| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_bmap_util.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_dir2_priv.h" | 
 | #include "xfs_ioctl.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_pnfs.h" | 
 | #include "xfs_iomap.h" | 
 | #include "xfs_reflink.h" | 
 |  | 
 | #include <linux/falloc.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/fadvise.h> | 
 | #include <linux/mount.h> | 
 |  | 
 | static const struct vm_operations_struct xfs_file_vm_ops; | 
 |  | 
 | /* | 
 |  * Decide if the given file range is aligned to the size of the fundamental | 
 |  * allocation unit for the file. | 
 |  */ | 
 | static bool | 
 | xfs_is_falloc_aligned( | 
 | 	struct xfs_inode	*ip, | 
 | 	loff_t			pos, | 
 | 	long long int		len) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	uint64_t		mask; | 
 |  | 
 | 	if (XFS_IS_REALTIME_INODE(ip)) { | 
 | 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) { | 
 | 			u64	rextbytes; | 
 | 			u32	mod; | 
 |  | 
 | 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); | 
 | 			div_u64_rem(pos, rextbytes, &mod); | 
 | 			if (mod) | 
 | 				return false; | 
 | 			div_u64_rem(len, rextbytes, &mod); | 
 | 			return mod == 0; | 
 | 		} | 
 | 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; | 
 | 	} else { | 
 | 		mask = mp->m_sb.sb_blocksize - 1; | 
 | 	} | 
 |  | 
 | 	return !((pos | len) & mask); | 
 | } | 
 |  | 
 | int | 
 | xfs_update_prealloc_flags( | 
 | 	struct xfs_inode	*ip, | 
 | 	enum xfs_prealloc_flags	flags) | 
 | { | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, | 
 | 			0, 0, 0, &tp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	if (!(flags & XFS_PREALLOC_INVISIBLE)) { | 
 | 		VFS_I(ip)->i_mode &= ~S_ISUID; | 
 | 		if (VFS_I(ip)->i_mode & S_IXGRP) | 
 | 			VFS_I(ip)->i_mode &= ~S_ISGID; | 
 | 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	} | 
 |  | 
 | 	if (flags & XFS_PREALLOC_SET) | 
 | 		ip->i_diflags |= XFS_DIFLAG_PREALLOC; | 
 | 	if (flags & XFS_PREALLOC_CLEAR) | 
 | 		ip->i_diflags &= ~XFS_DIFLAG_PREALLOC; | 
 |  | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 	return xfs_trans_commit(tp); | 
 | } | 
 |  | 
 | /* | 
 |  * Fsync operations on directories are much simpler than on regular files, | 
 |  * as there is no file data to flush, and thus also no need for explicit | 
 |  * cache flush operations, and there are no non-transaction metadata updates | 
 |  * on directories either. | 
 |  */ | 
 | STATIC int | 
 | xfs_dir_fsync( | 
 | 	struct file		*file, | 
 | 	loff_t			start, | 
 | 	loff_t			end, | 
 | 	int			datasync) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host); | 
 |  | 
 | 	trace_xfs_dir_fsync(ip); | 
 | 	return xfs_log_force_inode(ip); | 
 | } | 
 |  | 
 | static xfs_csn_t | 
 | xfs_fsync_seq( | 
 | 	struct xfs_inode	*ip, | 
 | 	bool			datasync) | 
 | { | 
 | 	if (!xfs_ipincount(ip)) | 
 | 		return 0; | 
 | 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) | 
 | 		return 0; | 
 | 	return ip->i_itemp->ili_commit_seq; | 
 | } | 
 |  | 
 | /* | 
 |  * All metadata updates are logged, which means that we just have to flush the | 
 |  * log up to the latest LSN that touched the inode. | 
 |  * | 
 |  * If we have concurrent fsync/fdatasync() calls, we need them to all block on | 
 |  * the log force before we clear the ili_fsync_fields field. This ensures that | 
 |  * we don't get a racing sync operation that does not wait for the metadata to | 
 |  * hit the journal before returning.  If we race with clearing ili_fsync_fields, | 
 |  * then all that will happen is the log force will do nothing as the lsn will | 
 |  * already be on disk.  We can't race with setting ili_fsync_fields because that | 
 |  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock | 
 |  * shared until after the ili_fsync_fields is cleared. | 
 |  */ | 
 | static  int | 
 | xfs_fsync_flush_log( | 
 | 	struct xfs_inode	*ip, | 
 | 	bool			datasync, | 
 | 	int			*log_flushed) | 
 | { | 
 | 	int			error = 0; | 
 | 	xfs_csn_t		seq; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 	seq = xfs_fsync_seq(ip, datasync); | 
 | 	if (seq) { | 
 | 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, | 
 | 					  log_flushed); | 
 |  | 
 | 		spin_lock(&ip->i_itemp->ili_lock); | 
 | 		ip->i_itemp->ili_fsync_fields = 0; | 
 | 		spin_unlock(&ip->i_itemp->ili_lock); | 
 | 	} | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_file_fsync( | 
 | 	struct file		*file, | 
 | 	loff_t			start, | 
 | 	loff_t			end, | 
 | 	int			datasync) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host); | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	int			error = 0; | 
 | 	int			log_flushed = 0; | 
 |  | 
 | 	trace_xfs_file_fsync(ip); | 
 |  | 
 | 	error = file_write_and_wait_range(file, start, end); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	xfs_iflags_clear(ip, XFS_ITRUNCATED); | 
 |  | 
 | 	/* | 
 | 	 * If we have an RT and/or log subvolume we need to make sure to flush | 
 | 	 * the write cache the device used for file data first.  This is to | 
 | 	 * ensure newly written file data make it to disk before logging the new | 
 | 	 * inode size in case of an extending write. | 
 | 	 */ | 
 | 	if (XFS_IS_REALTIME_INODE(ip)) | 
 | 		blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); | 
 | 	else if (mp->m_logdev_targp != mp->m_ddev_targp) | 
 | 		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); | 
 |  | 
 | 	/* | 
 | 	 * Any inode that has dirty modifications in the log is pinned.  The | 
 | 	 * racy check here for a pinned inode while not catch modifications | 
