|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef _LINUX_MM_H | 
|  | #define _LINUX_MM_H | 
|  |  | 
|  | #include <linux/errno.h> | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #include <linux/mmdebug.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/range.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/percpu-refcount.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/shrinker.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/page_ext.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/page_ref.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/overflow.h> | 
|  | #include <linux/sizes.h> | 
|  |  | 
|  | struct mempolicy; | 
|  | struct anon_vma; | 
|  | struct anon_vma_chain; | 
|  | struct file_ra_state; | 
|  | struct user_struct; | 
|  | struct writeback_control; | 
|  | struct bdi_writeback; | 
|  |  | 
|  | void init_mm_internals(void); | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */ | 
|  | extern unsigned long max_mapnr; | 
|  |  | 
|  | static inline void set_max_mapnr(unsigned long limit) | 
|  | { | 
|  | max_mapnr = limit; | 
|  | } | 
|  | #else | 
|  | static inline void set_max_mapnr(unsigned long limit) { } | 
|  | #endif | 
|  |  | 
|  | extern atomic_long_t _totalram_pages; | 
|  | static inline unsigned long totalram_pages(void) | 
|  | { | 
|  | return (unsigned long)atomic_long_read(&_totalram_pages); | 
|  | } | 
|  |  | 
|  | static inline void totalram_pages_inc(void) | 
|  | { | 
|  | atomic_long_inc(&_totalram_pages); | 
|  | } | 
|  |  | 
|  | static inline void totalram_pages_dec(void) | 
|  | { | 
|  | atomic_long_dec(&_totalram_pages); | 
|  | } | 
|  |  | 
|  | static inline void totalram_pages_add(long count) | 
|  | { | 
|  | atomic_long_add(count, &_totalram_pages); | 
|  | } | 
|  |  | 
|  | static inline void totalram_pages_set(long val) | 
|  | { | 
|  | atomic_long_set(&_totalram_pages, val); | 
|  | } | 
|  |  | 
|  | extern void * high_memory; | 
|  | extern int page_cluster; | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | extern int sysctl_legacy_va_layout; | 
|  | #else | 
|  | #define sysctl_legacy_va_layout 0 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS | 
|  | extern const int mmap_rnd_bits_min; | 
|  | extern const int mmap_rnd_bits_max; | 
|  | extern int mmap_rnd_bits __read_mostly; | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | 
|  | extern const int mmap_rnd_compat_bits_min; | 
|  | extern const int mmap_rnd_compat_bits_max; | 
|  | extern int mmap_rnd_compat_bits __read_mostly; | 
|  | #endif | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  |  | 
|  | /* | 
|  | * Architectures that support memory tagging (assigning tags to memory regions, | 
|  | * embedding these tags into addresses that point to these memory regions, and | 
|  | * checking that the memory and the pointer tags match on memory accesses) | 
|  | * redefine this macro to strip tags from pointers. | 
|  | * It's defined as noop for arcitectures that don't support memory tagging. | 
|  | */ | 
|  | #ifndef untagged_addr | 
|  | #define untagged_addr(addr) (addr) | 
|  | #endif | 
|  |  | 
|  | #ifndef __pa_symbol | 
|  | #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0)) | 
|  | #endif | 
|  |  | 
|  | #ifndef page_to_virt | 
|  | #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x))) | 
|  | #endif | 
|  |  | 
|  | #ifndef lm_alias | 
|  | #define lm_alias(x)	__va(__pa_symbol(x)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * To prevent common memory management code establishing | 
|  | * a zero page mapping on a read fault. | 
|  | * This macro should be defined within <asm/pgtable.h>. | 
|  | * s390 does this to prevent multiplexing of hardware bits | 
|  | * related to the physical page in case of virtualization. | 
|  | */ | 
|  | #ifndef mm_forbids_zeropage | 
|  | #define mm_forbids_zeropage(X)	(0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On some architectures it is expensive to call memset() for small sizes. | 
|  | * If an architecture decides to implement their own version of | 
|  | * mm_zero_struct_page they should wrap the defines below in a #ifndef and | 
|  | * define their own version of this macro in <asm/pgtable.h> | 
|  | */ | 
|  | #if BITS_PER_LONG == 64 | 
|  | /* This function must be updated when the size of struct page grows above 80 | 
|  | * or reduces below 56. The idea that compiler optimizes out switch() | 
|  | * statement, and only leaves move/store instructions. Also the compiler can | 
|  | * combine write statments if they are both assignments and can be reordered, | 
|  | * this can result in several of the writes here being dropped. | 
|  | */ | 
|  | #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp) | 
|  | static inline void __mm_zero_struct_page(struct page *page) | 
|  | { | 
|  | unsigned long *_pp = (void *)page; | 
|  |  | 
|  | /* Check that struct page is either 56, 64, 72, or 80 bytes */ | 
|  | BUILD_BUG_ON(sizeof(struct page) & 7); | 
|  | BUILD_BUG_ON(sizeof(struct page) < 56); | 
|  | BUILD_BUG_ON(sizeof(struct page) > 80); | 
|  |  | 
|  | switch (sizeof(struct page)) { | 
|  | case 80: | 
|  | _pp[9] = 0;	/* fallthrough */ | 
|  | case 72: | 
|  | _pp[8] = 0;	/* fallthrough */ | 
|  | case 64: | 
|  | _pp[7] = 0;	/* fallthrough */ | 
|  | case 56: | 
|  | _pp[6] = 0; | 
|  | _pp[5] = 0; | 
|  | _pp[4] = 0; | 
|  | _pp[3] = 0; | 
|  | _pp[2] = 0; | 
|  | _pp[1] = 0; | 
|  | _pp[0] = 0; | 
|  | } | 
|  | } | 
|  | #else | 
|  | #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page))) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Default maximum number of active map areas, this limits the number of vmas | 
|  | * per mm struct. Users can overwrite this number by sysctl but there is a | 
|  | * problem. | 
|  | * | 
|  | * When a program's coredump is generated as ELF format, a section is created | 
|  | * per a vma. In ELF, the number of sections is represented in unsigned short. | 
|  | * This means the number of sections should be smaller than 65535 at coredump. | 
|  | * Because the kernel adds some informative sections to a image of program at | 
|  | * generating coredump, we need some margin. The number of extra sections is | 
|  | * 1-3 now and depends on arch. We use "5" as safe margin, here. | 
|  | * | 
|  | * ELF extended numbering allows more than 65535 sections, so 16-bit bound is | 
|  | * not a hard limit any more. Although some userspace tools can be surprised by | 
|  | * that. | 
|  | */ | 
|  | #define MAPCOUNT_ELF_CORE_MARGIN	(5) | 
|  | #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) | 
|  |  | 
|  | extern int sysctl_max_map_count; | 
|  |  | 
|  | extern unsigned long sysctl_user_reserve_kbytes; | 
|  | extern unsigned long sysctl_admin_reserve_kbytes; | 
|  |  | 
|  | extern int sysctl_overcommit_memory; | 
|  | extern int sysctl_overcommit_ratio; | 
|  | extern unsigned long sysctl_overcommit_kbytes; | 
|  |  | 
|  | extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, | 
|  | size_t *, loff_t *); | 
|  | extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, | 
|  | size_t *, loff_t *); | 
|  |  | 
|  | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) | 
|  |  | 
|  | /* to align the pointer to the (next) page boundary */ | 
|  | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) | 
|  |  | 
|  | /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ | 
|  | #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) | 
|  |  | 
|  | #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) | 
|  |  | 
|  | /* | 
|  | * Linux kernel virtual memory manager primitives. | 
|  | * The idea being to have a "virtual" mm in the same way | 
|  | * we have a virtual fs - giving a cleaner interface to the | 
|  | * mm details, and allowing different kinds of memory mappings | 
|  | * (from shared memory to executable loading to arbitrary | 
|  | * mmap() functions). | 
|  | */ | 
|  |  | 
|  | struct vm_area_struct *vm_area_alloc(struct mm_struct *); | 
|  | struct vm_area_struct *vm_area_dup(struct vm_area_struct *); | 
|  | void vm_area_free(struct vm_area_struct *); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | extern struct rb_root nommu_region_tree; | 
|  | extern struct rw_semaphore nommu_region_sem; | 
|  |  | 
|  | extern unsigned int kobjsize(const void *objp); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * vm_flags in vm_area_struct, see mm_types.h. | 
|  | * When changing, update also include/trace/events/mmflags.h | 
|  | */ | 
|  | #define VM_NONE		0x00000000 | 
|  |  | 
|  | #define VM_READ		0x00000001	/* currently active flags */ | 
|  | #define VM_WRITE	0x00000002 | 
|  | #define VM_EXEC		0x00000004 | 
|  | #define VM_SHARED	0x00000008 | 
|  |  | 
|  | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ | 
|  | #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */ | 
|  | #define VM_MAYWRITE	0x00000020 | 
|  | #define VM_MAYEXEC	0x00000040 | 
|  | #define VM_MAYSHARE	0x00000080 | 
|  |  | 
|  | #define VM_GROWSDOWN	0x00000100	/* general info on the segment */ | 
|  | #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */ | 
|  | #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */ | 
|  | #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */ | 
|  | #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */ | 
|  |  | 
|  | #define VM_LOCKED	0x00002000 | 
|  | #define VM_IO           0x00004000	/* Memory mapped I/O or similar */ | 
|  |  | 
|  | /* Used by sys_madvise() */ | 
|  | #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */ | 
|  | #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */ | 
|  |  | 
|  | #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */ | 
|  | #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */ | 
|  | #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */ | 
|  | #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */ | 
|  | #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */ | 
|  | #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */ | 
|  | #define VM_SYNC		0x00800000	/* Synchronous page faults */ | 
|  | #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */ | 
|  | #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */ | 
|  | #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */ | 
|  |  | 
|  | #ifdef CONFIG_MEM_SOFT_DIRTY | 
|  | # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */ | 
|  | #else | 
|  | # define VM_SOFTDIRTY	0 | 
|  | #endif | 
|  |  | 
|  | #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */ | 
|  | #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */ | 
|  | #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */ | 
|  | #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS | 
|  | #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */ | 
|  | #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */ | 
|  | #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */ | 
|  | #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */ | 
|  | #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */ | 
|  | #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0) | 
|  | #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1) | 
|  | #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2) | 
|  | #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3) | 
|  | #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4) | 
|  | #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_PKEYS | 
|  | # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0 | 
|  | # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */ | 
|  | # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */ | 
|  | # define VM_PKEY_BIT2	VM_HIGH_ARCH_2 | 
|  | # define VM_PKEY_BIT3	VM_HIGH_ARCH_3 | 
|  | #ifdef CONFIG_PPC | 
|  | # define VM_PKEY_BIT4  VM_HIGH_ARCH_4 | 
|  | #else | 
|  | # define VM_PKEY_BIT4  0 | 
|  | #endif | 
|  | #endif /* CONFIG_ARCH_HAS_PKEYS */ | 
|  |  | 
|  | #if defined(CONFIG_X86) | 
|  | # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */ | 
|  | #elif defined(CONFIG_PPC) | 
|  | # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */ | 
|  | #elif defined(CONFIG_PARISC) | 
|  | # define VM_GROWSUP	VM_ARCH_1 | 
|  | #elif defined(CONFIG_IA64) | 
|  | # define VM_GROWSUP	VM_ARCH_1 | 
|  | #elif defined(CONFIG_SPARC64) | 
|  | # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */ | 
|  | # define VM_ARCH_CLEAR	VM_SPARC_ADI | 
|  | #elif !defined(CONFIG_MMU) | 
|  | # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */ | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_X86_INTEL_MPX) | 
|  | /* MPX specific bounds table or bounds directory */ | 
|  | # define VM_MPX		VM_HIGH_ARCH_4 | 
|  | #else | 
|  | # define VM_MPX		VM_NONE | 
|  | #endif | 
|  |  | 
|  | #ifndef VM_GROWSUP | 
|  | # define VM_GROWSUP	VM_NONE | 
|  | #endif | 
|  |  | 
|  | /* Bits set in the VMA until the stack is in its final location */ | 
|  | #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ) | 
|  |  | 
|  | #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */ | 
