| /* | 
 |  * Copyright © 2012 Intel Corporation | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a | 
 |  * copy of this software and associated documentation files (the "Software"), | 
 |  * to deal in the Software without restriction, including without limitation | 
 |  * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
 |  * and/or sell copies of the Software, and to permit persons to whom the | 
 |  * Software is furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice (including the next | 
 |  * paragraph) shall be included in all copies or substantial portions of the | 
 |  * Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
 |  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
 |  * IN THE SOFTWARE. | 
 |  * | 
 |  * Authors: | 
 |  *    Eugeni Dodonov <eugeni.dodonov@intel.com> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/cpufreq.h> | 
 | #include <drm/drm_plane_helper.h> | 
 | #include "i915_drv.h" | 
 | #include "intel_drv.h" | 
 | #include "../../../platform/x86/intel_ips.h" | 
 | #include <linux/module.h> | 
 | #include <drm/drm_atomic_helper.h> | 
 |  | 
 | /** | 
 |  * DOC: RC6 | 
 |  * | 
 |  * RC6 is a special power stage which allows the GPU to enter an very | 
 |  * low-voltage mode when idle, using down to 0V while at this stage.  This | 
 |  * stage is entered automatically when the GPU is idle when RC6 support is | 
 |  * enabled, and as soon as new workload arises GPU wakes up automatically as well. | 
 |  * | 
 |  * There are different RC6 modes available in Intel GPU, which differentiate | 
 |  * among each other with the latency required to enter and leave RC6 and | 
 |  * voltage consumed by the GPU in different states. | 
 |  * | 
 |  * The combination of the following flags define which states GPU is allowed | 
 |  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and | 
 |  * RC6pp is deepest RC6. Their support by hardware varies according to the | 
 |  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one | 
 |  * which brings the most power savings; deeper states save more power, but | 
 |  * require higher latency to switch to and wake up. | 
 |  */ | 
 |  | 
 | static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (HAS_LLC(dev_priv)) { | 
 | 		/* | 
 | 		 * WaCompressedResourceDisplayNewHashMode:skl,kbl | 
 | 		 * Display WA #0390: skl,kbl | 
 | 		 * | 
 | 		 * Must match Sampler, Pixel Back End, and Media. See | 
 | 		 * WaCompressedResourceSamplerPbeMediaNewHashMode. | 
 | 		 */ | 
 | 		I915_WRITE(CHICKEN_PAR1_1, | 
 | 			   I915_READ(CHICKEN_PAR1_1) | | 
 | 			   SKL_DE_COMPRESSED_HASH_MODE); | 
 | 	} | 
 |  | 
 | 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */ | 
 | 	I915_WRITE(CHICKEN_PAR1_1, | 
 | 		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); | 
 |  | 
 | 	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */ | 
 | 	I915_WRITE(GEN8_CHICKEN_DCPR_1, | 
 | 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); | 
 |  | 
 | 	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */ | 
 | 	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */ | 
 | 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | | 
 | 		   DISP_FBC_WM_DIS | | 
 | 		   DISP_FBC_MEMORY_WAKE); | 
 |  | 
 | 	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */ | 
 | 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | | 
 | 		   ILK_DPFC_DISABLE_DUMMY0); | 
 |  | 
 | 	if (IS_SKYLAKE(dev_priv)) { | 
 | 		/* WaDisableDopClockGating */ | 
 | 		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) | 
 | 			   & ~GEN7_DOP_CLOCK_GATE_ENABLE); | 
 | 	} | 
 | } | 
 |  | 
 | static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	gen9_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* WaDisableSDEUnitClockGating:bxt */ | 
 | 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | | 
 | 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* | 
 | 	 * FIXME: | 
 | 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. | 
 | 	 */ | 
 | 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | | 
 | 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); | 
 |  | 
 | 	/* | 
 | 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight | 
 | 	 * to stay fully on. | 
 | 	 */ | 
 | 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | | 
 | 		   PWM1_GATING_DIS | PWM2_GATING_DIS); | 
 |  | 
 | 	/* | 
 | 	 * Lower the display internal timeout. | 
 | 	 * This is needed to avoid any hard hangs when DSI port PLL | 
 | 	 * is off and a MMIO access is attempted by any privilege | 
 | 	 * application, using batch buffers or any other means. | 
 | 	 */ | 
 | 	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950)); | 
 | } | 
 |  | 
 | static void glk_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	gen9_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* | 
 | 	 * WaDisablePWMClockGating:glk | 
 | 	 * Backlight PWM may stop in the asserted state, causing backlight | 
 | 	 * to stay fully on. | 
 | 	 */ | 
 | 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | | 
 | 		   PWM1_GATING_DIS | PWM2_GATING_DIS); | 
 |  | 
 | 	/* WaDDIIOTimeout:glk */ | 
 | 	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) { | 
 | 		u32 val = I915_READ(CHICKEN_MISC_2); | 
 | 		val &= ~(GLK_CL0_PWR_DOWN | | 
 | 			 GLK_CL1_PWR_DOWN | | 
 | 			 GLK_CL2_PWR_DOWN); | 
 | 		I915_WRITE(CHICKEN_MISC_2, val); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 tmp; | 
 |  | 
 | 	tmp = I915_READ(CLKCFG); | 
 |  | 
 | 	switch (tmp & CLKCFG_FSB_MASK) { | 
 | 	case CLKCFG_FSB_533: | 
 | 		dev_priv->fsb_freq = 533; /* 133*4 */ | 
 | 		break; | 
 | 	case CLKCFG_FSB_800: | 
 | 		dev_priv->fsb_freq = 800; /* 200*4 */ | 
 | 		break; | 
 | 	case CLKCFG_FSB_667: | 
 | 		dev_priv->fsb_freq =  667; /* 167*4 */ | 
 | 		break; | 
 | 	case CLKCFG_FSB_400: | 
 | 		dev_priv->fsb_freq = 400; /* 100*4 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (tmp & CLKCFG_MEM_MASK) { | 
 | 	case CLKCFG_MEM_533: | 
 | 		dev_priv->mem_freq = 533; | 
 | 		break; | 
 | 	case CLKCFG_MEM_667: | 
 | 		dev_priv->mem_freq = 667; | 
 | 		break; | 
 | 	case CLKCFG_MEM_800: | 
 | 		dev_priv->mem_freq = 800; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* detect pineview DDR3 setting */ | 
 | 	tmp = I915_READ(CSHRDDR3CTL); | 
 | 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; | 
 | } | 
 |  | 
 | static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u16 ddrpll, csipll; | 
 |  | 
 | 	ddrpll = I915_READ16(DDRMPLL1); | 
 | 	csipll = I915_READ16(CSIPLL0); | 
 |  | 
 | 	switch (ddrpll & 0xff) { | 
 | 	case 0xc: | 
 | 		dev_priv->mem_freq = 800; | 
 | 		break; | 
 | 	case 0x10: | 
 | 		dev_priv->mem_freq = 1066; | 
 | 		break; | 
 | 	case 0x14: | 
 | 		dev_priv->mem_freq = 1333; | 
 | 		break; | 
 | 	case 0x18: | 
 | 		dev_priv->mem_freq = 1600; | 
 | 		break; | 
 | 	default: | 
 | 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", | 
 | 				 ddrpll & 0xff); | 
 | 		dev_priv->mem_freq = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	dev_priv->ips.r_t = dev_priv->mem_freq; | 
 |  | 
 | 	switch (csipll & 0x3ff) { | 
 | 	case 0x00c: | 
 | 		dev_priv->fsb_freq = 3200; | 
 | 		break; | 
 | 	case 0x00e: | 
 | 		dev_priv->fsb_freq = 3733; | 
 | 		break; | 
 | 	case 0x010: | 
 | 		dev_priv->fsb_freq = 4266; | 
 | 		break; | 
 | 	case 0x012: | 
 | 		dev_priv->fsb_freq = 4800; | 
 | 		break; | 
 | 	case 0x014: | 
 | 		dev_priv->fsb_freq = 5333; | 
 | 		break; | 
 | 	case 0x016: | 
 | 		dev_priv->fsb_freq = 5866; | 
 | 		break; | 
 | 	case 0x018: | 
 | 		dev_priv->fsb_freq = 6400; | 
 | 		break; | 
 | 	default: | 
 | 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", | 
 | 				 csipll & 0x3ff); | 
 | 		dev_priv->fsb_freq = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (dev_priv->fsb_freq == 3200) { | 
 | 		dev_priv->ips.c_m = 0; | 
 | 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { | 
 | 		dev_priv->ips.c_m = 1; | 
 | 	} else { | 
 | 		dev_priv->ips.c_m = 2; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct cxsr_latency cxsr_latency_table[] = { | 
 | 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */ | 
 | 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */ | 
 | 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */ | 
 | 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */ | 
 | 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */ | 
 |  | 
 | 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */ | 
 | 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */ | 
 | 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */ | 
 | 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */ | 
 | 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */ | 
 |  | 
 | 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */ | 
 | 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */ | 
 | 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */ | 
 | 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */ | 
 | 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */ | 
 |  | 
 | 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */ | 
 | 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */ | 
 | 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */ | 
 | 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */ | 
 | 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */ | 
 |  | 
 | 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */ | 
 | 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */ | 
 | 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */ | 
 | 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */ | 
 | 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */ | 
 |  | 
 | 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */ | 
 | 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */ | 
 | 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */ | 
 | 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */ | 
 | 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */ | 
 | }; | 
 |  | 
 | static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, | 
 | 							 bool is_ddr3, | 
 | 							 int fsb, | 
 | 							 int mem) | 
 | { | 
 | 	const struct cxsr_latency *latency; | 
 | 	int i; | 
 |  | 
 | 	if (fsb == 0 || mem == 0) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { | 
 | 		latency = &cxsr_latency_table[i]; | 
 | 		if (is_desktop == latency->is_desktop && | 
 | 		    is_ddr3 == latency->is_ddr3 && | 
 | 		    fsb == latency->fsb_freq && mem == latency->mem_freq) | 
 | 			return latency; | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); | 
 | 	if (enable) | 
 | 		val &= ~FORCE_DDR_HIGH_FREQ; | 
 | 	else | 
 | 		val |= FORCE_DDR_HIGH_FREQ; | 
 | 	val &= ~FORCE_DDR_LOW_FREQ; | 
 | 	val |= FORCE_DDR_FREQ_REQ_ACK; | 
 | 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); | 
 |  | 
 | 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & | 
 | 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) | 
 | 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n"); | 
 |  | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); | 
 | 	if (enable) | 
 | 		val |= DSP_MAXFIFO_PM5_ENABLE; | 
 | 	else | 
 | 		val &= ~DSP_MAXFIFO_PM5_ENABLE; | 
 | 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); | 
 |  | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | #define FW_WM(value, plane) \ | 
 | 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) | 
 |  | 
 | static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) | 
 | { | 
 | 	bool was_enabled; | 
 | 	u32 val; | 
 |  | 
 | 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { | 
 | 		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; | 
 | 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); | 
 | 		POSTING_READ(FW_BLC_SELF_VLV); | 
 | 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { | 
 | 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; | 
 | 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); | 
 | 		POSTING_READ(FW_BLC_SELF); | 
 | 	} else if (IS_PINEVIEW(dev_priv)) { | 
 | 		val = I915_READ(DSPFW3); | 
 | 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN; | 
 | 		if (enable) | 
 | 			val |= PINEVIEW_SELF_REFRESH_EN; | 
 | 		else | 
 | 			val &= ~PINEVIEW_SELF_REFRESH_EN; | 
 | 		I915_WRITE(DSPFW3, val); | 
 | 		POSTING_READ(DSPFW3); | 
 | 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { | 
 | 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; | 
 | 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : | 
 | 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); | 
 | 		I915_WRITE(FW_BLC_SELF, val); | 
 | 		POSTING_READ(FW_BLC_SELF); | 
 | 	} else if (IS_I915GM(dev_priv)) { | 
 | 		/* | 
 | 		 * FIXME can't find a bit like this for 915G, and | 
 | 		 * and yet it does have the related watermark in | 
 | 		 * FW_BLC_SELF. What's going on? | 
 | 		 */ | 
 | 		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; | 
 | 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : | 
 | 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN); | 
 | 		I915_WRITE(INSTPM, val); | 
 | 		POSTING_READ(INSTPM); | 
 | 	} else { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable); | 
 |  | 
 | 	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n", | 
 | 		      enableddisabled(enable), | 
 | 		      enableddisabled(was_enabled)); | 
 |  | 
 | 	return was_enabled; | 
 | } | 
 |  | 
 | /** | 
 |  * intel_set_memory_cxsr - Configure CxSR state | 
 |  * @dev_priv: i915 device | 
 |  * @enable: Allow vs. disallow CxSR | 
 |  * | 
 |  * Allow or disallow the system to enter a special CxSR | 
 |  * (C-state self refresh) state. What typically happens in CxSR mode | 
 |  * is that several display FIFOs may get combined into a single larger | 
 |  * FIFO for a particular plane (so called max FIFO mode) to allow the | 
 |  * system to defer memory fetches longer, and the memory will enter | 
 |  * self refresh. | 
 |  * | 
 |  * Note that enabling CxSR does not guarantee that the system enter | 
 |  * this special mode, nor does it guarantee that the system stays | 
 |  * in that mode once entered. So this just allows/disallows the system | 
 |  * to autonomously utilize the CxSR mode. Other factors such as core | 
 |  * C-states will affect when/if the system actually enters/exits the | 
 |  * CxSR mode. | 
 |  * | 
 |  * Note that on VLV/CHV this actually only controls the max FIFO mode, | 
 |  * and the system is free to enter/exit memory self refresh at any time | 
 |  * even when the use of CxSR has been disallowed. | 
 |  * | 
 |  * While the system is actually in the CxSR/max FIFO mode, some plane | 
 |  * control registers will not get latched on vblank. Thus in order to | 
 |  * guarantee the system will respond to changes in the plane registers | 
 |  * we must always disallow CxSR prior to making changes to those registers. | 
 |  * Unfortunately the system will re-evaluate the CxSR conditions at | 
 |  * frame start which happens after vblank start (which is when the plane | 
 |  * registers would get latched), so we can't proceed with the plane update | 
 |  * during the same frame where we disallowed CxSR. | 
 |  * | 
 |  * Certain platforms also have a deeper HPLL SR mode. Fortunately the | 
 |  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold | 
 |  * the hardware w.r.t. HPLL SR when writing to plane registers. | 
 |  * Disallowing just CxSR is sufficient. | 
 |  */ | 
 | bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	ret = _intel_set_memory_cxsr(dev_priv, enable); | 
 | 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) | 
 | 		dev_priv->wm.vlv.cxsr = enable; | 
 | 	else if (IS_G4X(dev_priv)) | 
 | 		dev_priv->wm.g4x.cxsr = enable; | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Latency for FIFO fetches is dependent on several factors: | 
 |  *   - memory configuration (speed, channels) | 
 |  *   - chipset | 
 |  *   - current MCH state | 
 |  * It can be fairly high in some situations, so here we assume a fairly | 
 |  * pessimal value.  It's a tradeoff between extra memory fetches (if we | 
 |  * set this value too high, the FIFO will fetch frequently to stay full) | 
 |  * and power consumption (set it too low to save power and we might see | 
 |  * FIFO underruns and display "flicker"). | 
 |  * | 
 |  * A value of 5us seems to be a good balance; safe for very low end | 
 |  * platforms but not overly aggressive on lower latency configs. | 
 |  */ | 
 | static const int pessimal_latency_ns = 5000; | 
 |  | 
 | #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ | 
 | 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) | 
 |  | 
 | static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
 | 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; | 
 | 	enum pipe pipe = crtc->pipe; | 
 | 	int sprite0_start, sprite1_start; | 
 |  | 
 | 	switch (pipe) { | 
 | 		uint32_t dsparb, dsparb2, dsparb3; | 
 | 	case PIPE_A: | 
 | 		dsparb = I915_READ(DSPARB); | 
 | 		dsparb2 = I915_READ(DSPARB2); | 
 | 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); | 
 | 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); | 
 | 		break; | 
 | 	case PIPE_B: | 
 | 		dsparb = I915_READ(DSPARB); | 
 | 		dsparb2 = I915_READ(DSPARB2); | 
 | 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); | 
 | 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); | 
 | 		break; | 
 | 	case PIPE_C: | 
 | 		dsparb2 = I915_READ(DSPARB2); | 
 | 		dsparb3 = I915_READ(DSPARB3); | 
 | 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); | 
 | 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); | 
 | 		break; | 
 | 	default: | 
 | 		MISSING_CASE(pipe); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start; | 
 | 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; | 
 | 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; | 
 | 	fifo_state->plane[PLANE_CURSOR] = 63; | 
 | } | 
 |  | 
 | static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, | 
 | 			      enum i9xx_plane_id i9xx_plane) | 
 | { | 
 | 	uint32_t dsparb = I915_READ(DSPARB); | 
 | 	int size; | 
 |  | 
 | 	size = dsparb & 0x7f; | 
 | 	if (i9xx_plane == PLANE_B) | 
 | 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; | 
 |  | 
 | 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n", | 
 | 		      dsparb, plane_name(i9xx_plane), size); | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static int i830_get_fifo_size(struct drm_i915_private *dev_priv, | 
 | 			      enum i9xx_plane_id i9xx_plane) | 
 | { | 
 | 	uint32_t dsparb = I915_READ(DSPARB); | 
 | 	int size; | 
 |  | 
 | 	size = dsparb & 0x1ff; | 
 | 	if (i9xx_plane == PLANE_B) | 
 | 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; | 
 | 	size >>= 1; /* Convert to cachelines */ | 
 |  | 
 | 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n", | 
 | 		      dsparb, plane_name(i9xx_plane), size); | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static int i845_get_fifo_size(struct drm_i915_private *dev_priv, | 
 | 			      enum i9xx_plane_id i9xx_plane) | 
 | { | 
 | 	uint32_t dsparb = I915_READ(DSPARB); | 
 | 	int size; | 
 |  | 
 | 	size = dsparb & 0x7f; | 
 | 	size >>= 2; /* Convert to cachelines */ | 
 |  | 
 | 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n", | 
 | 		      dsparb, plane_name(i9xx_plane), size); | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | /* Pineview has different values for various configs */ | 
 | static const struct intel_watermark_params pineview_display_wm = { | 
 | 	.fifo_size = PINEVIEW_DISPLAY_FIFO, | 
 | 	.max_wm = PINEVIEW_MAX_WM, | 
 | 	.default_wm = PINEVIEW_DFT_WM, | 
 | 	.guard_size = PINEVIEW_GUARD_WM, | 
 | 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params pineview_display_hplloff_wm = { | 
 | 	.fifo_size = PINEVIEW_DISPLAY_FIFO, | 
 | 	.max_wm = PINEVIEW_MAX_WM, | 
 | 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM, | 
 | 	.guard_size = PINEVIEW_GUARD_WM, | 
 | 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params pineview_cursor_wm = { | 
 | 	.fifo_size = PINEVIEW_CURSOR_FIFO, | 
 | 	.max_wm = PINEVIEW_CURSOR_MAX_WM, | 
 | 	.default_wm = PINEVIEW_CURSOR_DFT_WM, | 
 | 	.guard_size = PINEVIEW_CURSOR_GUARD_WM, | 
 | 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params pineview_cursor_hplloff_wm = { | 
 | 	.fifo_size = PINEVIEW_CURSOR_FIFO, | 
 | 	.max_wm = PINEVIEW_CURSOR_MAX_WM, | 
 | 	.default_wm = PINEVIEW_CURSOR_DFT_WM, | 
 | 	.guard_size = PINEVIEW_CURSOR_GUARD_WM, | 
 | 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params i965_cursor_wm_info = { | 
 | 	.fifo_size = I965_CURSOR_FIFO, | 
 | 	.max_wm = I965_CURSOR_MAX_WM, | 
 | 	.default_wm = I965_CURSOR_DFT_WM, | 
 | 	.guard_size = 2, | 
 | 	.cacheline_size = I915_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params i945_wm_info = { | 
 | 	.fifo_size = I945_FIFO_SIZE, | 
 | 	.max_wm = I915_MAX_WM, | 
 | 	.default_wm = 1, | 
 | 	.guard_size = 2, | 
 | 	.cacheline_size = I915_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params i915_wm_info = { | 
 | 	.fifo_size = I915_FIFO_SIZE, | 
 | 	.max_wm = I915_MAX_WM, | 
 | 	.default_wm = 1, | 
 | 	.guard_size = 2, | 
 | 	.cacheline_size = I915_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params i830_a_wm_info = { | 
 | 	.fifo_size = I855GM_FIFO_SIZE, | 
 | 	.max_wm = I915_MAX_WM, | 
 | 	.default_wm = 1, | 
 | 	.guard_size = 2, | 
 | 	.cacheline_size = I830_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params i830_bc_wm_info = { | 
 | 	.fifo_size = I855GM_FIFO_SIZE, | 
 | 	.max_wm = I915_MAX_WM/2, | 
 | 	.default_wm = 1, | 
 | 	.guard_size = 2, | 
 | 	.cacheline_size = I830_FIFO_LINE_SIZE, | 
 | }; | 
 | static const struct intel_watermark_params i845_wm_info = { | 
 | 	.fifo_size = I830_FIFO_SIZE, | 
 | 	.max_wm = I915_MAX_WM, | 
 | 	.default_wm = 1, | 
 | 	.guard_size = 2, | 
 | 	.cacheline_size = I830_FIFO_LINE_SIZE, | 
 | }; | 
 |  | 
 | /** | 
 |  * intel_wm_method1 - Method 1 / "small buffer" watermark formula | 
 |  * @pixel_rate: Pipe pixel rate in kHz | 
 |  * @cpp: Plane bytes per pixel | 
 |  * @latency: Memory wakeup latency in 0.1us units | 
 |  * | 
 |  * Compute the watermark using the method 1 or "small buffer" | 
 |  * formula. The caller may additonally add extra cachelines | 
 |  * to account for TLB misses and clock crossings. | 
 |  * | 
 |  * This method is concerned with the short term drain rate | 
 |  * of the FIFO, ie. it does not account for blanking periods | 
 |  * which would effectively reduce the average drain rate across | 
 |  * a longer period. The name "small" refers to the fact the | 
 |  * FIFO is relatively small compared to the amount of data | 
 |  * fetched. | 
 |  * | 
 |  * The FIFO level vs. time graph might look something like: | 
 |  * | 
 |  *   |\   |\ | 
 |  *   | \  | \ | 
 |  * __---__---__ (- plane active, _ blanking) | 
 |  * -> time | 
 |  * | 
 |  * or perhaps like this: | 
 |  * | 
 |  *   |\|\  |\|\ | 
 |  * __----__----__ (- plane active, _ blanking) | 
 |  * -> time | 
 |  * | 
 |  * Returns: | 
 |  * The watermark in bytes | 
 |  */ | 
 | static unsigned int intel_wm_method1(unsigned int pixel_rate, | 
 | 				     unsigned int cpp, | 
 | 				     unsigned int latency) | 
 | { | 
 | 	uint64_t ret; | 
 |  | 
 | 	ret = (uint64_t) pixel_rate * cpp * latency; | 
 | 	ret = DIV_ROUND_UP_ULL(ret, 10000); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * intel_wm_method2 - Method 2 / "large buffer" watermark formula | 
 |  * @pixel_rate: Pipe pixel rate in kHz | 
 |  * @htotal: Pipe horizontal total | 
 |  * @width: Plane width in pixels | 
 |  * @cpp: Plane bytes per pixel | 
 |  * @latency: Memory wakeup latency in 0.1us units | 
 |  * | 
 |  * Compute the watermark using the method 2 or "large buffer" | 
 |  * formula. The caller may additonally add extra cachelines | 
 |  * to account for TLB misses and clock crossings. | 
 |  * | 
 |  * This method is concerned with the long term drain rate | 
 |  * of the FIFO, ie. it does account for blanking periods | 
 |  * which effectively reduce the average drain rate across | 
 |  * a longer period. The name "large" refers to the fact the | 
 |  * FIFO is relatively large compared to the amount of data | 
 |  * fetched. | 
 |  * | 
 |  * The FIFO level vs. time graph might look something like: | 
 |  * | 
 |  *    |\___       |\___ | 
 |  *    |    \___   |    \___ | 
 |  *    |        \  |        \ | 
 |  * __ --__--__--__--__--__--__ (- plane active, _ blanking) | 
 |  * -> time | 
 |  * | 
 |  * Returns: | 
 |  * The watermark in bytes | 
 |  */ | 
 | static unsigned int intel_wm_method2(unsigned int pixel_rate, | 