 | 	 * that happen concurrently to the fsync call, but fsync semantics | 
 | 	 * only require to sync previously completed I/O. | 
 | 	 */ | 
 | 	if (xfs_ipincount(ip)) | 
 | 		error = xfs_fsync_flush_log(ip, datasync, &log_flushed); | 
 |  | 
 | 	/* | 
 | 	 * If we only have a single device, and the log force about was | 
 | 	 * a no-op we might have to flush the data device cache here. | 
 | 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting | 
 | 	 * an already allocated file and thus do not have any metadata to | 
 | 	 * commit. | 
 | 	 */ | 
 | 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && | 
 | 	    mp->m_logdev_targp == mp->m_ddev_targp) | 
 | 		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int | 
 | xfs_ilock_iocb( | 
 | 	struct kiocb		*iocb, | 
 | 	unsigned int		lock_mode) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 		if (!xfs_ilock_nowait(ip, lock_mode)) | 
 | 			return -EAGAIN; | 
 | 	} else { | 
 | 		xfs_ilock(ip, lock_mode); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_file_dio_read( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*to) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
 | 	ssize_t			ret; | 
 |  | 
 | 	trace_xfs_file_direct_read(iocb, to); | 
 |  | 
 | 	if (!iov_iter_count(to)) | 
 | 		return 0; /* skip atime */ | 
 |  | 
 | 	file_accessed(iocb->ki_filp); | 
 |  | 
 | 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, 0); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline ssize_t | 
 | xfs_file_dax_read( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*to) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host); | 
 | 	ssize_t			ret = 0; | 
 |  | 
 | 	trace_xfs_file_dax_read(iocb, to); | 
 |  | 
 | 	if (!iov_iter_count(to)) | 
 | 		return 0; /* skip atime */ | 
 |  | 
 | 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 |  | 
 | 	file_accessed(iocb->ki_filp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_file_buffered_read( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*to) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
 | 	ssize_t			ret; | 
 |  | 
 | 	trace_xfs_file_buffered_read(iocb, to); | 
 |  | 
 | 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = generic_file_read_iter(iocb, to); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_file_read_iter( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*to) | 
 | { | 
 | 	struct inode		*inode = file_inode(iocb->ki_filp); | 
 | 	struct xfs_mount	*mp = XFS_I(inode)->i_mount; | 
 | 	ssize_t			ret = 0; | 
 |  | 
 | 	XFS_STATS_INC(mp, xs_read_calls); | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (IS_DAX(inode)) | 
 | 		ret = xfs_file_dax_read(iocb, to); | 
 | 	else if (iocb->ki_flags & IOCB_DIRECT) | 
 | 		ret = xfs_file_dio_read(iocb, to); | 
 | 	else | 
 | 		ret = xfs_file_buffered_read(iocb, to); | 
 |  | 
 | 	if (ret > 0) | 
 | 		XFS_STATS_ADD(mp, xs_read_bytes, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Common pre-write limit and setup checks. | 
 |  * | 
 |  * Called with the iolocked held either shared and exclusive according to | 
 |  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive | 
 |  * if called for a direct write beyond i_size. | 
 |  */ | 
 | STATIC ssize_t | 
 | xfs_file_write_checks( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from, | 
 | 	int			*iolock) | 
 | { | 
 | 	struct file		*file = iocb->ki_filp; | 
 | 	struct inode		*inode = file->f_mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	ssize_t			error = 0; | 
 | 	size_t			count = iov_iter_count(from); | 
 | 	bool			drained_dio = false; | 
 | 	loff_t			isize; | 
 |  | 
 | restart: | 
 | 	error = generic_write_checks(iocb, from); | 
 | 	if (error <= 0) | 
 | 		return error; | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 		error = break_layout(inode, false); | 
 | 		if (error == -EWOULDBLOCK) | 
 | 			error = -EAGAIN; | 
 | 	} else { | 
 | 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE); | 
 | 	} | 
 |  | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * For changing security info in file_remove_privs() we need i_rwsem | 
 | 	 * exclusively. | 
 | 	 */ | 
 | 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { | 
 | 		xfs_iunlock(ip, *iolock); | 
 | 		*iolock = XFS_IOLOCK_EXCL; | 
 | 		error = xfs_ilock_iocb(iocb, *iolock); | 
 | 		if (error) { | 
 | 			*iolock = 0; | 
 | 			return error; | 
 | 		} | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the offset is beyond the size of the file, we need to zero any | 
 | 	 * blocks that fall between the existing EOF and the start of this | 
 | 	 * write.  If zeroing is needed and we are currently holding the iolock | 
 | 	 * shared, we need to update it to exclusive which implies having to | 
 | 	 * redo all checks before. | 
 | 	 * | 
 | 	 * We need to serialise against EOF updates that occur in IO completions | 
 | 	 * here. We want to make sure that nobody is changing the size while we | 
 | 	 * do this check until we have placed an IO barrier (i.e.  hold the | 
 | 	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The | 
 | 	 * spinlock effectively forms a memory barrier once we have the | 
 | 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and | 
 | 	 * hence be able to correctly determine if we need to run zeroing. | 
 | 	 * | 
 | 	 * We can do an unlocked check here safely as IO completion can only | 
 | 	 * extend EOF. Truncate is locked out at this point, so the EOF can | 
 | 	 * not move backwards, only forwards. Hence we only need to take the | 