|  | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | #define VM_STACK	VM_GROWSUP | 
|  | #else | 
|  | #define VM_STACK	VM_GROWSDOWN | 
|  | #endif | 
|  |  | 
|  | #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
|  |  | 
|  | /* | 
|  | * Special vmas that are non-mergable, non-mlock()able. | 
|  | * Note: mm/huge_memory.c VM_NO_THP depends on this definition. | 
|  | */ | 
|  | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) | 
|  |  | 
|  | /* This mask defines which mm->def_flags a process can inherit its parent */ | 
|  | #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE | 
|  |  | 
|  | /* This mask is used to clear all the VMA flags used by mlock */ | 
|  | #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT)) | 
|  |  | 
|  | /* Arch-specific flags to clear when updating VM flags on protection change */ | 
|  | #ifndef VM_ARCH_CLEAR | 
|  | # define VM_ARCH_CLEAR	VM_NONE | 
|  | #endif | 
|  | #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) | 
|  |  | 
|  | /* | 
|  | * mapping from the currently active vm_flags protection bits (the | 
|  | * low four bits) to a page protection mask.. | 
|  | */ | 
|  | extern pgprot_t protection_map[16]; | 
|  |  | 
|  | #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */ | 
|  | #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */ | 
|  | #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */ | 
|  | #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */ | 
|  | #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */ | 
|  | #define FAULT_FLAG_TRIED	0x20	/* Second try */ | 
|  | #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */ | 
|  | #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */ | 
|  | #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */ | 
|  |  | 
|  | #define FAULT_FLAG_TRACE \ | 
|  | { FAULT_FLAG_WRITE,		"WRITE" }, \ | 
|  | { FAULT_FLAG_MKWRITE,		"MKWRITE" }, \ | 
|  | { FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \ | 
|  | { FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \ | 
|  | { FAULT_FLAG_KILLABLE,		"KILLABLE" }, \ | 
|  | { FAULT_FLAG_TRIED,		"TRIED" }, \ | 
|  | { FAULT_FLAG_USER,		"USER" }, \ | 
|  | { FAULT_FLAG_REMOTE,		"REMOTE" }, \ | 
|  | { FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" } | 
|  |  | 
|  | /* | 
|  | * vm_fault is filled by the the pagefault handler and passed to the vma's | 
|  | * ->fault function. The vma's ->fault is responsible for returning a bitmask | 
|  | * of VM_FAULT_xxx flags that give details about how the fault was handled. | 
|  | * | 
|  | * MM layer fills up gfp_mask for page allocations but fault handler might | 
|  | * alter it if its implementation requires a different allocation context. | 
|  | * | 
|  | * pgoff should be used in favour of virtual_address, if possible. | 
|  | */ | 
|  | struct vm_fault { | 
|  | struct vm_area_struct *vma;	/* Target VMA */ | 
|  | unsigned int flags;		/* FAULT_FLAG_xxx flags */ | 
|  | gfp_t gfp_mask;			/* gfp mask to be used for allocations */ | 
|  | pgoff_t pgoff;			/* Logical page offset based on vma */ | 
|  | unsigned long address;		/* Faulting virtual address */ | 
|  | pmd_t *pmd;			/* Pointer to pmd entry matching | 
|  | * the 'address' */ | 
|  | pud_t *pud;			/* Pointer to pud entry matching | 
|  | * the 'address' | 
|  | */ | 
|  | pte_t orig_pte;			/* Value of PTE at the time of fault */ | 
|  |  | 
|  | struct page *cow_page;		/* Page handler may use for COW fault */ | 
|  | struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */ | 
|  | struct page *page;		/* ->fault handlers should return a | 
|  | * page here, unless VM_FAULT_NOPAGE | 
|  | * is set (which is also implied by | 
|  | * VM_FAULT_ERROR). | 
|  | */ | 
|  | /* These three entries are valid only while holding ptl lock */ | 
|  | pte_t *pte;			/* Pointer to pte entry matching | 
|  | * the 'address'. NULL if the page | 
|  | * table hasn't been allocated. | 
|  | */ | 
|  | spinlock_t *ptl;		/* Page table lock. | 
|  | * Protects pte page table if 'pte' | 
|  | * is not NULL, otherwise pmd. | 
|  | */ | 
|  | pgtable_t prealloc_pte;		/* Pre-allocated pte page table. | 
|  | * vm_ops->map_pages() calls | 
|  | * alloc_set_pte() from atomic context. | 
|  | * do_fault_around() pre-allocates | 
|  | * page table to avoid allocation from | 
|  | * atomic context. | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /* page entry size for vm->huge_fault() */ | 
|  | enum page_entry_size { | 
|  | PE_SIZE_PTE = 0, | 
|  | PE_SIZE_PMD, | 
|  | PE_SIZE_PUD, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These are the virtual MM functions - opening of an area, closing and | 
|  | * unmapping it (needed to keep files on disk up-to-date etc), pointer | 
|  | * to the functions called when a no-page or a wp-page exception occurs. | 
|  | */ | 
|  | struct vm_operations_struct { | 
|  | void (*open)(struct vm_area_struct * area); | 
|  | void (*close)(struct vm_area_struct * area); | 
|  | int (*split)(struct vm_area_struct * area, unsigned long addr); | 
|  | int (*mremap)(struct vm_area_struct * area); | 
|  | vm_fault_t (*fault)(struct vm_fault *vmf); | 
|  | vm_fault_t (*huge_fault)(struct vm_fault *vmf, | 
|  | enum page_entry_size pe_size); | 
|  | void (*map_pages)(struct vm_fault *vmf, | 
|  | pgoff_t start_pgoff, pgoff_t end_pgoff); | 
|  | unsigned long (*pagesize)(struct vm_area_struct * area); | 
|  |  | 
|  | /* notification that a previously read-only page is about to become | 
|  | * writable, if an error is returned it will cause a SIGBUS */ | 
|  | vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); | 
|  |  | 
|  | /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ | 
|  | vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); | 
|  |  | 
|  | /* called by access_process_vm when get_user_pages() fails, typically | 
|  | * for use by special VMAs that can switch between memory and hardware | 
|  | */ | 
|  | int (*access)(struct vm_area_struct *vma, unsigned long addr, | 
|  | void *buf, int len, int write); | 
|  |  | 
|  | /* Called by the /proc/PID/maps code to ask the vma whether it | 
|  | * has a special name.  Returning non-NULL will also cause this | 
|  | * vma to be dumped unconditionally. */ | 
|  | const char *(*name)(struct vm_area_struct *vma); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * set_policy() op must add a reference to any non-NULL @new mempolicy | 
|  | * to hold the policy upon return.  Caller should pass NULL @new to | 
|  | * remove a policy and fall back to surrounding context--i.e. do not | 
|  | * install a MPOL_DEFAULT policy, nor the task or system default | 
|  | * mempolicy. | 
|  | */ | 
|  | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); | 
|  |  | 
|  | /* | 
|  | * get_policy() op must add reference [mpol_get()] to any policy at | 
|  | * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure | 
|  | * in mm/mempolicy.c will do this automatically. | 
|  | * get_policy() must NOT add a ref if the policy at (vma,addr) is not | 
|  | * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. | 
|  | * If no [shared/vma] mempolicy exists at the addr, get_policy() op | 
|  | * must return NULL--i.e., do not "fallback" to task or system default | 
|  | * policy. | 
|  | */ | 
|  | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, | 
|  | unsigned long addr); | 
|  | #endif | 
|  | /* | 
|  | * Called by vm_normal_page() for special PTEs to find the | 
|  | * page for @addr.  This is useful if the default behavior | 
|  | * (using pte_page()) would not find the correct page. | 
|  | */ | 
|  | struct page *(*find_special_page)(struct vm_area_struct *vma, | 
|  | unsigned long addr); | 
|  | }; | 
|  |  | 
|  | static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) | 
|  | { | 
|  | static const struct vm_operations_struct dummy_vm_ops = {}; | 
|  |  | 
|  | memset(vma, 0, sizeof(*vma)); | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_ops = &dummy_vm_ops; | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  | } | 
|  |  | 
|  | static inline void vma_set_anonymous(struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_ops = NULL; | 
|  | } | 
|  |  | 
|  | static inline bool vma_is_anonymous(struct vm_area_struct *vma) | 
|  | { | 
|  | return !vma->vm_ops; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SHMEM | 
|  | /* | 
|  | * The vma_is_shmem is not inline because it is used only by slow | 
|  | * paths in userfault. | 
|  | */ | 
|  | bool vma_is_shmem(struct vm_area_struct *vma); | 
|  | #else | 
|  | static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } | 
|  | #endif | 
|  |  | 
|  | int vma_is_stack_for_current(struct vm_area_struct *vma); | 
|  |  | 
|  | /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ | 
|  | #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } | 
|  |  | 
|  | struct mmu_gather; | 
|  | struct inode; | 
|  |  | 
|  | #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
|  | static inline int pmd_devmap(pmd_t pmd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline int pud_devmap(pud_t pud) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline int pgd_devmap(pgd_t pgd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * FIXME: take this include out, include page-flags.h in | 
|  | * files which need it (119 of them) | 
|  | */ | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/huge_mm.h> | 
|  |  | 
|  | /* | 
|  | * Methods to modify the page usage count. | 
|  | * | 
|  | * What counts for a page usage: | 
|  | * - cache mapping   (page->mapping) | 
|  | * - private data    (page->private) | 
|  | * - page mapped in a task's page tables, each mapping | 
|  | *   is counted separately | 
|  | * | 
|  | * Also, many kernel routines increase the page count before a critical | 
|  | * routine so they can be sure the page doesn't go away from under them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Drop a ref, return true if the refcount fell to zero (the page has no users) | 
|  | */ | 
|  | static inline int put_page_testzero(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | 
|  | return page_ref_dec_and_test(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to grab a ref unless the page has a refcount of zero, return false if | 
|  | * that is the case. | 
|  | * This can be called when MMU is off so it must not access | 
|  | * any of the virtual mappings. | 
|  | */ | 
|  | static inline int get_page_unless_zero(struct page *page) | 
|  | { | 
|  | return page_ref_add_unless(page, 1, 0); | 
|  | } | 
|  |  | 
|  | extern int page_is_ram(unsigned long pfn); | 
|  |  | 
|  | enum { | 
|  | REGION_INTERSECTS, | 
|  | REGION_DISJOINT, | 
|  | REGION_MIXED, | 
|  | }; | 
|  |  | 
|  | int region_intersects(resource_size_t offset, size_t size, unsigned long flags, | 
|  | unsigned long desc); | 
|  |  | 
|  | /* Support for virtually mapped pages */ | 
|  | struct page *vmalloc_to_page(const void *addr); | 
|  | unsigned long vmalloc_to_pfn(const void *addr); | 
|  |  | 
|  | /* | 
|  | * Determine if an address is within the vmalloc range | 
|  | * | 
|  | * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there | 
|  | * is no special casing required. | 
|  | */ | 
|  | static inline bool is_vmalloc_addr(const void *x) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | unsigned long addr = (unsigned long)x; | 
|  |  | 
|  | return addr >= VMALLOC_START && addr < VMALLOC_END; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef is_ioremap_addr | 
|  | #define is_ioremap_addr(x) is_vmalloc_addr(x) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | extern int is_vmalloc_or_module_addr(const void *x); | 
|  | #else | 
|  | static inline int is_vmalloc_or_module_addr(const void *x) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern void *kvmalloc_node(size_t size, gfp_t flags, int node); | 
|  | static inline void *kvmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | return kvmalloc_node(size, flags, NUMA_NO_NODE); | 
|  | } | 
|  | static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | return kvmalloc_node(size, flags | __GFP_ZERO, node); | 
|  | } | 
|  | static inline void *kvzalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | return kvmalloc(size, flags | __GFP_ZERO); | 
|  | } | 
|  |  | 
|  | static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) | 
|  | { | 
|  | size_t bytes; | 
|  |  | 
|  | if (unlikely(check_mul_overflow(n, size, &bytes))) | 
|  | return NULL; | 
|  |  | 
|  | return kvmalloc(bytes, flags); | 
|  | } | 
|  |  | 
|  | static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) | 
|  | { | 
|  | return kvmalloc_array(n, size, flags | __GFP_ZERO); | 
|  | } | 
|  |  | 
|  | extern void kvfree(const void *addr); | 
|  | extern void kvfree_sensitive(const void *addr, size_t len); | 
|  |  | 
|  | /* | 
|  | * Mapcount of compound page as a whole, does not include mapped sub-pages. | 
|  | * | 
|  | * Must be called only for compound pages or any their tail sub-pages. | 
|  | */ | 