 | 				     unsigned int htotal, | 
 | 				     unsigned int width, | 
 | 				     unsigned int cpp, | 
 | 				     unsigned int latency) | 
 | { | 
 | 	unsigned int ret; | 
 |  | 
 | 	/* | 
 | 	 * FIXME remove once all users are computing | 
 | 	 * watermarks in the correct place. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(htotal == 0)) | 
 | 		htotal = 1; | 
 |  | 
 | 	ret = (latency * pixel_rate) / (htotal * 10000); | 
 | 	ret = (ret + 1) * width * cpp; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * intel_calculate_wm - calculate watermark level | 
 |  * @pixel_rate: pixel clock | 
 |  * @wm: chip FIFO params | 
 |  * @fifo_size: size of the FIFO buffer | 
 |  * @cpp: bytes per pixel | 
 |  * @latency_ns: memory latency for the platform | 
 |  * | 
 |  * Calculate the watermark level (the level at which the display plane will | 
 |  * start fetching from memory again).  Each chip has a different display | 
 |  * FIFO size and allocation, so the caller needs to figure that out and pass | 
 |  * in the correct intel_watermark_params structure. | 
 |  * | 
 |  * As the pixel clock runs, the FIFO will be drained at a rate that depends | 
 |  * on the pixel size.  When it reaches the watermark level, it'll start | 
 |  * fetching FIFO line sized based chunks from memory until the FIFO fills | 
 |  * past the watermark point.  If the FIFO drains completely, a FIFO underrun | 
 |  * will occur, and a display engine hang could result. | 
 |  */ | 
 | static unsigned int intel_calculate_wm(int pixel_rate, | 
 | 				       const struct intel_watermark_params *wm, | 
 | 				       int fifo_size, int cpp, | 
 | 				       unsigned int latency_ns) | 
 | { | 
 | 	int entries, wm_size; | 
 |  | 
 | 	/* | 
 | 	 * Note: we need to make sure we don't overflow for various clock & | 
 | 	 * latency values. | 
 | 	 * clocks go from a few thousand to several hundred thousand. | 
 | 	 * latency is usually a few thousand | 
 | 	 */ | 
 | 	entries = intel_wm_method1(pixel_rate, cpp, | 
 | 				   latency_ns / 100); | 
 | 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) + | 
 | 		wm->guard_size; | 
 | 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); | 
 |  | 
 | 	wm_size = fifo_size - entries; | 
 | 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); | 
 |  | 
 | 	/* Don't promote wm_size to unsigned... */ | 
 | 	if (wm_size > wm->max_wm) | 
 | 		wm_size = wm->max_wm; | 
 | 	if (wm_size <= 0) | 
 | 		wm_size = wm->default_wm; | 
 |  | 
 | 	/* | 
 | 	 * Bspec seems to indicate that the value shouldn't be lower than | 
 | 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values. | 
 | 	 * Lets go for 8 which is the burst size since certain platforms | 
 | 	 * already use a hardcoded 8 (which is what the spec says should be | 
 | 	 * done). | 
 | 	 */ | 
 | 	if (wm_size <= 8) | 
 | 		wm_size = 8; | 
 |  | 
 | 	return wm_size; | 
 | } | 
 |  | 
 | static bool is_disabling(int old, int new, int threshold) | 
 | { | 
 | 	return old >= threshold && new < threshold; | 
 | } | 
 |  | 
 | static bool is_enabling(int old, int new, int threshold) | 
 | { | 
 | 	return old < threshold && new >= threshold; | 
 | } | 
 |  | 
 | static int intel_wm_num_levels(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	return dev_priv->wm.max_level + 1; | 
 | } | 
 |  | 
 | static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, | 
 | 				   const struct intel_plane_state *plane_state) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane); | 
 |  | 
 | 	/* FIXME check the 'enable' instead */ | 
 | 	if (!crtc_state->base.active) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Treat cursor with fb as always visible since cursor updates | 
 | 	 * can happen faster than the vrefresh rate, and the current | 
 | 	 * watermark code doesn't handle that correctly. Cursor updates | 
 | 	 * which set/clear the fb or change the cursor size are going | 
 | 	 * to get throttled by intel_legacy_cursor_update() to work | 
 | 	 * around this problem with the watermark code. | 
 | 	 */ | 
 | 	if (plane->id == PLANE_CURSOR) | 
 | 		return plane_state->base.fb != NULL; | 
 | 	else | 
 | 		return plane_state->base.visible; | 
 | } | 
 |  | 
 | static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_crtc *crtc, *enabled = NULL; | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		if (intel_crtc_active(crtc)) { | 
 | 			if (enabled) | 
 | 				return NULL; | 
 | 			enabled = crtc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return enabled; | 
 | } | 
 |  | 
 | static void pineview_update_wm(struct intel_crtc *unused_crtc) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); | 
 | 	struct intel_crtc *crtc; | 
 | 	const struct cxsr_latency *latency; | 
 | 	u32 reg; | 
 | 	unsigned int wm; | 
 |  | 
 | 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), | 
 | 					 dev_priv->is_ddr3, | 
 | 					 dev_priv->fsb_freq, | 
 | 					 dev_priv->mem_freq); | 
 | 	if (!latency) { | 
 | 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); | 
 | 		intel_set_memory_cxsr(dev_priv, false); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	crtc = single_enabled_crtc(dev_priv); | 
 | 	if (crtc) { | 
 | 		const struct drm_display_mode *adjusted_mode = | 
 | 			&crtc->config->base.adjusted_mode; | 
 | 		const struct drm_framebuffer *fb = | 
 | 			crtc->base.primary->state->fb; | 
 | 		int cpp = fb->format->cpp[0]; | 
 | 		int clock = adjusted_mode->crtc_clock; | 
 |  | 
 | 		/* Display SR */ | 
 | 		wm = intel_calculate_wm(clock, &pineview_display_wm, | 
 | 					pineview_display_wm.fifo_size, | 
 | 					cpp, latency->display_sr); | 
 | 		reg = I915_READ(DSPFW1); | 
 | 		reg &= ~DSPFW_SR_MASK; | 
 | 		reg |= FW_WM(wm, SR); | 
 | 		I915_WRITE(DSPFW1, reg); | 
 | 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); | 
 |  | 
 | 		/* cursor SR */ | 
 | 		wm = intel_calculate_wm(clock, &pineview_cursor_wm, | 
 | 					pineview_display_wm.fifo_size, | 
 | 					4, latency->cursor_sr); | 
 | 		reg = I915_READ(DSPFW3); | 
 | 		reg &= ~DSPFW_CURSOR_SR_MASK; | 
 | 		reg |= FW_WM(wm, CURSOR_SR); | 
 | 		I915_WRITE(DSPFW3, reg); | 
 |  | 
 | 		/* Display HPLL off SR */ | 
 | 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, | 
 | 					pineview_display_hplloff_wm.fifo_size, | 
 | 					cpp, latency->display_hpll_disable); | 
 | 		reg = I915_READ(DSPFW3); | 
 | 		reg &= ~DSPFW_HPLL_SR_MASK; | 
 | 		reg |= FW_WM(wm, HPLL_SR); | 
 | 		I915_WRITE(DSPFW3, reg); | 
 |  | 
 | 		/* cursor HPLL off SR */ | 
 | 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, | 
 | 					pineview_display_hplloff_wm.fifo_size, | 
 | 					4, latency->cursor_hpll_disable); | 
 | 		reg = I915_READ(DSPFW3); | 
 | 		reg &= ~DSPFW_HPLL_CURSOR_MASK; | 
 | 		reg |= FW_WM(wm, HPLL_CURSOR); | 
 | 		I915_WRITE(DSPFW3, reg); | 
 | 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); | 
 |  | 
 | 		intel_set_memory_cxsr(dev_priv, true); | 
 | 	} else { | 
 | 		intel_set_memory_cxsr(dev_priv, false); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Documentation says: | 
 |  * "If the line size is small, the TLB fetches can get in the way of the | 
 |  *  data fetches, causing some lag in the pixel data return which is not | 
 |  *  accounted for in the above formulas. The following adjustment only | 
 |  *  needs to be applied if eight whole lines fit in the buffer at once. | 
 |  *  The WM is adjusted upwards by the difference between the FIFO size | 
 |  *  and the size of 8 whole lines. This adjustment is always performed | 
 |  *  in the actual pixel depth regardless of whether FBC is enabled or not." | 
 |  */ | 
 | static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) | 
 | { | 
 | 	int tlb_miss = fifo_size * 64 - width * cpp * 8; | 
 |  | 
 | 	return max(0, tlb_miss); | 
 | } | 
 |  | 
 | static void g4x_write_wm_values(struct drm_i915_private *dev_priv, | 
 | 				const struct g4x_wm_values *wm) | 
 | { | 
 | 	enum pipe pipe; | 
 |  | 
 | 	for_each_pipe(dev_priv, pipe) | 
 | 		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); | 
 |  | 
 | 	I915_WRITE(DSPFW1, | 
 | 		   FW_WM(wm->sr.plane, SR) | | 
 | 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | | 
 | 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | | 
 | 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); | 
 | 	I915_WRITE(DSPFW2, | 
 | 		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | | 
 | 		   FW_WM(wm->sr.fbc, FBC_SR) | | 
 | 		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | | 
 | 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | | 
 | 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | | 
 | 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); | 
 | 	I915_WRITE(DSPFW3, | 
 | 		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | | 
 | 		   FW_WM(wm->sr.cursor, CURSOR_SR) | | 
 | 		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) | | 
 | 		   FW_WM(wm->hpll.plane, HPLL_SR)); | 
 |  | 
 | 	POSTING_READ(DSPFW1); | 
 | } | 
 |  | 
 | #define FW_WM_VLV(value, plane) \ | 
 | 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) | 
 |  | 
 | static void vlv_write_wm_values(struct drm_i915_private *dev_priv, | 
 | 				const struct vlv_wm_values *wm) | 
 | { | 
 | 	enum pipe pipe; | 
 |  | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); | 
 |  | 
 | 		I915_WRITE(VLV_DDL(pipe), | 
 | 			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | | 
 | 			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | | 
 | 			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | | 
 | 			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Zero the (unused) WM1 watermarks, and also clear all the | 
 | 	 * high order bits so that there are no out of bounds values | 
 | 	 * present in the registers during the reprogramming. | 
 | 	 */ | 
 | 	I915_WRITE(DSPHOWM, 0); | 
 | 	I915_WRITE(DSPHOWM1, 0); | 
 | 	I915_WRITE(DSPFW4, 0); | 
 | 	I915_WRITE(DSPFW5, 0); | 
 | 	I915_WRITE(DSPFW6, 0); | 
 |  | 
 | 	I915_WRITE(DSPFW1, | 
 | 		   FW_WM(wm->sr.plane, SR) | | 
 | 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | | 
 | 		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | | 
 | 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); | 
 | 	I915_WRITE(DSPFW2, | 
 | 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | | 
 | 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | | 
 | 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); | 
 | 	I915_WRITE(DSPFW3, | 
 | 		   FW_WM(wm->sr.cursor, CURSOR_SR)); | 
 |  | 
 | 	if (IS_CHERRYVIEW(dev_priv)) { | 
 | 		I915_WRITE(DSPFW7_CHV, | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); | 
 | 		I915_WRITE(DSPFW8_CHV, | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); | 
 | 		I915_WRITE(DSPFW9_CHV, | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | | 
 | 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); | 
 | 		I915_WRITE(DSPHOWM, | 
 | 			   FW_WM(wm->sr.plane >> 9, SR_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); | 
 | 	} else { | 
 | 		I915_WRITE(DSPFW7, | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | | 
 | 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); | 
 | 		I915_WRITE(DSPHOWM, | 
 | 			   FW_WM(wm->sr.plane >> 9, SR_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | | 
 | 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); | 
 | 	} | 
 |  | 
 | 	POSTING_READ(DSPFW1); | 
 | } | 
 |  | 
 | #undef FW_WM_VLV | 
 |  | 
 | static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* all latencies in usec */ | 
 | 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; | 
 | 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; | 
 | 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; | 
 |  | 
 | 	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; | 
 | } | 
 |  | 
 | static int g4x_plane_fifo_size(enum plane_id plane_id, int level) | 
 | { | 
 | 	/* | 
 | 	 * DSPCNTR[13] supposedly controls whether the | 
 | 	 * primary plane can use the FIFO space otherwise | 
 | 	 * reserved for the sprite plane. It's not 100% clear | 
 | 	 * what the actual FIFO size is, but it looks like we | 
 | 	 * can happily set both primary and sprite watermarks | 
 | 	 * up to 127 cachelines. So that would seem to mean | 
 | 	 * that either DSPCNTR[13] doesn't do anything, or that | 
 | 	 * the total FIFO is >= 256 cachelines in size. Either | 
 | 	 * way, we don't seem to have to worry about this | 
 | 	 * repartitioning as the maximum watermark value the | 
 | 	 * register can hold for each plane is lower than the | 
 | 	 * minimum FIFO size. | 
 | 	 */ | 
 | 	switch (plane_id) { | 
 | 	case PLANE_CURSOR: | 
 | 		return 63; | 
 | 	case PLANE_PRIMARY: | 
 | 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; | 
 | 	case PLANE_SPRITE0: | 
 | 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; | 
 | 	default: | 
 | 		MISSING_CASE(plane_id); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int g4x_fbc_fifo_size(int level) | 
 | { | 
 | 	switch (level) { | 
 | 	case G4X_WM_LEVEL_SR: | 
 | 		return 7; | 
 | 	case G4X_WM_LEVEL_HPLL: | 
 | 		return 15; | 
 | 	default: | 
 | 		MISSING_CASE(level); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state, | 
 | 			       const struct intel_plane_state *plane_state, | 
 | 			       int level) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane); | 
 | 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev); | 
 | 	const struct drm_display_mode *adjusted_mode = | 
 | 		&crtc_state->base.adjusted_mode; | 
 | 	unsigned int latency = dev_priv->wm.pri_latency[level] * 10; | 
 | 	unsigned int clock, htotal, cpp, width, wm; | 
 |  | 
 | 	if (latency == 0) | 
 | 		return USHRT_MAX; | 
 |  | 
 | 	if (!intel_wm_plane_visible(crtc_state, plane_state)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Not 100% sure which way ELK should go here as the | 
 | 	 * spec only says CL/CTG should assume 32bpp and BW | 
 | 	 * doesn't need to. But as these things followed the | 
 | 	 * mobile vs. desktop lines on gen3 as well, let's | 
 | 	 * assume ELK doesn't need this. | 
 | 	 * | 
 | 	 * The spec also fails to list such a restriction for | 
 | 	 * the HPLL watermark, which seems a little strange. | 
 | 	 * Let's use 32bpp for the HPLL watermark as well. | 
 | 	 */ | 
 | 	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY && | 
 | 	    level != G4X_WM_LEVEL_NORMAL) | 
 | 		cpp = 4; | 
 | 	else | 
 | 		cpp = plane_state->base.fb->format->cpp[0]; | 
 |  | 
 | 	clock = adjusted_mode->crtc_clock; | 
 | 	htotal = adjusted_mode->crtc_htotal; | 
 |  | 
 | 	if (plane->id == PLANE_CURSOR) | 
 | 		width = plane_state->base.crtc_w; | 
 | 	else | 
 | 		width = drm_rect_width(&plane_state->base.dst); | 
 |  | 
 | 	if (plane->id == PLANE_CURSOR) { | 
 | 		wm = intel_wm_method2(clock, htotal, width, cpp, latency); | 
 | 	} else if (plane->id == PLANE_PRIMARY && | 
 | 		   level == G4X_WM_LEVEL_NORMAL) { | 
 | 		wm = intel_wm_method1(clock, cpp, latency); | 
 | 	} else { | 
 | 		unsigned int small, large; | 
 |  | 
 | 		small = intel_wm_method1(clock, cpp, latency); | 
 | 		large = intel_wm_method2(clock, htotal, width, cpp, latency); | 
 |  | 
 | 		wm = min(small, large); | 
 | 	} | 
 |  | 
 | 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), | 
 | 			      width, cpp); | 
 |  | 
 | 	wm = DIV_ROUND_UP(wm, 64) + 2; | 
 |  | 
 | 	return min_t(unsigned int, wm, USHRT_MAX); | 
 | } | 
 |  | 
 | static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, | 
 | 				 int level, enum plane_id plane_id, u16 value) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	bool dirty = false; | 
 |  | 
 | 	for (; level < intel_wm_num_levels(dev_priv); level++) { | 
 | 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; | 
 |  | 
 | 		dirty |= raw->plane[plane_id] != value; | 
 | 		raw->plane[plane_id] = value; | 
 | 	} | 
 |  | 
 | 	return dirty; | 
 | } | 
 |  | 
 | static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, | 
 | 			       int level, u16 value) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	bool dirty = false; | 
 |  | 
 | 	/* NORMAL level doesn't have an FBC watermark */ | 
 | 	level = max(level, G4X_WM_LEVEL_SR); | 
 |  | 
 | 	for (; level < intel_wm_num_levels(dev_priv); level++) { | 
 | 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; | 
 |  | 
 | 		dirty |= raw->fbc != value; | 
 | 		raw->fbc = value; | 
 | 	} | 
 |  | 
 | 	return dirty; | 
 | } | 
 |  | 
 | static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, | 
 | 				   const struct intel_plane_state *pstate, | 
 | 				   uint32_t pri_val); | 
 |  | 
 | static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, | 
 | 				     const struct intel_plane_state *plane_state) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane); | 
 | 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); | 
 | 	enum plane_id plane_id = plane->id; | 
 | 	bool dirty = false; | 
 | 	int level; | 
 |  | 
 | 	if (!intel_wm_plane_visible(crtc_state, plane_state)) { | 
 | 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); | 
 | 		if (plane_id == PLANE_PRIMARY) | 
 | 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (level = 0; level < num_levels; level++) { | 
 | 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; | 
 | 		int wm, max_wm; | 
 |  | 
 | 		wm = g4x_compute_wm(crtc_state, plane_state, level); | 
 | 		max_wm = g4x_plane_fifo_size(plane_id, level); | 
 |  | 
 | 		if (wm > max_wm) | 
 | 			break; | 
 |  | 
 | 		dirty |= raw->plane[plane_id] != wm; | 
 | 		raw->plane[plane_id] = wm; | 
 |  | 
 | 		if (plane_id != PLANE_PRIMARY || | 
 | 		    level == G4X_WM_LEVEL_NORMAL) | 
 | 			continue; | 
 |  | 
 | 		wm = ilk_compute_fbc_wm(crtc_state, plane_state, | 
 | 					raw->plane[plane_id]); | 
 | 		max_wm = g4x_fbc_fifo_size(level); | 
 |  | 
 | 		/* | 
 | 		 * FBC wm is not mandatory as we | 
 | 		 * can always just disable its use. | 
 | 		 */ | 
 | 		if (wm > max_wm) | 
 | 			wm = USHRT_MAX; | 
 |  | 
 | 		dirty |= raw->fbc != wm; | 
 | 		raw->fbc = wm; | 
 | 	} | 
 |  | 
 | 	/* mark watermarks as invalid */ | 
 | 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); | 
 |  | 
 | 	if (plane_id == PLANE_PRIMARY) | 
 | 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); | 
 |  | 
 |  out: | 
 | 	if (dirty) { | 
 | 		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n", | 
 | 			      plane->base.name, | 
 | 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], | 
 | 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], | 
 | 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); | 
 |  | 
 | 		if (plane_id == PLANE_PRIMARY) | 
 | 			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n", | 
 | 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, | 
 | 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); | 
 | 	} | 
 |  | 
 | 	return dirty; | 
 | } | 
 |  | 
 | static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, | 
 | 				      enum plane_id plane_id, int level) | 
 | { | 
 | 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; | 
 |  | 
 | 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); | 
 | } | 
 |  | 
 | static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, | 
 | 				     int level) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 |  | 
 | 	if (level > dev_priv->wm.max_level) | 
 | 		return false; | 
 |  | 
 | 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && | 
 | 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && | 
 | 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); | 
 | } | 
 |  | 
 | /* mark all levels starting from 'level' as invalid */ | 
 | static void g4x_invalidate_wms(struct intel_crtc *crtc, | 
 | 			       struct g4x_wm_state *wm_state, int level) | 
 | { | 
 | 	if (level <= G4X_WM_LEVEL_NORMAL) { | 
 | 		enum plane_id plane_id; | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 			wm_state->wm.plane[plane_id] = USHRT_MAX; | 
 | 	} | 
 |  | 
 | 	if (level <= G4X_WM_LEVEL_SR) { | 
 | 		wm_state->cxsr = false; | 
 | 		wm_state->sr.cursor = USHRT_MAX; | 
 | 		wm_state->sr.plane = USHRT_MAX; | 
 | 		wm_state->sr.fbc = USHRT_MAX; | 
 | 	} | 
 |  | 
 | 	if (level <= G4X_WM_LEVEL_HPLL) { | 
 | 		wm_state->hpll_en = false; | 
 | 		wm_state->hpll.cursor = USHRT_MAX; | 
 | 		wm_state->hpll.plane = USHRT_MAX; | 
 | 		wm_state->hpll.fbc = USHRT_MAX; | 
 | 	} | 
 | } | 
 |  | 
 | static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 | 	struct intel_atomic_state *state = | 
 | 		to_intel_atomic_state(crtc_state->base.state); | 
 | 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; | 
 | 	int num_active_planes = hweight32(crtc_state->active_planes & | 
 | 					  ~BIT(PLANE_CURSOR)); | 
 | 	const struct g4x_pipe_wm *raw; | 
 | 	const struct intel_plane_state *old_plane_state; | 
 | 	const struct intel_plane_state *new_plane_state; | 
 | 	struct intel_plane *plane; | 
 | 	enum plane_id plane_id; | 
 | 	int i, level; | 
 | 	unsigned int dirty = 0; | 
 |  | 
 | 	for_each_oldnew_intel_plane_in_state(state, plane, | 
 | 					     old_plane_state, | 
 | 					     new_plane_state, i) { | 
 | 		if (new_plane_state->base.crtc != &crtc->base && | 
 | 		    old_plane_state->base.crtc != &crtc->base) | 
 | 			continue; | 
 |  | 
 | 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) | 
 | 			dirty |= BIT(plane->id); | 
 | 	} | 
 |  | 
 | 	if (!dirty) | 
 | 		return 0; | 
 |  | 
 | 	level = G4X_WM_LEVEL_NORMAL; | 
 | 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) | 
 | 		goto out; | 
 |  | 
 | 	raw = &crtc_state->wm.g4x.raw[level]; | 
 | 	for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 		wm_state->wm.plane[plane_id] = raw->plane[plane_id]; | 
 |  | 
 | 	level = G4X_WM_LEVEL_SR; | 
 |  | 
 | 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) | 
 | 		goto out; | 
 |  | 
 | 	raw = &crtc_state->wm.g4x.raw[level]; | 
 | 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; | 
 | 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; | 
 | 	wm_state->sr.fbc = raw->fbc; | 
 |  | 
 | 	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY); | 
 |  | 
 | 	level = G4X_WM_LEVEL_HPLL; | 
 |  | 
 | 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) | 
 | 		goto out; | 
 |  | 
 | 	raw = &crtc_state->wm.g4x.raw[level]; | 
 | 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; | 
 | 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; | 
 | 	wm_state->hpll.fbc = raw->fbc; | 
 |  | 
 | 	wm_state->hpll_en = wm_state->cxsr; | 
 |  | 
 | 	level++; | 
 |  | 
 |  out: | 
 | 	if (level == G4X_WM_LEVEL_NORMAL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* invalidate the higher levels */ | 
 | 	g4x_invalidate_wms(crtc, wm_state, level); | 
 |  | 
 | 	/* | 
 | 	 * Determine if the FBC watermark(s) can be used. IF | 
 | 	 * this isn't the case we prefer to disable the FBC | 
 | 	 ( watermark(s) rather than disable the SR/HPLL | 
 | 	 * level(s) entirely. | 
 | 	 */ | 
 | 	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL; | 
 |  | 
 | 	if (level >= G4X_WM_LEVEL_SR && | 
 | 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) | 
 | 		wm_state->fbc_en = false; | 
 | 	else if (level >= G4X_WM_LEVEL_HPLL && | 
 | 		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) | 
 | 		wm_state->fbc_en = false; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int g4x_compute_intermediate_wm(struct drm_device *dev, | 
 | 				       struct intel_crtc *crtc, | 
 | 				       struct intel_crtc_state *new_crtc_state) | 
 | { | 
 | 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; | 
 | 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; | 
 | 	struct intel_atomic_state *intel_state = | 
 | 		to_intel_atomic_state(new_crtc_state->base.state); | 
 | 	const struct intel_crtc_state *old_crtc_state = | 
 | 		intel_atomic_get_old_crtc_state(intel_state, crtc); | 
 | 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; | 
 | 	enum plane_id plane_id; | 
 |  | 
 | 	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) { | 
 | 		*intermediate = *optimal; | 
 |  | 
 | 		intermediate->cxsr = false; | 
 | 		intermediate->hpll_en = false; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	intermediate->cxsr = optimal->cxsr && active->cxsr && | 
 | 		!new_crtc_state->disable_cxsr; | 
 | 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en && | 
 | 		!new_crtc_state->disable_cxsr; | 
 | 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en; | 
 |  | 
 | 	for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 		intermediate->wm.plane[plane_id] = | 
 | 			max(optimal->wm.plane[plane_id], | 