 | 	 * slow path and spin locks when we are at or beyond the current EOF. | 
 | 	 */ | 
 | 	if (iocb->ki_pos <= i_size_read(inode)) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	isize = i_size_read(inode); | 
 | 	if (iocb->ki_pos > isize) { | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 		if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		if (!drained_dio) { | 
 | 			if (*iolock == XFS_IOLOCK_SHARED) { | 
 | 				xfs_iunlock(ip, *iolock); | 
 | 				*iolock = XFS_IOLOCK_EXCL; | 
 | 				xfs_ilock(ip, *iolock); | 
 | 				iov_iter_reexpand(from, count); | 
 | 			} | 
 | 			/* | 
 | 			 * We now have an IO submission barrier in place, but | 
 | 			 * AIO can do EOF updates during IO completion and hence | 
 | 			 * we now need to wait for all of them to drain. Non-AIO | 
 | 			 * DIO will have drained before we are given the | 
 | 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a | 
 | 			 * no-op. | 
 | 			 */ | 
 | 			inode_dio_wait(inode); | 
 | 			drained_dio = true; | 
 | 			goto restart; | 
 | 		} | 
 |  | 
 | 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); | 
 | 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, | 
 | 				NULL, &xfs_buffered_write_iomap_ops); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} else | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | out: | 
 | 	return file_modified(file); | 
 | } | 
 |  | 
 | static int | 
 | xfs_dio_write_end_io( | 
 | 	struct kiocb		*iocb, | 
 | 	ssize_t			size, | 
 | 	int			error, | 
 | 	unsigned		flags) | 
 | { | 
 | 	struct inode		*inode = file_inode(iocb->ki_filp); | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	loff_t			offset = iocb->ki_pos; | 
 | 	unsigned int		nofs_flag; | 
 |  | 
 | 	trace_xfs_end_io_direct_write(ip, offset, size); | 
 |  | 
 | 	if (xfs_is_shutdown(ip->i_mount)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (error) | 
 | 		return error; | 
 | 	if (!size) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Capture amount written on completion as we can't reliably account | 
 | 	 * for it on submission. | 
 | 	 */ | 
 | 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); | 
 |  | 
 | 	/* | 
 | 	 * We can allocate memory here while doing writeback on behalf of | 
 | 	 * memory reclaim.  To avoid memory allocation deadlocks set the | 
 | 	 * task-wide nofs context for the following operations. | 
 | 	 */ | 
 | 	nofs_flag = memalloc_nofs_save(); | 
 |  | 
 | 	if (flags & IOMAP_DIO_COW) { | 
 | 		error = xfs_reflink_end_cow(ip, offset, size); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unwritten conversion updates the in-core isize after extent | 
 | 	 * conversion but before updating the on-disk size. Updating isize any | 
 | 	 * earlier allows a racing dio read to find unwritten extents before | 
 | 	 * they are converted. | 
 | 	 */ | 
 | 	if (flags & IOMAP_DIO_UNWRITTEN) { | 
 | 		error = xfs_iomap_write_unwritten(ip, offset, size, true); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to update the in-core inode size here so that we don't end up | 
 | 	 * with the on-disk inode size being outside the in-core inode size. We | 
 | 	 * have no other method of updating EOF for AIO, so always do it here | 
 | 	 * if necessary. | 
 | 	 * | 
 | 	 * We need to lock the test/set EOF update as we can be racing with | 
 | 	 * other IO completions here to update the EOF. Failing to serialise | 
 | 	 * here can result in EOF moving backwards and Bad Things Happen when | 
 | 	 * that occurs. | 
 | 	 * | 
 | 	 * As IO completion only ever extends EOF, we can do an unlocked check | 
 | 	 * here to avoid taking the spinlock. If we land within the current EOF, | 
 | 	 * then we do not need to do an extending update at all, and we don't | 
 | 	 * need to take the lock to check this. If we race with an update moving | 
 | 	 * EOF, then we'll either still be beyond EOF and need to take the lock, | 
 | 	 * or we'll be within EOF and we don't need to take it at all. | 
 | 	 */ | 
 | 	if (offset + size <= i_size_read(inode)) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (offset + size > i_size_read(inode)) { | 
 | 		i_size_write(inode, offset + size); | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		error = xfs_setfilesize(ip, offset, size); | 
 | 	} else { | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 	} | 
 |  | 
 | out: | 
 | 	memalloc_nofs_restore(nofs_flag); | 
 | 	return error; | 
 | } | 
 |  | 
 | static const struct iomap_dio_ops xfs_dio_write_ops = { | 
 | 	.end_io		= xfs_dio_write_end_io, | 
 | }; | 
 |  | 
 | /* | 
 |  * Handle block aligned direct I/O writes | 
 |  */ | 
 | static noinline ssize_t | 
 | xfs_file_dio_write_aligned( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from) | 
 | { | 
 | 	int			iolock = XFS_IOLOCK_SHARED; | 
 | 	ssize_t			ret; | 
 |  | 
 | 	ret = xfs_ilock_iocb(iocb, iolock); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = xfs_file_write_checks(iocb, from, &iolock); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote | 
 | 	 * the iolock back to shared if we had to take the exclusive lock in | 
 | 	 * xfs_file_write_checks() for other reasons. | 
 | 	 */ | 
 | 	if (iolock == XFS_IOLOCK_EXCL) { | 
 | 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); | 
 | 		iolock = XFS_IOLOCK_SHARED; | 
 | 	} | 
 | 	trace_xfs_file_direct_write(iocb, from); | 
 | 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, | 
 | 			   &xfs_dio_write_ops, 0, 0); | 
 | out_unlock: | 
 | 	if (iolock) | 
 | 		xfs_iunlock(ip, iolock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle block unaligned direct I/O writes | 