|  | static inline int compound_mapcount(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageCompound(page), page); | 
|  | page = compound_head(page); | 
|  | return atomic_read(compound_mapcount_ptr(page)) + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The atomic page->_mapcount, starts from -1: so that transitions | 
|  | * both from it and to it can be tracked, using atomic_inc_and_test | 
|  | * and atomic_add_negative(-1). | 
|  | */ | 
|  | static inline void page_mapcount_reset(struct page *page) | 
|  | { | 
|  | atomic_set(&(page)->_mapcount, -1); | 
|  | } | 
|  |  | 
|  | int __page_mapcount(struct page *page); | 
|  |  | 
|  | /* | 
|  | * Mapcount of 0-order page; when compound sub-page, includes | 
|  | * compound_mapcount(). | 
|  | * | 
|  | * Result is undefined for pages which cannot be mapped into userspace. | 
|  | * For example SLAB or special types of pages. See function page_has_type(). | 
|  | * They use this place in struct page differently. | 
|  | */ | 
|  | static inline int page_mapcount(struct page *page) | 
|  | { | 
|  | if (unlikely(PageCompound(page))) | 
|  | return __page_mapcount(page); | 
|  | return atomic_read(&page->_mapcount) + 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int total_mapcount(struct page *page); | 
|  | int page_trans_huge_mapcount(struct page *page, int *total_mapcount); | 
|  | #else | 
|  | static inline int total_mapcount(struct page *page) | 
|  | { | 
|  | return page_mapcount(page); | 
|  | } | 
|  | static inline int page_trans_huge_mapcount(struct page *page, | 
|  | int *total_mapcount) | 
|  | { | 
|  | int mapcount = page_mapcount(page); | 
|  | if (total_mapcount) | 
|  | *total_mapcount = mapcount; | 
|  | return mapcount; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline struct page *virt_to_head_page(const void *x) | 
|  | { | 
|  | struct page *page = virt_to_page(x); | 
|  |  | 
|  | return compound_head(page); | 
|  | } | 
|  |  | 
|  | void __put_page(struct page *page); | 
|  |  | 
|  | void put_pages_list(struct list_head *pages); | 
|  |  | 
|  | void split_page(struct page *page, unsigned int order); | 
|  |  | 
|  | /* | 
|  | * Compound pages have a destructor function.  Provide a | 
|  | * prototype for that function and accessor functions. | 
|  | * These are _only_ valid on the head of a compound page. | 
|  | */ | 
|  | typedef void compound_page_dtor(struct page *); | 
|  |  | 
|  | /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ | 
|  | enum compound_dtor_id { | 
|  | NULL_COMPOUND_DTOR, | 
|  | COMPOUND_PAGE_DTOR, | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | HUGETLB_PAGE_DTOR, | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | TRANSHUGE_PAGE_DTOR, | 
|  | #endif | 
|  | NR_COMPOUND_DTORS, | 
|  | }; | 
|  | extern compound_page_dtor * const compound_page_dtors[]; | 
|  |  | 
|  | static inline void set_compound_page_dtor(struct page *page, | 
|  | enum compound_dtor_id compound_dtor) | 
|  | { | 
|  | VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); | 
|  | page[1].compound_dtor = compound_dtor; | 
|  | } | 
|  |  | 
|  | static inline compound_page_dtor *get_compound_page_dtor(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); | 
|  | return compound_page_dtors[page[1].compound_dtor]; | 
|  | } | 
|  |  | 
|  | static inline unsigned int compound_order(struct page *page) | 
|  | { | 
|  | if (!PageHead(page)) | 
|  | return 0; | 
|  | return page[1].compound_order; | 
|  | } | 
|  |  | 
|  | static inline void set_compound_order(struct page *page, unsigned int order) | 
|  | { | 
|  | page[1].compound_order = order; | 
|  | } | 
|  |  | 
|  | /* Returns the number of pages in this potentially compound page. */ | 
|  | static inline unsigned long compound_nr(struct page *page) | 
|  | { | 
|  | return 1UL << compound_order(page); | 
|  | } | 
|  |  | 
|  | /* Returns the number of bytes in this potentially compound page. */ | 
|  | static inline unsigned long page_size(struct page *page) | 
|  | { | 
|  | return PAGE_SIZE << compound_order(page); | 
|  | } | 
|  |  | 
|  | /* Returns the number of bits needed for the number of bytes in a page */ | 
|  | static inline unsigned int page_shift(struct page *page) | 
|  | { | 
|  | return PAGE_SHIFT + compound_order(page); | 
|  | } | 
|  |  | 
|  | void free_compound_page(struct page *page); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* | 
|  | * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when | 
|  | * servicing faults for write access.  In the normal case, do always want | 
|  | * pte_mkwrite.  But get_user_pages can cause write faults for mappings | 
|  | * that do not have writing enabled, when used by access_process_vm. | 
|  | */ | 
|  | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 
|  | { | 
|  | if (likely(vma->vm_flags & VM_WRITE)) | 
|  | pte = pte_mkwrite(pte); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, | 
|  | struct page *page); | 
|  | vm_fault_t finish_fault(struct vm_fault *vmf); | 
|  | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Multiple processes may "see" the same page. E.g. for untouched | 
|  | * mappings of /dev/null, all processes see the same page full of | 
|  | * zeroes, and text pages of executables and shared libraries have | 
|  | * only one copy in memory, at most, normally. | 
|  | * | 
|  | * For the non-reserved pages, page_count(page) denotes a reference count. | 
|  | *   page_count() == 0 means the page is free. page->lru is then used for | 
|  | *   freelist management in the buddy allocator. | 
|  | *   page_count() > 0  means the page has been allocated. | 
|  | * | 
|  | * Pages are allocated by the slab allocator in order to provide memory | 
|  | * to kmalloc and kmem_cache_alloc. In this case, the management of the | 
|  | * page, and the fields in 'struct page' are the responsibility of mm/slab.c | 
|  | * unless a particular usage is carefully commented. (the responsibility of | 
|  | * freeing the kmalloc memory is the caller's, of course). | 
|  | * | 
|  | * A page may be used by anyone else who does a __get_free_page(). | 
|  | * In this case, page_count still tracks the references, and should only | 
|  | * be used through the normal accessor functions. The top bits of page->flags | 
|  | * and page->virtual store page management information, but all other fields | 
|  | * are unused and could be used privately, carefully. The management of this | 
|  | * page is the responsibility of the one who allocated it, and those who have | 
|  | * subsequently been given references to it. | 
|  | * | 
|  | * The other pages (we may call them "pagecache pages") are completely | 
|  | * managed by the Linux memory manager: I/O, buffers, swapping etc. | 
|  | * The following discussion applies only to them. | 
|  | * | 
|  | * A pagecache page contains an opaque `private' member, which belongs to the | 
|  | * page's address_space. Usually, this is the address of a circular list of | 
|  | * the page's disk buffers. PG_private must be set to tell the VM to call | 
|  | * into the filesystem to release these pages. | 
|  | * | 
|  | * A page may belong to an inode's memory mapping. In this case, page->mapping | 
|  | * is the pointer to the inode, and page->index is the file offset of the page, | 
|  | * in units of PAGE_SIZE. | 
|  | * | 
|  | * If pagecache pages are not associated with an inode, they are said to be | 
|  | * anonymous pages. These may become associated with the swapcache, and in that | 
|  | * case PG_swapcache is set, and page->private is an offset into the swapcache. | 
|  | * | 
|  | * In either case (swapcache or inode backed), the pagecache itself holds one | 
|  | * reference to the page. Setting PG_private should also increment the | 
|  | * refcount. The each user mapping also has a reference to the page. | 
|  | * | 
|  | * The pagecache pages are stored in a per-mapping radix tree, which is | 
|  | * rooted at mapping->i_pages, and indexed by offset. | 
|  | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space | 
|  | * lists, we instead now tag pages as dirty/writeback in the radix tree. | 
|  | * | 
|  | * All pagecache pages may be subject to I/O: | 
|  | * - inode pages may need to be read from disk, | 
|  | * - inode pages which have been modified and are MAP_SHARED may need | 
|  | *   to be written back to the inode on disk, | 
|  | * - anonymous pages (including MAP_PRIVATE file mappings) which have been | 
|  | *   modified may need to be swapped out to swap space and (later) to be read | 
|  | *   back into memory. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The zone field is never updated after free_area_init_core() | 
|  | * sets it, so none of the operations on it need to be atomic. | 
|  | */ | 
|  |  | 
|  | /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ | 
|  | #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 
|  | #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH) | 
|  | #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH) | 
|  | #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH) | 
|  | #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) | 
|  |  | 
|  | /* | 
|  | * Define the bit shifts to access each section.  For non-existent | 
|  | * sections we define the shift as 0; that plus a 0 mask ensures | 
|  | * the compiler will optimise away reference to them. | 
|  | */ | 
|  | #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 
|  | #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0)) | 
|  | #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0)) | 
|  | #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) | 
|  | #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) | 
|  |  | 
|  | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ | 
|  | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
|  | #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT) | 
|  | #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \ | 
|  | SECTIONS_PGOFF : ZONES_PGOFF) | 
|  | #else | 
|  | #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT) | 
|  | #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \ | 
|  | NODES_PGOFF : ZONES_PGOFF) | 
|  | #endif | 
|  |  | 
|  | #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0)) | 
|  |  | 
|  | #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS | 
|  | #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS | 
|  | #endif | 
|  |  | 
|  | #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1) | 
|  | #define NODES_MASK		((1UL << NODES_WIDTH) - 1) | 
|  | #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1) | 
|  | #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1) | 
|  | #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1) | 
|  | #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1) | 
|  |  | 
|  | static inline enum zone_type page_zonenum(const struct page *page) | 
|  | { | 
|  | return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DEVICE | 
|  | static inline bool is_zone_device_page(const struct page *page) | 
|  | { | 
|  | return page_zonenum(page) == ZONE_DEVICE; | 
|  | } | 
|  | extern void memmap_init_zone_device(struct zone *, unsigned long, | 
|  | unsigned long, struct dev_pagemap *); | 
|  | #else | 
|  | static inline bool is_zone_device_page(const struct page *page) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEV_PAGEMAP_OPS | 
|  | void __put_devmap_managed_page(struct page *page); | 
|  | DECLARE_STATIC_KEY_FALSE(devmap_managed_key); | 
|  | static inline bool put_devmap_managed_page(struct page *page) | 
|  | { | 
|  | if (!static_branch_unlikely(&devmap_managed_key)) | 
|  | return false; | 
|  | if (!is_zone_device_page(page)) | 
|  | return false; | 
|  | switch (page->pgmap->type) { | 
|  | case MEMORY_DEVICE_PRIVATE: | 
|  | case MEMORY_DEVICE_FS_DAX: | 
|  | __put_devmap_managed_page(page); | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_DEV_PAGEMAP_OPS */ | 
|  | static inline bool put_devmap_managed_page(struct page *page) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_DEV_PAGEMAP_OPS */ | 
|  |  | 
|  | static inline bool is_device_private_page(const struct page *page) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && | 
|  | IS_ENABLED(CONFIG_DEVICE_PRIVATE) && | 
|  | is_zone_device_page(page) && | 
|  | page->pgmap->type == MEMORY_DEVICE_PRIVATE; | 
|  | } | 
|  |  | 
|  | static inline bool is_pci_p2pdma_page(const struct page *page) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && | 
|  | IS_ENABLED(CONFIG_PCI_P2PDMA) && | 
|  | is_zone_device_page(page) && | 
|  | page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; | 
|  | } | 
|  |  | 
|  | /* 127: arbitrary random number, small enough to assemble well */ | 
|  | #define page_ref_zero_or_close_to_overflow(page) \ | 
|  | ((unsigned int) page_ref_count(page) + 127u <= 127u) | 
|  |  | 
|  | static inline void get_page(struct page *page) | 
|  | { | 
|  | page = compound_head(page); | 
|  | /* | 
|  | * Getting a normal page or the head of a compound page | 