 | 			    active->wm.plane[plane_id]); | 
 |  | 
 | 		WARN_ON(intermediate->wm.plane[plane_id] > | 
 | 			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); | 
 | 	} | 
 |  | 
 | 	intermediate->sr.plane = max(optimal->sr.plane, | 
 | 				     active->sr.plane); | 
 | 	intermediate->sr.cursor = max(optimal->sr.cursor, | 
 | 				      active->sr.cursor); | 
 | 	intermediate->sr.fbc = max(optimal->sr.fbc, | 
 | 				   active->sr.fbc); | 
 |  | 
 | 	intermediate->hpll.plane = max(optimal->hpll.plane, | 
 | 				       active->hpll.plane); | 
 | 	intermediate->hpll.cursor = max(optimal->hpll.cursor, | 
 | 					active->hpll.cursor); | 
 | 	intermediate->hpll.fbc = max(optimal->hpll.fbc, | 
 | 				     active->hpll.fbc); | 
 |  | 
 | 	WARN_ON((intermediate->sr.plane > | 
 | 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || | 
 | 		 intermediate->sr.cursor > | 
 | 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && | 
 | 		intermediate->cxsr); | 
 | 	WARN_ON((intermediate->sr.plane > | 
 | 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || | 
 | 		 intermediate->sr.cursor > | 
 | 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && | 
 | 		intermediate->hpll_en); | 
 |  | 
 | 	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) && | 
 | 		intermediate->fbc_en && intermediate->cxsr); | 
 | 	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && | 
 | 		intermediate->fbc_en && intermediate->hpll_en); | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * If our intermediate WM are identical to the final WM, then we can | 
 | 	 * omit the post-vblank programming; only update if it's different. | 
 | 	 */ | 
 | 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) | 
 | 		new_crtc_state->wm.need_postvbl_update = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void g4x_merge_wm(struct drm_i915_private *dev_priv, | 
 | 			 struct g4x_wm_values *wm) | 
 | { | 
 | 	struct intel_crtc *crtc; | 
 | 	int num_active_crtcs = 0; | 
 |  | 
 | 	wm->cxsr = true; | 
 | 	wm->hpll_en = true; | 
 | 	wm->fbc_en = true; | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; | 
 |  | 
 | 		if (!crtc->active) | 
 | 			continue; | 
 |  | 
 | 		if (!wm_state->cxsr) | 
 | 			wm->cxsr = false; | 
 | 		if (!wm_state->hpll_en) | 
 | 			wm->hpll_en = false; | 
 | 		if (!wm_state->fbc_en) | 
 | 			wm->fbc_en = false; | 
 |  | 
 | 		num_active_crtcs++; | 
 | 	} | 
 |  | 
 | 	if (num_active_crtcs != 1) { | 
 | 		wm->cxsr = false; | 
 | 		wm->hpll_en = false; | 
 | 		wm->fbc_en = false; | 
 | 	} | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; | 
 | 		enum pipe pipe = crtc->pipe; | 
 |  | 
 | 		wm->pipe[pipe] = wm_state->wm; | 
 | 		if (crtc->active && wm->cxsr) | 
 | 			wm->sr = wm_state->sr; | 
 | 		if (crtc->active && wm->hpll_en) | 
 | 			wm->hpll = wm_state->hpll; | 
 | 	} | 
 | } | 
 |  | 
 | static void g4x_program_watermarks(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; | 
 | 	struct g4x_wm_values new_wm = {}; | 
 |  | 
 | 	g4x_merge_wm(dev_priv, &new_wm); | 
 |  | 
 | 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) | 
 | 		return; | 
 |  | 
 | 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) | 
 | 		_intel_set_memory_cxsr(dev_priv, false); | 
 |  | 
 | 	g4x_write_wm_values(dev_priv, &new_wm); | 
 |  | 
 | 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) | 
 | 		_intel_set_memory_cxsr(dev_priv, true); | 
 |  | 
 | 	*old_wm = new_wm; | 
 | } | 
 |  | 
 | static void g4x_initial_watermarks(struct intel_atomic_state *state, | 
 | 				   struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; | 
 | 	g4x_program_watermarks(dev_priv); | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | static void g4x_optimize_watermarks(struct intel_atomic_state *state, | 
 | 				    struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); | 
 |  | 
 | 	if (!crtc_state->wm.need_postvbl_update) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; | 
 | 	g4x_program_watermarks(dev_priv); | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | /* latency must be in 0.1us units. */ | 
 | static unsigned int vlv_wm_method2(unsigned int pixel_rate, | 
 | 				   unsigned int htotal, | 
 | 				   unsigned int width, | 
 | 				   unsigned int cpp, | 
 | 				   unsigned int latency) | 
 | { | 
 | 	unsigned int ret; | 
 |  | 
 | 	ret = intel_wm_method2(pixel_rate, htotal, | 
 | 			       width, cpp, latency); | 
 | 	ret = DIV_ROUND_UP(ret, 64); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* all latencies in usec */ | 
 | 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; | 
 |  | 
 | 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; | 
 |  | 
 | 	if (IS_CHERRYVIEW(dev_priv)) { | 
 | 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; | 
 | 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; | 
 |  | 
 | 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; | 
 | 	} | 
 | } | 
 |  | 
 | static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, | 
 | 				     const struct intel_plane_state *plane_state, | 
 | 				     int level) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane); | 
 | 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev); | 
 | 	const struct drm_display_mode *adjusted_mode = | 
 | 		&crtc_state->base.adjusted_mode; | 
 | 	unsigned int clock, htotal, cpp, width, wm; | 
 |  | 
 | 	if (dev_priv->wm.pri_latency[level] == 0) | 
 | 		return USHRT_MAX; | 
 |  | 
 | 	if (!intel_wm_plane_visible(crtc_state, plane_state)) | 
 | 		return 0; | 
 |  | 
 | 	cpp = plane_state->base.fb->format->cpp[0]; | 
 | 	clock = adjusted_mode->crtc_clock; | 
 | 	htotal = adjusted_mode->crtc_htotal; | 
 | 	width = crtc_state->pipe_src_w; | 
 |  | 
 | 	if (plane->id == PLANE_CURSOR) { | 
 | 		/* | 
 | 		 * FIXME the formula gives values that are | 
 | 		 * too big for the cursor FIFO, and hence we | 
 | 		 * would never be able to use cursors. For | 
 | 		 * now just hardcode the watermark. | 
 | 		 */ | 
 | 		wm = 63; | 
 | 	} else { | 
 | 		wm = vlv_wm_method2(clock, htotal, width, cpp, | 
 | 				    dev_priv->wm.pri_latency[level] * 10); | 
 | 	} | 
 |  | 
 | 	return min_t(unsigned int, wm, USHRT_MAX); | 
 | } | 
 |  | 
 | static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) | 
 | { | 
 | 	return (active_planes & (BIT(PLANE_SPRITE0) | | 
 | 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); | 
 | } | 
 |  | 
 | static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 | 	const struct g4x_pipe_wm *raw = | 
 | 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; | 
 | 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; | 
 | 	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); | 
 | 	int num_active_planes = hweight32(active_planes); | 
 | 	const int fifo_size = 511; | 
 | 	int fifo_extra, fifo_left = fifo_size; | 
 | 	int sprite0_fifo_extra = 0; | 
 | 	unsigned int total_rate; | 
 | 	enum plane_id plane_id; | 
 |  | 
 | 	/* | 
 | 	 * When enabling sprite0 after sprite1 has already been enabled | 
 | 	 * we tend to get an underrun unless sprite0 already has some | 
 | 	 * FIFO space allcoated. Hence we always allocate at least one | 
 | 	 * cacheline for sprite0 whenever sprite1 is enabled. | 
 | 	 * | 
 | 	 * All other plane enable sequences appear immune to this problem. | 
 | 	 */ | 
 | 	if (vlv_need_sprite0_fifo_workaround(active_planes)) | 
 | 		sprite0_fifo_extra = 1; | 
 |  | 
 | 	total_rate = raw->plane[PLANE_PRIMARY] + | 
 | 		raw->plane[PLANE_SPRITE0] + | 
 | 		raw->plane[PLANE_SPRITE1] + | 
 | 		sprite0_fifo_extra; | 
 |  | 
 | 	if (total_rate > fifo_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (total_rate == 0) | 
 | 		total_rate = 1; | 
 |  | 
 | 	for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 		unsigned int rate; | 
 |  | 
 | 		if ((active_planes & BIT(plane_id)) == 0) { | 
 | 			fifo_state->plane[plane_id] = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		rate = raw->plane[plane_id]; | 
 | 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate; | 
 | 		fifo_left -= fifo_state->plane[plane_id]; | 
 | 	} | 
 |  | 
 | 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; | 
 | 	fifo_left -= sprite0_fifo_extra; | 
 |  | 
 | 	fifo_state->plane[PLANE_CURSOR] = 63; | 
 |  | 
 | 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); | 
 |  | 
 | 	/* spread the remainder evenly */ | 
 | 	for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 		int plane_extra; | 
 |  | 
 | 		if (fifo_left == 0) | 
 | 			break; | 
 |  | 
 | 		if ((active_planes & BIT(plane_id)) == 0) | 
 | 			continue; | 
 |  | 
 | 		plane_extra = min(fifo_extra, fifo_left); | 
 | 		fifo_state->plane[plane_id] += plane_extra; | 
 | 		fifo_left -= plane_extra; | 
 | 	} | 
 |  | 
 | 	WARN_ON(active_planes != 0 && fifo_left != 0); | 
 |  | 
 | 	/* give it all to the first plane if none are active */ | 
 | 	if (active_planes == 0) { | 
 | 		WARN_ON(fifo_left != fifo_size); | 
 | 		fifo_state->plane[PLANE_PRIMARY] = fifo_left; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* mark all levels starting from 'level' as invalid */ | 
 | static void vlv_invalidate_wms(struct intel_crtc *crtc, | 
 | 			       struct vlv_wm_state *wm_state, int level) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
 |  | 
 | 	for (; level < intel_wm_num_levels(dev_priv); level++) { | 
 | 		enum plane_id plane_id; | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 			wm_state->wm[level].plane[plane_id] = USHRT_MAX; | 
 |  | 
 | 		wm_state->sr[level].cursor = USHRT_MAX; | 
 | 		wm_state->sr[level].plane = USHRT_MAX; | 
 | 	} | 
 | } | 
 |  | 
 | static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) | 
 | { | 
 | 	if (wm > fifo_size) | 
 | 		return USHRT_MAX; | 
 | 	else | 
 | 		return fifo_size - wm; | 
 | } | 
 |  | 
 | /* | 
 |  * Starting from 'level' set all higher | 
 |  * levels to 'value' in the "raw" watermarks. | 
 |  */ | 
 | static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, | 
 | 				 int level, enum plane_id plane_id, u16 value) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	int num_levels = intel_wm_num_levels(dev_priv); | 
 | 	bool dirty = false; | 
 |  | 
 | 	for (; level < num_levels; level++) { | 
 | 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; | 
 |  | 
 | 		dirty |= raw->plane[plane_id] != value; | 
 | 		raw->plane[plane_id] = value; | 
 | 	} | 
 |  | 
 | 	return dirty; | 
 | } | 
 |  | 
 | static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, | 
 | 				     const struct intel_plane_state *plane_state) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane); | 
 | 	enum plane_id plane_id = plane->id; | 
 | 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); | 
 | 	int level; | 
 | 	bool dirty = false; | 
 |  | 
 | 	if (!intel_wm_plane_visible(crtc_state, plane_state)) { | 
 | 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (level = 0; level < num_levels; level++) { | 
 | 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; | 
 | 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level); | 
 | 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; | 
 |  | 
 | 		if (wm > max_wm) | 
 | 			break; | 
 |  | 
 | 		dirty |= raw->plane[plane_id] != wm; | 
 | 		raw->plane[plane_id] = wm; | 
 | 	} | 
 |  | 
 | 	/* mark all higher levels as invalid */ | 
 | 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); | 
 |  | 
 | out: | 
 | 	if (dirty) | 
 | 		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", | 
 | 			      plane->base.name, | 
 | 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], | 
 | 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], | 
 | 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); | 
 |  | 
 | 	return dirty; | 
 | } | 
 |  | 
 | static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, | 
 | 				      enum plane_id plane_id, int level) | 
 | { | 
 | 	const struct g4x_pipe_wm *raw = | 
 | 		&crtc_state->wm.vlv.raw[level]; | 
 | 	const struct vlv_fifo_state *fifo_state = | 
 | 		&crtc_state->wm.vlv.fifo_state; | 
 |  | 
 | 	return raw->plane[plane_id] <= fifo_state->plane[plane_id]; | 
 | } | 
 |  | 
 | static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) | 
 | { | 
 | 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && | 
 | 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && | 
 | 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && | 
 | 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); | 
 | } | 
 |  | 
 | static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
 | 	struct intel_atomic_state *state = | 
 | 		to_intel_atomic_state(crtc_state->base.state); | 
 | 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; | 
 | 	const struct vlv_fifo_state *fifo_state = | 
 | 		&crtc_state->wm.vlv.fifo_state; | 
 | 	int num_active_planes = hweight32(crtc_state->active_planes & | 
 | 					  ~BIT(PLANE_CURSOR)); | 
 | 	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base); | 
 | 	const struct intel_plane_state *old_plane_state; | 
 | 	const struct intel_plane_state *new_plane_state; | 
 | 	struct intel_plane *plane; | 
 | 	enum plane_id plane_id; | 
 | 	int level, ret, i; | 
 | 	unsigned int dirty = 0; | 
 |  | 
 | 	for_each_oldnew_intel_plane_in_state(state, plane, | 
 | 					     old_plane_state, | 
 | 					     new_plane_state, i) { | 
 | 		if (new_plane_state->base.crtc != &crtc->base && | 
 | 		    old_plane_state->base.crtc != &crtc->base) | 
 | 			continue; | 
 |  | 
 | 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) | 
 | 			dirty |= BIT(plane->id); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * DSPARB registers may have been reset due to the | 
 | 	 * power well being turned off. Make sure we restore | 
 | 	 * them to a consistent state even if no primary/sprite | 
 | 	 * planes are initially active. | 
 | 	 */ | 
 | 	if (needs_modeset) | 
 | 		crtc_state->fifo_changed = true; | 
 |  | 
 | 	if (!dirty) | 
 | 		return 0; | 
 |  | 
 | 	/* cursor changes don't warrant a FIFO recompute */ | 
 | 	if (dirty & ~BIT(PLANE_CURSOR)) { | 
 | 		const struct intel_crtc_state *old_crtc_state = | 
 | 			intel_atomic_get_old_crtc_state(state, crtc); | 
 | 		const struct vlv_fifo_state *old_fifo_state = | 
 | 			&old_crtc_state->wm.vlv.fifo_state; | 
 |  | 
 | 		ret = vlv_compute_fifo(crtc_state); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (needs_modeset || | 
 | 		    memcmp(old_fifo_state, fifo_state, | 
 | 			   sizeof(*fifo_state)) != 0) | 
 | 			crtc_state->fifo_changed = true; | 
 | 	} | 
 |  | 
 | 	/* initially allow all levels */ | 
 | 	wm_state->num_levels = intel_wm_num_levels(dev_priv); | 
 | 	/* | 
 | 	 * Note that enabling cxsr with no primary/sprite planes | 
 | 	 * enabled can wedge the pipe. Hence we only allow cxsr | 
 | 	 * with exactly one enabled primary/sprite plane. | 
 | 	 */ | 
 | 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; | 
 |  | 
 | 	for (level = 0; level < wm_state->num_levels; level++) { | 
 | 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; | 
 | 		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1; | 
 |  | 
 | 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) | 
 | 			break; | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 			wm_state->wm[level].plane[plane_id] = | 
 | 				vlv_invert_wm_value(raw->plane[plane_id], | 
 | 						    fifo_state->plane[plane_id]); | 
 | 		} | 
 |  | 
 | 		wm_state->sr[level].plane = | 
 | 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], | 
 | 						 raw->plane[PLANE_SPRITE0], | 
 | 						 raw->plane[PLANE_SPRITE1]), | 
 | 					    sr_fifo_size); | 
 |  | 
 | 		wm_state->sr[level].cursor = | 
 | 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR], | 
 | 					    63); | 
 | 	} | 
 |  | 
 | 	if (level == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* limit to only levels we can actually handle */ | 
 | 	wm_state->num_levels = level; | 
 |  | 
 | 	/* invalidate the higher levels */ | 
 | 	vlv_invalidate_wms(crtc, wm_state, level); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define VLV_FIFO(plane, value) \ | 
 | 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) | 
 |  | 
 | static void vlv_atomic_update_fifo(struct intel_atomic_state *state, | 
 | 				   struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
 | 	const struct vlv_fifo_state *fifo_state = | 
 | 		&crtc_state->wm.vlv.fifo_state; | 
 | 	int sprite0_start, sprite1_start, fifo_size; | 
 |  | 
 | 	if (!crtc_state->fifo_changed) | 
 | 		return; | 
 |  | 
 | 	sprite0_start = fifo_state->plane[PLANE_PRIMARY]; | 
 | 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; | 
 | 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; | 
 |  | 
 | 	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63); | 
 | 	WARN_ON(fifo_size != 511); | 
 |  | 
 | 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); | 
 |  | 
 | 	/* | 
 | 	 * uncore.lock serves a double purpose here. It allows us to | 
 | 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and | 
 | 	 * it protects the DSPARB registers from getting clobbered by | 
 | 	 * parallel updates from multiple pipes. | 
 | 	 * | 
 | 	 * intel_pipe_update_start() has already disabled interrupts | 
 | 	 * for us, so a plain spin_lock() is sufficient here. | 
 | 	 */ | 
 | 	spin_lock(&dev_priv->uncore.lock); | 
 |  | 
 | 	switch (crtc->pipe) { | 
 | 		uint32_t dsparb, dsparb2, dsparb3; | 
 | 	case PIPE_A: | 
 | 		dsparb = I915_READ_FW(DSPARB); | 
 | 		dsparb2 = I915_READ_FW(DSPARB2); | 
 |  | 
 | 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | | 
 | 			    VLV_FIFO(SPRITEB, 0xff)); | 
 | 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | | 
 | 			   VLV_FIFO(SPRITEB, sprite1_start)); | 
 |  | 
 | 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | | 
 | 			     VLV_FIFO(SPRITEB_HI, 0x1)); | 
 | 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | | 
 | 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); | 
 |  | 
 | 		I915_WRITE_FW(DSPARB, dsparb); | 
 | 		I915_WRITE_FW(DSPARB2, dsparb2); | 
 | 		break; | 
 | 	case PIPE_B: | 
 | 		dsparb = I915_READ_FW(DSPARB); | 
 | 		dsparb2 = I915_READ_FW(DSPARB2); | 
 |  | 
 | 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | | 
 | 			    VLV_FIFO(SPRITED, 0xff)); | 
 | 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | | 
 | 			   VLV_FIFO(SPRITED, sprite1_start)); | 
 |  | 
 | 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | | 
 | 			     VLV_FIFO(SPRITED_HI, 0xff)); | 
 | 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | | 
 | 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); | 
 |  | 
 | 		I915_WRITE_FW(DSPARB, dsparb); | 
 | 		I915_WRITE_FW(DSPARB2, dsparb2); | 
 | 		break; | 
 | 	case PIPE_C: | 
 | 		dsparb3 = I915_READ_FW(DSPARB3); | 
 | 		dsparb2 = I915_READ_FW(DSPARB2); | 
 |  | 
 | 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | | 
 | 			     VLV_FIFO(SPRITEF, 0xff)); | 
 | 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | | 
 | 			    VLV_FIFO(SPRITEF, sprite1_start)); | 
 |  | 
 | 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | | 
 | 			     VLV_FIFO(SPRITEF_HI, 0xff)); | 
 | 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | | 
 | 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); | 
 |  | 
 | 		I915_WRITE_FW(DSPARB3, dsparb3); | 
 | 		I915_WRITE_FW(DSPARB2, dsparb2); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	POSTING_READ_FW(DSPARB); | 
 |  | 
 | 	spin_unlock(&dev_priv->uncore.lock); | 
 | } | 
 |  | 
 | #undef VLV_FIFO | 
 |  | 
 | static int vlv_compute_intermediate_wm(struct drm_device *dev, | 
 | 				       struct intel_crtc *crtc, | 
 | 				       struct intel_crtc_state *new_crtc_state) | 
 | { | 
 | 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; | 
 | 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; | 
 | 	struct intel_atomic_state *intel_state = | 
 | 		to_intel_atomic_state(new_crtc_state->base.state); | 
 | 	const struct intel_crtc_state *old_crtc_state = | 
 | 		intel_atomic_get_old_crtc_state(intel_state, crtc); | 
 | 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; | 
 | 	int level; | 
 |  | 
 | 	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) { | 
 | 		*intermediate = *optimal; | 
 |  | 
 | 		intermediate->cxsr = false; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	intermediate->num_levels = min(optimal->num_levels, active->num_levels); | 
 | 	intermediate->cxsr = optimal->cxsr && active->cxsr && | 
 | 		!new_crtc_state->disable_cxsr; | 
 |  | 
 | 	for (level = 0; level < intermediate->num_levels; level++) { | 
 | 		enum plane_id plane_id; | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 			intermediate->wm[level].plane[plane_id] = | 
 | 				min(optimal->wm[level].plane[plane_id], | 
 | 				    active->wm[level].plane[plane_id]); | 
 | 		} | 
 |  | 
 | 		intermediate->sr[level].plane = min(optimal->sr[level].plane, | 
 | 						    active->sr[level].plane); | 
 | 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor, | 
 | 						     active->sr[level].cursor); | 
 | 	} | 
 |  | 
 | 	vlv_invalidate_wms(crtc, intermediate, level); | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * If our intermediate WM are identical to the final WM, then we can | 
 | 	 * omit the post-vblank programming; only update if it's different. | 
 | 	 */ | 
 | 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) | 
 | 		new_crtc_state->wm.need_postvbl_update = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vlv_merge_wm(struct drm_i915_private *dev_priv, | 
 | 			 struct vlv_wm_values *wm) | 
 | { | 
 | 	struct intel_crtc *crtc; | 
 | 	int num_active_crtcs = 0; | 
 |  | 
 | 	wm->level = dev_priv->wm.max_level; | 
 | 	wm->cxsr = true; | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; | 
 |  | 
 | 		if (!crtc->active) | 
 | 			continue; | 
 |  | 
 | 		if (!wm_state->cxsr) | 
 | 			wm->cxsr = false; | 
 |  | 
 | 		num_active_crtcs++; | 
 | 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1); | 
 | 	} | 
 |  | 
 | 	if (num_active_crtcs != 1) | 
 | 		wm->cxsr = false; | 
 |  | 
 | 	if (num_active_crtcs > 1) | 
 | 		wm->level = VLV_WM_LEVEL_PM2; | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; | 
 | 		enum pipe pipe = crtc->pipe; | 
 |  | 
 | 		wm->pipe[pipe] = wm_state->wm[wm->level]; | 
 | 		if (crtc->active && wm->cxsr) | 
 | 			wm->sr = wm_state->sr[wm->level]; | 
 |  | 
 | 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; | 
 | 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; | 
 | 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; | 
 | 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; | 
 | 	} | 
 | } | 
 |  | 
 | static void vlv_program_watermarks(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; | 
 | 	struct vlv_wm_values new_wm = {}; | 
 |  | 
 | 	vlv_merge_wm(dev_priv, &new_wm); | 
 |  | 
 | 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) | 
 | 		return; | 
 |  | 
 | 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) | 
 | 		chv_set_memory_dvfs(dev_priv, false); | 
 |  | 
 | 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) | 
 | 		chv_set_memory_pm5(dev_priv, false); | 
 |  | 
 | 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) | 
 | 		_intel_set_memory_cxsr(dev_priv, false); | 
 |  | 
 | 	vlv_write_wm_values(dev_priv, &new_wm); | 
 |  | 
 | 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) | 
 | 		_intel_set_memory_cxsr(dev_priv, true); | 
 |  | 
 | 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) | 
 | 		chv_set_memory_pm5(dev_priv, true); | 
 |  | 
 | 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) | 
 | 		chv_set_memory_dvfs(dev_priv, true); | 
 |  | 
 | 	*old_wm = new_wm; | 
 | } | 
 |  | 
 | static void vlv_initial_watermarks(struct intel_atomic_state *state, | 
 | 				   struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; | 
 | 	vlv_program_watermarks(dev_priv); | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | static void vlv_optimize_watermarks(struct intel_atomic_state *state, | 
 | 				    struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); | 
 |  | 
 | 	if (!crtc_state->wm.need_postvbl_update) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; | 
 | 	vlv_program_watermarks(dev_priv); | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | static void i965_update_wm(struct intel_crtc *unused_crtc) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); | 
 | 	struct intel_crtc *crtc; | 
 | 	int srwm = 1; | 
 | 	int cursor_sr = 16; | 
 | 	bool cxsr_enabled; | 
 |  | 
 | 	/* Calc sr entries for one plane configs */ | 
 | 	crtc = single_enabled_crtc(dev_priv); | 