 |  * | 
 |  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing | 
 |  * them to be done in parallel with reads and other direct I/O writes.  However, | 
 |  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need | 
 |  * to do sub-block zeroing and that requires serialisation against other direct | 
 |  * I/O to the same block.  In this case we need to serialise the submission of | 
 |  * the unaligned I/O so that we don't get racing block zeroing in the dio layer. | 
 |  * In the case where sub-block zeroing is not required, we can do concurrent | 
 |  * sub-block dios to the same block successfully. | 
 |  * | 
 |  * Optimistically submit the I/O using the shared lock first, but use the | 
 |  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN | 
 |  * if block allocation or partial block zeroing would be required.  In that case | 
 |  * we try again with the exclusive lock. | 
 |  */ | 
 | static noinline ssize_t | 
 | xfs_file_dio_write_unaligned( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from) | 
 | { | 
 | 	size_t			isize = i_size_read(VFS_I(ip)); | 
 | 	size_t			count = iov_iter_count(from); | 
 | 	int			iolock = XFS_IOLOCK_SHARED; | 
 | 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY; | 
 | 	ssize_t			ret; | 
 |  | 
 | 	/* | 
 | 	 * Extending writes need exclusivity because of the sub-block zeroing | 
 | 	 * that the DIO code always does for partial tail blocks beyond EOF, so | 
 | 	 * don't even bother trying the fast path in this case. | 
 | 	 */ | 
 | 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { | 
 | retry_exclusive: | 
 | 		if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 			return -EAGAIN; | 
 | 		iolock = XFS_IOLOCK_EXCL; | 
 | 		flags = IOMAP_DIO_FORCE_WAIT; | 
 | 	} | 
 |  | 
 | 	ret = xfs_ilock_iocb(iocb, iolock); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * We can't properly handle unaligned direct I/O to reflink files yet, | 
 | 	 * as we can't unshare a partial block. | 
 | 	 */ | 
 | 	if (xfs_is_cow_inode(ip)) { | 
 | 		trace_xfs_reflink_bounce_dio_write(iocb, from); | 
 | 		ret = -ENOTBLK; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ret = xfs_file_write_checks(iocb, from, &iolock); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * If we are doing exclusive unaligned I/O, this must be the only I/O | 
 | 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent | 
 | 	 * conversions from the AIO end_io handler.  Wait for all other I/O to | 
 | 	 * drain first. | 
 | 	 */ | 
 | 	if (flags & IOMAP_DIO_FORCE_WAIT) | 
 | 		inode_dio_wait(VFS_I(ip)); | 
 |  | 
 | 	trace_xfs_file_direct_write(iocb, from); | 
 | 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, | 
 | 			   &xfs_dio_write_ops, flags, 0); | 
 |  | 
 | 	/* | 
 | 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO | 
 | 	 * layer rejected it for mapping or locking reasons. If we are doing | 
 | 	 * nonblocking user I/O, propagate the error. | 
 | 	 */ | 
 | 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { | 
 | 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); | 
 | 		xfs_iunlock(ip, iolock); | 
 | 		goto retry_exclusive; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	if (iolock) | 
 | 		xfs_iunlock(ip, iolock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t | 
 | xfs_file_dio_write( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
 | 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip); | 
 | 	size_t			count = iov_iter_count(from); | 
 |  | 
 | 	/* direct I/O must be aligned to device logical sector size */ | 
 | 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) | 
 | 		return -EINVAL; | 
 | 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) | 
 | 		return xfs_file_dio_write_unaligned(ip, iocb, from); | 
 | 	return xfs_file_dio_write_aligned(ip, iocb, from); | 
 | } | 
 |  | 
 | static noinline ssize_t | 
 | xfs_file_dax_write( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from) | 
 | { | 
 | 	struct inode		*inode = iocb->ki_filp->f_mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	int			iolock = XFS_IOLOCK_EXCL; | 
 | 	ssize_t			ret, error = 0; | 
 | 	loff_t			pos; | 
 |  | 
 | 	ret = xfs_ilock_iocb(iocb, iolock); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = xfs_file_write_checks(iocb, from, &iolock); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	pos = iocb->ki_pos; | 
 |  | 
 | 	trace_xfs_file_dax_write(iocb, from); | 
 | 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); | 
 | 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { | 
 | 		i_size_write(inode, iocb->ki_pos); | 
 | 		error = xfs_setfilesize(ip, pos, ret); | 
 | 	} | 
 | out: | 
 | 	if (iolock) | 
 | 		xfs_iunlock(ip, iolock); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | 
 |  | 
 | 		/* Handle various SYNC-type writes */ | 
 | 		ret = generic_write_sync(iocb, ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_file_buffered_write( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from) | 
 | { | 
 | 	struct file		*file = iocb->ki_filp; | 
 | 	struct address_space	*mapping = file->f_mapping; | 
 | 	struct inode		*inode = mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	ssize_t			ret; | 
 | 	bool			cleared_space = false; | 
 | 	int			iolock; | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | write_retry: | 
 | 	iolock = XFS_IOLOCK_EXCL; | 
 | 	xfs_ilock(ip, iolock); | 
 |  | 
 | 	ret = xfs_file_write_checks(iocb, from, &iolock); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* We can write back this queue in page reclaim */ | 