|  | * requires to already have an elevated page->_refcount. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); | 
|  | page_ref_inc(page); | 
|  | } | 
|  |  | 
|  | static inline __must_check bool try_get_page(struct page *page) | 
|  | { | 
|  | page = compound_head(page); | 
|  | if (WARN_ON_ONCE(page_ref_count(page) <= 0)) | 
|  | return false; | 
|  | page_ref_inc(page); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void put_page(struct page *page) | 
|  | { | 
|  | page = compound_head(page); | 
|  |  | 
|  | /* | 
|  | * For devmap managed pages we need to catch refcount transition from | 
|  | * 2 to 1, when refcount reach one it means the page is free and we | 
|  | * need to inform the device driver through callback. See | 
|  | * include/linux/memremap.h and HMM for details. | 
|  | */ | 
|  | if (put_devmap_managed_page(page)) | 
|  | return; | 
|  |  | 
|  | if (put_page_testzero(page)) | 
|  | __put_page(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * put_user_page() - release a gup-pinned page | 
|  | * @page:            pointer to page to be released | 
|  | * | 
|  | * Pages that were pinned via get_user_pages*() must be released via | 
|  | * either put_user_page(), or one of the put_user_pages*() routines | 
|  | * below. This is so that eventually, pages that are pinned via | 
|  | * get_user_pages*() can be separately tracked and uniquely handled. In | 
|  | * particular, interactions with RDMA and filesystems need special | 
|  | * handling. | 
|  | * | 
|  | * put_user_page() and put_page() are not interchangeable, despite this early | 
|  | * implementation that makes them look the same. put_user_page() calls must | 
|  | * be perfectly matched up with get_user_page() calls. | 
|  | */ | 
|  | static inline void put_user_page(struct page *page) | 
|  | { | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, | 
|  | bool make_dirty); | 
|  |  | 
|  | void put_user_pages(struct page **pages, unsigned long npages); | 
|  |  | 
|  | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) | 
|  | #define SECTION_IN_PAGE_FLAGS | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The identification function is mainly used by the buddy allocator for | 
|  | * determining if two pages could be buddies. We are not really identifying | 
|  | * the zone since we could be using the section number id if we do not have | 
|  | * node id available in page flags. | 
|  | * We only guarantee that it will return the same value for two combinable | 
|  | * pages in a zone. | 
|  | */ | 
|  | static inline int page_zone_id(struct page *page) | 
|  | { | 
|  | return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; | 
|  | } | 
|  |  | 
|  | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
|  | extern int page_to_nid(const struct page *page); | 
|  | #else | 
|  | static inline int page_to_nid(const struct page *page) | 
|  | { | 
|  | struct page *p = (struct page *)page; | 
|  |  | 
|  | return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | static inline int cpu_pid_to_cpupid(int cpu, int pid) | 
|  | { | 
|  | return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); | 
|  | } | 
|  |  | 
|  | static inline int cpupid_to_pid(int cpupid) | 
|  | { | 
|  | return cpupid & LAST__PID_MASK; | 
|  | } | 
|  |  | 
|  | static inline int cpupid_to_cpu(int cpupid) | 
|  | { | 
|  | return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; | 
|  | } | 
|  |  | 
|  | static inline int cpupid_to_nid(int cpupid) | 
|  | { | 
|  | return cpu_to_node(cpupid_to_cpu(cpupid)); | 
|  | } | 
|  |  | 
|  | static inline bool cpupid_pid_unset(int cpupid) | 
|  | { | 
|  | return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool cpupid_cpu_unset(int cpupid) | 
|  | { | 
|  | return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) | 
|  | { | 
|  | return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); | 
|  | } | 
|  |  | 
|  | #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) | 
|  | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS | 
|  | static inline int page_cpupid_xchg_last(struct page *page, int cpupid) | 
|  | { | 
|  | return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); | 
|  | } | 
|  |  | 
|  | static inline int page_cpupid_last(struct page *page) | 
|  | { | 
|  | return page->_last_cpupid; | 
|  | } | 
|  | static inline void page_cpupid_reset_last(struct page *page) | 
|  | { | 
|  | page->_last_cpupid = -1 & LAST_CPUPID_MASK; | 
|  | } | 
|  | #else | 
|  | static inline int page_cpupid_last(struct page *page) | 
|  | { | 
|  | return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; | 
|  | } | 
|  |  | 
|  | extern int page_cpupid_xchg_last(struct page *page, int cpupid); | 
|  |  | 
|  | static inline void page_cpupid_reset_last(struct page *page) | 
|  | { | 
|  | page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; | 
|  | } | 
|  | #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ | 
|  | #else /* !CONFIG_NUMA_BALANCING */ | 
|  | static inline int page_cpupid_xchg_last(struct page *page, int cpupid) | 
|  | { | 
|  | return page_to_nid(page); /* XXX */ | 
|  | } | 
|  |  | 
|  | static inline int page_cpupid_last(struct page *page) | 
|  | { | 
|  | return page_to_nid(page); /* XXX */ | 
|  | } | 
|  |  | 
|  | static inline int cpupid_to_nid(int cpupid) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline int cpupid_to_pid(int cpupid) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline int cpupid_to_cpu(int cpupid) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline int cpu_pid_to_cpupid(int nid, int pid) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline bool cpupid_pid_unset(int cpupid) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void page_cpupid_reset_last(struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | #ifdef CONFIG_KASAN_SW_TAGS | 
|  |  | 
|  | /* | 
|  | * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid | 
|  | * setting tags for all pages to native kernel tag value 0xff, as the default | 
|  | * value 0x00 maps to 0xff. | 
|  | */ | 
|  |  | 
|  | static inline u8 page_kasan_tag(const struct page *page) | 
|  | { | 
|  | u8 tag; | 
|  |  | 
|  | tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; | 
|  | tag ^= 0xff; | 
|  |  | 
|  | return tag; | 
|  | } | 
|  |  | 
|  | static inline void page_kasan_tag_set(struct page *page, u8 tag) | 
|  | { | 
|  | tag ^= 0xff; | 
|  | page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); | 
|  | page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline void page_kasan_tag_reset(struct page *page) | 
|  | { | 
|  | page_kasan_tag_set(page, 0xff); | 
|  | } | 
|  | #else | 
|  | static inline u8 page_kasan_tag(const struct page *page) | 
|  | { | 
|  | return 0xff; | 
|  | } | 
|  |  | 
|  | static inline void page_kasan_tag_set(struct page *page, u8 tag) { } | 
|  | static inline void page_kasan_tag_reset(struct page *page) { } | 
|  | #endif | 
|  |  | 
|  | static inline struct zone *page_zone(const struct page *page) | 
|  | { | 
|  | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; | 
|  | } | 
|  |  | 
|  | static inline pg_data_t *page_pgdat(const struct page *page) | 
|  | { | 
|  | return NODE_DATA(page_to_nid(page)); | 
|  | } | 
|  |  | 
|  | #ifdef SECTION_IN_PAGE_FLAGS | 
|  | static inline void set_page_section(struct page *page, unsigned long section) | 
|  | { | 
|  | page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); | 
|  | page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline unsigned long page_to_section(const struct page *page) | 
|  | { | 
|  | return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void set_page_zone(struct page *page, enum zone_type zone) | 
|  | { | 
|  | page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); | 
|  | page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline void set_page_node(struct page *page, unsigned long node) | 
|  | { | 
|  | page->flags &= ~(NODES_MASK << NODES_PGSHIFT); | 
|  | page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline void set_page_links(struct page *page, enum zone_type zone, | 
|  | unsigned long node, unsigned long pfn) | 
|  | { | 
|  | set_page_zone(page, zone); | 
|  | set_page_node(page, node); | 
|  | #ifdef SECTION_IN_PAGE_FLAGS | 
|  | set_page_section(page, pfn_to_section_nr(pfn)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | static inline struct mem_cgroup *page_memcg(struct page *page) | 
|  | { | 
|  | return page->mem_cgroup; | 
|  | } | 
|  | static inline struct mem_cgroup *page_memcg_rcu(struct page *page) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | return READ_ONCE(page->mem_cgroup); | 
|  | } | 
|  | #else | 
|  | static inline struct mem_cgroup *page_memcg(struct page *page) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | static inline struct mem_cgroup *page_memcg_rcu(struct page *page) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Some inline functions in vmstat.h depend on page_zone() | 
|  | */ | 
|  | #include <linux/vmstat.h> | 
|  |  | 
|  | static __always_inline void *lowmem_page_address(const struct page *page) | 
|  | { | 
|  | return page_to_virt(page); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) | 
|  | #define HASHED_PAGE_VIRTUAL | 
|  | #endif | 
|  |  | 
|  | #if defined(WANT_PAGE_VIRTUAL) | 
|  | static inline void *page_address(const struct page *page) | 
|  | { | 
|  | return page->virtual; | 
|  | } | 
|  | static inline void set_page_address(struct page *page, void *address) | 
|  | { | 
|  | page->virtual = address; | 
|  | } | 
|  | #define page_address_init()  do { } while(0) | 
|  | #endif | 
|  |  | 
|  | #if defined(HASHED_PAGE_VIRTUAL) | 
|  | void *page_address(const struct page *page); | 
|  | void set_page_address(struct page *page, void *virtual); | 
|  | void page_address_init(void); | 
|  | #endif | 
|  |  | 
|  | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) | 
|  | #define page_address(page) lowmem_page_address(page) | 
|  | #define set_page_address(page, address)  do { } while(0) | 
|  | #define page_address_init()  do { } while(0) | 
|  | #endif | 
|  |  | 
|  | extern void *page_rmapping(struct page *page); | 
|  | extern struct anon_vma *page_anon_vma(struct page *page); | 
|  | extern struct address_space *page_mapping(struct page *page); | 
|  |  | 
|  | extern struct address_space *__page_file_mapping(struct page *); | 
|  |  | 
|  | static inline | 
|  | struct address_space *page_file_mapping(struct page *page) | 
|  | { | 
|  | if (unlikely(PageSwapCache(page))) | 
|  | return __page_file_mapping(page); | 
|  |  | 
|  | return page->mapping; | 
|  | } | 
|  |  | 
|  | extern pgoff_t __page_file_index(struct page *page); | 
|  |  | 
|  | /* | 
|  | * Return the pagecache index of the passed page.  Regular pagecache pages | 
|  | * use ->index whereas swapcache pages use swp_offset(->private) | 
|  | */ | 
|  | static inline pgoff_t page_index(struct page *page) | 
|  | { | 
|  | if (unlikely(PageSwapCache(page))) | 
|  | return __page_file_index(page); | 
|  | return page->index; | 
|  | } | 
|  |  | 
|  | bool page_mapped(struct page *page); | 
|  | struct address_space *page_mapping(struct page *page); | 
|  | struct address_space *page_mapping_file(struct page *page); | 
|  |  | 
|  | /* | 
|  | * Return true only if the page has been allocated with | 
|  | * ALLOC_NO_WATERMARKS and the low watermark was not | 
|  | * met implying that the system is under some pressure. | 
|  | */ | 
|  | static inline bool page_is_pfmemalloc(struct page *page) | 
|  | { | 
|  | /* | 
|  | * Page index cannot be this large so this must be | 
|  | * a pfmemalloc page. | 
|  | */ | 
|  | return page->index == -1UL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only to be called by the page allocator on a freshly allocated | 
|  | * page. | 
|  | */ | 
|  | static inline void set_page_pfmemalloc(struct page *page) | 
|  | { | 
|  | page->index = -1UL; | 
|  | } | 
|  |  | 
|  | static inline void clear_page_pfmemalloc(struct page *page) | 
|  | { | 
|  | page->index = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. | 
|  | */ | 
|  | extern void pagefault_out_of_memory(void); | 
|  |  | 
|  | #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK) | 
|  |  | 
|  | /* | 
|  | * Flags passed to show_mem() and show_free_areas() to suppress output in | 
|  | * various contexts. | 
|  | */ | 
|  | #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */ | 
|  |  | 
|  | extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | extern bool can_do_mlock(void); | 
|  | #else | 
|  | static inline bool can_do_mlock(void) { return false; } | 
|  | #endif | 
|  | extern int user_shm_lock(size_t, struct user_struct *); | 
|  | extern void user_shm_unlock(size_t, struct user_struct *); | 
|  |  | 
|  | /* | 
|  | * Parameter block passed down to zap_pte_range in exceptional cases. | 
|  | */ | 
|  | struct zap_details { | 
|  | struct address_space *check_mapping;	/* Check page->mapping if set */ | 