 | 	if (crtc) { | 
 | 		/* self-refresh has much higher latency */ | 
 | 		static const int sr_latency_ns = 12000; | 
 | 		const struct drm_display_mode *adjusted_mode = | 
 | 			&crtc->config->base.adjusted_mode; | 
 | 		const struct drm_framebuffer *fb = | 
 | 			crtc->base.primary->state->fb; | 
 | 		int clock = adjusted_mode->crtc_clock; | 
 | 		int htotal = adjusted_mode->crtc_htotal; | 
 | 		int hdisplay = crtc->config->pipe_src_w; | 
 | 		int cpp = fb->format->cpp[0]; | 
 | 		int entries; | 
 |  | 
 | 		entries = intel_wm_method2(clock, htotal, | 
 | 					   hdisplay, cpp, sr_latency_ns / 100); | 
 | 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); | 
 | 		srwm = I965_FIFO_SIZE - entries; | 
 | 		if (srwm < 0) | 
 | 			srwm = 1; | 
 | 		srwm &= 0x1ff; | 
 | 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", | 
 | 			      entries, srwm); | 
 |  | 
 | 		entries = intel_wm_method2(clock, htotal, | 
 | 					   crtc->base.cursor->state->crtc_w, 4, | 
 | 					   sr_latency_ns / 100); | 
 | 		entries = DIV_ROUND_UP(entries, | 
 | 				       i965_cursor_wm_info.cacheline_size) + | 
 | 			i965_cursor_wm_info.guard_size; | 
 |  | 
 | 		cursor_sr = i965_cursor_wm_info.fifo_size - entries; | 
 | 		if (cursor_sr > i965_cursor_wm_info.max_wm) | 
 | 			cursor_sr = i965_cursor_wm_info.max_wm; | 
 |  | 
 | 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d " | 
 | 			      "cursor %d\n", srwm, cursor_sr); | 
 |  | 
 | 		cxsr_enabled = true; | 
 | 	} else { | 
 | 		cxsr_enabled = false; | 
 | 		/* Turn off self refresh if both pipes are enabled */ | 
 | 		intel_set_memory_cxsr(dev_priv, false); | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", | 
 | 		      srwm); | 
 |  | 
 | 	/* 965 has limitations... */ | 
 | 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) | | 
 | 		   FW_WM(8, CURSORB) | | 
 | 		   FW_WM(8, PLANEB) | | 
 | 		   FW_WM(8, PLANEA)); | 
 | 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) | | 
 | 		   FW_WM(8, PLANEC_OLD)); | 
 | 	/* update cursor SR watermark */ | 
 | 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); | 
 |  | 
 | 	if (cxsr_enabled) | 
 | 		intel_set_memory_cxsr(dev_priv, true); | 
 | } | 
 |  | 
 | #undef FW_WM | 
 |  | 
 | static void i9xx_update_wm(struct intel_crtc *unused_crtc) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); | 
 | 	const struct intel_watermark_params *wm_info; | 
 | 	uint32_t fwater_lo; | 
 | 	uint32_t fwater_hi; | 
 | 	int cwm, srwm = 1; | 
 | 	int fifo_size; | 
 | 	int planea_wm, planeb_wm; | 
 | 	struct intel_crtc *crtc, *enabled = NULL; | 
 |  | 
 | 	if (IS_I945GM(dev_priv)) | 
 | 		wm_info = &i945_wm_info; | 
 | 	else if (!IS_GEN2(dev_priv)) | 
 | 		wm_info = &i915_wm_info; | 
 | 	else | 
 | 		wm_info = &i830_a_wm_info; | 
 |  | 
 | 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A); | 
 | 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A); | 
 | 	if (intel_crtc_active(crtc)) { | 
 | 		const struct drm_display_mode *adjusted_mode = | 
 | 			&crtc->config->base.adjusted_mode; | 
 | 		const struct drm_framebuffer *fb = | 
 | 			crtc->base.primary->state->fb; | 
 | 		int cpp; | 
 |  | 
 | 		if (IS_GEN2(dev_priv)) | 
 | 			cpp = 4; | 
 | 		else | 
 | 			cpp = fb->format->cpp[0]; | 
 |  | 
 | 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, | 
 | 					       wm_info, fifo_size, cpp, | 
 | 					       pessimal_latency_ns); | 
 | 		enabled = crtc; | 
 | 	} else { | 
 | 		planea_wm = fifo_size - wm_info->guard_size; | 
 | 		if (planea_wm > (long)wm_info->max_wm) | 
 | 			planea_wm = wm_info->max_wm; | 
 | 	} | 
 |  | 
 | 	if (IS_GEN2(dev_priv)) | 
 | 		wm_info = &i830_bc_wm_info; | 
 |  | 
 | 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B); | 
 | 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B); | 
 | 	if (intel_crtc_active(crtc)) { | 
 | 		const struct drm_display_mode *adjusted_mode = | 
 | 			&crtc->config->base.adjusted_mode; | 
 | 		const struct drm_framebuffer *fb = | 
 | 			crtc->base.primary->state->fb; | 
 | 		int cpp; | 
 |  | 
 | 		if (IS_GEN2(dev_priv)) | 
 | 			cpp = 4; | 
 | 		else | 
 | 			cpp = fb->format->cpp[0]; | 
 |  | 
 | 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock, | 
 | 					       wm_info, fifo_size, cpp, | 
 | 					       pessimal_latency_ns); | 
 | 		if (enabled == NULL) | 
 | 			enabled = crtc; | 
 | 		else | 
 | 			enabled = NULL; | 
 | 	} else { | 
 | 		planeb_wm = fifo_size - wm_info->guard_size; | 
 | 		if (planeb_wm > (long)wm_info->max_wm) | 
 | 			planeb_wm = wm_info->max_wm; | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); | 
 |  | 
 | 	if (IS_I915GM(dev_priv) && enabled) { | 
 | 		struct drm_i915_gem_object *obj; | 
 |  | 
 | 		obj = intel_fb_obj(enabled->base.primary->state->fb); | 
 |  | 
 | 		/* self-refresh seems busted with untiled */ | 
 | 		if (!i915_gem_object_is_tiled(obj)) | 
 | 			enabled = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Overlay gets an aggressive default since video jitter is bad. | 
 | 	 */ | 
 | 	cwm = 2; | 
 |  | 
 | 	/* Play safe and disable self-refresh before adjusting watermarks. */ | 
 | 	intel_set_memory_cxsr(dev_priv, false); | 
 |  | 
 | 	/* Calc sr entries for one plane configs */ | 
 | 	if (HAS_FW_BLC(dev_priv) && enabled) { | 
 | 		/* self-refresh has much higher latency */ | 
 | 		static const int sr_latency_ns = 6000; | 
 | 		const struct drm_display_mode *adjusted_mode = | 
 | 			&enabled->config->base.adjusted_mode; | 
 | 		const struct drm_framebuffer *fb = | 
 | 			enabled->base.primary->state->fb; | 
 | 		int clock = adjusted_mode->crtc_clock; | 
 | 		int htotal = adjusted_mode->crtc_htotal; | 
 | 		int hdisplay = enabled->config->pipe_src_w; | 
 | 		int cpp; | 
 | 		int entries; | 
 |  | 
 | 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) | 
 | 			cpp = 4; | 
 | 		else | 
 | 			cpp = fb->format->cpp[0]; | 
 |  | 
 | 		entries = intel_wm_method2(clock, htotal, hdisplay, cpp, | 
 | 					   sr_latency_ns / 100); | 
 | 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); | 
 | 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); | 
 | 		srwm = wm_info->fifo_size - entries; | 
 | 		if (srwm < 0) | 
 | 			srwm = 1; | 
 |  | 
 | 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) | 
 | 			I915_WRITE(FW_BLC_SELF, | 
 | 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); | 
 | 		else | 
 | 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f); | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", | 
 | 		      planea_wm, planeb_wm, cwm, srwm); | 
 |  | 
 | 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); | 
 | 	fwater_hi = (cwm & 0x1f); | 
 |  | 
 | 	/* Set request length to 8 cachelines per fetch */ | 
 | 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8); | 
 | 	fwater_hi = fwater_hi | (1 << 8); | 
 |  | 
 | 	I915_WRITE(FW_BLC, fwater_lo); | 
 | 	I915_WRITE(FW_BLC2, fwater_hi); | 
 |  | 
 | 	if (enabled) | 
 | 		intel_set_memory_cxsr(dev_priv, true); | 
 | } | 
 |  | 
 | static void i845_update_wm(struct intel_crtc *unused_crtc) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); | 
 | 	struct intel_crtc *crtc; | 
 | 	const struct drm_display_mode *adjusted_mode; | 
 | 	uint32_t fwater_lo; | 
 | 	int planea_wm; | 
 |  | 
 | 	crtc = single_enabled_crtc(dev_priv); | 
 | 	if (crtc == NULL) | 
 | 		return; | 
 |  | 
 | 	adjusted_mode = &crtc->config->base.adjusted_mode; | 
 | 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, | 
 | 				       &i845_wm_info, | 
 | 				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A), | 
 | 				       4, pessimal_latency_ns); | 
 | 	fwater_lo = I915_READ(FW_BLC) & ~0xfff; | 
 | 	fwater_lo |= (3<<8) | planea_wm; | 
 |  | 
 | 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); | 
 |  | 
 | 	I915_WRITE(FW_BLC, fwater_lo); | 
 | } | 
 |  | 
 | /* latency must be in 0.1us units. */ | 
 | static unsigned int ilk_wm_method1(unsigned int pixel_rate, | 
 | 				   unsigned int cpp, | 
 | 				   unsigned int latency) | 
 | { | 
 | 	unsigned int ret; | 
 |  | 
 | 	ret = intel_wm_method1(pixel_rate, cpp, latency); | 
 | 	ret = DIV_ROUND_UP(ret, 64) + 2; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* latency must be in 0.1us units. */ | 
 | static unsigned int ilk_wm_method2(unsigned int pixel_rate, | 
 | 				   unsigned int htotal, | 
 | 				   unsigned int width, | 
 | 				   unsigned int cpp, | 
 | 				   unsigned int latency) | 
 | { | 
 | 	unsigned int ret; | 
 |  | 
 | 	ret = intel_wm_method2(pixel_rate, htotal, | 
 | 			       width, cpp, latency); | 
 | 	ret = DIV_ROUND_UP(ret, 64) + 2; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels, | 
 | 			   uint8_t cpp) | 
 | { | 
 | 	/* | 
 | 	 * Neither of these should be possible since this function shouldn't be | 
 | 	 * called if the CRTC is off or the plane is invisible.  But let's be | 
 | 	 * extra paranoid to avoid a potential divide-by-zero if we screw up | 
 | 	 * elsewhere in the driver. | 
 | 	 */ | 
 | 	if (WARN_ON(!cpp)) | 
 | 		return 0; | 
 | 	if (WARN_ON(!horiz_pixels)) | 
 | 		return 0; | 
 |  | 
 | 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; | 
 | } | 
 |  | 
 | struct ilk_wm_maximums { | 
 | 	uint16_t pri; | 
 | 	uint16_t spr; | 
 | 	uint16_t cur; | 
 | 	uint16_t fbc; | 
 | }; | 
 |  | 
 | /* | 
 |  * For both WM_PIPE and WM_LP. | 
 |  * mem_value must be in 0.1us units. | 
 |  */ | 
 | static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate, | 
 | 				   const struct intel_plane_state *pstate, | 
 | 				   uint32_t mem_value, | 
 | 				   bool is_lp) | 
 | { | 
 | 	uint32_t method1, method2; | 
 | 	int cpp; | 
 |  | 
 | 	if (mem_value == 0) | 
 | 		return U32_MAX; | 
 |  | 
 | 	if (!intel_wm_plane_visible(cstate, pstate)) | 
 | 		return 0; | 
 |  | 
 | 	cpp = pstate->base.fb->format->cpp[0]; | 
 |  | 
 | 	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); | 
 |  | 
 | 	if (!is_lp) | 
 | 		return method1; | 
 |  | 
 | 	method2 = ilk_wm_method2(cstate->pixel_rate, | 
 | 				 cstate->base.adjusted_mode.crtc_htotal, | 
 | 				 drm_rect_width(&pstate->base.dst), | 
 | 				 cpp, mem_value); | 
 |  | 
 | 	return min(method1, method2); | 
 | } | 
 |  | 
 | /* | 
 |  * For both WM_PIPE and WM_LP. | 
 |  * mem_value must be in 0.1us units. | 
 |  */ | 
 | static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate, | 
 | 				   const struct intel_plane_state *pstate, | 
 | 				   uint32_t mem_value) | 
 | { | 
 | 	uint32_t method1, method2; | 
 | 	int cpp; | 
 |  | 
 | 	if (mem_value == 0) | 
 | 		return U32_MAX; | 
 |  | 
 | 	if (!intel_wm_plane_visible(cstate, pstate)) | 
 | 		return 0; | 
 |  | 
 | 	cpp = pstate->base.fb->format->cpp[0]; | 
 |  | 
 | 	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); | 
 | 	method2 = ilk_wm_method2(cstate->pixel_rate, | 
 | 				 cstate->base.adjusted_mode.crtc_htotal, | 
 | 				 drm_rect_width(&pstate->base.dst), | 
 | 				 cpp, mem_value); | 
 | 	return min(method1, method2); | 
 | } | 
 |  | 
 | /* | 
 |  * For both WM_PIPE and WM_LP. | 
 |  * mem_value must be in 0.1us units. | 
 |  */ | 
 | static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate, | 
 | 				   const struct intel_plane_state *pstate, | 
 | 				   uint32_t mem_value) | 
 | { | 
 | 	int cpp; | 
 |  | 
 | 	if (mem_value == 0) | 
 | 		return U32_MAX; | 
 |  | 
 | 	if (!intel_wm_plane_visible(cstate, pstate)) | 
 | 		return 0; | 
 |  | 
 | 	cpp = pstate->base.fb->format->cpp[0]; | 
 |  | 
 | 	return ilk_wm_method2(cstate->pixel_rate, | 
 | 			      cstate->base.adjusted_mode.crtc_htotal, | 
 | 			      pstate->base.crtc_w, cpp, mem_value); | 
 | } | 
 |  | 
 | /* Only for WM_LP. */ | 
 | static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, | 
 | 				   const struct intel_plane_state *pstate, | 
 | 				   uint32_t pri_val) | 
 | { | 
 | 	int cpp; | 
 |  | 
 | 	if (!intel_wm_plane_visible(cstate, pstate)) | 
 | 		return 0; | 
 |  | 
 | 	cpp = pstate->base.fb->format->cpp[0]; | 
 |  | 
 | 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp); | 
 | } | 
 |  | 
 | static unsigned int | 
 | ilk_display_fifo_size(const struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 8) | 
 | 		return 3072; | 
 | 	else if (INTEL_GEN(dev_priv) >= 7) | 
 | 		return 768; | 
 | 	else | 
 | 		return 512; | 
 | } | 
 |  | 
 | static unsigned int | 
 | ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, | 
 | 		     int level, bool is_sprite) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 8) | 
 | 		/* BDW primary/sprite plane watermarks */ | 
 | 		return level == 0 ? 255 : 2047; | 
 | 	else if (INTEL_GEN(dev_priv) >= 7) | 
 | 		/* IVB/HSW primary/sprite plane watermarks */ | 
 | 		return level == 0 ? 127 : 1023; | 
 | 	else if (!is_sprite) | 
 | 		/* ILK/SNB primary plane watermarks */ | 
 | 		return level == 0 ? 127 : 511; | 
 | 	else | 
 | 		/* ILK/SNB sprite plane watermarks */ | 
 | 		return level == 0 ? 63 : 255; | 
 | } | 
 |  | 
 | static unsigned int | 
 | ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 7) | 
 | 		return level == 0 ? 63 : 255; | 
 | 	else | 
 | 		return level == 0 ? 31 : 63; | 
 | } | 
 |  | 
 | static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 8) | 
 | 		return 31; | 
 | 	else | 
 | 		return 15; | 
 | } | 
 |  | 
 | /* Calculate the maximum primary/sprite plane watermark */ | 
 | static unsigned int ilk_plane_wm_max(const struct drm_device *dev, | 
 | 				     int level, | 
 | 				     const struct intel_wm_config *config, | 
 | 				     enum intel_ddb_partitioning ddb_partitioning, | 
 | 				     bool is_sprite) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv); | 
 |  | 
 | 	/* if sprites aren't enabled, sprites get nothing */ | 
 | 	if (is_sprite && !config->sprites_enabled) | 
 | 		return 0; | 
 |  | 
 | 	/* HSW allows LP1+ watermarks even with multiple pipes */ | 
 | 	if (level == 0 || config->num_pipes_active > 1) { | 
 | 		fifo_size /= INTEL_INFO(dev_priv)->num_pipes; | 
 |  | 
 | 		/* | 
 | 		 * For some reason the non self refresh | 
 | 		 * FIFO size is only half of the self | 
 | 		 * refresh FIFO size on ILK/SNB. | 
 | 		 */ | 
 | 		if (INTEL_GEN(dev_priv) <= 6) | 
 | 			fifo_size /= 2; | 
 | 	} | 
 |  | 
 | 	if (config->sprites_enabled) { | 
 | 		/* level 0 is always calculated with 1:1 split */ | 
 | 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { | 
 | 			if (is_sprite) | 
 | 				fifo_size *= 5; | 
 | 			fifo_size /= 6; | 
 | 		} else { | 
 | 			fifo_size /= 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* clamp to max that the registers can hold */ | 
 | 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); | 
 | } | 
 |  | 
 | /* Calculate the maximum cursor plane watermark */ | 
 | static unsigned int ilk_cursor_wm_max(const struct drm_device *dev, | 
 | 				      int level, | 
 | 				      const struct intel_wm_config *config) | 
 | { | 
 | 	/* HSW LP1+ watermarks w/ multiple pipes */ | 
 | 	if (level > 0 && config->num_pipes_active > 1) | 
 | 		return 64; | 
 |  | 
 | 	/* otherwise just report max that registers can hold */ | 
 | 	return ilk_cursor_wm_reg_max(to_i915(dev), level); | 
 | } | 
 |  | 
 | static void ilk_compute_wm_maximums(const struct drm_device *dev, | 
 | 				    int level, | 
 | 				    const struct intel_wm_config *config, | 
 | 				    enum intel_ddb_partitioning ddb_partitioning, | 
 | 				    struct ilk_wm_maximums *max) | 
 | { | 
 | 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false); | 
 | 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true); | 
 | 	max->cur = ilk_cursor_wm_max(dev, level, config); | 
 | 	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev)); | 
 | } | 
 |  | 
 | static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, | 
 | 					int level, | 
 | 					struct ilk_wm_maximums *max) | 
 | { | 
 | 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); | 
 | 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); | 
 | 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level); | 
 | 	max->fbc = ilk_fbc_wm_reg_max(dev_priv); | 
 | } | 
 |  | 
 | static bool ilk_validate_wm_level(int level, | 
 | 				  const struct ilk_wm_maximums *max, | 
 | 				  struct intel_wm_level *result) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	/* already determined to be invalid? */ | 
 | 	if (!result->enable) | 
 | 		return false; | 
 |  | 
 | 	result->enable = result->pri_val <= max->pri && | 
 | 			 result->spr_val <= max->spr && | 
 | 			 result->cur_val <= max->cur; | 
 |  | 
 | 	ret = result->enable; | 
 |  | 
 | 	/* | 
 | 	 * HACK until we can pre-compute everything, | 
 | 	 * and thus fail gracefully if LP0 watermarks | 
 | 	 * are exceeded... | 
 | 	 */ | 
 | 	if (level == 0 && !result->enable) { | 
 | 		if (result->pri_val > max->pri) | 
 | 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", | 
 | 				      level, result->pri_val, max->pri); | 
 | 		if (result->spr_val > max->spr) | 
 | 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", | 
 | 				      level, result->spr_val, max->spr); | 
 | 		if (result->cur_val > max->cur) | 
 | 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", | 
 | 				      level, result->cur_val, max->cur); | 
 |  | 
 | 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri); | 
 | 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr); | 
 | 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur); | 
 | 		result->enable = true; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, | 
 | 				 const struct intel_crtc *intel_crtc, | 
 | 				 int level, | 
 | 				 struct intel_crtc_state *cstate, | 
 | 				 const struct intel_plane_state *pristate, | 
 | 				 const struct intel_plane_state *sprstate, | 
 | 				 const struct intel_plane_state *curstate, | 
 | 				 struct intel_wm_level *result) | 
 | { | 
 | 	uint16_t pri_latency = dev_priv->wm.pri_latency[level]; | 
 | 	uint16_t spr_latency = dev_priv->wm.spr_latency[level]; | 
 | 	uint16_t cur_latency = dev_priv->wm.cur_latency[level]; | 
 |  | 
 | 	/* WM1+ latency values stored in 0.5us units */ | 
 | 	if (level > 0) { | 
 | 		pri_latency *= 5; | 
 | 		spr_latency *= 5; | 
 | 		cur_latency *= 5; | 
 | 	} | 
 |  | 
 | 	if (pristate) { | 
 | 		result->pri_val = ilk_compute_pri_wm(cstate, pristate, | 
 | 						     pri_latency, level); | 
 | 		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val); | 
 | 	} | 
 |  | 
 | 	if (sprstate) | 
 | 		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency); | 
 |  | 
 | 	if (curstate) | 
 | 		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency); | 
 |  | 
 | 	result->enable = true; | 
 | } | 
 |  | 
 | static uint32_t | 
 | hsw_compute_linetime_wm(const struct intel_crtc_state *cstate) | 
 | { | 
 | 	const struct intel_atomic_state *intel_state = | 
 | 		to_intel_atomic_state(cstate->base.state); | 
 | 	const struct drm_display_mode *adjusted_mode = | 
 | 		&cstate->base.adjusted_mode; | 
 | 	u32 linetime, ips_linetime; | 
 |  | 
 | 	if (!cstate->base.active) | 
 | 		return 0; | 
 | 	if (WARN_ON(adjusted_mode->crtc_clock == 0)) | 
 | 		return 0; | 
 | 	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0)) | 
 | 		return 0; | 
 |  | 
 | 	/* The WM are computed with base on how long it takes to fill a single | 
 | 	 * row at the given clock rate, multiplied by 8. | 
 | 	 * */ | 
 | 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, | 
 | 				     adjusted_mode->crtc_clock); | 
 | 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, | 
 | 					 intel_state->cdclk.logical.cdclk); | 
 |  | 
 | 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) | | 
 | 	       PIPE_WM_LINETIME_TIME(linetime); | 
 | } | 
 |  | 
 | static void intel_read_wm_latency(struct drm_i915_private *dev_priv, | 
 | 				  uint16_t wm[8]) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 9) { | 
 | 		uint32_t val; | 
 | 		int ret, i; | 
 | 		int level, max_level = ilk_wm_max_level(dev_priv); | 
 |  | 
 | 		/* read the first set of memory latencies[0:3] */ | 
 | 		val = 0; /* data0 to be programmed to 0 for first set */ | 
 | 		mutex_lock(&dev_priv->pcu_lock); | 
 | 		ret = sandybridge_pcode_read(dev_priv, | 
 | 					     GEN9_PCODE_READ_MEM_LATENCY, | 
 | 					     &val); | 
 | 		mutex_unlock(&dev_priv->pcu_lock); | 
 |  | 
 | 		if (ret) { | 
 | 			DRM_ERROR("SKL Mailbox read error = %d\n", ret); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK; | 
 | 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & | 
 | 				GEN9_MEM_LATENCY_LEVEL_MASK; | 
 | 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & | 
 | 				GEN9_MEM_LATENCY_LEVEL_MASK; | 
 | 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & | 
 | 				GEN9_MEM_LATENCY_LEVEL_MASK; | 
 |  | 
 | 		/* read the second set of memory latencies[4:7] */ | 
 | 		val = 1; /* data0 to be programmed to 1 for second set */ | 
 | 		mutex_lock(&dev_priv->pcu_lock); | 
 | 		ret = sandybridge_pcode_read(dev_priv, | 
 | 					     GEN9_PCODE_READ_MEM_LATENCY, | 
 | 					     &val); | 
 | 		mutex_unlock(&dev_priv->pcu_lock); | 
 | 		if (ret) { | 
 | 			DRM_ERROR("SKL Mailbox read error = %d\n", ret); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK; | 
 | 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & | 
 | 				GEN9_MEM_LATENCY_LEVEL_MASK; | 
 | 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & | 
 | 				GEN9_MEM_LATENCY_LEVEL_MASK; | 
 | 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & | 
 | 				GEN9_MEM_LATENCY_LEVEL_MASK; | 
 |  | 
 | 		/* | 
 | 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n) | 
 | 		 * need to be disabled. We make sure to sanitize the values out | 
 | 		 * of the punit to satisfy this requirement. | 
 | 		 */ | 
 | 		for (level = 1; level <= max_level; level++) { | 
 | 			if (wm[level] == 0) { | 
 | 				for (i = level + 1; i <= max_level; i++) | 
 | 					wm[i] = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * WaWmMemoryReadLatency:skl+,glk | 
 | 		 * | 
 | 		 * punit doesn't take into account the read latency so we need | 
 | 		 * to add 2us to the various latency levels we retrieve from the | 
 | 		 * punit when level 0 response data us 0us. | 
 | 		 */ | 
 | 		if (wm[0] == 0) { | 
 | 			wm[0] += 2; | 
 | 			for (level = 1; level <= max_level; level++) { | 
 | 				if (wm[level] == 0) | 
 | 					break; | 
 | 				wm[level] += 2; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { | 
 | 		uint64_t sskpd = I915_READ64(MCH_SSKPD); | 
 |  | 
 | 		wm[0] = (sskpd >> 56) & 0xFF; | 
 | 		if (wm[0] == 0) | 
 | 			wm[0] = sskpd & 0xF; | 
 | 		wm[1] = (sskpd >> 4) & 0xFF; | 
 | 		wm[2] = (sskpd >> 12) & 0xFF; | 
 | 		wm[3] = (sskpd >> 20) & 0x1FF; | 
 | 		wm[4] = (sskpd >> 32) & 0x1FF; | 
 | 	} else if (INTEL_GEN(dev_priv) >= 6) { | 
 | 		uint32_t sskpd = I915_READ(MCH_SSKPD); | 
 |  | 
 | 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK; | 
 | 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK; | 
 | 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK; | 
 | 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK; | 
 | 	} else if (INTEL_GEN(dev_priv) >= 5) { | 
 | 		uint32_t mltr = I915_READ(MLTR_ILK); | 
 |  | 
 | 		/* ILK primary LP0 latency is 700 ns */ | 
 | 		wm[0] = 7; | 
 | 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK; | 
 | 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK; | 
 | 	} else { | 
 | 		MISSING_CASE(INTEL_DEVID(dev_priv)); | 
 | 	} | 
 | } | 
 |  | 
 | static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, | 
 | 				       uint16_t wm[5]) | 
 | { | 
 | 	/* ILK sprite LP0 latency is 1300 ns */ | 
 | 	if (IS_GEN5(dev_priv)) | 
 | 		wm[0] = 13; | 
 | } | 
 |  | 
 | static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, | 
 | 				       uint16_t wm[5]) | 
 | { | 
 | 	/* ILK cursor LP0 latency is 1300 ns */ | 
 | 	if (IS_GEN5(dev_priv)) | 
 | 		wm[0] = 13; | 
 | } | 
 |  | 
 | int ilk_wm_max_level(const struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* how many WM levels are we expecting */ | 
 | 	if (INTEL_GEN(dev_priv) >= 9) | 
 | 		return 7; | 
 | 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		return 4; | 
 | 	else if (INTEL_GEN(dev_priv) >= 6) | 
 | 		return 3; | 
 | 	else | 
 | 		return 2; | 
 | } | 
 |  | 
 | static void intel_print_wm_latency(struct drm_i915_private *dev_priv, | 
 | 				   const char *name, | 
 | 				   const uint16_t wm[]) | 
 | { | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv); | 
 |  | 
 | 	for (level = 0; level <= max_level; level++) { | 
 | 		unsigned int latency = wm[level]; | 
 |  | 
 | 		if (latency == 0) { | 
 | 			DRM_DEBUG_KMS("%s WM%d latency not provided\n", | 