 | 	current->backing_dev_info = inode_to_bdi(inode); | 
 |  | 
 | 	trace_xfs_file_buffered_write(iocb, from); | 
 | 	ret = iomap_file_buffered_write(iocb, from, | 
 | 			&xfs_buffered_write_iomap_ops); | 
 | 	if (likely(ret >= 0)) | 
 | 		iocb->ki_pos += ret; | 
 |  | 
 | 	/* | 
 | 	 * If we hit a space limit, try to free up some lingering preallocated | 
 | 	 * space before returning an error. In the case of ENOSPC, first try to | 
 | 	 * write back all dirty inodes to free up some of the excess reserved | 
 | 	 * metadata space. This reduces the chances that the eofblocks scan | 
 | 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this | 
 | 	 * also behaves as a filter to prevent too many eofblocks scans from | 
 | 	 * running at the same time.  Use a synchronous scan to increase the | 
 | 	 * effectiveness of the scan. | 
 | 	 */ | 
 | 	if (ret == -EDQUOT && !cleared_space) { | 
 | 		xfs_iunlock(ip, iolock); | 
 | 		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); | 
 | 		cleared_space = true; | 
 | 		goto write_retry; | 
 | 	} else if (ret == -ENOSPC && !cleared_space) { | 
 | 		struct xfs_icwalk	icw = {0}; | 
 |  | 
 | 		cleared_space = true; | 
 | 		xfs_flush_inodes(ip->i_mount); | 
 |  | 
 | 		xfs_iunlock(ip, iolock); | 
 | 		icw.icw_flags = XFS_ICWALK_FLAG_SYNC; | 
 | 		xfs_blockgc_free_space(ip->i_mount, &icw); | 
 | 		goto write_retry; | 
 | 	} | 
 |  | 
 | 	current->backing_dev_info = NULL; | 
 | out: | 
 | 	if (iolock) | 
 | 		xfs_iunlock(ip, iolock); | 
 |  | 
 | 	if (ret > 0) { | 
 | 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | 
 | 		/* Handle various SYNC-type writes */ | 
 | 		ret = generic_write_sync(iocb, ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_file_write_iter( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*from) | 
 | { | 
 | 	struct file		*file = iocb->ki_filp; | 
 | 	struct address_space	*mapping = file->f_mapping; | 
 | 	struct inode		*inode = mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	ssize_t			ret; | 
 | 	size_t			ocount = iov_iter_count(from); | 
 |  | 
 | 	XFS_STATS_INC(ip->i_mount, xs_write_calls); | 
 |  | 
 | 	if (ocount == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (xfs_is_shutdown(ip->i_mount)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (IS_DAX(inode)) | 
 | 		return xfs_file_dax_write(iocb, from); | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_DIRECT) { | 
 | 		/* | 
 | 		 * Allow a directio write to fall back to a buffered | 
 | 		 * write *only* in the case that we're doing a reflink | 
 | 		 * CoW.  In all other directio scenarios we do not | 
 | 		 * allow an operation to fall back to buffered mode. | 
 | 		 */ | 
 | 		ret = xfs_file_dio_write(iocb, from); | 
 | 		if (ret != -ENOTBLK) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return xfs_file_buffered_write(iocb, from); | 
 | } | 
 |  | 
 | static void | 
 | xfs_wait_dax_page( | 
 | 	struct inode		*inode) | 
 | { | 
 | 	struct xfs_inode        *ip = XFS_I(inode); | 
 |  | 
 | 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
 | 	schedule(); | 
 | 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
 | } | 
 |  | 
 | static int | 
 | xfs_break_dax_layouts( | 
 | 	struct inode		*inode, | 
 | 	bool			*retry) | 
 | { | 
 | 	struct page		*page; | 
 |  | 
 | 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); | 
 |  | 
 | 	page = dax_layout_busy_page(inode->i_mapping); | 
 | 	if (!page) | 
 | 		return 0; | 
 |  | 
 | 	*retry = true; | 
 | 	return ___wait_var_event(&page->_refcount, | 
 | 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, | 
 | 			0, 0, xfs_wait_dax_page(inode)); | 
 | } | 
 |  | 
 | int | 
 | xfs_break_layouts( | 
 | 	struct inode		*inode, | 
 | 	uint			*iolock, | 
 | 	enum layout_break_reason reason) | 
 | { | 
 | 	bool			retry; | 
 | 	int			error; | 
 |  | 
 | 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); | 
 |  | 
 | 	do { | 
 | 		retry = false; | 
 | 		switch (reason) { | 
 | 		case BREAK_UNMAP: | 
 | 			error = xfs_break_dax_layouts(inode, &retry); | 
 | 			if (error || retry) | 
 | 				break; | 
 | 			fallthrough; | 
 | 		case BREAK_WRITE: | 
 | 			error = xfs_break_leased_layouts(inode, iolock, &retry); | 
 | 			break; | 
 | 		default: | 
 | 			WARN_ON_ONCE(1); | 
 | 			error = -EINVAL; | 
 | 		} | 
 | 	} while (error == 0 && retry); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | #define	XFS_FALLOC_FL_SUPPORTED						\ | 
 | 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\ | 
 | 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\ | 
 | 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) | 
 |  | 
 | STATIC long | 
 | xfs_file_fallocate( | 
 | 	struct file		*file, | 
 | 	int			mode, | 
 | 	loff_t			offset, | 
 | 	loff_t			len) | 
 | { | 
 | 	struct inode		*inode = file_inode(file); | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	long			error; | 
 | 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; | 
 | 	loff_t			new_size = 0; | 
 | 	bool			do_file_insert = false; | 
 |  | 
 | 	if (!S_ISREG(inode->i_mode)) | 
 | 		return -EINVAL; | 
 | 	if (mode & ~XFS_FALLOC_FL_SUPPORTED) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	xfs_ilock(ip, iolock); | 
 | 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); | 
 | 	if (error) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Must wait for all AIO to complete before we continue as AIO can | 
 | 	 * change the file size on completion without holding any locks we | 
 | 	 * currently hold. We must do this first because AIO can update both | 
