and write to the populated memory first. */ | 
 | 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory"); | 
 | 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory"); | 
 |  | 
 | 	/* Repeat on memory that has been marked as idle. */ | 
 | 	mark_memory_idle(vm, nr_vcpus); | 
 | 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory"); | 
 | 	mark_memory_idle(vm, nr_vcpus); | 
 | 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory"); | 
 |  | 
 | 	memstress_join_vcpu_threads(nr_vcpus); | 
 | 	memstress_destroy_vm(vm); | 
 | } | 
 |  | 
 | static void help(char *name) | 
 | { | 
 | 	puts(""); | 
 | 	printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o]  [-s mem_type]\n", | 
 | 	       name); | 
 | 	puts(""); | 
 | 	printf(" -h: Display this help message."); | 
 | 	guest_modes_help(); | 
 | 	printf(" -b: specify the size of the memory region which should be\n" | 
 | 	       "     dirtied by each vCPU. e.g. 10M or 3G.\n" | 
 | 	       "     (default: 1G)\n"); | 
 | 	printf(" -v: specify the number of vCPUs to run.\n"); | 
 | 	printf(" -o: Overlap guest memory accesses instead of partitioning\n" | 
 | 	       "     them into a separate region of memory for each vCPU.\n"); | 
 | 	backing_src_help("-s"); | 
 | 	puts(""); | 
 | 	exit(0); | 
 | } | 
 |  | 
 | int main(int argc, char *argv[]) | 
 | { | 
 | 	struct test_params params = { | 
 | 		.backing_src = DEFAULT_VM_MEM_SRC, | 
 | 		.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE, | 
 | 		.nr_vcpus = 1, | 
 | 	}; | 
 | 	int page_idle_fd; | 
 | 	int opt; | 
 |  | 
 | 	guest_modes_append_default(); | 
 |  | 
 | 	while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) { | 
 | 		switch (opt) { | 
 | 		case 'm': | 
 | 			guest_modes_cmdline(optarg); | 
 | 			break; | 
 | 		case 'b': | 
 | 			params.vcpu_memory_bytes = parse_size(optarg); | 
 | 			break; | 
 | 		case 'v': | 
 | 			params.nr_vcpus = atoi_positive("Number of vCPUs", optarg); | 
 | 			break; | 
 | 		case 'o': | 
 | 			overlap_memory_access = true; | 
 | 			break; | 
 | 		case 's': | 
 | 			params.backing_src = parse_backing_src_type(optarg); | 
 | 			break; | 
 | 		case 'h': | 
 | 		default: | 
 | 			help(argv[0]); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); | 
 | 	__TEST_REQUIRE(page_idle_fd >= 0, | 
 | 		       "CONFIG_IDLE_PAGE_TRACKING is not enabled"); | 
 | 	close(page_idle_fd); | 
 |  | 
 | 	for_each_guest_mode(run_test, ¶ms); | 
 |  | 
 | 	return 0; | 
 | } |