 | 				      name, level); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * - latencies are in us on gen9. | 
 | 		 * - before then, WM1+ latency values are in 0.5us units | 
 | 		 */ | 
 | 		if (INTEL_GEN(dev_priv) >= 9) | 
 | 			latency *= 10; | 
 | 		else if (level > 0) | 
 | 			latency *= 5; | 
 |  | 
 | 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n", | 
 | 			      name, level, wm[level], | 
 | 			      latency / 10, latency % 10); | 
 | 	} | 
 | } | 
 |  | 
 | static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, | 
 | 				    uint16_t wm[5], uint16_t min) | 
 | { | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv); | 
 |  | 
 | 	if (wm[0] >= min) | 
 | 		return false; | 
 |  | 
 | 	wm[0] = max(wm[0], min); | 
 | 	for (level = 1; level <= max_level; level++) | 
 | 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5)); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	bool changed; | 
 |  | 
 | 	/* | 
 | 	 * The BIOS provided WM memory latency values are often | 
 | 	 * inadequate for high resolution displays. Adjust them. | 
 | 	 */ | 
 | 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) | | 
 | 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) | | 
 | 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12); | 
 |  | 
 | 	if (!changed) | 
 | 		return; | 
 |  | 
 | 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n"); | 
 | 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); | 
 | } | 
 |  | 
 | static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* | 
 | 	 * On some SNB machines (Thinkpad X220 Tablet at least) | 
 | 	 * LP3 usage can cause vblank interrupts to be lost. | 
 | 	 * The DEIIR bit will go high but it looks like the CPU | 
 | 	 * never gets interrupted. | 
 | 	 * | 
 | 	 * It's not clear whether other interrupt source could | 
 | 	 * be affected or if this is somehow limited to vblank | 
 | 	 * interrupts only. To play it safe we disable LP3 | 
 | 	 * watermarks entirely. | 
 | 	 */ | 
 | 	if (dev_priv->wm.pri_latency[3] == 0 && | 
 | 	    dev_priv->wm.spr_latency[3] == 0 && | 
 | 	    dev_priv->wm.cur_latency[3] == 0) | 
 | 		return; | 
 |  | 
 | 	dev_priv->wm.pri_latency[3] = 0; | 
 | 	dev_priv->wm.spr_latency[3] = 0; | 
 | 	dev_priv->wm.cur_latency[3] = 0; | 
 |  | 
 | 	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n"); | 
 | 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); | 
 | } | 
 |  | 
 | static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency); | 
 |  | 
 | 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency, | 
 | 	       sizeof(dev_priv->wm.pri_latency)); | 
 | 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency, | 
 | 	       sizeof(dev_priv->wm.pri_latency)); | 
 |  | 
 | 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency); | 
 | 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency); | 
 |  | 
 | 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); | 
 |  | 
 | 	if (IS_GEN6(dev_priv)) { | 
 | 		snb_wm_latency_quirk(dev_priv); | 
 | 		snb_wm_lp3_irq_quirk(dev_priv); | 
 | 	} | 
 | } | 
 |  | 
 | static void skl_setup_wm_latency(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency); | 
 | 	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency); | 
 | } | 
 |  | 
 | static bool ilk_validate_pipe_wm(struct drm_device *dev, | 
 | 				 struct intel_pipe_wm *pipe_wm) | 
 | { | 
 | 	/* LP0 watermark maximums depend on this pipe alone */ | 
 | 	const struct intel_wm_config config = { | 
 | 		.num_pipes_active = 1, | 
 | 		.sprites_enabled = pipe_wm->sprites_enabled, | 
 | 		.sprites_scaled = pipe_wm->sprites_scaled, | 
 | 	}; | 
 | 	struct ilk_wm_maximums max; | 
 |  | 
 | 	/* LP0 watermarks always use 1/2 DDB partitioning */ | 
 | 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max); | 
 |  | 
 | 	/* At least LP0 must be valid */ | 
 | 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { | 
 | 		DRM_DEBUG_KMS("LP0 watermark invalid\n"); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Compute new watermarks for the pipe */ | 
 | static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct drm_atomic_state *state = cstate->base.state; | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); | 
 | 	struct intel_pipe_wm *pipe_wm; | 
 | 	struct drm_device *dev = state->dev; | 
 | 	const struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_plane *plane; | 
 | 	const struct drm_plane_state *plane_state; | 
 | 	const struct intel_plane_state *pristate = NULL; | 
 | 	const struct intel_plane_state *sprstate = NULL; | 
 | 	const struct intel_plane_state *curstate = NULL; | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv), usable_level; | 
 | 	struct ilk_wm_maximums max; | 
 |  | 
 | 	pipe_wm = &cstate->wm.ilk.optimal; | 
 |  | 
 | 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) { | 
 | 		const struct intel_plane_state *ps = to_intel_plane_state(plane_state); | 
 |  | 
 | 		if (plane->type == DRM_PLANE_TYPE_PRIMARY) | 
 | 			pristate = ps; | 
 | 		else if (plane->type == DRM_PLANE_TYPE_OVERLAY) | 
 | 			sprstate = ps; | 
 | 		else if (plane->type == DRM_PLANE_TYPE_CURSOR) | 
 | 			curstate = ps; | 
 | 	} | 
 |  | 
 | 	pipe_wm->pipe_enabled = cstate->base.active; | 
 | 	if (sprstate) { | 
 | 		pipe_wm->sprites_enabled = sprstate->base.visible; | 
 | 		pipe_wm->sprites_scaled = sprstate->base.visible && | 
 | 			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 || | 
 | 			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16); | 
 | 	} | 
 |  | 
 | 	usable_level = max_level; | 
 |  | 
 | 	/* ILK/SNB: LP2+ watermarks only w/o sprites */ | 
 | 	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled) | 
 | 		usable_level = 1; | 
 |  | 
 | 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ | 
 | 	if (pipe_wm->sprites_scaled) | 
 | 		usable_level = 0; | 
 |  | 
 | 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); | 
 | 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, | 
 | 			     pristate, sprstate, curstate, &pipe_wm->wm[0]); | 
 |  | 
 | 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		pipe_wm->linetime = hsw_compute_linetime_wm(cstate); | 
 |  | 
 | 	if (!ilk_validate_pipe_wm(dev, pipe_wm)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max); | 
 |  | 
 | 	for (level = 1; level <= usable_level; level++) { | 
 | 		struct intel_wm_level *wm = &pipe_wm->wm[level]; | 
 |  | 
 | 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, | 
 | 				     pristate, sprstate, curstate, wm); | 
 |  | 
 | 		/* | 
 | 		 * Disable any watermark level that exceeds the | 
 | 		 * register maximums since such watermarks are | 
 | 		 * always invalid. | 
 | 		 */ | 
 | 		if (!ilk_validate_wm_level(level, &max, wm)) { | 
 | 			memset(wm, 0, sizeof(*wm)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Build a set of 'intermediate' watermark values that satisfy both the old | 
 |  * state and the new state.  These can be programmed to the hardware | 
 |  * immediately. | 
 |  */ | 
 | static int ilk_compute_intermediate_wm(struct drm_device *dev, | 
 | 				       struct intel_crtc *intel_crtc, | 
 | 				       struct intel_crtc_state *newstate) | 
 | { | 
 | 	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate; | 
 | 	struct intel_atomic_state *intel_state = | 
 | 		to_intel_atomic_state(newstate->base.state); | 
 | 	const struct intel_crtc_state *oldstate = | 
 | 		intel_atomic_get_old_crtc_state(intel_state, intel_crtc); | 
 | 	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal; | 
 | 	int level, max_level = ilk_wm_max_level(to_i915(dev)); | 
 |  | 
 | 	/* | 
 | 	 * Start with the final, target watermarks, then combine with the | 
 | 	 * currently active watermarks to get values that are safe both before | 
 | 	 * and after the vblank. | 
 | 	 */ | 
 | 	*a = newstate->wm.ilk.optimal; | 
 | 	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base)) | 
 | 		return 0; | 
 |  | 
 | 	a->pipe_enabled |= b->pipe_enabled; | 
 | 	a->sprites_enabled |= b->sprites_enabled; | 
 | 	a->sprites_scaled |= b->sprites_scaled; | 
 |  | 
 | 	for (level = 0; level <= max_level; level++) { | 
 | 		struct intel_wm_level *a_wm = &a->wm[level]; | 
 | 		const struct intel_wm_level *b_wm = &b->wm[level]; | 
 |  | 
 | 		a_wm->enable &= b_wm->enable; | 
 | 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); | 
 | 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); | 
 | 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); | 
 | 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to make sure that these merged watermark values are | 
 | 	 * actually a valid configuration themselves.  If they're not, | 
 | 	 * there's no safe way to transition from the old state to | 
 | 	 * the new state, so we need to fail the atomic transaction. | 
 | 	 */ | 
 | 	if (!ilk_validate_pipe_wm(dev, a)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * If our intermediate WM are identical to the final WM, then we can | 
 | 	 * omit the post-vblank programming; only update if it's different. | 
 | 	 */ | 
 | 	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0) | 
 | 		newstate->wm.need_postvbl_update = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Merge the watermarks from all active pipes for a specific level. | 
 |  */ | 
 | static void ilk_merge_wm_level(struct drm_device *dev, | 
 | 			       int level, | 
 | 			       struct intel_wm_level *ret_wm) | 
 | { | 
 | 	const struct intel_crtc *intel_crtc; | 
 |  | 
 | 	ret_wm->enable = true; | 
 |  | 
 | 	for_each_intel_crtc(dev, intel_crtc) { | 
 | 		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk; | 
 | 		const struct intel_wm_level *wm = &active->wm[level]; | 
 |  | 
 | 		if (!active->pipe_enabled) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * The watermark values may have been used in the past, | 
 | 		 * so we must maintain them in the registers for some | 
 | 		 * time even if the level is now disabled. | 
 | 		 */ | 
 | 		if (!wm->enable) | 
 | 			ret_wm->enable = false; | 
 |  | 
 | 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); | 
 | 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); | 
 | 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); | 
 | 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Merge all low power watermarks for all active pipes. | 
 |  */ | 
 | static void ilk_wm_merge(struct drm_device *dev, | 
 | 			 const struct intel_wm_config *config, | 
 | 			 const struct ilk_wm_maximums *max, | 
 | 			 struct intel_pipe_wm *merged) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv); | 
 | 	int last_enabled_level = max_level; | 
 |  | 
 | 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ | 
 | 	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) && | 
 | 	    config->num_pipes_active > 1) | 
 | 		last_enabled_level = 0; | 
 |  | 
 | 	/* ILK: FBC WM must be disabled always */ | 
 | 	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6; | 
 |  | 
 | 	/* merge each WM1+ level */ | 
 | 	for (level = 1; level <= max_level; level++) { | 
 | 		struct intel_wm_level *wm = &merged->wm[level]; | 
 |  | 
 | 		ilk_merge_wm_level(dev, level, wm); | 
 |  | 
 | 		if (level > last_enabled_level) | 
 | 			wm->enable = false; | 
 | 		else if (!ilk_validate_wm_level(level, max, wm)) | 
 | 			/* make sure all following levels get disabled */ | 
 | 			last_enabled_level = level - 1; | 
 |  | 
 | 		/* | 
 | 		 * The spec says it is preferred to disable | 
 | 		 * FBC WMs instead of disabling a WM level. | 
 | 		 */ | 
 | 		if (wm->fbc_val > max->fbc) { | 
 | 			if (wm->enable) | 
 | 				merged->fbc_wm_enabled = false; | 
 | 			wm->fbc_val = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ | 
 | 	/* | 
 | 	 * FIXME this is racy. FBC might get enabled later. | 
 | 	 * What we should check here is whether FBC can be | 
 | 	 * enabled sometime later. | 
 | 	 */ | 
 | 	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled && | 
 | 	    intel_fbc_is_active(dev_priv)) { | 
 | 		for (level = 2; level <= max_level; level++) { | 
 | 			struct intel_wm_level *wm = &merged->wm[level]; | 
 |  | 
 | 			wm->enable = false; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) | 
 | { | 
 | 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ | 
 | 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); | 
 | } | 
 |  | 
 | /* The value we need to program into the WM_LPx latency field */ | 
 | static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 |  | 
 | 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		return 2 * level; | 
 | 	else | 
 | 		return dev_priv->wm.pri_latency[level]; | 
 | } | 
 |  | 
 | static void ilk_compute_wm_results(struct drm_device *dev, | 
 | 				   const struct intel_pipe_wm *merged, | 
 | 				   enum intel_ddb_partitioning partitioning, | 
 | 				   struct ilk_wm_values *results) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct intel_crtc *intel_crtc; | 
 | 	int level, wm_lp; | 
 |  | 
 | 	results->enable_fbc_wm = merged->fbc_wm_enabled; | 
 | 	results->partitioning = partitioning; | 
 |  | 
 | 	/* LP1+ register values */ | 
 | 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) { | 
 | 		const struct intel_wm_level *r; | 
 |  | 
 | 		level = ilk_wm_lp_to_level(wm_lp, merged); | 
 |  | 
 | 		r = &merged->wm[level]; | 
 |  | 
 | 		/* | 
 | 		 * Maintain the watermark values even if the level is | 
 | 		 * disabled. Doing otherwise could cause underruns. | 
 | 		 */ | 
 | 		results->wm_lp[wm_lp - 1] = | 
 | 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) | | 
 | 			(r->pri_val << WM1_LP_SR_SHIFT) | | 
 | 			r->cur_val; | 
 |  | 
 | 		if (r->enable) | 
 | 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN; | 
 |  | 
 | 		if (INTEL_GEN(dev_priv) >= 8) | 
 | 			results->wm_lp[wm_lp - 1] |= | 
 | 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW; | 
 | 		else | 
 | 			results->wm_lp[wm_lp - 1] |= | 
 | 				r->fbc_val << WM1_LP_FBC_SHIFT; | 
 |  | 
 | 		/* | 
 | 		 * Always set WM1S_LP_EN when spr_val != 0, even if the | 
 | 		 * level is disabled. Doing otherwise could cause underruns. | 
 | 		 */ | 
 | 		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) { | 
 | 			WARN_ON(wm_lp != 1); | 
 | 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val; | 
 | 		} else | 
 | 			results->wm_lp_spr[wm_lp - 1] = r->spr_val; | 
 | 	} | 
 |  | 
 | 	/* LP0 register values */ | 
 | 	for_each_intel_crtc(dev, intel_crtc) { | 
 | 		enum pipe pipe = intel_crtc->pipe; | 
 | 		const struct intel_wm_level *r = | 
 | 			&intel_crtc->wm.active.ilk.wm[0]; | 
 |  | 
 | 		if (WARN_ON(!r->enable)) | 
 | 			continue; | 
 |  | 
 | 		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime; | 
 |  | 
 | 		results->wm_pipe[pipe] = | 
 | 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) | | 
 | 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) | | 
 | 			r->cur_val; | 
 | 	} | 
 | } | 
 |  | 
 | /* Find the result with the highest level enabled. Check for enable_fbc_wm in | 
 |  * case both are at the same level. Prefer r1 in case they're the same. */ | 
 | static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev, | 
 | 						  struct intel_pipe_wm *r1, | 
 | 						  struct intel_pipe_wm *r2) | 
 | { | 
 | 	int level, max_level = ilk_wm_max_level(to_i915(dev)); | 
 | 	int level1 = 0, level2 = 0; | 
 |  | 
 | 	for (level = 1; level <= max_level; level++) { | 
 | 		if (r1->wm[level].enable) | 
 | 			level1 = level; | 
 | 		if (r2->wm[level].enable) | 
 | 			level2 = level; | 
 | 	} | 
 |  | 
 | 	if (level1 == level2) { | 
 | 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) | 
 | 			return r2; | 
 | 		else | 
 | 			return r1; | 
 | 	} else if (level1 > level2) { | 
 | 		return r1; | 
 | 	} else { | 
 | 		return r2; | 
 | 	} | 
 | } | 
 |  | 
 | /* dirty bits used to track which watermarks need changes */ | 
 | #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) | 
 | #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe))) | 
 | #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) | 
 | #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) | 
 | #define WM_DIRTY_FBC (1 << 24) | 
 | #define WM_DIRTY_DDB (1 << 25) | 
 |  | 
 | static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, | 
 | 					 const struct ilk_wm_values *old, | 
 | 					 const struct ilk_wm_values *new) | 
 | { | 
 | 	unsigned int dirty = 0; | 
 | 	enum pipe pipe; | 
 | 	int wm_lp; | 
 |  | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) { | 
 | 			dirty |= WM_DIRTY_LINETIME(pipe); | 
 | 			/* Must disable LP1+ watermarks too */ | 
 | 			dirty |= WM_DIRTY_LP_ALL; | 
 | 		} | 
 |  | 
 | 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { | 
 | 			dirty |= WM_DIRTY_PIPE(pipe); | 
 | 			/* Must disable LP1+ watermarks too */ | 
 | 			dirty |= WM_DIRTY_LP_ALL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (old->enable_fbc_wm != new->enable_fbc_wm) { | 
 | 		dirty |= WM_DIRTY_FBC; | 
 | 		/* Must disable LP1+ watermarks too */ | 
 | 		dirty |= WM_DIRTY_LP_ALL; | 
 | 	} | 
 |  | 
 | 	if (old->partitioning != new->partitioning) { | 
 | 		dirty |= WM_DIRTY_DDB; | 
 | 		/* Must disable LP1+ watermarks too */ | 
 | 		dirty |= WM_DIRTY_LP_ALL; | 
 | 	} | 
 |  | 
 | 	/* LP1+ watermarks already deemed dirty, no need to continue */ | 
 | 	if (dirty & WM_DIRTY_LP_ALL) | 
 | 		return dirty; | 
 |  | 
 | 	/* Find the lowest numbered LP1+ watermark in need of an update... */ | 
 | 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) { | 
 | 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || | 
 | 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */ | 
 | 	for (; wm_lp <= 3; wm_lp++) | 
 | 		dirty |= WM_DIRTY_LP(wm_lp); | 
 |  | 
 | 	return dirty; | 
 | } | 
 |  | 
 | static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, | 
 | 			       unsigned int dirty) | 
 | { | 
 | 	struct ilk_wm_values *previous = &dev_priv->wm.hw; | 
 | 	bool changed = false; | 
 |  | 
 | 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) { | 
 | 		previous->wm_lp[2] &= ~WM1_LP_SR_EN; | 
 | 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]); | 
 | 		changed = true; | 
 | 	} | 
 | 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) { | 
 | 		previous->wm_lp[1] &= ~WM1_LP_SR_EN; | 
 | 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]); | 
 | 		changed = true; | 
 | 	} | 
 | 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) { | 
 | 		previous->wm_lp[0] &= ~WM1_LP_SR_EN; | 
 | 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]); | 
 | 		changed = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Don't touch WM1S_LP_EN here. | 
 | 	 * Doing so could cause underruns. | 
 | 	 */ | 
 |  | 
 | 	return changed; | 
 | } | 
 |  | 
 | /* | 
 |  * The spec says we shouldn't write when we don't need, because every write | 
 |  * causes WMs to be re-evaluated, expending some power. | 
 |  */ | 
 | static void ilk_write_wm_values(struct drm_i915_private *dev_priv, | 
 | 				struct ilk_wm_values *results) | 
 | { | 
 | 	struct ilk_wm_values *previous = &dev_priv->wm.hw; | 
 | 	unsigned int dirty; | 
 | 	uint32_t val; | 
 |  | 
 | 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results); | 
 | 	if (!dirty) | 
 | 		return; | 
 |  | 
 | 	_ilk_disable_lp_wm(dev_priv, dirty); | 
 |  | 
 | 	if (dirty & WM_DIRTY_PIPE(PIPE_A)) | 
 | 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]); | 
 | 	if (dirty & WM_DIRTY_PIPE(PIPE_B)) | 
 | 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]); | 
 | 	if (dirty & WM_DIRTY_PIPE(PIPE_C)) | 
 | 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]); | 
 |  | 
 | 	if (dirty & WM_DIRTY_LINETIME(PIPE_A)) | 
 | 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]); | 
 | 	if (dirty & WM_DIRTY_LINETIME(PIPE_B)) | 
 | 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]); | 
 | 	if (dirty & WM_DIRTY_LINETIME(PIPE_C)) | 
 | 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]); | 
 |  | 
 | 	if (dirty & WM_DIRTY_DDB) { | 
 | 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { | 
 | 			val = I915_READ(WM_MISC); | 
 | 			if (results->partitioning == INTEL_DDB_PART_1_2) | 
 | 				val &= ~WM_MISC_DATA_PARTITION_5_6; | 
 | 			else | 
 | 				val |= WM_MISC_DATA_PARTITION_5_6; | 
 | 			I915_WRITE(WM_MISC, val); | 
 | 		} else { | 
 | 			val = I915_READ(DISP_ARB_CTL2); | 
 | 			if (results->partitioning == INTEL_DDB_PART_1_2) | 
 | 				val &= ~DISP_DATA_PARTITION_5_6; | 
 | 			else | 
 | 				val |= DISP_DATA_PARTITION_5_6; | 
 | 			I915_WRITE(DISP_ARB_CTL2, val); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (dirty & WM_DIRTY_FBC) { | 
 | 		val = I915_READ(DISP_ARB_CTL); | 
 | 		if (results->enable_fbc_wm) | 
 | 			val &= ~DISP_FBC_WM_DIS; | 
 | 		else | 
 | 			val |= DISP_FBC_WM_DIS; | 
 | 		I915_WRITE(DISP_ARB_CTL, val); | 
 | 	} | 
 |  | 
 | 	if (dirty & WM_DIRTY_LP(1) && | 
 | 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0]) | 
 | 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 7) { | 
 | 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) | 
 | 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]); | 
 | 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) | 
 | 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]); | 
 | 	} | 
 |  | 
 | 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) | 
 | 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]); | 
 | 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) | 
 | 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]); | 
 | 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) | 
 | 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]); | 
 |  | 
 | 	dev_priv->wm.hw = *results; | 
 | } | 
 |  | 
 | bool ilk_disable_lp_wm(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 |  | 
 | 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); | 
 | } | 
 |  | 
 | static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u8 enabled_slices; | 
 |  | 
 | 	/* Slice 1 will always be enabled */ | 
 | 	enabled_slices = 1; | 
 |  | 
 | 	/* Gen prior to GEN11 have only one DBuf slice */ | 
 | 	if (INTEL_GEN(dev_priv) < 11) | 
 | 		return enabled_slices; | 
 |  | 
 | 	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE) | 
 | 		enabled_slices++; | 
 |  | 
 | 	return enabled_slices; | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME: We still don't have the proper code detect if we need to apply the WA, | 
 |  * so assume we'll always need it in order to avoid underruns. | 
 |  */ | 
 | static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
 |  | 
 | 	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool | 
 | intel_has_sagv(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || | 
 | 	    IS_CANNONLAKE(dev_priv)) | 
 | 		return true; | 
 |  | 
 | 	if (IS_SKYLAKE(dev_priv) && | 
 | 	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * SAGV dynamically adjusts the system agent voltage and clock frequencies | 
 |  * depending on power and performance requirements. The display engine access | 
 |  * to system memory is blocked during the adjustment time. Because of the | 
 |  * blocking time, having this enabled can cause full system hangs and/or pipe | 
 |  * underruns if we don't meet all of the following requirements: | 
 |  * | 
 |  *  - <= 1 pipe enabled | 
 |  *  - All planes can enable watermarks for latencies >= SAGV engine block time | 
 |  *  - We're not using an interlaced display configuration | 
 |  */ | 
 | int | 
 | intel_enable_sagv(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!intel_has_sagv(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	if (dev_priv->sagv_status == I915_SAGV_ENABLED) | 
 | 		return 0; | 
 |  | 
 | 	DRM_DEBUG_KMS("Enabling the SAGV\n"); | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL, | 
 | 				      GEN9_SAGV_ENABLE); | 
 |  | 
 | 	/* We don't need to wait for the SAGV when enabling */ | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 |  | 
 | 	/* | 
 | 	 * Some skl systems, pre-release machines in particular, | 
 | 	 * don't actually have an SAGV. | 
 | 	 */ | 
 | 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { | 
 | 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n"); | 
 | 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; | 
 | 		return 0; | 
 | 	} else if (ret < 0) { | 
 | 		DRM_ERROR("Failed to enable the SAGV\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	dev_priv->sagv_status = I915_SAGV_ENABLED; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | intel_disable_sagv(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!intel_has_sagv(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	if (dev_priv->sagv_status == I915_SAGV_DISABLED) | 