 | 	 * the on disk and in memory inode sizes, and the operations that follow | 
 | 	 * require the in-memory size to be fully up-to-date. | 
 | 	 */ | 
 | 	inode_dio_wait(inode); | 
 |  | 
 | 	/* | 
 | 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate | 
 | 	 * the cached range over the first operation we are about to run. | 
 | 	 * | 
 | 	 * We care about zero and collapse here because they both run a hole | 
 | 	 * punch over the range first. Because that can zero data, and the range | 
 | 	 * of invalidation for the shift operations is much larger, we still do | 
 | 	 * the required flush for collapse in xfs_prepare_shift(). | 
 | 	 * | 
 | 	 * Insert has the same range requirements as collapse, and we extend the | 
 | 	 * file first which can zero data. Hence insert has the same | 
 | 	 * flush/invalidate requirements as collapse and so they are both | 
 | 	 * handled at the right time by xfs_prepare_shift(). | 
 | 	 */ | 
 | 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | | 
 | 		    FALLOC_FL_COLLAPSE_RANGE)) { | 
 | 		error = xfs_flush_unmap_range(ip, offset, len); | 
 | 		if (error) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	error = file_modified(file); | 
 | 	if (error) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (mode & FALLOC_FL_PUNCH_HOLE) { | 
 | 		error = xfs_free_file_space(ip, offset, len); | 
 | 		if (error) | 
 | 			goto out_unlock; | 
 | 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) { | 
 | 		if (!xfs_is_falloc_aligned(ip, offset, len)) { | 
 | 			error = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * There is no need to overlap collapse range with EOF, | 
 | 		 * in which case it is effectively a truncate operation | 
 | 		 */ | 
 | 		if (offset + len >= i_size_read(inode)) { | 
 | 			error = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		new_size = i_size_read(inode) - len; | 
 |  | 
 | 		error = xfs_collapse_file_space(ip, offset, len); | 
 | 		if (error) | 
 | 			goto out_unlock; | 
 | 	} else if (mode & FALLOC_FL_INSERT_RANGE) { | 
 | 		loff_t		isize = i_size_read(inode); | 
 |  | 
 | 		if (!xfs_is_falloc_aligned(ip, offset, len)) { | 
 | 			error = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * New inode size must not exceed ->s_maxbytes, accounting for | 
 | 		 * possible signed overflow. | 
 | 		 */ | 
 | 		if (inode->i_sb->s_maxbytes - isize < len) { | 
 | 			error = -EFBIG; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		new_size = isize + len; | 
 |  | 
 | 		/* Offset should be less than i_size */ | 
 | 		if (offset >= isize) { | 
 | 			error = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		do_file_insert = true; | 
 | 	} else { | 
 | 		if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
 | 		    offset + len > i_size_read(inode)) { | 
 | 			new_size = offset + len; | 
 | 			error = inode_newsize_ok(inode, new_size); | 
 | 			if (error) | 
 | 				goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (mode & FALLOC_FL_ZERO_RANGE) { | 
 | 			/* | 
 | 			 * Punch a hole and prealloc the range.  We use a hole | 
 | 			 * punch rather than unwritten extent conversion for two | 
 | 			 * reasons: | 
 | 			 * | 
 | 			 *   1.) Hole punch handles partial block zeroing for us. | 
 | 			 *   2.) If prealloc returns ENOSPC, the file range is | 
 | 			 *       still zero-valued by virtue of the hole punch. | 
 | 			 */ | 
 | 			unsigned int blksize = i_blocksize(inode); | 
 |  | 
 | 			trace_xfs_zero_file_space(ip); | 
 |  | 
 | 			error = xfs_free_file_space(ip, offset, len); | 
 | 			if (error) | 
 | 				goto out_unlock; | 
 |  | 
 | 			len = round_up(offset + len, blksize) - | 
 | 			      round_down(offset, blksize); | 
 | 			offset = round_down(offset, blksize); | 
 | 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) { | 
 | 			error = xfs_reflink_unshare(ip, offset, len); | 
 | 			if (error) | 
 | 				goto out_unlock; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If always_cow mode we can't use preallocations and | 
 | 			 * thus should not create them. | 
 | 			 */ | 
 | 			if (xfs_is_always_cow_inode(ip)) { | 
 | 				error = -EOPNOTSUPP; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!xfs_is_always_cow_inode(ip)) { | 
 | 			error = xfs_alloc_file_space(ip, offset, len, | 
 | 						     XFS_BMAPI_PREALLOC); | 
 | 			if (error) | 
 | 				goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Change file size if needed */ | 
 | 	if (new_size) { | 
 | 		struct iattr iattr; | 
 |  | 
 | 		iattr.ia_valid = ATTR_SIZE; | 
 | 		iattr.ia_size = new_size; | 
 | 		error = xfs_vn_setattr_size(file_mnt_user_ns(file), | 
 | 					    file_dentry(file), &iattr); | 
 | 		if (error) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Perform hole insertion now that the file size has been | 
 | 	 * updated so that if we crash during the operation we don't | 
 | 	 * leave shifted extents past EOF and hence losing access to | 
 | 	 * the data that is contained within them. | 
 | 	 */ | 
 | 	if (do_file_insert) { | 
 | 		error = xfs_insert_file_space(ip, offset, len); | 
 | 		if (error) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (file->f_flags & O_DSYNC) | 
 | 		error = xfs_log_force_inode(ip); | 
 |  | 
 | out_unlock: | 
 | 	xfs_iunlock(ip, iolock); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_file_fadvise( | 
 | 	struct file	*file, | 
 | 	loff_t		start, | 
 | 	loff_t		end, | 
 | 	int		advice) | 
 | { | 
 | 	struct xfs_inode *ip = XFS_I(file_inode(file)); | 
 | 	int ret; | 
 | 	int lockflags = 0; | 
 |  | 
 | 	/* | 