|  | pgoff_t	first_index;			/* Lowest page->index to unmap */ | 
|  | pgoff_t last_index;			/* Highest page->index to unmap */ | 
|  | }; | 
|  |  | 
|  | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte); | 
|  | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t pmd); | 
|  |  | 
|  | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size); | 
|  | void zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size); | 
|  | void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, | 
|  | unsigned long start, unsigned long end); | 
|  |  | 
|  | struct mmu_notifier_range; | 
|  |  | 
|  | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, | 
|  | unsigned long end, unsigned long floor, unsigned long ceiling); | 
|  | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, | 
|  | struct vm_area_struct *vma); | 
|  | int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, | 
|  | struct mmu_notifier_range *range, pte_t **ptepp, | 
|  | pmd_t **pmdpp, spinlock_t **ptlp); | 
|  | int follow_pte(struct mm_struct *mm, unsigned long address, | 
|  | pte_t **ptepp, spinlock_t **ptlp); | 
|  | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long *pfn); | 
|  | int follow_phys(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int flags, unsigned long *prot, resource_size_t *phys); | 
|  | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 
|  | void *buf, int len, int write); | 
|  |  | 
|  | extern void truncate_pagecache(struct inode *inode, loff_t new); | 
|  | extern void truncate_setsize(struct inode *inode, loff_t newsize); | 
|  | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); | 
|  | void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); | 
|  | int truncate_inode_page(struct address_space *mapping, struct page *page); | 
|  | int generic_error_remove_page(struct address_space *mapping, struct page *page); | 
|  | int invalidate_inode_page(struct page *page); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags); | 
|  | extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long address, unsigned int fault_flags, | 
|  | bool *unlocked); | 
|  | void unmap_mapping_pages(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t nr, bool even_cows); | 
|  | void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows); | 
|  | #else | 
|  | static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags) | 
|  | { | 
|  | /* should never happen if there's no MMU */ | 
|  | BUG(); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | static inline int fixup_user_fault(struct task_struct *tsk, | 
|  | struct mm_struct *mm, unsigned long address, | 
|  | unsigned int fault_flags, bool *unlocked) | 
|  | { | 
|  | /* should never happen if there's no MMU */ | 
|  | BUG(); | 
|  | return -EFAULT; | 
|  | } | 
|  | static inline void unmap_mapping_pages(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t nr, bool even_cows) { } | 
|  | static inline void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows) { } | 
|  | #endif | 
|  |  | 
|  | static inline void unmap_shared_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen) | 
|  | { | 
|  | unmap_mapping_range(mapping, holebegin, holelen, 0); | 
|  | } | 
|  |  | 
|  | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, | 
|  | void *buf, int len, unsigned int gup_flags); | 
|  | extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, | 
|  | void *buf, int len, unsigned int gup_flags); | 
|  | extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long addr, void *buf, int len, unsigned int gup_flags); | 
|  |  | 
|  | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, | 
|  | struct vm_area_struct **vmas, int *locked); | 
|  | long get_user_pages(unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, | 
|  | struct vm_area_struct **vmas); | 
|  | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, int *locked); | 
|  | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | 
|  | struct page **pages, unsigned int gup_flags); | 
|  |  | 
|  | int get_user_pages_fast(unsigned long start, int nr_pages, | 
|  | unsigned int gup_flags, struct page **pages); | 
|  |  | 
|  | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); | 
|  | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | 
|  | struct task_struct *task, bool bypass_rlim); | 
|  |  | 
|  | /* Container for pinned pfns / pages */ | 
|  | struct frame_vector { | 
|  | unsigned int nr_allocated;	/* Number of frames we have space for */ | 
|  | unsigned int nr_frames;	/* Number of frames stored in ptrs array */ | 
|  | bool got_ref;		/* Did we pin pages by getting page ref? */ | 
|  | bool is_pfns;		/* Does array contain pages or pfns? */ | 
|  | void *ptrs[0];		/* Array of pinned pfns / pages. Use | 
|  | * pfns_vector_pages() or pfns_vector_pfns() | 
|  | * for access */ | 
|  | }; | 
|  |  | 
|  | struct frame_vector *frame_vector_create(unsigned int nr_frames); | 
|  | void frame_vector_destroy(struct frame_vector *vec); | 
|  | int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, | 
|  | unsigned int gup_flags, struct frame_vector *vec); | 
|  | void put_vaddr_frames(struct frame_vector *vec); | 
|  | int frame_vector_to_pages(struct frame_vector *vec); | 
|  | void frame_vector_to_pfns(struct frame_vector *vec); | 
|  |  | 
|  | static inline unsigned int frame_vector_count(struct frame_vector *vec) | 
|  | { | 
|  | return vec->nr_frames; | 
|  | } | 
|  |  | 
|  | static inline struct page **frame_vector_pages(struct frame_vector *vec) | 
|  | { | 
|  | if (vec->is_pfns) { | 
|  | int err = frame_vector_to_pages(vec); | 
|  |  | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | return (struct page **)(vec->ptrs); | 
|  | } | 
|  |  | 
|  | static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) | 
|  | { | 
|  | if (!vec->is_pfns) | 
|  | frame_vector_to_pfns(vec); | 
|  | return (unsigned long *)(vec->ptrs); | 
|  | } | 
|  |  | 
|  | struct kvec; | 
|  | int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, | 
|  | struct page **pages); | 
|  | int get_kernel_page(unsigned long start, int write, struct page **pages); | 
|  | struct page *get_dump_page(unsigned long addr); | 
|  |  | 
|  | extern int try_to_release_page(struct page * page, gfp_t gfp_mask); | 
|  | extern void do_invalidatepage(struct page *page, unsigned int offset, | 
|  | unsigned int length); | 
|  |  | 
|  | void __set_page_dirty(struct page *, struct address_space *, int warn); | 
|  | int __set_page_dirty_nobuffers(struct page *page); | 
|  | int __set_page_dirty_no_writeback(struct page *page); | 
|  | int redirty_page_for_writepage(struct writeback_control *wbc, | 
|  | struct page *page); | 
|  | void account_page_dirtied(struct page *page, struct address_space *mapping); | 
|  | void account_page_cleaned(struct page *page, struct address_space *mapping, | 
|  | struct bdi_writeback *wb); | 
|  | int set_page_dirty(struct page *page); | 
|  | int set_page_dirty_lock(struct page *page); | 
|  | void __cancel_dirty_page(struct page *page); | 
|  | static inline void cancel_dirty_page(struct page *page) | 
|  | { | 
|  | /* Avoid atomic ops, locking, etc. when not actually needed. */ | 
|  | if (PageDirty(page)) | 
|  | __cancel_dirty_page(page); | 
|  | } | 
|  | int clear_page_dirty_for_io(struct page *page); | 
|  |  | 
|  | int get_cmdline(struct task_struct *task, char *buffer, int buflen); | 
|  |  | 
|  | extern unsigned long move_page_tables(struct vm_area_struct *vma, | 
|  | unsigned long old_addr, struct vm_area_struct *new_vma, | 
|  | unsigned long new_addr, unsigned long len, | 
|  | bool need_rmap_locks); | 
|  | extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, pgprot_t newprot, | 
|  | int dirty_accountable, int prot_numa); | 
|  | extern int mprotect_fixup(struct vm_area_struct *vma, | 
|  | struct vm_area_struct **pprev, unsigned long start, | 
|  | unsigned long end, unsigned long newflags); | 
|  |  | 
|  | /* | 
|  | * doesn't attempt to fault and will return short. | 
|  | */ | 
|  | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | 
|  | struct page **pages); | 
|  | /* | 
|  | * per-process(per-mm_struct) statistics. | 
|  | */ | 
|  | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) | 
|  | { | 
|  | long val = atomic_long_read(&mm->rss_stat.count[member]); | 
|  |  | 
|  | #ifdef SPLIT_RSS_COUNTING | 
|  | /* | 
|  | * counter is updated in asynchronous manner and may go to minus. | 
|  | * But it's never be expected number for users. | 
|  | */ | 
|  | if (val < 0) | 
|  | val = 0; | 
|  | #endif | 
|  | return (unsigned long)val; | 
|  | } | 
|  |  | 
|  | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) | 
|  | { | 
|  | atomic_long_add(value, &mm->rss_stat.count[member]); | 
|  | } | 
|  |  | 
|  | static inline void inc_mm_counter(struct mm_struct *mm, int member) | 
|  | { | 
|  | atomic_long_inc(&mm->rss_stat.count[member]); | 
|  | } | 
|  |  | 
|  | static inline void dec_mm_counter(struct mm_struct *mm, int member) | 
|  | { | 
|  | atomic_long_dec(&mm->rss_stat.count[member]); | 
|  | } | 
|  |  | 
|  | /* Optimized variant when page is already known not to be PageAnon */ | 
|  | static inline int mm_counter_file(struct page *page) | 
|  | { | 
|  | if (PageSwapBacked(page)) | 
|  | return MM_SHMEMPAGES; | 
|  | return MM_FILEPAGES; | 
|  | } | 
|  |  | 
|  | static inline int mm_counter(struct page *page) | 
|  | { | 
|  | if (PageAnon(page)) | 
|  | return MM_ANONPAGES; | 
|  | return mm_counter_file(page); | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_mm_rss(struct mm_struct *mm) | 
|  | { | 
|  | return get_mm_counter(mm, MM_FILEPAGES) + | 
|  | get_mm_counter(mm, MM_ANONPAGES) + | 
|  | get_mm_counter(mm, MM_SHMEMPAGES); | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) | 
|  | { | 
|  | return max(mm->hiwater_rss, get_mm_rss(mm)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) | 
|  | { | 
|  | return max(mm->hiwater_vm, mm->total_vm); | 
|  | } | 
|  |  | 
|  | static inline void update_hiwater_rss(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long _rss = get_mm_rss(mm); | 
|  |  | 
|  | if ((mm)->hiwater_rss < _rss) | 
|  | (mm)->hiwater_rss = _rss; | 
|  | } | 
|  |  | 
|  | static inline void update_hiwater_vm(struct mm_struct *mm) | 
|  | { | 
|  | if (mm->hiwater_vm < mm->total_vm) | 
|  | mm->hiwater_vm = mm->total_vm; | 
|  | } | 
|  |  | 
|  | static inline void reset_mm_hiwater_rss(struct mm_struct *mm) | 
|  | { | 
|  | mm->hiwater_rss = get_mm_rss(mm); | 
|  | } | 
|  |  | 
|  | static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | unsigned long hiwater_rss = get_mm_hiwater_rss(mm); | 
|  |  | 
|  | if (*maxrss < hiwater_rss) | 
|  | *maxrss = hiwater_rss; | 
|  | } | 
|  |  | 
|  | #if defined(SPLIT_RSS_COUNTING) | 
|  | void sync_mm_rss(struct mm_struct *mm); | 
|  | #else | 
|  | static inline void sync_mm_rss(struct mm_struct *mm) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP | 
|  | static inline int pte_devmap(pte_t pte) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); | 
|  |  | 
|  | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
|  | spinlock_t **ptl); | 
|  | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
|  | spinlock_t **ptl) | 
|  | { | 
|  | pte_t *ptep; | 
|  | __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); | 
|  | return ptep; | 
|  | } | 
|  |  | 
|  | #ifdef __PAGETABLE_P4D_FOLDED | 
|  | static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); | 
|  | #endif | 
|  |  | 
|  | #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) | 
|  | static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, | 
|  | unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void mm_inc_nr_puds(struct mm_struct *mm) {} | 
|  | static inline void mm_dec_nr_puds(struct mm_struct *mm) {} | 
|  |  | 
|  | #else | 
|  | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); | 
|  |  | 
|  | static inline void mm_inc_nr_puds(struct mm_struct *mm) | 
|  | { | 
|  | if (mm_pud_folded(mm)) | 
|  | return; | 
|  | atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); | 
|  | } | 
|  |  | 
|  | static inline void mm_dec_nr_puds(struct mm_struct *mm) | 
|  | { | 
|  | if (mm_pud_folded(mm)) | 
|  | return; | 
|  | atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) | 
|  | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} | 
|  | static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} | 
|  |  | 
|  | #else | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); | 
|  |  | 
|  | static inline void mm_inc_nr_pmds(struct mm_struct *mm) | 
|  | { | 
|  | if (mm_pmd_folded(mm)) | 
|  | return; | 
|  | atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); | 
|  | } | 
|  |  | 
|  | static inline void mm_dec_nr_pmds(struct mm_struct *mm) | 
|  | { | 
|  | if (mm_pmd_folded(mm)) | 
|  | return; | 
|  | atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) | 
|  | { | 
|  | atomic_long_set(&mm->pgtables_bytes, 0); | 
|  | } | 
|  |  | 
|  | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) | 
|  | { | 
|  | return atomic_long_read(&mm->pgtables_bytes); | 