 | 		return 0; | 
 |  | 
 | 	DRM_DEBUG_KMS("Disabling the SAGV\n"); | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	/* bspec says to keep retrying for at least 1 ms */ | 
 | 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL, | 
 | 				GEN9_SAGV_DISABLE, | 
 | 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, | 
 | 				1); | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 |  | 
 | 	/* | 
 | 	 * Some skl systems, pre-release machines in particular, | 
 | 	 * don't actually have an SAGV. | 
 | 	 */ | 
 | 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { | 
 | 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n"); | 
 | 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; | 
 | 		return 0; | 
 | 	} else if (ret < 0) { | 
 | 		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	dev_priv->sagv_status = I915_SAGV_DISABLED; | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool intel_can_enable_sagv(struct drm_atomic_state *state) | 
 | { | 
 | 	struct drm_device *dev = state->dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state); | 
 | 	struct intel_crtc *crtc; | 
 | 	struct intel_plane *plane; | 
 | 	struct intel_crtc_state *cstate; | 
 | 	enum pipe pipe; | 
 | 	int level, latency; | 
 | 	int sagv_block_time_us; | 
 |  | 
 | 	if (!intel_has_sagv(dev_priv)) | 
 | 		return false; | 
 |  | 
 | 	if (IS_GEN9(dev_priv)) | 
 | 		sagv_block_time_us = 30; | 
 | 	else if (IS_GEN10(dev_priv)) | 
 | 		sagv_block_time_us = 20; | 
 | 	else | 
 | 		sagv_block_time_us = 10; | 
 |  | 
 | 	/* | 
 | 	 * SKL+ workaround: bspec recommends we disable the SAGV when we have | 
 | 	 * more then one pipe enabled | 
 | 	 * | 
 | 	 * If there are no active CRTCs, no additional checks need be performed | 
 | 	 */ | 
 | 	if (hweight32(intel_state->active_crtcs) == 0) | 
 | 		return true; | 
 | 	else if (hweight32(intel_state->active_crtcs) > 1) | 
 | 		return false; | 
 |  | 
 | 	/* Since we're now guaranteed to only have one active CRTC... */ | 
 | 	pipe = ffs(intel_state->active_crtcs) - 1; | 
 | 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe); | 
 | 	cstate = to_intel_crtc_state(crtc->base.state); | 
 |  | 
 | 	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) | 
 | 		return false; | 
 |  | 
 | 	for_each_intel_plane_on_crtc(dev, crtc, plane) { | 
 | 		struct skl_plane_wm *wm = | 
 | 			&cstate->wm.skl.optimal.planes[plane->id]; | 
 |  | 
 | 		/* Skip this plane if it's not enabled */ | 
 | 		if (!wm->wm[0].plane_en) | 
 | 			continue; | 
 |  | 
 | 		/* Find the highest enabled wm level for this plane */ | 
 | 		for (level = ilk_wm_max_level(dev_priv); | 
 | 		     !wm->wm[level].plane_en; --level) | 
 | 		     { } | 
 |  | 
 | 		latency = dev_priv->wm.skl_latency[level]; | 
 |  | 
 | 		if (skl_needs_memory_bw_wa(intel_state) && | 
 | 		    plane->base.state->fb->modifier == | 
 | 		    I915_FORMAT_MOD_X_TILED) | 
 | 			latency += 15; | 
 |  | 
 | 		/* | 
 | 		 * If any of the planes on this pipe don't enable wm levels that | 
 | 		 * incur memory latencies higher than sagv_block_time_us we | 
 | 		 * can't enable the SAGV. | 
 | 		 */ | 
 | 		if (latency < sagv_block_time_us) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv, | 
 | 				       const struct intel_crtc_state *cstate, | 
 | 				       const unsigned int total_data_rate, | 
 | 				       const int num_active, | 
 | 				       struct skl_ddb_allocation *ddb) | 
 | { | 
 | 	const struct drm_display_mode *adjusted_mode; | 
 | 	u64 total_data_bw; | 
 | 	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size; | 
 |  | 
 | 	WARN_ON(ddb_size == 0); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) < 11) | 
 | 		return ddb_size - 4; /* 4 blocks for bypass path allocation */ | 
 |  | 
 | 	adjusted_mode = &cstate->base.adjusted_mode; | 
 | 	total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode); | 
 |  | 
 | 	/* | 
 | 	 * 12GB/s is maximum BW supported by single DBuf slice. | 
 | 	 */ | 
 | 	if (total_data_bw >= GBps(12) || num_active > 1) { | 
 | 		ddb->enabled_slices = 2; | 
 | 	} else { | 
 | 		ddb->enabled_slices = 1; | 
 | 		ddb_size /= 2; | 
 | 	} | 
 |  | 
 | 	return ddb_size; | 
 | } | 
 |  | 
 | static void | 
 | skl_ddb_get_pipe_allocation_limits(struct drm_device *dev, | 
 | 				   const struct intel_crtc_state *cstate, | 
 | 				   const unsigned int total_data_rate, | 
 | 				   struct skl_ddb_allocation *ddb, | 
 | 				   struct skl_ddb_entry *alloc, /* out */ | 
 | 				   int *num_active /* out */) | 
 | { | 
 | 	struct drm_atomic_state *state = cstate->base.state; | 
 | 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state); | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_crtc *for_crtc = cstate->base.crtc; | 
 | 	unsigned int pipe_size, ddb_size; | 
 | 	int nth_active_pipe; | 
 |  | 
 | 	if (WARN_ON(!state) || !cstate->base.active) { | 
 | 		alloc->start = 0; | 
 | 		alloc->end = 0; | 
 | 		*num_active = hweight32(dev_priv->active_crtcs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (intel_state->active_pipe_changes) | 
 | 		*num_active = hweight32(intel_state->active_crtcs); | 
 | 	else | 
 | 		*num_active = hweight32(dev_priv->active_crtcs); | 
 |  | 
 | 	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate, | 
 | 				      *num_active, ddb); | 
 |  | 
 | 	/* | 
 | 	 * If the state doesn't change the active CRTC's, then there's | 
 | 	 * no need to recalculate; the existing pipe allocation limits | 
 | 	 * should remain unchanged.  Note that we're safe from racing | 
 | 	 * commits since any racing commit that changes the active CRTC | 
 | 	 * list would need to grab _all_ crtc locks, including the one | 
 | 	 * we currently hold. | 
 | 	 */ | 
 | 	if (!intel_state->active_pipe_changes) { | 
 | 		/* | 
 | 		 * alloc may be cleared by clear_intel_crtc_state, | 
 | 		 * copy from old state to be sure | 
 | 		 */ | 
 | 		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	nth_active_pipe = hweight32(intel_state->active_crtcs & | 
 | 				    (drm_crtc_mask(for_crtc) - 1)); | 
 | 	pipe_size = ddb_size / hweight32(intel_state->active_crtcs); | 
 | 	alloc->start = nth_active_pipe * ddb_size / *num_active; | 
 | 	alloc->end = alloc->start + pipe_size; | 
 | } | 
 |  | 
 | static unsigned int skl_cursor_allocation(int num_active) | 
 | { | 
 | 	if (num_active == 1) | 
 | 		return 32; | 
 |  | 
 | 	return 8; | 
 | } | 
 |  | 
 | static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv, | 
 | 				       struct skl_ddb_entry *entry, u32 reg) | 
 | { | 
 | 	u16 mask; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 11) | 
 | 		mask = ICL_DDB_ENTRY_MASK; | 
 | 	else | 
 | 		mask = SKL_DDB_ENTRY_MASK; | 
 | 	entry->start = reg & mask; | 
 | 	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask; | 
 |  | 
 | 	if (entry->end) | 
 | 		entry->end += 1; | 
 | } | 
 |  | 
 | static void | 
 | skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv, | 
 | 			   const enum pipe pipe, | 
 | 			   const enum plane_id plane_id, | 
 | 			   struct skl_ddb_allocation *ddb /* out */) | 
 | { | 
 | 	u32 val, val2 = 0; | 
 | 	int fourcc, pixel_format; | 
 |  | 
 | 	/* Cursor doesn't support NV12/planar, so no extra calculation needed */ | 
 | 	if (plane_id == PLANE_CURSOR) { | 
 | 		val = I915_READ(CUR_BUF_CFG(pipe)); | 
 | 		skl_ddb_entry_init_from_hw(dev_priv, | 
 | 					   &ddb->plane[pipe][plane_id], val); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	val = I915_READ(PLANE_CTL(pipe, plane_id)); | 
 |  | 
 | 	/* No DDB allocated for disabled planes */ | 
 | 	if (!(val & PLANE_CTL_ENABLE)) | 
 | 		return; | 
 |  | 
 | 	pixel_format = val & PLANE_CTL_FORMAT_MASK; | 
 | 	fourcc = skl_format_to_fourcc(pixel_format, | 
 | 				      val & PLANE_CTL_ORDER_RGBX, | 
 | 				      val & PLANE_CTL_ALPHA_MASK); | 
 |  | 
 | 	val = I915_READ(PLANE_BUF_CFG(pipe, plane_id)); | 
 | 	val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id)); | 
 |  | 
 | 	if (fourcc == DRM_FORMAT_NV12) { | 
 | 		skl_ddb_entry_init_from_hw(dev_priv, | 
 | 					   &ddb->plane[pipe][plane_id], val2); | 
 | 		skl_ddb_entry_init_from_hw(dev_priv, | 
 | 					   &ddb->uv_plane[pipe][plane_id], val); | 
 | 	} else { | 
 | 		skl_ddb_entry_init_from_hw(dev_priv, | 
 | 					   &ddb->plane[pipe][plane_id], val); | 
 | 	} | 
 | } | 
 |  | 
 | void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv, | 
 | 			  struct skl_ddb_allocation *ddb /* out */) | 
 | { | 
 | 	struct intel_crtc *crtc; | 
 |  | 
 | 	memset(ddb, 0, sizeof(*ddb)); | 
 |  | 
 | 	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv); | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		enum intel_display_power_domain power_domain; | 
 | 		enum plane_id plane_id; | 
 | 		enum pipe pipe = crtc->pipe; | 
 |  | 
 | 		power_domain = POWER_DOMAIN_PIPE(pipe); | 
 | 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) | 
 | 			continue; | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 			skl_ddb_get_hw_plane_state(dev_priv, pipe, | 
 | 						   plane_id, ddb); | 
 |  | 
 | 		intel_display_power_put(dev_priv, power_domain); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Determines the downscale amount of a plane for the purposes of watermark calculations. | 
 |  * The bspec defines downscale amount as: | 
 |  * | 
 |  * """ | 
 |  * Horizontal down scale amount = maximum[1, Horizontal source size / | 
 |  *                                           Horizontal destination size] | 
 |  * Vertical down scale amount = maximum[1, Vertical source size / | 
 |  *                                         Vertical destination size] | 
 |  * Total down scale amount = Horizontal down scale amount * | 
 |  *                           Vertical down scale amount | 
 |  * """ | 
 |  * | 
 |  * Return value is provided in 16.16 fixed point form to retain fractional part. | 
 |  * Caller should take care of dividing & rounding off the value. | 
 |  */ | 
 | static uint_fixed_16_16_t | 
 | skl_plane_downscale_amount(const struct intel_crtc_state *cstate, | 
 | 			   const struct intel_plane_state *pstate) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(pstate->base.plane); | 
 | 	uint32_t src_w, src_h, dst_w, dst_h; | 
 | 	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio; | 
 | 	uint_fixed_16_16_t downscale_h, downscale_w; | 
 |  | 
 | 	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate))) | 
 | 		return u32_to_fixed16(0); | 
 |  | 
 | 	/* n.b., src is 16.16 fixed point, dst is whole integer */ | 
 | 	if (plane->id == PLANE_CURSOR) { | 
 | 		/* | 
 | 		 * Cursors only support 0/180 degree rotation, | 
 | 		 * hence no need to account for rotation here. | 
 | 		 */ | 
 | 		src_w = pstate->base.src_w >> 16; | 
 | 		src_h = pstate->base.src_h >> 16; | 
 | 		dst_w = pstate->base.crtc_w; | 
 | 		dst_h = pstate->base.crtc_h; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Src coordinates are already rotated by 270 degrees for | 
 | 		 * the 90/270 degree plane rotation cases (to match the | 
 | 		 * GTT mapping), hence no need to account for rotation here. | 
 | 		 */ | 
 | 		src_w = drm_rect_width(&pstate->base.src) >> 16; | 
 | 		src_h = drm_rect_height(&pstate->base.src) >> 16; | 
 | 		dst_w = drm_rect_width(&pstate->base.dst); | 
 | 		dst_h = drm_rect_height(&pstate->base.dst); | 
 | 	} | 
 |  | 
 | 	fp_w_ratio = div_fixed16(src_w, dst_w); | 
 | 	fp_h_ratio = div_fixed16(src_h, dst_h); | 
 | 	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1)); | 
 | 	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1)); | 
 |  | 
 | 	return mul_fixed16(downscale_w, downscale_h); | 
 | } | 
 |  | 
 | static uint_fixed_16_16_t | 
 | skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state) | 
 | { | 
 | 	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1); | 
 |  | 
 | 	if (!crtc_state->base.enable) | 
 | 		return pipe_downscale; | 
 |  | 
 | 	if (crtc_state->pch_pfit.enabled) { | 
 | 		uint32_t src_w, src_h, dst_w, dst_h; | 
 | 		uint32_t pfit_size = crtc_state->pch_pfit.size; | 
 | 		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio; | 
 | 		uint_fixed_16_16_t downscale_h, downscale_w; | 
 |  | 
 | 		src_w = crtc_state->pipe_src_w; | 
 | 		src_h = crtc_state->pipe_src_h; | 
 | 		dst_w = pfit_size >> 16; | 
 | 		dst_h = pfit_size & 0xffff; | 
 |  | 
 | 		if (!dst_w || !dst_h) | 
 | 			return pipe_downscale; | 
 |  | 
 | 		fp_w_ratio = div_fixed16(src_w, dst_w); | 
 | 		fp_h_ratio = div_fixed16(src_h, dst_h); | 
 | 		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1)); | 
 | 		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1)); | 
 |  | 
 | 		pipe_downscale = mul_fixed16(downscale_w, downscale_h); | 
 | 	} | 
 |  | 
 | 	return pipe_downscale; | 
 | } | 
 |  | 
 | int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc, | 
 | 				  struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); | 
 | 	struct drm_crtc_state *crtc_state = &cstate->base; | 
 | 	struct drm_atomic_state *state = crtc_state->state; | 
 | 	struct drm_plane *plane; | 
 | 	const struct drm_plane_state *pstate; | 
 | 	struct intel_plane_state *intel_pstate; | 
 | 	int crtc_clock, dotclk; | 
 | 	uint32_t pipe_max_pixel_rate; | 
 | 	uint_fixed_16_16_t pipe_downscale; | 
 | 	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1); | 
 |  | 
 | 	if (!cstate->base.enable) | 
 | 		return 0; | 
 |  | 
 | 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { | 
 | 		uint_fixed_16_16_t plane_downscale; | 
 | 		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8); | 
 | 		int bpp; | 
 |  | 
 | 		if (!intel_wm_plane_visible(cstate, | 
 | 					    to_intel_plane_state(pstate))) | 
 | 			continue; | 
 |  | 
 | 		if (WARN_ON(!pstate->fb)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		intel_pstate = to_intel_plane_state(pstate); | 
 | 		plane_downscale = skl_plane_downscale_amount(cstate, | 
 | 							     intel_pstate); | 
 | 		bpp = pstate->fb->format->cpp[0] * 8; | 
 | 		if (bpp == 64) | 
 | 			plane_downscale = mul_fixed16(plane_downscale, | 
 | 						      fp_9_div_8); | 
 |  | 
 | 		max_downscale = max_fixed16(plane_downscale, max_downscale); | 
 | 	} | 
 | 	pipe_downscale = skl_pipe_downscale_amount(cstate); | 
 |  | 
 | 	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale); | 
 |  | 
 | 	crtc_clock = crtc_state->adjusted_mode.crtc_clock; | 
 | 	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk; | 
 |  | 
 | 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10) | 
 | 		dotclk *= 2; | 
 |  | 
 | 	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale); | 
 |  | 
 | 	if (pipe_max_pixel_rate < crtc_clock) { | 
 | 		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int | 
 | skl_plane_relative_data_rate(const struct intel_crtc_state *cstate, | 
 | 			     const struct drm_plane_state *pstate, | 
 | 			     const int plane) | 
 | { | 
 | 	struct intel_plane *intel_plane = to_intel_plane(pstate->plane); | 
 | 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate); | 
 | 	uint32_t data_rate; | 
 | 	uint32_t width = 0, height = 0; | 
 | 	struct drm_framebuffer *fb; | 
 | 	u32 format; | 
 | 	uint_fixed_16_16_t down_scale_amount; | 
 |  | 
 | 	if (!intel_pstate->base.visible) | 
 | 		return 0; | 
 |  | 
 | 	fb = pstate->fb; | 
 | 	format = fb->format->format; | 
 |  | 
 | 	if (intel_plane->id == PLANE_CURSOR) | 
 | 		return 0; | 
 | 	if (plane == 1 && format != DRM_FORMAT_NV12) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Src coordinates are already rotated by 270 degrees for | 
 | 	 * the 90/270 degree plane rotation cases (to match the | 
 | 	 * GTT mapping), hence no need to account for rotation here. | 
 | 	 */ | 
 | 	width = drm_rect_width(&intel_pstate->base.src) >> 16; | 
 | 	height = drm_rect_height(&intel_pstate->base.src) >> 16; | 
 |  | 
 | 	/* UV plane does 1/2 pixel sub-sampling */ | 
 | 	if (plane == 1 && format == DRM_FORMAT_NV12) { | 
 | 		width /= 2; | 
 | 		height /= 2; | 
 | 	} | 
 |  | 
 | 	data_rate = width * height * fb->format->cpp[plane]; | 
 |  | 
 | 	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate); | 
 |  | 
 | 	return mul_round_up_u32_fixed16(data_rate, down_scale_amount); | 
 | } | 
 |  | 
 | /* | 
 |  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching | 
 |  * a 8192x4096@32bpp framebuffer: | 
 |  *   3 * 4096 * 8192  * 4 < 2^32 | 
 |  */ | 
 | static unsigned int | 
 | skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate, | 
 | 				 unsigned int *plane_data_rate, | 
 | 				 unsigned int *uv_plane_data_rate) | 
 | { | 
 | 	struct drm_crtc_state *cstate = &intel_cstate->base; | 
 | 	struct drm_atomic_state *state = cstate->state; | 
 | 	struct drm_plane *plane; | 
 | 	const struct drm_plane_state *pstate; | 
 | 	unsigned int total_data_rate = 0; | 
 |  | 
 | 	if (WARN_ON(!state)) | 
 | 		return 0; | 
 |  | 
 | 	/* Calculate and cache data rate for each plane */ | 
 | 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) { | 
 | 		enum plane_id plane_id = to_intel_plane(plane)->id; | 
 | 		unsigned int rate; | 
 |  | 
 | 		/* packed/y */ | 
 | 		rate = skl_plane_relative_data_rate(intel_cstate, | 
 | 						    pstate, 0); | 
 | 		plane_data_rate[plane_id] = rate; | 
 |  | 
 | 		total_data_rate += rate; | 
 |  | 
 | 		/* uv-plane */ | 
 | 		rate = skl_plane_relative_data_rate(intel_cstate, | 
 | 						    pstate, 1); | 
 | 		uv_plane_data_rate[plane_id] = rate; | 
 |  | 
 | 		total_data_rate += rate; | 
 | 	} | 
 |  | 
 | 	return total_data_rate; | 
 | } | 
 |  | 
 | static uint16_t | 
 | skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane) | 
 | { | 
 | 	struct drm_framebuffer *fb = pstate->fb; | 
 | 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate); | 
 | 	uint32_t src_w, src_h; | 
 | 	uint32_t min_scanlines = 8; | 
 | 	uint8_t plane_bpp; | 
 |  | 
 | 	if (WARN_ON(!fb)) | 
 | 		return 0; | 
 |  | 
 | 	/* For packed formats, and uv-plane, return 0 */ | 
 | 	if (plane == 1 && fb->format->format != DRM_FORMAT_NV12) | 
 | 		return 0; | 
 |  | 
 | 	/* For Non Y-tile return 8-blocks */ | 
 | 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED && | 
 | 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED && | 
 | 	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS && | 
 | 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS) | 
 | 		return 8; | 
 |  | 
 | 	/* | 
 | 	 * Src coordinates are already rotated by 270 degrees for | 
 | 	 * the 90/270 degree plane rotation cases (to match the | 
 | 	 * GTT mapping), hence no need to account for rotation here. | 
 | 	 */ | 
 | 	src_w = drm_rect_width(&intel_pstate->base.src) >> 16; | 
 | 	src_h = drm_rect_height(&intel_pstate->base.src) >> 16; | 
 |  | 
 | 	/* Halve UV plane width and height for NV12 */ | 
 | 	if (plane == 1) { | 
 | 		src_w /= 2; | 
 | 		src_h /= 2; | 
 | 	} | 
 |  | 
 | 	plane_bpp = fb->format->cpp[plane]; | 
 |  | 
 | 	if (drm_rotation_90_or_270(pstate->rotation)) { | 
 | 		switch (plane_bpp) { | 
 | 		case 1: | 
 | 			min_scanlines = 32; | 
 | 			break; | 
 | 		case 2: | 
 | 			min_scanlines = 16; | 
 | 			break; | 
 | 		case 4: | 
 | 			min_scanlines = 8; | 
 | 			break; | 
 | 		case 8: | 
 | 			min_scanlines = 4; | 
 | 			break; | 
 | 		default: | 
 | 			WARN(1, "Unsupported pixel depth %u for rotation", | 
 | 			     plane_bpp); | 
 | 			min_scanlines = 32; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3; | 
 | } | 
 |  | 
 | static void | 
 | skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active, | 
 | 		 uint16_t *minimum, uint16_t *uv_minimum) | 
 | { | 
 | 	const struct drm_plane_state *pstate; | 
 | 	struct drm_plane *plane; | 
 |  | 
 | 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) { | 
 | 		enum plane_id plane_id = to_intel_plane(plane)->id; | 
 |  | 
 | 		if (plane_id == PLANE_CURSOR) | 
 | 			continue; | 
 |  | 
 | 		if (!pstate->visible) | 
 | 			continue; | 
 |  | 
 | 		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0); | 
 | 		uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1); | 
 | 	} | 
 |  | 
 | 	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active); | 
 | } | 
 |  | 
 | static int | 
 | skl_allocate_pipe_ddb(struct intel_crtc_state *cstate, | 
 | 		      struct skl_ddb_allocation *ddb /* out */) | 
 | { | 
 | 	struct drm_atomic_state *state = cstate->base.state; | 
 | 	struct drm_crtc *crtc = cstate->base.crtc; | 
 | 	struct drm_device *dev = crtc->dev; | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 | 	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb; | 
 | 	uint16_t alloc_size, start; | 
 | 	uint16_t minimum[I915_MAX_PLANES] = {}; | 
 | 	uint16_t uv_minimum[I915_MAX_PLANES] = {}; | 
 | 	unsigned int total_data_rate; | 
 | 	enum plane_id plane_id; | 
 | 	int num_active; | 
 | 	unsigned int plane_data_rate[I915_MAX_PLANES] = {}; | 
 | 	unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {}; | 
 | 	uint16_t total_min_blocks = 0; | 
 |  | 
 | 	/* Clear the partitioning for disabled planes. */ | 
 | 	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe])); | 
 | 	memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe])); | 
 |  | 
 | 	if (WARN_ON(!state)) | 
 | 		return 0; | 
 |  | 
 | 	if (!cstate->base.active) { | 
 | 		alloc->start = alloc->end = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	total_data_rate = skl_get_total_relative_data_rate(cstate, | 
 | 							   plane_data_rate, | 
 | 							   uv_plane_data_rate); | 
 | 	skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb, | 
 | 					   alloc, &num_active); | 
 | 	alloc_size = skl_ddb_entry_size(alloc); | 
 | 	if (alloc_size == 0) | 
 | 		return 0; | 
 |  | 
 | 	skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum); | 
 |  | 
 | 	/* | 
 | 	 * 1. Allocate the mininum required blocks for each active plane | 
 | 	 * and allocate the cursor, it doesn't require extra allocation | 
 | 	 * proportional to the data rate. | 
 | 	 */ | 
 |  | 
 | 	for_each_plane_id_on_crtc(intel_crtc, plane_id) { | 
 | 		total_min_blocks += minimum[plane_id]; | 
 | 		total_min_blocks += uv_minimum[plane_id]; | 
 | 	} | 
 |  | 
 | 	if (total_min_blocks > alloc_size) { | 
 | 		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations"); | 
 | 		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks, | 
 | 							alloc_size); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	alloc_size -= total_min_blocks; | 
 | 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR]; | 
 | 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end; | 
 |  | 
 | 	/* | 
 | 	 * 2. Distribute the remaining space in proportion to the amount of | 
 | 	 * data each plane needs to fetch from memory. | 
 | 	 * | 
 | 	 * FIXME: we may not allocate every single block here. | 
 | 	 */ | 
 | 	if (total_data_rate == 0) | 
 | 		return 0; | 
 |  | 
 | 	start = alloc->start; | 
 | 	for_each_plane_id_on_crtc(intel_crtc, plane_id) { | 
 | 		unsigned int data_rate, uv_data_rate; | 
 | 		uint16_t plane_blocks, uv_plane_blocks; | 
 |  | 
 | 		if (plane_id == PLANE_CURSOR) | 
 | 			continue; | 
 |  | 
 | 		data_rate = plane_data_rate[plane_id]; | 
 |  | 
 | 		/* | 
 | 		 * allocation for (packed formats) or (uv-plane part of planar format): | 
 | 		 * promote the expression to 64 bits to avoid overflowing, the | 
 | 		 * result is < available as data_rate / total_data_rate < 1 | 
 | 		 */ | 
 | 		plane_blocks = minimum[plane_id]; | 
 | 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate, | 
 | 					total_data_rate); | 
 |  | 
 | 		/* Leave disabled planes at (0,0) */ | 
 | 		if (data_rate) { | 
 | 			ddb->plane[pipe][plane_id].start = start; | 
 | 			ddb->plane[pipe][plane_id].end = start + plane_blocks; | 
 | 		} | 
 |  | 
 | 		start += plane_blocks; | 
 |  | 
 | 		/* Allocate DDB for UV plane for planar format/NV12 */ | 
 | 		uv_data_rate = uv_plane_data_rate[plane_id]; | 
 |  | 
 | 		uv_plane_blocks = uv_minimum[plane_id]; | 
 | 		uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate, | 
 | 					   total_data_rate); | 
 |  | 
 | 		if (uv_data_rate) { | 
 | 			ddb->uv_plane[pipe][plane_id].start = start; | 
 | 			ddb->uv_plane[pipe][plane_id].end = | 
 | 				start + uv_plane_blocks; | 
 | 		} | 
 |  | 
 | 		start += uv_plane_blocks; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The max latency should be 257 (max the punit can code is 255 and we add 2us | 
 |  * for the read latency) and cpp should always be <= 8, so that | 
 |  * should allow pixel_rate up to ~2 GHz which seems sufficient since max | 
 |  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. | 
 | */ | 
 | static uint_fixed_16_16_t | 
 | skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate, | 
 | 	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size) | 
 | { | 
 | 	uint32_t wm_intermediate_val; | 
 | 	uint_fixed_16_16_t ret; | 
 |  | 
 | 	if (latency == 0) | 
 | 		return FP_16_16_MAX; | 
 |  | 
 | 	wm_intermediate_val = latency * pixel_rate * cpp; | 
 | 	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 10) | 
 | 		ret = add_fixed16_u32(ret, 1); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate, | 
 | 			uint32_t pipe_htotal, | 
 | 			uint32_t latency, | 
 | 			uint_fixed_16_16_t plane_blocks_per_line) | 
 | { | 
 | 	uint32_t wm_intermediate_val; | 
 | 	uint_fixed_16_16_t ret; | 
 |  | 
 | 	if (latency == 0) | 
 | 		return FP_16_16_MAX; | 
 |  | 
 | 	wm_intermediate_val = latency * pixel_rate; | 
 | 	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, | 
 | 					   pipe_htotal * 1000); | 
 | 	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static uint_fixed_16_16_t | 
 | intel_get_linetime_us(struct intel_crtc_state *cstate) | 
 | { | 
 | 	uint32_t pixel_rate; | 
 | 	uint32_t crtc_htotal; | 
 | 	uint_fixed_16_16_t linetime_us; | 
 |  | 
 | 	if (!cstate->base.active) | 
 | 		return u32_to_fixed16(0); | 
 |  | 
 | 	pixel_rate = cstate->pixel_rate; | 
 |  | 
 | 	if (WARN_ON(pixel_rate == 0)) | 
 | 		return u32_to_fixed16(0); | 
 |  | 
 | 	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal; | 
 | 	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); | 
 |  | 
 | 	return linetime_us; | 
 | } | 
 |  | 
 | static uint32_t | 
 | skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate, | 
 | 			      const struct intel_plane_state *pstate) | 
 | { | 
 | 	uint64_t adjusted_pixel_rate; | 
 | 	uint_fixed_16_16_t downscale_amount; | 
 |  | 
 | 	/* Shouldn't reach here on disabled planes... */ | 
 | 	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate | 
 | 	 * with additional adjustments for plane-specific scaling. | 
 | 	 */ | 
 | 	adjusted_pixel_rate = cstate->pixel_rate; | 
 | 	downscale_amount = skl_plane_downscale_amount(cstate, pstate); | 
 |  | 
 | 	return mul_round_up_u32_fixed16(adjusted_pixel_rate, | 
 | 					    downscale_amount); | 
 | } | 
 |  | 
 | static int | 
 | skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv, | 
 | 			    struct intel_crtc_state *cstate, | 
 | 			    const struct intel_plane_state *intel_pstate, | 
 | 			    struct skl_wm_params *wp, int plane_id) | 
 | { | 
 | 	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane); | 
 | 	const struct drm_plane_state *pstate = &intel_pstate->base; | 
 | 	const struct drm_framebuffer *fb = pstate->fb; | 
 | 	uint32_t interm_pbpl; | 
 | 	struct intel_atomic_state *state = | 
 | 		to_intel_atomic_state(cstate->base.state); | 
 | 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state); | 
 |  | 
 | 	if (!intel_wm_plane_visible(cstate, intel_pstate)) | 
 | 		return 0; | 
 |  | 
 | 	/* only NV12 format has two planes */ | 
 | 	if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) { | 
 | 		DRM_DEBUG_KMS("Non NV12 format have single plane\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED || | 
 | 		      fb->modifier == I915_FORMAT_MOD_Yf_TILED || | 
 | 		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS || | 
 | 		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS; | 
 | 	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED; | 
 | 	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS || | 
 | 			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS; | 
 | 	wp->is_planar = fb->format->format == DRM_FORMAT_NV12; | 
 |  | 
 | 	if (plane->id == PLANE_CURSOR) { | 
 | 		wp->width = intel_pstate->base.crtc_w; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Src coordinates are already rotated by 270 degrees for | 
 | 		 * the 90/270 degree plane rotation cases (to match the | 
 | 		 * GTT mapping), hence no need to account for rotation here. | 
 | 		 */ | 
 | 		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16; | 
 | 	} | 
 |  | 
 | 	if (plane_id == 1 && wp->is_planar) | 
 | 		wp->width /= 2; | 
 |  | 
 | 	wp->cpp = fb->format->cpp[plane_id]; | 
 | 	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, | 
 | 							     intel_pstate); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 11 && | 
 | 	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8) | 
 | 		wp->dbuf_block_size = 256; | 
 | 	else | 
 | 		wp->dbuf_block_size = 512; | 
 |  | 
 | 	if (drm_rotation_90_or_270(pstate->rotation)) { | 
 |  | 
 | 		switch (wp->cpp) { | 
 | 		case 1: | 
 | 			wp->y_min_scanlines = 16; | 
 | 			break; | 
 | 		case 2: | 
 | 			wp->y_min_scanlines = 8; | 
 | 			break; | 
 | 		case 4: | 
 | 			wp->y_min_scanlines = 4; | 
 | 			break; | 
 | 		default: | 
 | 			MISSING_CASE(wp->cpp); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else { | 
 | 		wp->y_min_scanlines = 4; | 
 | 	} | 
 |  | 
 | 	if (apply_memory_bw_wa) | 
 | 		wp->y_min_scanlines *= 2; | 
 |  | 
 | 	wp->plane_bytes_per_line = wp->width * wp->cpp; | 
 | 	if (wp->y_tiled) { | 
 | 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * | 
 | 					   wp->y_min_scanlines, | 
 | 					   wp->dbuf_block_size); | 
 |  | 
 | 		if (INTEL_GEN(dev_priv) >= 10) | 
 | 			interm_pbpl++; | 
 |  | 
 | 		wp->plane_blocks_per_line = div_fixed16(interm_pbpl, | 
 | 							wp->y_min_scanlines); | 
 | 	} else if (wp->x_tiled && IS_GEN9(dev_priv)) { | 
 | 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, | 
 | 					   wp->dbuf_block_size); | 
 | 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); | 
 | 	} else { | 
 | 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, | 
 | 					   wp->dbuf_block_size) + 1; | 
 | 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); | 
 | 	} | 
 |  | 
 | 	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, | 
 | 					     wp->plane_blocks_per_line); | 
 | 	wp->linetime_us = fixed16_to_u32_round_up( | 
 | 					intel_get_linetime_us(cstate)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv, | 
 | 				struct intel_crtc_state *cstate, | 
 | 				const struct intel_plane_state *intel_pstate, | 
 | 				uint16_t ddb_allocation, | 
 | 				int level, | 
 | 				const struct skl_wm_params *wp, | 
 | 				const struct skl_wm_level *result_prev, | 
 | 				struct skl_wm_level *result /* out */) | 
 | { | 
 | 	const struct drm_plane_state *pstate = &intel_pstate->base; | 
 | 	uint32_t latency = dev_priv->wm.skl_latency[level]; | 
 | 	uint_fixed_16_16_t method1, method2; | 
 | 	uint_fixed_16_16_t selected_result; | 
 | 	uint32_t res_blocks, res_lines; | 
 | 	struct intel_atomic_state *state = | 
 | 		to_intel_atomic_state(cstate->base.state); | 
 | 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state); | 
 | 	uint32_t min_disp_buf_needed; | 
 |  | 
 | 	if (latency == 0 || | 
 | 	    !intel_wm_plane_visible(cstate, intel_pstate)) { | 
 | 		result->plane_en = false; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Display WA #1141: kbl,cfl */ | 
 | 	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || | 
 | 	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) && | 
 | 	    dev_priv->ipc_enabled) | 
 | 		latency += 4; | 
 |  | 
 | 	if (apply_memory_bw_wa && wp->x_tiled) | 
 | 		latency += 15; | 
 |  | 
 | 	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate, | 
 | 				 wp->cpp, latency, wp->dbuf_block_size); | 
 | 	method2 = skl_wm_method2(wp->plane_pixel_rate, | 
 | 				 cstate->base.adjusted_mode.crtc_htotal, | 
 | 				 latency, | 
 | 				 wp->plane_blocks_per_line); | 
 |  | 
 | 	if (wp->y_tiled) { | 
 | 		selected_result = max_fixed16(method2, wp->y_tile_minimum); | 
 | 	} else { | 
 | 		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal / | 
 | 		     wp->dbuf_block_size < 1) && | 
 | 		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) | 
 | 			selected_result = method2; | 
 | 		else if (ddb_allocation >= | 
 | 			 fixed16_to_u32_round_up(wp->plane_blocks_per_line)) | 
 | 			selected_result = min_fixed16(method1, method2); | 
 | 		else if (latency >= wp->linetime_us) | 
 | 			selected_result = min_fixed16(method1, method2); | 
 | 		else | 
 | 			selected_result = method1; | 
 | 	} | 
 |  | 
 | 	res_blocks = fixed16_to_u32_round_up(selected_result) + 1; | 
 | 	res_lines = div_round_up_fixed16(selected_result, | 
 | 					 wp->plane_blocks_per_line); | 
 |  | 
 | 	/* Display WA #1125: skl,bxt,kbl,glk */ | 
 | 	if (level == 0 && wp->rc_surface) | 
 | 		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); | 
 |  | 
 | 	/* Display WA #1126: skl,bxt,kbl,glk */ | 
 | 	if (level >= 1 && level <= 7) { | 
 | 		if (wp->y_tiled) { | 
 | 			res_blocks += fixed16_to_u32_round_up( | 
 | 							wp->y_tile_minimum); | 
 | 			res_lines += wp->y_min_scanlines; | 
 | 		} else { | 
 | 			res_blocks++; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure result blocks for higher latency levels are atleast | 
 | 		 * as high as level below the current level. | 
 | 		 * Assumption in DDB algorithm optimization for special cases. | 
 | 		 * Also covers Display WA #1125 for RC. | 
 | 		 */ | 
 | 		if (result_prev->plane_res_b > res_blocks) | 
 | 			res_blocks = result_prev->plane_res_b; | 
 | 	} | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 11) { | 
 | 		if (wp->y_tiled) { | 
 | 			uint32_t extra_lines; | 
 | 			uint_fixed_16_16_t fp_min_disp_buf_needed; | 
 |  | 
 | 			if (res_lines % wp->y_min_scanlines == 0) | 
 | 				extra_lines = wp->y_min_scanlines; | 
 | 			else | 
 | 				extra_lines = wp->y_min_scanlines * 2 - | 
 | 					      res_lines % wp->y_min_scanlines; | 
 |  | 
 | 			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines + | 
 | 						extra_lines, | 
 | 						wp->plane_blocks_per_line); | 
 | 			min_disp_buf_needed = fixed16_to_u32_round_up( | 
 | 						fp_min_disp_buf_needed); | 
 | 		} else { | 
 | 			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10); | 
 | 		} | 
 | 	} else { | 
 | 		min_disp_buf_needed = res_blocks; | 
 | 	} | 
 |  | 
 | 	if ((level > 0 && res_lines > 31) || | 
 | 	    res_blocks >= ddb_allocation || | 
 | 	    min_disp_buf_needed >= ddb_allocation) { | 
 | 		result->plane_en = false; | 
 |  | 
 | 		/* | 
 | 		 * If there are no valid level 0 watermarks, then we can't | 
 | 		 * support this display configuration. | 
 | 		 */ | 
 | 		if (level) { | 
 | 			return 0; | 
 | 		} else { | 
 | 			struct drm_plane *plane = pstate->plane; | 
 |  | 
 | 			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n"); | 
 | 			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n", | 
 | 				      plane->base.id, plane->name, | 
 | 				      res_blocks, ddb_allocation, res_lines); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A) | 
 | 	 * disable wm level 1-7 on NV12 planes | 
 | 	 */ | 
 | 	if (wp->is_planar && level >= 1 && | 
 | 	    (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) || | 
 | 	     IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) { | 
 | 		result->plane_en = false; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* The number of lines are ignored for the level 0 watermark. */ | 
 | 	result->plane_res_b = res_blocks; | 
 | 	result->plane_res_l = res_lines; | 
 | 	result->plane_en = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | skl_compute_wm_levels(const struct drm_i915_private *dev_priv, | 
 | 		      struct skl_ddb_allocation *ddb, | 
 | 		      struct intel_crtc_state *cstate, | 
 | 		      const struct intel_plane_state *intel_pstate, | 
 | 		      const struct skl_wm_params *wm_params, | 
 | 		      struct skl_plane_wm *wm, | 
 | 		      int plane_id) | 
 | { | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); | 
 | 	struct drm_plane *plane = intel_pstate->base.plane; | 
 | 	struct intel_plane *intel_plane = to_intel_plane(plane); | 
 | 	uint16_t ddb_blocks; | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv); | 
 | 	enum plane_id intel_plane_id = intel_plane->id; | 
 | 	int ret; | 
 |  | 
 | 	if (WARN_ON(!intel_pstate->base.fb)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ddb_blocks = plane_id ? | 
 | 		     skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) : | 
 | 		     skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]); | 
 |  | 
 | 	for (level = 0; level <= max_level; level++) { | 
 | 		struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] : | 
 | 							  &wm->wm[level]; | 
 | 		struct skl_wm_level *result_prev; | 
 |  | 
 | 		if (level) | 
 | 			result_prev = plane_id ? &wm->uv_wm[level - 1] : | 
 | 						  &wm->wm[level - 1]; | 
 | 		else | 
 | 			result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0]; | 
 |  | 
 | 		ret = skl_compute_plane_wm(dev_priv, | 
 | 					   cstate, | 
 | 					   intel_pstate, | 
 | 					   ddb_blocks, | 
 | 					   level, | 
 | 					   wm_params, | 
 | 					   result_prev, | 
 | 					   result); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12) | 
 | 		wm->is_planar = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static uint32_t | 
 | skl_compute_linetime_wm(struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct drm_atomic_state *state = cstate->base.state; | 
 | 	struct drm_i915_private *dev_priv = to_i915(state->dev); | 
 | 	uint_fixed_16_16_t linetime_us; | 
 | 	uint32_t linetime_wm; | 
 |  | 
 | 	linetime_us = intel_get_linetime_us(cstate); | 
 |  | 
 | 	if (is_fixed16_zero(linetime_us)) | 
 | 		return 0; | 
 |  | 
 | 	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us)); | 
 |  | 
 | 	/* Display WA #1135: bxt:ALL GLK:ALL */ | 
 | 	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) && | 
 | 	    dev_priv->ipc_enabled) | 
 | 		linetime_wm /= 2; | 
 |  | 
 | 	return linetime_wm; | 
 | } | 
 |  | 
 | static void skl_compute_transition_wm(struct intel_crtc_state *cstate, | 
 | 				      struct skl_wm_params *wp, | 
 | 				      struct skl_wm_level *wm_l0, | 
 | 				      uint16_t ddb_allocation, | 
 | 				      struct skl_wm_level *trans_wm /* out */) | 
 | { | 
 | 	struct drm_device *dev = cstate->base.crtc->dev; | 
 | 	const struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	uint16_t trans_min, trans_y_tile_min; | 
 | 	const uint16_t trans_amount = 10; /* This is configurable amount */ | 
 | 	uint16_t trans_offset_b, res_blocks; | 
 |  | 
 | 	if (!cstate->base.active) | 
 | 		goto exit; | 
 |  | 
 | 	/* Transition WM are not recommended by HW team for GEN9 */ | 
 | 	if (INTEL_GEN(dev_priv) <= 9) | 
 | 		goto exit; | 
 |  | 
 | 	/* Transition WM don't make any sense if ipc is disabled */ | 
 | 	if (!dev_priv->ipc_enabled) | 
 | 		goto exit; | 
 |  | 
 | 	trans_min = 0; | 
 | 	if (INTEL_GEN(dev_priv) >= 10) | 
 | 		trans_min = 4; | 
 |  | 
 | 	trans_offset_b = trans_min + trans_amount; | 
 |  | 
 | 	if (wp->y_tiled) { | 
 | 		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2, | 
 | 							wp->y_tile_minimum); | 
 | 		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) + | 
 | 				trans_offset_b; | 
 | 	} else { | 
 | 		res_blocks = wm_l0->plane_res_b + trans_offset_b; | 
 |  | 
 | 		/* WA BUG:1938466 add one block for non y-tile planes */ | 
 | 		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0)) | 
 | 			res_blocks += 1; | 
 |  | 
 | 	} | 
 |  | 
 | 	res_blocks += 1; | 
 |  | 
 | 	if (res_blocks < ddb_allocation) { | 
 | 		trans_wm->plane_res_b = res_blocks; | 
 | 		trans_wm->plane_en = true; | 
 | 		return; | 
 | 	} | 
 |  | 
 | exit: | 
 | 	trans_wm->plane_en = false; | 
 | } | 
 |  | 
 | static int skl_build_pipe_wm(struct intel_crtc_state *cstate, | 
 | 			     struct skl_ddb_allocation *ddb, | 
 | 			     struct skl_pipe_wm *pipe_wm) | 
 | { | 
 | 	struct drm_device *dev = cstate->base.crtc->dev; | 
 | 	struct drm_crtc_state *crtc_state = &cstate->base; | 
 | 	const struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_plane *plane; | 
 | 	const struct drm_plane_state *pstate; | 
 | 	struct skl_plane_wm *wm; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We'll only calculate watermarks for planes that are actually | 
 | 	 * enabled, so make sure all other planes are set as disabled. | 
 | 	 */ | 
 | 	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes)); | 
 |  | 
 | 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { | 
 | 		const struct intel_plane_state *intel_pstate = | 
 | 						to_intel_plane_state(pstate); | 
 | 		enum plane_id plane_id = to_intel_plane(plane)->id; | 
 | 		struct skl_wm_params wm_params; | 
 | 		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe; | 
 | 		uint16_t ddb_blocks; | 
 |  | 
 | 		wm = &pipe_wm->planes[plane_id]; | 
 | 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]); | 
 |  | 
 | 		ret = skl_compute_plane_wm_params(dev_priv, cstate, | 
 | 						  intel_pstate, &wm_params, 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = skl_compute_wm_levels(dev_priv, ddb, cstate, | 
 | 					    intel_pstate, &wm_params, wm, 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0], | 
 | 					  ddb_blocks, &wm->trans_wm); | 
 |  | 
 | 		/* uv plane watermarks must also be validated for NV12/Planar */ | 
 | 		if (wm_params.is_planar) { | 
 | 			memset(&wm_params, 0, sizeof(struct skl_wm_params)); | 
 | 			wm->is_planar = true; | 
 |  | 
 | 			ret = skl_compute_plane_wm_params(dev_priv, cstate, | 
 | 							  intel_pstate, | 
 | 							  &wm_params, 1); | 
 | 			if (ret) | 
 | 				return ret; | 
 |  | 
 | 			ret = skl_compute_wm_levels(dev_priv, ddb, cstate, | 
 | 						    intel_pstate, &wm_params, | 
 | 						    wm, 1); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pipe_wm->linetime = skl_compute_linetime_wm(cstate); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, | 
 | 				i915_reg_t reg, | 
 | 				const struct skl_ddb_entry *entry) | 
 | { | 
 | 	if (entry->end) | 
 | 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start); | 
 | 	else | 
 | 		I915_WRITE(reg, 0); | 
 | } | 
 |  | 
 | static void skl_write_wm_level(struct drm_i915_private *dev_priv, | 
 | 			       i915_reg_t reg, | 
 | 			       const struct skl_wm_level *level) | 
 | { | 
 | 	uint32_t val = 0; | 
 |  | 
 | 	if (level->plane_en) { | 
 | 		val |= PLANE_WM_EN; | 
 | 		val |= level->plane_res_b; | 
 | 		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT; | 
 | 	} | 
 |  | 
 | 	I915_WRITE(reg, val); | 
 | } | 
 |  | 
 | static void skl_write_plane_wm(struct intel_crtc *intel_crtc, | 
 | 			       const struct skl_plane_wm *wm, | 
 | 			       const struct skl_ddb_allocation *ddb, | 
 | 			       enum plane_id plane_id) | 
 | { | 
 | 	struct drm_crtc *crtc = &intel_crtc->base; | 
 | 	struct drm_device *dev = crtc->dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv); | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 |  | 
 | 	for (level = 0; level <= max_level; level++) { | 
 | 		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level), | 
 | 				   &wm->wm[level]); | 
 | 	} | 
 | 	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id), | 
 | 			   &wm->trans_wm); | 
 |  | 
 | 	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), | 
 | 			    &ddb->plane[pipe][plane_id]); | 
 | 	if (INTEL_GEN(dev_priv) >= 11) | 
 | 		return skl_ddb_entry_write(dev_priv, | 
 | 					   PLANE_BUF_CFG(pipe, plane_id), | 
 | 					   &ddb->plane[pipe][plane_id]); | 
 | 	if (wm->is_planar) { | 
 | 		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), | 
 | 				    &ddb->uv_plane[pipe][plane_id]); | 
 | 		skl_ddb_entry_write(dev_priv, | 
 | 				    PLANE_NV12_BUF_CFG(pipe, plane_id), | 
 | 				    &ddb->plane[pipe][plane_id]); | 
 | 	} else { | 
 | 		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), | 
 | 				    &ddb->plane[pipe][plane_id]); | 
 | 		I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0); | 
 | 	} | 
 | } | 
 |  | 
 | static void skl_write_cursor_wm(struct intel_crtc *intel_crtc, | 
 | 				const struct skl_plane_wm *wm, | 
 | 				const struct skl_ddb_allocation *ddb) | 
 | { | 
 | 	struct drm_crtc *crtc = &intel_crtc->base; | 
 | 	struct drm_device *dev = crtc->dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int level, max_level = ilk_wm_max_level(dev_priv); | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 |  | 
 | 	for (level = 0; level <= max_level; level++) { | 
 | 		skl_write_wm_level(dev_priv, CUR_WM(pipe, level), | 
 | 				   &wm->wm[level]); | 
 | 	} | 
 | 	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm); | 
 |  | 
 | 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), | 
 | 			    &ddb->plane[pipe][PLANE_CURSOR]); | 
 | } | 
 |  | 
 | bool skl_wm_level_equals(const struct skl_wm_level *l1, | 
 | 			 const struct skl_wm_level *l2) | 
 | { | 
 | 	if (l1->plane_en != l2->plane_en) | 
 | 		return false; | 
 |  | 
 | 	/* If both planes aren't enabled, the rest shouldn't matter */ | 
 | 	if (!l1->plane_en) | 
 | 		return true; | 
 |  | 
 | 	return (l1->plane_res_l == l2->plane_res_l && | 
 | 		l1->plane_res_b == l2->plane_res_b); | 
 | } | 
 |  | 
 | static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, | 
 | 					   const struct skl_ddb_entry *b) | 
 | { | 
 | 	return a->start < b->end && b->start < a->end; | 
 | } | 
 |  | 
 | bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv, | 
 | 				 const struct skl_ddb_entry **entries, | 
 | 				 const struct skl_ddb_entry *ddb, | 
 | 				 int ignore) | 
 | { | 
 | 	enum pipe pipe; | 
 |  | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		if (pipe != ignore && entries[pipe] && | 
 | 		    skl_ddb_entries_overlap(ddb, entries[pipe])) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int skl_update_pipe_wm(struct drm_crtc_state *cstate, | 
 | 			      const struct skl_pipe_wm *old_pipe_wm, | 
 | 			      struct skl_pipe_wm *pipe_wm, /* out */ | 
 | 			      struct skl_ddb_allocation *ddb, /* out */ | 
 | 			      bool *changed /* out */) | 
 | { | 
 | 	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate); | 
 | 	int ret; | 
 |  | 
 | 	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm))) | 
 | 		*changed = false; | 
 | 	else | 
 | 		*changed = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static uint32_t | 
 | pipes_modified(struct drm_atomic_state *state) | 
 | { | 
 | 	struct drm_crtc *crtc; | 
 | 	struct drm_crtc_state *cstate; | 
 | 	uint32_t i, ret = 0; | 
 |  | 
 | 	for_each_new_crtc_in_state(state, crtc, cstate, i) | 
 | 		ret |= drm_crtc_mask(crtc); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | skl_ddb_add_affected_planes(struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct drm_atomic_state *state = cstate->base.state; | 
 | 	struct drm_device *dev = state->dev; | 
 | 	struct drm_crtc *crtc = cstate->base.crtc; | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state); | 
 | 	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; | 
 | 	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb; | 
 | 	struct drm_plane_state *plane_state; | 
 | 	struct drm_plane *plane; | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 |  | 
 | 	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) { | 
 | 		enum plane_id plane_id = to_intel_plane(plane)->id; | 
 |  | 
 | 		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id], | 
 | 					&new_ddb->plane[pipe][plane_id]) && | 
 | 		    skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id], | 
 | 					&new_ddb->uv_plane[pipe][plane_id])) | 
 | 			continue; | 
 |  | 
 | 		plane_state = drm_atomic_get_plane_state(state, plane); | 
 | 		if (IS_ERR(plane_state)) | 
 | 			return PTR_ERR(plane_state); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | skl_compute_ddb(struct drm_atomic_state *state) | 
 | { | 
 | 	const struct drm_i915_private *dev_priv = to_i915(state->dev); | 
 | 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state); | 
 | 	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb; | 
 | 	struct intel_crtc *crtc; | 
 | 	struct intel_crtc_state *cstate; | 
 | 	int ret, i; | 
 |  | 
 | 	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb)); | 
 |  | 
 | 	for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) { | 
 | 		ret = skl_allocate_pipe_ddb(cstate, ddb); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = skl_ddb_add_affected_planes(cstate); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | skl_copy_ddb_for_pipe(struct skl_ddb_values *dst, | 
 | 		      struct skl_ddb_values *src, | 
 | 		      enum pipe pipe) | 
 | { | 
 | 	memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe], | 
 | 	       sizeof(dst->ddb.uv_plane[pipe])); | 
 | 	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe], | 
 | 	       sizeof(dst->ddb.plane[pipe])); | 
 | } | 
 |  | 
 | static void | 