 | 	 * Operations creating pages in page cache need protection from hole | 
 | 	 * punching and similar ops | 
 | 	 */ | 
 | 	if (advice == POSIX_FADV_WILLNEED) { | 
 | 		lockflags = XFS_IOLOCK_SHARED; | 
 | 		xfs_ilock(ip, lockflags); | 
 | 	} | 
 | 	ret = generic_fadvise(file, start, end, advice); | 
 | 	if (lockflags) | 
 | 		xfs_iunlock(ip, lockflags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Does this file, inode, or mount want synchronous writes? */ | 
 | static inline bool xfs_file_sync_writes(struct file *filp) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(file_inode(filp)); | 
 |  | 
 | 	if (xfs_has_wsync(ip->i_mount)) | 
 | 		return true; | 
 | 	if (filp->f_flags & (__O_SYNC | O_DSYNC)) | 
 | 		return true; | 
 | 	if (IS_SYNC(file_inode(filp))) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | STATIC loff_t | 
 | xfs_file_remap_range( | 
 | 	struct file		*file_in, | 
 | 	loff_t			pos_in, | 
 | 	struct file		*file_out, | 
 | 	loff_t			pos_out, | 
 | 	loff_t			len, | 
 | 	unsigned int		remap_flags) | 
 | { | 
 | 	struct inode		*inode_in = file_inode(file_in); | 
 | 	struct xfs_inode	*src = XFS_I(inode_in); | 
 | 	struct inode		*inode_out = file_inode(file_out); | 
 | 	struct xfs_inode	*dest = XFS_I(inode_out); | 
 | 	struct xfs_mount	*mp = src->i_mount; | 
 | 	loff_t			remapped = 0; | 
 | 	xfs_extlen_t		cowextsize; | 
 | 	int			ret; | 
 |  | 
 | 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!xfs_has_reflink(mp)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* Prepare and then clone file data. */ | 
 | 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, | 
 | 			&len, remap_flags); | 
 | 	if (ret || len == 0) | 
 | 		return ret; | 
 |  | 
 | 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); | 
 |  | 
 | 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, | 
 | 			&remapped); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Carry the cowextsize hint from src to dest if we're sharing the | 
 | 	 * entire source file to the entire destination file, the source file | 
 | 	 * has a cowextsize hint, and the destination file does not. | 
 | 	 */ | 
 | 	cowextsize = 0; | 
 | 	if (pos_in == 0 && len == i_size_read(inode_in) && | 
 | 	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && | 
 | 	    pos_out == 0 && len >= i_size_read(inode_out) && | 
 | 	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) | 
 | 		cowextsize = src->i_cowextsize; | 
 |  | 
 | 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, | 
 | 			remap_flags); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) | 
 | 		xfs_log_force_inode(dest); | 
 | out_unlock: | 
 | 	xfs_iunlock2_io_mmap(src, dest); | 
 | 	if (ret) | 
 | 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); | 
 | 	return remapped > 0 ? remapped : ret; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_file_open( | 
 | 	struct inode	*inode, | 
 | 	struct file	*file) | 
 | { | 
 | 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) | 
 | 		return -EFBIG; | 
 | 	if (xfs_is_shutdown(XFS_M(inode->i_sb))) | 
 | 		return -EIO; | 
 | 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_dir_open( | 
 | 	struct inode	*inode, | 
 | 	struct file	*file) | 
 | { | 
 | 	struct xfs_inode *ip = XFS_I(inode); | 
 | 	int		mode; | 
 | 	int		error; | 
 |  | 
 | 	error = xfs_file_open(inode, file); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * If there are any blocks, read-ahead block 0 as we're almost | 
 | 	 * certain to have the next operation be a read there. | 
 | 	 */ | 
 | 	mode = xfs_ilock_data_map_shared(ip); | 
 | 	if (ip->i_df.if_nextents > 0) | 
 | 		error = xfs_dir3_data_readahead(ip, 0, 0); | 
 | 	xfs_iunlock(ip, mode); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_file_release( | 
 | 	struct inode	*inode, | 
 | 	struct file	*filp) | 
 | { | 
 | 	return xfs_release(XFS_I(inode)); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_file_readdir( | 
 | 	struct file	*file, | 
 | 	struct dir_context *ctx) | 
 | { | 
 | 	struct inode	*inode = file_inode(file); | 
 | 	xfs_inode_t	*ip = XFS_I(inode); | 
 | 	size_t		bufsize; | 
 |  | 
 | 	/* | 
 | 	 * The Linux API doesn't pass down the total size of the buffer | 
 | 	 * we read into down to the filesystem.  With the filldir concept | 
 | 	 * it's not needed for correct information, but the XFS dir2 leaf | 
 | 	 * code wants an estimate of the buffer size to calculate it's | 
 | 	 * readahead window and size the buffers used for mapping to | 
 | 	 * physical blocks. | 
 | 	 * | 
 | 	 * Try to give it an estimate that's good enough, maybe at some | 
 | 	 * point we can change the ->readdir prototype to include the | 
 | 	 * buffer size.  For now we use the current glibc buffer size. | 
 | 	 */ | 
 | 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); | 
 |  | 
 | 	return xfs_readdir(NULL, ip, ctx, bufsize); | 
 | } | 
 |  | 
 | STATIC loff_t | 
 | xfs_file_llseek( | 
 | 	struct file	*file, | 
 | 	loff_t		offset, | 
 | 	int		whence) | 
 | { | 
 | 	struct inode		*inode = file->f_mapping->host; | 
 |  | 
 | 	if (xfs_is_shutdown(XFS_I(inode)->i_mount)) | 
 | 		return -EIO; | 
 |  | 
 | 	switch (whence) { | 
 | 	default: | 
 | 		return generic_file_llseek(file, offset, whence); | 
 | 	case SEEK_HOLE: | 
 | 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); | 
 | 		break; | 
 | 	case SEEK_DATA: | 
 | 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (offset < 0) | 
 | 		return offset; | 
 | 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); | 
 | } | 
 |  | 
 | /* | 
 |  * Locking for serialisation of IO during page faults. This results in a lock | 