|  | } | 
|  |  | 
|  | static inline void mm_inc_nr_ptes(struct mm_struct *mm) | 
|  | { | 
|  | atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); | 
|  | } | 
|  |  | 
|  | static inline void mm_dec_nr_ptes(struct mm_struct *mm) | 
|  | { | 
|  | atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); | 
|  | } | 
|  | #else | 
|  |  | 
|  | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} | 
|  | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} | 
|  | static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} | 
|  | #endif | 
|  |  | 
|  | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); | 
|  | int __pte_alloc_kernel(pmd_t *pmd); | 
|  |  | 
|  | /* | 
|  | * The following ifdef needed to get the 4level-fixup.h header to work. | 
|  | * Remove it when 4level-fixup.h has been removed. | 
|  | */ | 
|  | #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) | 
|  |  | 
|  | #ifndef __ARCH_HAS_5LEVEL_HACK | 
|  | static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long address) | 
|  | { | 
|  | return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? | 
|  | NULL : p4d_offset(pgd, address); | 
|  | } | 
|  |  | 
|  | static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, | 
|  | unsigned long address) | 
|  | { | 
|  | return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? | 
|  | NULL : pud_offset(p4d, address); | 
|  | } | 
|  | #endif /* !__ARCH_HAS_5LEVEL_HACK */ | 
|  |  | 
|  | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? | 
|  | NULL: pmd_offset(pud, address); | 
|  | } | 
|  | #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ | 
|  |  | 
|  | #if USE_SPLIT_PTE_PTLOCKS | 
|  | #if ALLOC_SPLIT_PTLOCKS | 
|  | void __init ptlock_cache_init(void); | 
|  | extern bool ptlock_alloc(struct page *page); | 
|  | extern void ptlock_free(struct page *page); | 
|  |  | 
|  | static inline spinlock_t *ptlock_ptr(struct page *page) | 
|  | { | 
|  | return page->ptl; | 
|  | } | 
|  | #else /* ALLOC_SPLIT_PTLOCKS */ | 
|  | static inline void ptlock_cache_init(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool ptlock_alloc(struct page *page) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void ptlock_free(struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline spinlock_t *ptlock_ptr(struct page *page) | 
|  | { | 
|  | return &page->ptl; | 
|  | } | 
|  | #endif /* ALLOC_SPLIT_PTLOCKS */ | 
|  |  | 
|  | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | return ptlock_ptr(pmd_page(*pmd)); | 
|  | } | 
|  |  | 
|  | static inline bool ptlock_init(struct page *page) | 
|  | { | 
|  | /* | 
|  | * prep_new_page() initialize page->private (and therefore page->ptl) | 
|  | * with 0. Make sure nobody took it in use in between. | 
|  | * | 
|  | * It can happen if arch try to use slab for page table allocation: | 
|  | * slab code uses page->slab_cache, which share storage with page->ptl. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); | 
|  | if (!ptlock_alloc(page)) | 
|  | return false; | 
|  | spin_lock_init(ptlock_ptr(page)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #else	/* !USE_SPLIT_PTE_PTLOCKS */ | 
|  | /* | 
|  | * We use mm->page_table_lock to guard all pagetable pages of the mm. | 
|  | */ | 
|  | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | return &mm->page_table_lock; | 
|  | } | 
|  | static inline void ptlock_cache_init(void) {} | 
|  | static inline bool ptlock_init(struct page *page) { return true; } | 
|  | static inline void ptlock_free(struct page *page) {} | 
|  | #endif /* USE_SPLIT_PTE_PTLOCKS */ | 
|  |  | 
|  | static inline void pgtable_init(void) | 
|  | { | 
|  | ptlock_cache_init(); | 
|  | pgtable_cache_init(); | 
|  | } | 
|  |  | 
|  | static inline bool pgtable_pte_page_ctor(struct page *page) | 
|  | { | 
|  | if (!ptlock_init(page)) | 
|  | return false; | 
|  | __SetPageTable(page); | 
|  | inc_zone_page_state(page, NR_PAGETABLE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void pgtable_pte_page_dtor(struct page *page) | 
|  | { | 
|  | ptlock_free(page); | 
|  | __ClearPageTable(page); | 
|  | dec_zone_page_state(page, NR_PAGETABLE); | 
|  | } | 
|  |  | 
|  | #define pte_offset_map_lock(mm, pmd, address, ptlp)	\ | 
|  | ({							\ | 
|  | spinlock_t *__ptl = pte_lockptr(mm, pmd);	\ | 
|  | pte_t *__pte = pte_offset_map(pmd, address);	\ | 
|  | *(ptlp) = __ptl;				\ | 
|  | spin_lock(__ptl);				\ | 
|  | __pte;						\ | 
|  | }) | 
|  |  | 
|  | #define pte_unmap_unlock(pte, ptl)	do {		\ | 
|  | spin_unlock(ptl);				\ | 
|  | pte_unmap(pte);					\ | 
|  | } while (0) | 
|  |  | 
|  | #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) | 
|  |  | 
|  | #define pte_alloc_map(mm, pmd, address)			\ | 
|  | (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) | 
|  |  | 
|  | #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\ | 
|  | (pte_alloc(mm, pmd) ?			\ | 
|  | NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) | 
|  |  | 
|  | #define pte_alloc_kernel(pmd, address)			\ | 
|  | ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ | 
|  | NULL: pte_offset_kernel(pmd, address)) | 
|  |  | 
|  | #if USE_SPLIT_PMD_PTLOCKS | 
|  |  | 
|  | static struct page *pmd_to_page(pmd_t *pmd) | 
|  | { | 
|  | unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); | 
|  | return virt_to_page((void *)((unsigned long) pmd & mask)); | 
|  | } | 
|  |  | 
|  | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | return ptlock_ptr(pmd_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | static inline bool pgtable_pmd_page_ctor(struct page *page) | 
|  | { | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | page->pmd_huge_pte = NULL; | 
|  | #endif | 
|  | return ptlock_init(page); | 
|  | } | 
|  |  | 
|  | static inline void pgtable_pmd_page_dtor(struct page *page) | 
|  | { | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | VM_BUG_ON_PAGE(page->pmd_huge_pte, page); | 
|  | #endif | 
|  | ptlock_free(page); | 
|  | } | 
|  |  | 
|  | #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | return &mm->page_table_lock; | 
|  | } | 
|  |  | 
|  | static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } | 
|  | static inline void pgtable_pmd_page_dtor(struct page *page) {} | 
|  |  | 
|  | #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | spinlock_t *ptl = pmd_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | return ptl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No scalability reason to split PUD locks yet, but follow the same pattern | 
|  | * as the PMD locks to make it easier if we decide to.  The VM should not be | 
|  | * considered ready to switch to split PUD locks yet; there may be places | 
|  | * which need to be converted from page_table_lock. | 
|  | */ | 
|  | static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) | 
|  | { | 
|  | return &mm->page_table_lock; | 
|  | } | 
|  |  | 
|  | static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) | 
|  | { | 
|  | spinlock_t *ptl = pud_lockptr(mm, pud); | 
|  |  | 
|  | spin_lock(ptl); | 
|  | return ptl; | 
|  | } | 
|  |  | 
|  | extern void __init pagecache_init(void); | 
|  | extern void free_area_init(unsigned long * zones_size); | 
|  | extern void __init free_area_init_node(int nid, unsigned long * zones_size, | 
|  | unsigned long zone_start_pfn, unsigned long *zholes_size); | 
|  | extern void free_initmem(void); | 
|  |  | 
|  | /* | 
|  | * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) | 
|  | * into the buddy system. The freed pages will be poisoned with pattern | 
|  | * "poison" if it's within range [0, UCHAR_MAX]. | 
|  | * Return pages freed into the buddy system. | 
|  | */ | 
|  | extern unsigned long free_reserved_area(void *start, void *end, | 
|  | int poison, const char *s); | 
|  |  | 
|  | #ifdef	CONFIG_HIGHMEM | 
|  | /* | 
|  | * Free a highmem page into the buddy system, adjusting totalhigh_pages | 
|  | * and totalram_pages. | 
|  | */ | 
|  | extern void free_highmem_page(struct page *page); | 
|  | #endif | 
|  |  | 
|  | extern void adjust_managed_page_count(struct page *page, long count); | 
|  | extern void mem_init_print_info(const char *str); | 
|  |  | 
|  | extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); | 
|  |  | 
|  | /* Free the reserved page into the buddy system, so it gets managed. */ | 
|  | static inline void __free_reserved_page(struct page *page) | 
|  | { | 
|  | ClearPageReserved(page); | 
|  | init_page_count(page); | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | static inline void free_reserved_page(struct page *page) | 
|  | { | 
|  | __free_reserved_page(page); | 
|  | adjust_managed_page_count(page, 1); | 
|  | } | 
|  |  | 
|  | static inline void mark_page_reserved(struct page *page) | 
|  | { | 
|  | SetPageReserved(page); | 
|  | adjust_managed_page_count(page, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default method to free all the __init memory into the buddy system. | 
|  | * The freed pages will be poisoned with pattern "poison" if it's within | 
|  | * range [0, UCHAR_MAX]. | 
|  | * Return pages freed into the buddy system. | 
|  | */ | 
|  | static inline unsigned long free_initmem_default(int poison) | 
|  | { | 
|  | extern char __init_begin[], __init_end[]; | 
|  |  | 
|  | return free_reserved_area(&__init_begin, &__init_end, | 
|  | poison, "unused kernel"); | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_num_physpages(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned long phys_pages = 0; | 
|  |  | 
|  | for_each_online_node(nid) | 
|  | phys_pages += node_present_pages(nid); | 
|  |  | 
|  | return phys_pages; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | /* | 
|  | * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its | 
|  | * zones, allocate the backing mem_map and account for memory holes in a more | 
|  | * architecture independent manner. This is a substitute for creating the | 
|  | * zone_sizes[] and zholes_size[] arrays and passing them to | 
|  | * free_area_init_node() | 
|  | * | 
|  | * An architecture is expected to register range of page frames backed by | 
|  | * physical memory with memblock_add[_node]() before calling | 
|  | * free_area_init_nodes() passing in the PFN each zone ends at. At a basic | 
|  | * usage, an architecture is expected to do something like | 
|  | * | 
|  | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, | 
|  | * 							 max_highmem_pfn}; | 
|  | * for_each_valid_physical_page_range() | 
|  | * 	memblock_add_node(base, size, nid) | 
|  | * free_area_init_nodes(max_zone_pfns); | 
|  | * | 
|  | * free_bootmem_with_active_regions() calls free_bootmem_node() for each | 
|  | * registered physical page range.  Similarly | 
|  | * sparse_memory_present_with_active_regions() calls memory_present() for | 
|  | * each range when SPARSEMEM is enabled. | 
|  | * | 
|  | * See mm/page_alloc.c for more information on each function exposed by | 
|  | * CONFIG_HAVE_MEMBLOCK_NODE_MAP. | 
|  | */ | 
|  | extern void free_area_init_nodes(unsigned long *max_zone_pfn); | 
|  | unsigned long node_map_pfn_alignment(void); | 
|  | unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn); | 
|  | extern unsigned long absent_pages_in_range(unsigned long start_pfn, | 
|  | unsigned long end_pfn); | 
|  | extern void get_pfn_range_for_nid(unsigned int nid, | 
|  | unsigned long *start_pfn, unsigned long *end_pfn); | 
|  | extern unsigned long find_min_pfn_with_active_regions(void); | 
|  | extern void free_bootmem_with_active_regions(int nid, | 
|  | unsigned long max_low_pfn); | 
|  | extern void sparse_memory_present_with_active_regions(int nid); | 
|  |  | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  |  | 
|  | #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ | 
|  | !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) | 
|  | static inline int __early_pfn_to_nid(unsigned long pfn, | 
|  | struct mminit_pfnnid_cache *state) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | /* please see mm/page_alloc.c */ | 
|  | extern int __meminit early_pfn_to_nid(unsigned long pfn); | 
|  | /* there is a per-arch backend function. */ | 
|  | extern int __meminit __early_pfn_to_nid(unsigned long pfn, | 
|  | struct mminit_pfnnid_cache *state); | 
|  | #endif | 
|  |  | 
|  | #if !defined(CONFIG_FLAT_NODE_MEM_MAP) | 
|  | void zero_resv_unavail(void); | 
|  | #else | 
|  | static inline void zero_resv_unavail(void) {} | 
|  | #endif | 
|  |  | 
|  | extern void set_dma_reserve(unsigned long new_dma_reserve); | 
|  | extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, | 
|  | enum meminit_context, struct vmem_altmap *); | 
|  | extern void setup_per_zone_wmarks(void); | 
|  | extern int __meminit init_per_zone_wmark_min(void); | 
|  | extern void mem_init(void); | 
|  | extern void __init mmap_init(void); | 
|  | extern void show_mem(unsigned int flags, nodemask_t *nodemask); | 
|  | extern long si_mem_available(void); | 
|  | extern void si_meminfo(struct sysinfo * val); | 
|  | extern void si_meminfo_node(struct sysinfo *val, int nid); | 
|  | #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES | 
|  | extern unsigned long arch_reserved_kernel_pages(void); | 
|  | #endif | 
|  |  | 
|  | extern __printf(3, 4) | 
|  | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); | 
|  |  | 
|  | extern void setup_per_cpu_pageset(void); | 
|  |  | 
|  | extern void zone_pcp_update(struct zone *zone); | 
|  | extern void zone_pcp_reset(struct zone *zone); | 
|  |  | 
|  | /* page_alloc.c */ | 
|  | extern int min_free_kbytes; | 
|  | extern int watermark_boost_factor; | 
|  | extern int watermark_scale_factor; | 
|  |  | 
|  | /* nommu.c */ | 
|  | extern atomic_long_t mmap_pages_allocated; | 
|  | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); | 
|  |  | 
|  | /* interval_tree.c */ | 
|  | void vma_interval_tree_insert(struct vm_area_struct *node, | 
|  | struct rb_root_cached *root); | 
|  | void vma_interval_tree_insert_after(struct vm_area_struct *node, | 
|  | struct vm_area_struct *prev, | 
|  | struct rb_root_cached *root); | 
|  | void vma_interval_tree_remove(struct vm_area_struct *node, | 
|  | struct rb_root_cached *root); | 
|  | struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, | 
|  | unsigned long start, unsigned long last); | 
|  | struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, | 
|  | unsigned long start, unsigned long last); | 
|  |  | 
|  | #define vma_interval_tree_foreach(vma, root, start, last)		\ | 
|  | for (vma = vma_interval_tree_iter_first(root, start, last);	\ | 
|  | vma; vma = vma_interval_tree_iter_next(vma, start, last)) | 
|  |  | 
|  | void anon_vma_interval_tree_insert(struct anon_vma_chain *node, | 
|  | struct rb_root_cached *root); | 
|  | void anon_vma_interval_tree_remove(struct anon_vma_chain *node, | 
|  | struct rb_root_cached *root); | 
|  | struct anon_vma_chain * | 
|  | anon_vma_interval_tree_iter_first(struct rb_root_cached *root, | 
|  | unsigned long start, unsigned long last); | 
|  | struct anon_vma_chain *anon_vma_interval_tree_iter_next( | 
|  | struct anon_vma_chain *node, unsigned long start, unsigned long last); | 
|  | #ifdef CONFIG_DEBUG_VM_RB | 
|  | void anon_vma_interval_tree_verify(struct anon_vma_chain *node); | 
|  | #endif | 
|  |  | 
|  | #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \ | 
|  | for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ | 
|  | avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) | 
|  |  | 
|  | /* mmap.c */ | 
|  | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); | 
|  | extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, | 
|  | struct vm_area_struct *expand); | 
|  | static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) | 
|  | { | 
|  | return __vma_adjust(vma, start, end, pgoff, insert, NULL); | 
|  | } | 
|  | extern struct vm_area_struct *vma_merge(struct mm_struct *, | 
|  | struct vm_area_struct *prev, unsigned long addr, unsigned long end, | 
|  | unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, | 
|  | struct mempolicy *, struct vm_userfaultfd_ctx); | 
|  | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); | 
|  | extern int __split_vma(struct mm_struct *, struct vm_area_struct *, | 
|  | unsigned long addr, int new_below); | 
|  | extern int split_vma(struct mm_struct *, struct vm_area_struct *, | 
|  | unsigned long addr, int new_below); | 
|  | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); | 
|  | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, | 
|  | struct rb_node **, struct rb_node *); | 
|  | extern void unlink_file_vma(struct vm_area_struct *); | 
|  | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, | 
|  | unsigned long addr, unsigned long len, pgoff_t pgoff, | 
|  | bool *need_rmap_locks); | 
|  | extern void exit_mmap(struct mm_struct *); | 
|  |  | 
|  | static inline int check_data_rlimit(unsigned long rlim, | 
|  | unsigned long new, | 
|  | unsigned long start, | 
|  | unsigned long end_data, | 
|  | unsigned long start_data) | 
|  | { | 
|  | if (rlim < RLIM_INFINITY) { | 
|  | if (((new - start) + (end_data - start_data)) > rlim) | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extern int mm_take_all_locks(struct mm_struct *mm); | 
|  | extern void mm_drop_all_locks(struct mm_struct *mm); | 
|  |  | 
|  | extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); | 
|  | extern struct file *get_mm_exe_file(struct mm_struct *mm); | 
|  | extern struct file *get_task_exe_file(struct task_struct *task); | 
|  |  | 
|  | extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); | 
|  | extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); | 
|  |  | 
|  | extern bool vma_is_special_mapping(const struct vm_area_struct *vma, | 
|  | const struct vm_special_mapping *sm); | 
|  | extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long flags, | 
|  | const struct vm_special_mapping *spec); | 
|  | /* This is an obsolete alternative to _install_special_mapping. */ | 
|  | extern int install_special_mapping(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long flags, struct page **pages); | 
|  |  | 
|  | unsigned long randomize_stack_top(unsigned long stack_top); | 
|  |  | 
|  | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); | 
|  |  | 
|  | extern unsigned long mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, | 
|  | struct list_head *uf); | 
|  | extern unsigned long do_mmap(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, unsigned long flags, | 
|  | vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, | 
|  | struct list_head *uf); | 
|  | extern int __do_munmap(struct mm_struct *, unsigned long, size_t, | 
|  | struct list_head *uf, bool downgrade); | 
|  | extern int do_munmap(struct mm_struct *, unsigned long, size_t, | 
|  | struct list_head *uf); | 
|  |  | 
|  | static inline unsigned long | 
|  | do_mmap_pgoff(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, unsigned long flags, | 
|  | unsigned long pgoff, unsigned long *populate, | 
|  | struct list_head *uf) | 
|  | { | 
|  | return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | extern int __mm_populate(unsigned long addr, unsigned long len, | 
|  | int ignore_errors); | 
|  | static inline void mm_populate(unsigned long addr, unsigned long len) | 
|  | { | 
|  | /* Ignore errors */ | 
|  | (void) __mm_populate(addr, len, 1); | 
|  | } | 
|  | #else | 
|  | static inline void mm_populate(unsigned long addr, unsigned long len) {} | 
|  | #endif | 
|  |  | 
|  | /* These take the mm semaphore themselves */ | 
|  | extern int __must_check vm_brk(unsigned long, unsigned long); | 
|  | extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); | 
|  | extern int vm_munmap(unsigned long, size_t); | 
|  | extern unsigned long __must_check vm_mmap(struct file *, unsigned long, | 
|  | unsigned long, unsigned long, | 
|  | unsigned long, unsigned long); | 
|  |  | 
|  | struct vm_unmapped_area_info { | 
|  | #define VM_UNMAPPED_AREA_TOPDOWN 1 | 
|  | unsigned long flags; | 
|  | unsigned long length; | 
|  | unsigned long low_limit; | 
|  | unsigned long high_limit; | 
|  | unsigned long align_mask; | 
|  | unsigned long align_offset; | 
|  | }; | 
|  |  | 
|  | extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); | 
|  | extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); | 
|  |  | 
|  | /* | 
|  | * Search for an unmapped address range. | 
|  | * | 
|  | * We are looking for a range that: | 
|  | * - does not intersect with any VMA; | 
|  | * - is contained within the [low_limit, high_limit) interval; | 
|  | * - is at least the desired size. | 
|  | * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) | 
|  | */ | 
|  | static inline unsigned long | 
|  | vm_unmapped_area(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) | 
|  | return unmapped_area_topdown(info); | 
|  | else | 
|  | return unmapped_area(info); | 
|  | } | 
|  |  | 
|  | /* truncate.c */ | 
|  | extern void truncate_inode_pages(struct address_space *, loff_t); | 
|  | extern void truncate_inode_pages_range(struct address_space *, | 
|  | loff_t lstart, loff_t lend); | 
|  | extern void truncate_inode_pages_final(struct address_space *); | 
|  |  | 
|  | /* generic vm_area_ops exported for stackable file systems */ | 
|  | extern vm_fault_t filemap_fault(struct vm_fault *vmf); | 
|  | extern void filemap_map_pages(struct vm_fault *vmf, | 
|  | pgoff_t start_pgoff, pgoff_t end_pgoff); | 
|  | extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); | 
|  |  | 
|  | /* mm/page-writeback.c */ | 
|  | int __must_check write_one_page(struct page *page); | 
|  | void task_dirty_inc(struct task_struct *tsk); | 
|  |  | 
|  | /* readahead.c */ | 
|  | #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE) | 
|  |  | 
|  | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
|  | pgoff_t offset, unsigned long nr_to_read); | 
|  |  | 
|  | void page_cache_sync_readahead(struct address_space *mapping, | 
|  | struct file_ra_state *ra, | 
|  | struct file *filp, | 
|  | pgoff_t offset, | 
|  | unsigned long size); | 
|  |  | 
|  | void page_cache_async_readahead(struct address_space *mapping, | 
|  | struct file_ra_state *ra, | 
|  | struct file *filp, | 
|  | struct page *pg, | 
|  | pgoff_t offset, | 
|  | unsigned long size); | 
|  |  | 
|  | extern unsigned long stack_guard_gap; | 
|  | /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ | 
|  | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); | 
|  |  | 
|  | /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ | 
|  | extern int expand_downwards(struct vm_area_struct *vma, | 
|  | unsigned long address); | 
|  | #if VM_GROWSUP | 
|  | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); | 
|  | #else | 
|  | #define expand_upwards(vma, address) (0) | 
|  | #endif | 
|  |  | 
|  | /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */ | 
|  | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); | 
|  | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, | 
|  | struct vm_area_struct **pprev); | 
|  |  | 
|  | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, | 
|  | NULL if none.  Assume start_addr < end_addr. */ | 
|  | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) | 
|  | { | 
|  | struct vm_area_struct * vma = find_vma(mm,start_addr); | 
|  |  | 
|  | if (vma && end_addr <= vma->vm_start) | 
|  | vma = NULL; | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | static inline unsigned long vm_start_gap(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long vm_start = vma->vm_start; | 
|  |  | 
|  | if (vma->vm_flags & VM_GROWSDOWN) { | 
|  | vm_start -= stack_guard_gap; | 
|  | if (vm_start > vma->vm_start) | 
|  | vm_start = 0; | 
|  | } | 
|  | return vm_start; | 
|  | } | 
|  |  | 
|  | static inline unsigned long vm_end_gap(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long vm_end = vma->vm_end; | 
|  |  | 
|  | if (vma->vm_flags & VM_GROWSUP) { | 
|  | vm_end += stack_guard_gap; | 
|  | if (vm_end < vma->vm_end) | 
|  | vm_end = -PAGE_SIZE; | 
|  | } | 
|  | return vm_end; | 
|  | } | 
|  |  | 
|  | static inline unsigned long vma_pages(struct vm_area_struct *vma) | 
|  | { | 
|  | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ | 
|  | static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, | 
|  | unsigned long vm_start, unsigned long vm_end) | 
|  | { | 
|  | struct vm_area_struct *vma = find_vma(mm, vm_start); | 
|  |  | 
|  | if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) | 
|  | vma = NULL; | 
|  |  | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | static inline bool range_in_vma(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | return (vma && vma->vm_start <= start && end <= vma->vm_end); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | pgprot_t vm_get_page_prot(unsigned long vm_flags); | 
|  | void vma_set_page_prot(struct vm_area_struct *vma); | 
|  | #else | 
|  | static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) | 
|  | { | 
|  | return __pgprot(0); | 
|  | } | 
|  | static inline void vma_set_page_prot(struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | unsigned long change_prot_numa(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end); | 
|  | #endif | 
|  |  | 
|  | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); | 
|  | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t); | 
|  | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); | 
|  | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | 
|  | unsigned long num); | 
|  | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | 
|  | unsigned long num); | 
|  | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn); | 
|  | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, pgprot_t pgprot); | 
|  | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 
|  | pfn_t pfn); | 
|  | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, | 
|  | unsigned long addr, pfn_t pfn); | 
|  | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); | 
|  |  | 