 |  * ordering of: | 
 |  * | 
 |  * mmap_lock (MM) | 
 |  *   sb_start_pagefault(vfs, freeze) | 
 |  *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) | 
 |  *       page_lock (MM) | 
 |  *         i_lock (XFS - extent map serialisation) | 
 |  */ | 
 | static vm_fault_t | 
 | __xfs_filemap_fault( | 
 | 	struct vm_fault		*vmf, | 
 | 	enum page_entry_size	pe_size, | 
 | 	bool			write_fault) | 
 | { | 
 | 	struct inode		*inode = file_inode(vmf->vma->vm_file); | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	vm_fault_t		ret; | 
 |  | 
 | 	trace_xfs_filemap_fault(ip, pe_size, write_fault); | 
 |  | 
 | 	if (write_fault) { | 
 | 		sb_start_pagefault(inode->i_sb); | 
 | 		file_update_time(vmf->vma->vm_file); | 
 | 	} | 
 |  | 
 | 	if (IS_DAX(inode)) { | 
 | 		pfn_t pfn; | 
 |  | 
 | 		xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, | 
 | 				(write_fault && !vmf->cow_page) ? | 
 | 				 &xfs_direct_write_iomap_ops : | 
 | 				 &xfs_read_iomap_ops); | 
 | 		if (ret & VM_FAULT_NEEDDSYNC) | 
 | 			ret = dax_finish_sync_fault(vmf, pe_size, pfn); | 
 | 		xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 	} else { | 
 | 		if (write_fault) { | 
 | 			xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 			ret = iomap_page_mkwrite(vmf, | 
 | 					&xfs_buffered_write_iomap_ops); | 
 | 			xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 		} else { | 
 | 			ret = filemap_fault(vmf); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (write_fault) | 
 | 		sb_end_pagefault(inode->i_sb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool | 
 | xfs_is_write_fault( | 
 | 	struct vm_fault		*vmf) | 
 | { | 
 | 	return (vmf->flags & FAULT_FLAG_WRITE) && | 
 | 	       (vmf->vma->vm_flags & VM_SHARED); | 
 | } | 
 |  | 
 | static vm_fault_t | 
 | xfs_filemap_fault( | 
 | 	struct vm_fault		*vmf) | 
 | { | 
 | 	/* DAX can shortcut the normal fault path on write faults! */ | 
 | 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, | 
 | 			IS_DAX(file_inode(vmf->vma->vm_file)) && | 
 | 			xfs_is_write_fault(vmf)); | 
 | } | 
 |  | 
 | static vm_fault_t | 
 | xfs_filemap_huge_fault( | 
 | 	struct vm_fault		*vmf, | 
 | 	enum page_entry_size	pe_size) | 
 | { | 
 | 	if (!IS_DAX(file_inode(vmf->vma->vm_file))) | 
 | 		return VM_FAULT_FALLBACK; | 
 |  | 
 | 	/* DAX can shortcut the normal fault path on write faults! */ | 
 | 	return __xfs_filemap_fault(vmf, pe_size, | 
 | 			xfs_is_write_fault(vmf)); | 
 | } | 
 |  | 
 | static vm_fault_t | 
 | xfs_filemap_page_mkwrite( | 
 | 	struct vm_fault		*vmf) | 
 | { | 
 | 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | 
 | } | 
 |  | 
 | /* | 
 |  * pfn_mkwrite was originally intended to ensure we capture time stamp updates | 
 |  * on write faults. In reality, it needs to serialise against truncate and | 
 |  * prepare memory for writing so handle is as standard write fault. | 
 |  */ | 
 | static vm_fault_t | 
 | xfs_filemap_pfn_mkwrite( | 
 | 	struct vm_fault		*vmf) | 
 | { | 
 |  | 
 | 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | 
 | } | 
 |  | 
 | static vm_fault_t | 
 | xfs_filemap_map_pages( | 
 | 	struct vm_fault		*vmf, | 
 | 	pgoff_t			start_pgoff, | 
 | 	pgoff_t			end_pgoff) | 
 | { | 
 | 	struct inode		*inode = file_inode(vmf->vma->vm_file); | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff); | 
 | 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct vm_operations_struct xfs_file_vm_ops = { | 
 | 	.fault		= xfs_filemap_fault, | 
 | 	.huge_fault	= xfs_filemap_huge_fault, | 
 | 	.map_pages	= xfs_filemap_map_pages, | 
 | 	.page_mkwrite	= xfs_filemap_page_mkwrite, | 
 | 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite, | 
 | }; | 
 |  | 
 | STATIC int | 
 | xfs_file_mmap( | 
 | 	struct file		*file, | 
 | 	struct vm_area_struct	*vma) | 
 | { | 
 | 	struct inode		*inode = file_inode(file); | 
 | 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode)); | 
 |  | 
 | 	/* | 
 | 	 * We don't support synchronous mappings for non-DAX files and | 
 | 	 * for DAX files if underneath dax_device is not synchronous. | 
 | 	 */ | 
 | 	if (!daxdev_mapping_supported(vma, target->bt_daxdev)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	file_accessed(file); | 
 | 	vma->vm_ops = &xfs_file_vm_ops; | 
 | 	if (IS_DAX(inode)) | 
 | 		vma->vm_flags |= VM_HUGEPAGE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct file_operations xfs_file_operations = { | 
 | 	.llseek		= xfs_file_llseek, | 
 | 	.read_iter	= xfs_file_read_iter, | 
 | 	.write_iter	= xfs_file_write_iter, | 
 | 	.splice_read	= generic_file_splice_read, | 
 | 	.splice_write	= iter_file_splice_write, | 
 | 	.iopoll		= iomap_dio_iopoll, | 
 | 	.unlocked_ioctl	= xfs_file_ioctl, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl	= xfs_file_compat_ioctl, | 
 | #endif | 
 | 	.mmap		= xfs_file_mmap, | 
 | 	.mmap_supported_flags = MAP_SYNC, | 
 | 	.open		= xfs_file_open, | 
 | 	.release	= xfs_file_release, | 
 | 	.fsync		= xfs_file_fsync, | 
 | 	.get_unmapped_area = thp_get_unmapped_area, | 
 | 	.fallocate	= xfs_file_fallocate, | 
 | 	.fadvise	= xfs_file_fadvise, | 
 | 	.remap_file_range = xfs_file_remap_range, | 
 | }; | 
 |  | 
 | const struct file_operations xfs_dir_file_operations = { | 
 | 	.open		= xfs_dir_open, | 
 | 	.read		= generic_read_dir, | 
 | 	.iterate_shared	= xfs_file_readdir, | 
 | 	.llseek		= generic_file_llseek, | 
 | 	.unlocked_ioctl	= xfs_file_ioctl, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl	= xfs_file_compat_ioctl, | 
 | #endif | 
 | 	.fsync		= xfs_dir_fsync, | 
 | }; |