|  | static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, | 
|  | unsigned long addr, struct page *page) | 
|  | { | 
|  | int err = vm_insert_page(vma, addr, page); | 
|  |  | 
|  | if (err == -ENOMEM) | 
|  | return VM_FAULT_OOM; | 
|  | if (err < 0 && err != -EBUSY) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  |  | 
|  | #ifndef io_remap_pfn_range | 
|  | static inline int io_remap_pfn_range(struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long pfn, | 
|  | unsigned long size, pgprot_t prot) | 
|  | { | 
|  | return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline vm_fault_t vmf_error(int err) | 
|  | { | 
|  | if (err == -ENOMEM) | 
|  | return VM_FAULT_OOM; | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int foll_flags); | 
|  |  | 
|  | #define FOLL_WRITE	0x01	/* check pte is writable */ | 
|  | #define FOLL_TOUCH	0x02	/* mark page accessed */ | 
|  | #define FOLL_GET	0x04	/* do get_page on page */ | 
|  | #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */ | 
|  | #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */ | 
|  | #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO | 
|  | * and return without waiting upon it */ | 
|  | #define FOLL_POPULATE	0x40	/* fault in page */ | 
|  | #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */ | 
|  | #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */ | 
|  | #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */ | 
|  | #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */ | 
|  | #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */ | 
|  | #define FOLL_MLOCK	0x1000	/* lock present pages */ | 
|  | #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */ | 
|  | #define FOLL_COW	0x4000	/* internal GUP flag */ | 
|  | #define FOLL_ANON	0x8000	/* don't do file mappings */ | 
|  | #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */ | 
|  | #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */ | 
|  |  | 
|  | /* | 
|  | * NOTE on FOLL_LONGTERM: | 
|  | * | 
|  | * FOLL_LONGTERM indicates that the page will be held for an indefinite time | 
|  | * period _often_ under userspace control.  This is contrasted with | 
|  | * iov_iter_get_pages() where usages which are transient. | 
|  | * | 
|  | * FIXME: For pages which are part of a filesystem, mappings are subject to the | 
|  | * lifetime enforced by the filesystem and we need guarantees that longterm | 
|  | * users like RDMA and V4L2 only establish mappings which coordinate usage with | 
|  | * the filesystem.  Ideas for this coordination include revoking the longterm | 
|  | * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was | 
|  | * added after the problem with filesystems was found FS DAX VMAs are | 
|  | * specifically failed.  Filesystem pages are still subject to bugs and use of | 
|  | * FOLL_LONGTERM should be avoided on those pages. | 
|  | * | 
|  | * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. | 
|  | * Currently only get_user_pages() and get_user_pages_fast() support this flag | 
|  | * and calls to get_user_pages_[un]locked are specifically not allowed.  This | 
|  | * is due to an incompatibility with the FS DAX check and | 
|  | * FAULT_FLAG_ALLOW_RETRY | 
|  | * | 
|  | * In the CMA case: longterm pins in a CMA region would unnecessarily fragment | 
|  | * that region.  And so CMA attempts to migrate the page before pinning when | 
|  | * FOLL_LONGTERM is specified. | 
|  | */ | 
|  |  | 
|  | static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) | 
|  | { | 
|  | if (vm_fault & VM_FAULT_OOM) | 
|  | return -ENOMEM; | 
|  | if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) | 
|  | return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; | 
|  | if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); | 
|  | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, | 
|  | unsigned long size, pte_fn_t fn, void *data); | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_PAGE_POISONING | 
|  | extern bool page_poisoning_enabled(void); | 
|  | extern void kernel_poison_pages(struct page *page, int numpages, int enable); | 
|  | #else | 
|  | static inline bool page_poisoning_enabled(void) { return false; } | 
|  | static inline void kernel_poison_pages(struct page *page, int numpages, | 
|  | int enable) { } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON | 
|  | DECLARE_STATIC_KEY_TRUE(init_on_alloc); | 
|  | #else | 
|  | DECLARE_STATIC_KEY_FALSE(init_on_alloc); | 
|  | #endif | 
|  | static inline bool want_init_on_alloc(gfp_t flags) | 
|  | { | 
|  | if (static_branch_unlikely(&init_on_alloc) && | 
|  | !page_poisoning_enabled()) | 
|  | return true; | 
|  | return flags & __GFP_ZERO; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON | 
|  | DECLARE_STATIC_KEY_TRUE(init_on_free); | 
|  | #else | 
|  | DECLARE_STATIC_KEY_FALSE(init_on_free); | 
|  | #endif | 
|  | static inline bool want_init_on_free(void) | 
|  | { | 
|  | return static_branch_unlikely(&init_on_free) && | 
|  | !page_poisoning_enabled(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | extern void init_debug_pagealloc(void); | 
|  | #else | 
|  | static inline void init_debug_pagealloc(void) {} | 
|  | #endif | 
|  | extern bool _debug_pagealloc_enabled_early; | 
|  | DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); | 
|  |  | 
|  | static inline bool debug_pagealloc_enabled(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && | 
|  | _debug_pagealloc_enabled_early; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For use in fast paths after init_debug_pagealloc() has run, or when a | 
|  | * false negative result is not harmful when called too early. | 
|  | */ | 
|  | static inline bool debug_pagealloc_enabled_static(void) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) | 
|  | return false; | 
|  |  | 
|  | return static_branch_unlikely(&_debug_pagealloc_enabled); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) | 
|  | extern void __kernel_map_pages(struct page *page, int numpages, int enable); | 
|  |  | 
|  | /* | 
|  | * When called in DEBUG_PAGEALLOC context, the call should most likely be | 
|  | * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() | 
|  | */ | 
|  | static inline void | 
|  | kernel_map_pages(struct page *page, int numpages, int enable) | 
|  | { | 
|  | __kernel_map_pages(page, numpages, enable); | 
|  | } | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | extern bool kernel_page_present(struct page *page); | 
|  | #endif	/* CONFIG_HIBERNATION */ | 
|  | #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ | 
|  | static inline void | 
|  | kernel_map_pages(struct page *page, int numpages, int enable) {} | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | static inline bool kernel_page_present(struct page *page) { return true; } | 
|  | #endif	/* CONFIG_HIBERNATION */ | 
|  | #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ | 
|  |  | 
|  | #ifdef __HAVE_ARCH_GATE_AREA | 
|  | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); | 
|  | extern int in_gate_area_no_mm(unsigned long addr); | 
|  | extern int in_gate_area(struct mm_struct *mm, unsigned long addr); | 
|  | #else | 
|  | static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } | 
|  | static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
|  |  | 
|  | extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | extern int sysctl_drop_caches; | 
|  | int drop_caches_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | #endif | 
|  |  | 
|  | void drop_slab(void); | 
|  | void drop_slab_node(int nid); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | #define randomize_va_space 0 | 
|  | #else | 
|  | extern int randomize_va_space; | 
|  | #endif | 
|  |  | 
|  | const char * arch_vma_name(struct vm_area_struct *vma); | 
|  | #ifdef CONFIG_MMU | 
|  | void print_vma_addr(char *prefix, unsigned long rip); | 
|  | #else | 
|  | static inline void print_vma_addr(char *prefix, unsigned long rip) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void *sparse_buffer_alloc(unsigned long size); | 
|  | struct page * __populate_section_memmap(unsigned long pfn, | 
|  | unsigned long nr_pages, int nid, struct vmem_altmap *altmap); | 
|  | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); | 
|  | p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); | 
|  | pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); | 
|  | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); | 
|  | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); | 
|  | void *vmemmap_alloc_block(unsigned long size, int node); | 
|  | struct vmem_altmap; | 
|  | void *vmemmap_alloc_block_buf(unsigned long size, int node); | 
|  | void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); | 
|  | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); | 
|  | int vmemmap_populate_basepages(unsigned long start, unsigned long end, | 
|  | int node); | 
|  | int vmemmap_populate(unsigned long start, unsigned long end, int node, | 
|  | struct vmem_altmap *altmap); | 
|  | void vmemmap_populate_print_last(void); | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | void vmemmap_free(unsigned long start, unsigned long end, | 
|  | struct vmem_altmap *altmap); | 
|  | #endif | 
|  | void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, | 
|  | unsigned long nr_pages); | 
|  |  | 
|  | enum mf_flags { | 
|  | MF_COUNT_INCREASED = 1 << 0, | 
|  | MF_ACTION_REQUIRED = 1 << 1, | 
|  | MF_MUST_KILL = 1 << 2, | 
|  | MF_SOFT_OFFLINE = 1 << 3, | 
|  | }; | 
|  | extern int memory_failure(unsigned long pfn, int flags); | 
|  | extern void memory_failure_queue(unsigned long pfn, int flags); | 
|  | extern int unpoison_memory(unsigned long pfn); | 
|  | extern int get_hwpoison_page(struct page *page); | 
|  | #define put_hwpoison_page(page)	put_page(page) | 
|  | extern int sysctl_memory_failure_early_kill; | 
|  | extern int sysctl_memory_failure_recovery; | 
|  | extern void shake_page(struct page *p, int access); | 
|  | extern atomic_long_t num_poisoned_pages __read_mostly; | 
|  | extern int soft_offline_page(struct page *page, int flags); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Error handlers for various types of pages. | 
|  | */ | 
|  | enum mf_result { | 
|  | MF_IGNORED,	/* Error: cannot be handled */ | 
|  | MF_FAILED,	/* Error: handling failed */ | 
|  | MF_DELAYED,	/* Will be handled later */ | 
|  | MF_RECOVERED,	/* Successfully recovered */ | 
|  | }; | 
|  |  | 
|  | enum mf_action_page_type { | 
|  | MF_MSG_KERNEL, | 
|  | MF_MSG_KERNEL_HIGH_ORDER, | 
|  | MF_MSG_SLAB, | 
|  | MF_MSG_DIFFERENT_COMPOUND, | 
|  | MF_MSG_POISONED_HUGE, | 
|  | MF_MSG_HUGE, | 
|  | MF_MSG_FREE_HUGE, | 
|  | MF_MSG_NON_PMD_HUGE, | 
|  | MF_MSG_UNMAP_FAILED, | 
|  | MF_MSG_DIRTY_SWAPCACHE, | 
|  | MF_MSG_CLEAN_SWAPCACHE, | 
|  | MF_MSG_DIRTY_MLOCKED_LRU, | 
|  | MF_MSG_CLEAN_MLOCKED_LRU, | 
|  | MF_MSG_DIRTY_UNEVICTABLE_LRU, | 
|  | MF_MSG_CLEAN_UNEVICTABLE_LRU, | 
|  | MF_MSG_DIRTY_LRU, | 
|  | MF_MSG_CLEAN_LRU, | 
|  | MF_MSG_TRUNCATED_LRU, | 
|  | MF_MSG_BUDDY, | 
|  | MF_MSG_BUDDY_2ND, | 
|  | MF_MSG_DAX, | 
|  | MF_MSG_UNKNOWN, | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 
|  | extern void clear_huge_page(struct page *page, | 
|  | unsigned long addr_hint, | 
|  | unsigned int pages_per_huge_page); | 
|  | extern void copy_user_huge_page(struct page *dst, struct page *src, | 
|  | unsigned long addr_hint, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int pages_per_huge_page); | 
|  | extern long copy_huge_page_from_user(struct page *dst_page, | 
|  | const void __user *usr_src, | 
|  | unsigned int pages_per_huge_page, | 
|  | bool allow_pagefault); | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | extern unsigned int _debug_guardpage_minorder; | 
|  | DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); | 
|  |  | 
|  | static inline unsigned int debug_guardpage_minorder(void) | 
|  | { | 
|  | return _debug_guardpage_minorder; | 
|  | } | 
|  |  | 
|  | static inline bool debug_guardpage_enabled(void) | 
|  | { | 
|  | return static_branch_unlikely(&_debug_guardpage_enabled); | 
|  | } | 
|  |  | 
|  | static inline bool page_is_guard(struct page *page) | 
|  | { | 
|  | if (!debug_guardpage_enabled()) | 
|  | return false; | 
|  |  | 
|  | return PageGuard(page); | 
|  | } | 
|  | #else | 
|  | static inline unsigned int debug_guardpage_minorder(void) { return 0; } | 
|  | static inline bool debug_guardpage_enabled(void) { return false; } | 
|  | static inline bool page_is_guard(struct page *page) { return false; } | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  | void __init setup_nr_node_ids(void); | 
|  | #else | 
|  | static inline void setup_nr_node_ids(void) {} | 
|  | #endif | 
|  |  | 
|  | extern int memcmp_pages(struct page *page1, struct page *page2); | 
|  |  | 
|  | static inline int pages_identical(struct page *page1, struct page *page2) | 
|  | { | 
|  | return !memcmp_pages(page1, page2); | 
|  | } | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  | #endif /* _LINUX_MM_H */ |