 | skl_print_wm_changes(const struct drm_atomic_state *state) | 
 | { | 
 | 	const struct drm_device *dev = state->dev; | 
 | 	const struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	const struct intel_atomic_state *intel_state = | 
 | 		to_intel_atomic_state(state); | 
 | 	const struct drm_crtc *crtc; | 
 | 	const struct drm_crtc_state *cstate; | 
 | 	const struct intel_plane *intel_plane; | 
 | 	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb; | 
 | 	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; | 
 | 	int i; | 
 |  | 
 | 	for_each_new_crtc_in_state(state, crtc, cstate, i) { | 
 | 		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
 | 		enum pipe pipe = intel_crtc->pipe; | 
 |  | 
 | 		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { | 
 | 			enum plane_id plane_id = intel_plane->id; | 
 | 			const struct skl_ddb_entry *old, *new; | 
 |  | 
 | 			old = &old_ddb->plane[pipe][plane_id]; | 
 | 			new = &new_ddb->plane[pipe][plane_id]; | 
 |  | 
 | 			if (skl_ddb_entry_equal(old, new)) | 
 | 				continue; | 
 |  | 
 | 			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n", | 
 | 					 intel_plane->base.base.id, | 
 | 					 intel_plane->base.name, | 
 | 					 old->start, old->end, | 
 | 					 new->start, new->end); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed) | 
 | { | 
 | 	struct drm_device *dev = state->dev; | 
 | 	const struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	const struct drm_crtc *crtc; | 
 | 	const struct drm_crtc_state *cstate; | 
 | 	struct intel_crtc *intel_crtc; | 
 | 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state); | 
 | 	uint32_t realloc_pipes = pipes_modified(state); | 
 | 	int ret, i; | 
 |  | 
 | 	/* | 
 | 	 * When we distrust bios wm we always need to recompute to set the | 
 | 	 * expected DDB allocations for each CRTC. | 
 | 	 */ | 
 | 	if (dev_priv->wm.distrust_bios_wm) | 
 | 		(*changed) = true; | 
 |  | 
 | 	/* | 
 | 	 * If this transaction isn't actually touching any CRTC's, don't | 
 | 	 * bother with watermark calculation.  Note that if we pass this | 
 | 	 * test, we're guaranteed to hold at least one CRTC state mutex, | 
 | 	 * which means we can safely use values like dev_priv->active_crtcs | 
 | 	 * since any racing commits that want to update them would need to | 
 | 	 * hold _all_ CRTC state mutexes. | 
 | 	 */ | 
 | 	for_each_new_crtc_in_state(state, crtc, cstate, i) | 
 | 		(*changed) = true; | 
 |  | 
 | 	if (!*changed) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If this is our first atomic update following hardware readout, | 
 | 	 * we can't trust the DDB that the BIOS programmed for us.  Let's | 
 | 	 * pretend that all pipes switched active status so that we'll | 
 | 	 * ensure a full DDB recompute. | 
 | 	 */ | 
 | 	if (dev_priv->wm.distrust_bios_wm) { | 
 | 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex, | 
 | 				       state->acquire_ctx); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		intel_state->active_pipe_changes = ~0; | 
 |  | 
 | 		/* | 
 | 		 * We usually only initialize intel_state->active_crtcs if we | 
 | 		 * we're doing a modeset; make sure this field is always | 
 | 		 * initialized during the sanitization process that happens | 
 | 		 * on the first commit too. | 
 | 		 */ | 
 | 		if (!intel_state->modeset) | 
 | 			intel_state->active_crtcs = dev_priv->active_crtcs; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the modeset changes which CRTC's are active, we need to | 
 | 	 * recompute the DDB allocation for *all* active pipes, even | 
 | 	 * those that weren't otherwise being modified in any way by this | 
 | 	 * atomic commit.  Due to the shrinking of the per-pipe allocations | 
 | 	 * when new active CRTC's are added, it's possible for a pipe that | 
 | 	 * we were already using and aren't changing at all here to suddenly | 
 | 	 * become invalid if its DDB needs exceeds its new allocation. | 
 | 	 * | 
 | 	 * Note that if we wind up doing a full DDB recompute, we can't let | 
 | 	 * any other display updates race with this transaction, so we need | 
 | 	 * to grab the lock on *all* CRTC's. | 
 | 	 */ | 
 | 	if (intel_state->active_pipe_changes) { | 
 | 		realloc_pipes = ~0; | 
 | 		intel_state->wm_results.dirty_pipes = ~0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're not recomputing for the pipes not included in the commit, so | 
 | 	 * make sure we start with the current state. | 
 | 	 */ | 
 | 	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) { | 
 | 		struct intel_crtc_state *cstate; | 
 |  | 
 | 		cstate = intel_atomic_get_crtc_state(state, intel_crtc); | 
 | 		if (IS_ERR(cstate)) | 
 | 			return PTR_ERR(cstate); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | skl_compute_wm(struct drm_atomic_state *state) | 
 | { | 
 | 	struct drm_crtc *crtc; | 
 | 	struct drm_crtc_state *cstate; | 
 | 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state); | 
 | 	struct skl_ddb_values *results = &intel_state->wm_results; | 
 | 	struct skl_pipe_wm *pipe_wm; | 
 | 	bool changed = false; | 
 | 	int ret, i; | 
 |  | 
 | 	/* Clear all dirty flags */ | 
 | 	results->dirty_pipes = 0; | 
 |  | 
 | 	ret = skl_ddb_add_affected_pipes(state, &changed); | 
 | 	if (ret || !changed) | 
 | 		return ret; | 
 |  | 
 | 	ret = skl_compute_ddb(state); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Calculate WM's for all pipes that are part of this transaction. | 
 | 	 * Note that the DDB allocation above may have added more CRTC's that | 
 | 	 * weren't otherwise being modified (and set bits in dirty_pipes) if | 
 | 	 * pipe allocations had to change. | 
 | 	 * | 
 | 	 * FIXME:  Now that we're doing this in the atomic check phase, we | 
 | 	 * should allow skl_update_pipe_wm() to return failure in cases where | 
 | 	 * no suitable watermark values can be found. | 
 | 	 */ | 
 | 	for_each_new_crtc_in_state(state, crtc, cstate, i) { | 
 | 		struct intel_crtc_state *intel_cstate = | 
 | 			to_intel_crtc_state(cstate); | 
 | 		const struct skl_pipe_wm *old_pipe_wm = | 
 | 			&to_intel_crtc_state(crtc->state)->wm.skl.optimal; | 
 |  | 
 | 		pipe_wm = &intel_cstate->wm.skl.optimal; | 
 | 		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, | 
 | 					 &results->ddb, &changed); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (changed) | 
 | 			results->dirty_pipes |= drm_crtc_mask(crtc); | 
 |  | 
 | 		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0) | 
 | 			/* This pipe's WM's did not change */ | 
 | 			continue; | 
 |  | 
 | 		intel_cstate->update_wm_pre = true; | 
 | 	} | 
 |  | 
 | 	skl_print_wm_changes(state); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state, | 
 | 				      struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc); | 
 | 	struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
 | 	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal; | 
 | 	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb; | 
 | 	enum pipe pipe = crtc->pipe; | 
 | 	enum plane_id plane_id; | 
 |  | 
 | 	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base))) | 
 | 		return; | 
 |  | 
 | 	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime); | 
 |  | 
 | 	for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 		if (plane_id != PLANE_CURSOR) | 
 | 			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id], | 
 | 					   ddb, plane_id); | 
 | 		else | 
 | 			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id], | 
 | 					    ddb); | 
 | 	} | 
 | } | 
 |  | 
 | static void skl_initial_wm(struct intel_atomic_state *state, | 
 | 			   struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); | 
 | 	struct drm_device *dev = intel_crtc->base.dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct skl_ddb_values *results = &state->wm_results; | 
 | 	struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw; | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 |  | 
 | 	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 |  | 
 | 	if (cstate->base.active_changed) | 
 | 		skl_atomic_update_crtc_wm(state, cstate); | 
 |  | 
 | 	skl_copy_ddb_for_pipe(hw_vals, results, pipe); | 
 |  | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | static void ilk_compute_wm_config(struct drm_device *dev, | 
 | 				  struct intel_wm_config *config) | 
 | { | 
 | 	struct intel_crtc *crtc; | 
 |  | 
 | 	/* Compute the currently _active_ config */ | 
 | 	for_each_intel_crtc(dev, crtc) { | 
 | 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; | 
 |  | 
 | 		if (!wm->pipe_enabled) | 
 | 			continue; | 
 |  | 
 | 		config->sprites_enabled |= wm->sprites_enabled; | 
 | 		config->sprites_scaled |= wm->sprites_scaled; | 
 | 		config->num_pipes_active++; | 
 | 	} | 
 | } | 
 |  | 
 | static void ilk_program_watermarks(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_device *dev = &dev_priv->drm; | 
 | 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; | 
 | 	struct ilk_wm_maximums max; | 
 | 	struct intel_wm_config config = {}; | 
 | 	struct ilk_wm_values results = {}; | 
 | 	enum intel_ddb_partitioning partitioning; | 
 |  | 
 | 	ilk_compute_wm_config(dev, &config); | 
 |  | 
 | 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max); | 
 | 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2); | 
 |  | 
 | 	/* 5/6 split only in single pipe config on IVB+ */ | 
 | 	if (INTEL_GEN(dev_priv) >= 7 && | 
 | 	    config.num_pipes_active == 1 && config.sprites_enabled) { | 
 | 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max); | 
 | 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6); | 
 |  | 
 | 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6); | 
 | 	} else { | 
 | 		best_lp_wm = &lp_wm_1_2; | 
 | 	} | 
 |  | 
 | 	partitioning = (best_lp_wm == &lp_wm_1_2) ? | 
 | 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; | 
 |  | 
 | 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results); | 
 |  | 
 | 	ilk_write_wm_values(dev_priv, &results); | 
 | } | 
 |  | 
 | static void ilk_initial_watermarks(struct intel_atomic_state *state, | 
 | 				   struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev); | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate; | 
 | 	ilk_program_watermarks(dev_priv); | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | static void ilk_optimize_watermarks(struct intel_atomic_state *state, | 
 | 				    struct intel_crtc_state *cstate) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev); | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 | 	if (cstate->wm.need_postvbl_update) { | 
 | 		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal; | 
 | 		ilk_program_watermarks(dev_priv); | 
 | 	} | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | static inline void skl_wm_level_from_reg_val(uint32_t val, | 
 | 					     struct skl_wm_level *level) | 
 | { | 
 | 	level->plane_en = val & PLANE_WM_EN; | 
 | 	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK; | 
 | 	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) & | 
 | 		PLANE_WM_LINES_MASK; | 
 | } | 
 |  | 
 | void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc, | 
 | 			      struct skl_pipe_wm *out) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc->dev); | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 | 	int level, max_level; | 
 | 	enum plane_id plane_id; | 
 | 	uint32_t val; | 
 |  | 
 | 	max_level = ilk_wm_max_level(dev_priv); | 
 |  | 
 | 	for_each_plane_id_on_crtc(intel_crtc, plane_id) { | 
 | 		struct skl_plane_wm *wm = &out->planes[plane_id]; | 
 |  | 
 | 		for (level = 0; level <= max_level; level++) { | 
 | 			if (plane_id != PLANE_CURSOR) | 
 | 				val = I915_READ(PLANE_WM(pipe, plane_id, level)); | 
 | 			else | 
 | 				val = I915_READ(CUR_WM(pipe, level)); | 
 |  | 
 | 			skl_wm_level_from_reg_val(val, &wm->wm[level]); | 
 | 		} | 
 |  | 
 | 		if (plane_id != PLANE_CURSOR) | 
 | 			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id)); | 
 | 		else | 
 | 			val = I915_READ(CUR_WM_TRANS(pipe)); | 
 |  | 
 | 		skl_wm_level_from_reg_val(val, &wm->trans_wm); | 
 | 	} | 
 |  | 
 | 	if (!intel_crtc->active) | 
 | 		return; | 
 |  | 
 | 	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe)); | 
 | } | 
 |  | 
 | void skl_wm_get_hw_state(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw; | 
 | 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb; | 
 | 	struct drm_crtc *crtc; | 
 | 	struct intel_crtc *intel_crtc; | 
 | 	struct intel_crtc_state *cstate; | 
 |  | 
 | 	skl_ddb_get_hw_state(dev_priv, ddb); | 
 | 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { | 
 | 		intel_crtc = to_intel_crtc(crtc); | 
 | 		cstate = to_intel_crtc_state(crtc->state); | 
 |  | 
 | 		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal); | 
 |  | 
 | 		if (intel_crtc->active) | 
 | 			hw->dirty_pipes |= drm_crtc_mask(crtc); | 
 | 	} | 
 |  | 
 | 	if (dev_priv->active_crtcs) { | 
 | 		/* Fully recompute DDB on first atomic commit */ | 
 | 		dev_priv->wm.distrust_bios_wm = true; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Easy/common case; just sanitize DDB now if everything off | 
 | 		 * Keep dbuf slice info intact | 
 | 		 */ | 
 | 		memset(ddb->plane, 0, sizeof(ddb->plane)); | 
 | 		memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane)); | 
 | 	} | 
 | } | 
 |  | 
 | static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc) | 
 | { | 
 | 	struct drm_device *dev = crtc->dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct ilk_wm_values *hw = &dev_priv->wm.hw; | 
 | 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
 | 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state); | 
 | 	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal; | 
 | 	enum pipe pipe = intel_crtc->pipe; | 
 | 	static const i915_reg_t wm0_pipe_reg[] = { | 
 | 		[PIPE_A] = WM0_PIPEA_ILK, | 
 | 		[PIPE_B] = WM0_PIPEB_ILK, | 
 | 		[PIPE_C] = WM0_PIPEC_IVB, | 
 | 	}; | 
 |  | 
 | 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]); | 
 | 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe)); | 
 |  | 
 | 	memset(active, 0, sizeof(*active)); | 
 |  | 
 | 	active->pipe_enabled = intel_crtc->active; | 
 |  | 
 | 	if (active->pipe_enabled) { | 
 | 		u32 tmp = hw->wm_pipe[pipe]; | 
 |  | 
 | 		/* | 
 | 		 * For active pipes LP0 watermark is marked as | 
 | 		 * enabled, and LP1+ watermaks as disabled since | 
 | 		 * we can't really reverse compute them in case | 
 | 		 * multiple pipes are active. | 
 | 		 */ | 
 | 		active->wm[0].enable = true; | 
 | 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT; | 
 | 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT; | 
 | 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK; | 
 | 		active->linetime = hw->wm_linetime[pipe]; | 
 | 	} else { | 
 | 		int level, max_level = ilk_wm_max_level(dev_priv); | 
 |  | 
 | 		/* | 
 | 		 * For inactive pipes, all watermark levels | 
 | 		 * should be marked as enabled but zeroed, | 
 | 		 * which is what we'd compute them to. | 
 | 		 */ | 
 | 		for (level = 0; level <= max_level; level++) | 
 | 			active->wm[level].enable = true; | 
 | 	} | 
 |  | 
 | 	intel_crtc->wm.active.ilk = *active; | 
 | } | 
 |  | 
 | #define _FW_WM(value, plane) \ | 
 | 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) | 
 | #define _FW_WM_VLV(value, plane) \ | 
 | 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) | 
 |  | 
 | static void g4x_read_wm_values(struct drm_i915_private *dev_priv, | 
 | 			       struct g4x_wm_values *wm) | 
 | { | 
 | 	uint32_t tmp; | 
 |  | 
 | 	tmp = I915_READ(DSPFW1); | 
 | 	wm->sr.plane = _FW_WM(tmp, SR); | 
 | 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); | 
 | 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); | 
 |  | 
 | 	tmp = I915_READ(DSPFW2); | 
 | 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN; | 
 | 	wm->sr.fbc = _FW_WM(tmp, FBC_SR); | 
 | 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); | 
 | 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); | 
 |  | 
 | 	tmp = I915_READ(DSPFW3); | 
 | 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; | 
 | 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); | 
 | 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); | 
 | 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR); | 
 | } | 
 |  | 
 | static void vlv_read_wm_values(struct drm_i915_private *dev_priv, | 
 | 			       struct vlv_wm_values *wm) | 
 | { | 
 | 	enum pipe pipe; | 
 | 	uint32_t tmp; | 
 |  | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		tmp = I915_READ(VLV_DDL(pipe)); | 
 |  | 
 | 		wm->ddl[pipe].plane[PLANE_PRIMARY] = | 
 | 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); | 
 | 		wm->ddl[pipe].plane[PLANE_CURSOR] = | 
 | 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); | 
 | 		wm->ddl[pipe].plane[PLANE_SPRITE0] = | 
 | 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); | 
 | 		wm->ddl[pipe].plane[PLANE_SPRITE1] = | 
 | 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); | 
 | 	} | 
 |  | 
 | 	tmp = I915_READ(DSPFW1); | 
 | 	wm->sr.plane = _FW_WM(tmp, SR); | 
 | 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); | 
 | 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); | 
 |  | 
 | 	tmp = I915_READ(DSPFW2); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); | 
 | 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); | 
 |  | 
 | 	tmp = I915_READ(DSPFW3); | 
 | 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); | 
 |  | 
 | 	if (IS_CHERRYVIEW(dev_priv)) { | 
 | 		tmp = I915_READ(DSPFW7_CHV); | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); | 
 |  | 
 | 		tmp = I915_READ(DSPFW8_CHV); | 
 | 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); | 
 | 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); | 
 |  | 
 | 		tmp = I915_READ(DSPFW9_CHV); | 
 | 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); | 
 | 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); | 
 |  | 
 | 		tmp = I915_READ(DSPHOWM); | 
 | 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; | 
 | 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; | 
 | 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; | 
 | 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; | 
 | 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; | 
 | 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; | 
 | 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; | 
 | 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; | 
 | 	} else { | 
 | 		tmp = I915_READ(DSPFW7); | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); | 
 |  | 
 | 		tmp = I915_READ(DSPHOWM); | 
 | 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; | 
 | 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; | 
 | 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; | 
 | 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; | 
 | 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; | 
 | 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; | 
 | 	} | 
 | } | 
 |  | 
 | #undef _FW_WM | 
 | #undef _FW_WM_VLV | 
 |  | 
 | void g4x_wm_get_hw_state(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct g4x_wm_values *wm = &dev_priv->wm.g4x; | 
 | 	struct intel_crtc *crtc; | 
 |  | 
 | 	g4x_read_wm_values(dev_priv, wm); | 
 |  | 
 | 	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; | 
 |  | 
 | 	for_each_intel_crtc(dev, crtc) { | 
 | 		struct intel_crtc_state *crtc_state = | 
 | 			to_intel_crtc_state(crtc->base.state); | 
 | 		struct g4x_wm_state *active = &crtc->wm.active.g4x; | 
 | 		struct g4x_pipe_wm *raw; | 
 | 		enum pipe pipe = crtc->pipe; | 
 | 		enum plane_id plane_id; | 
 | 		int level, max_level; | 
 |  | 
 | 		active->cxsr = wm->cxsr; | 
 | 		active->hpll_en = wm->hpll_en; | 
 | 		active->fbc_en = wm->fbc_en; | 
 |  | 
 | 		active->sr = wm->sr; | 
 | 		active->hpll = wm->hpll; | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 			active->wm.plane[plane_id] = | 
 | 				wm->pipe[pipe].plane[plane_id]; | 
 | 		} | 
 |  | 
 | 		if (wm->cxsr && wm->hpll_en) | 
 | 			max_level = G4X_WM_LEVEL_HPLL; | 
 | 		else if (wm->cxsr) | 
 | 			max_level = G4X_WM_LEVEL_SR; | 
 | 		else | 
 | 			max_level = G4X_WM_LEVEL_NORMAL; | 
 |  | 
 | 		level = G4X_WM_LEVEL_NORMAL; | 
 | 		raw = &crtc_state->wm.g4x.raw[level]; | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 			raw->plane[plane_id] = active->wm.plane[plane_id]; | 
 |  | 
 | 		if (++level > max_level) | 
 | 			goto out; | 
 |  | 
 | 		raw = &crtc_state->wm.g4x.raw[level]; | 
 | 		raw->plane[PLANE_PRIMARY] = active->sr.plane; | 
 | 		raw->plane[PLANE_CURSOR] = active->sr.cursor; | 
 | 		raw->plane[PLANE_SPRITE0] = 0; | 
 | 		raw->fbc = active->sr.fbc; | 
 |  | 
 | 		if (++level > max_level) | 
 | 			goto out; | 
 |  | 
 | 		raw = &crtc_state->wm.g4x.raw[level]; | 
 | 		raw->plane[PLANE_PRIMARY] = active->hpll.plane; | 
 | 		raw->plane[PLANE_CURSOR] = active->hpll.cursor; | 
 | 		raw->plane[PLANE_SPRITE0] = 0; | 
 | 		raw->fbc = active->hpll.fbc; | 
 |  | 
 | 	out: | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 			g4x_raw_plane_wm_set(crtc_state, level, | 
 | 					     plane_id, USHRT_MAX); | 
 | 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); | 
 |  | 
 | 		crtc_state->wm.g4x.optimal = *active; | 
 | 		crtc_state->wm.g4x.intermediate = *active; | 
 |  | 
 | 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", | 
 | 			      pipe_name(pipe), | 
 | 			      wm->pipe[pipe].plane[PLANE_PRIMARY], | 
 | 			      wm->pipe[pipe].plane[PLANE_CURSOR], | 
 | 			      wm->pipe[pipe].plane[PLANE_SPRITE0]); | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", | 
 | 		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc); | 
 | 	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", | 
 | 		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); | 
 | 	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n", | 
 | 		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en)); | 
 | } | 
 |  | 
 | void g4x_wm_sanitize(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_plane *plane; | 
 | 	struct intel_crtc *crtc; | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 |  | 
 | 	for_each_intel_plane(&dev_priv->drm, plane) { | 
 | 		struct intel_crtc *crtc = | 
 | 			intel_get_crtc_for_pipe(dev_priv, plane->pipe); | 
 | 		struct intel_crtc_state *crtc_state = | 
 | 			to_intel_crtc_state(crtc->base.state); | 
 | 		struct intel_plane_state *plane_state = | 
 | 			to_intel_plane_state(plane->base.state); | 
 | 		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; | 
 | 		enum plane_id plane_id = plane->id; | 
 | 		int level; | 
 |  | 
 | 		if (plane_state->base.visible) | 
 | 			continue; | 
 |  | 
 | 		for (level = 0; level < 3; level++) { | 
 | 			struct g4x_pipe_wm *raw = | 
 | 				&crtc_state->wm.g4x.raw[level]; | 
 |  | 
 | 			raw->plane[plane_id] = 0; | 
 | 			wm_state->wm.plane[plane_id] = 0; | 
 | 		} | 
 |  | 
 | 		if (plane_id == PLANE_PRIMARY) { | 
 | 			for (level = 0; level < 3; level++) { | 
 | 				struct g4x_pipe_wm *raw = | 
 | 					&crtc_state->wm.g4x.raw[level]; | 
 | 				raw->fbc = 0; | 
 | 			} | 
 |  | 
 | 			wm_state->sr.fbc = 0; | 
 | 			wm_state->hpll.fbc = 0; | 
 | 			wm_state->fbc_en = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		struct intel_crtc_state *crtc_state = | 
 | 			to_intel_crtc_state(crtc->base.state); | 
 |  | 
 | 		crtc_state->wm.g4x.intermediate = | 
 | 			crtc_state->wm.g4x.optimal; | 
 | 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; | 
 | 	} | 
 |  | 
 | 	g4x_program_watermarks(dev_priv); | 
 |  | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | void vlv_wm_get_hw_state(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct vlv_wm_values *wm = &dev_priv->wm.vlv; | 
 | 	struct intel_crtc *crtc; | 
 | 	u32 val; | 
 |  | 
 | 	vlv_read_wm_values(dev_priv, wm); | 
 |  | 
 | 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; | 
 | 	wm->level = VLV_WM_LEVEL_PM2; | 
 |  | 
 | 	if (IS_CHERRYVIEW(dev_priv)) { | 
 | 		mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); | 
 | 		if (val & DSP_MAXFIFO_PM5_ENABLE) | 
 | 			wm->level = VLV_WM_LEVEL_PM5; | 
 |  | 
 | 		/* | 
 | 		 * If DDR DVFS is disabled in the BIOS, Punit | 
 | 		 * will never ack the request. So if that happens | 
 | 		 * assume we don't have to enable/disable DDR DVFS | 
 | 		 * dynamically. To test that just set the REQ_ACK | 
 | 		 * bit to poke the Punit, but don't change the | 
 | 		 * HIGH/LOW bits so that we don't actually change | 
 | 		 * the current state. | 
 | 		 */ | 
 | 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); | 
 | 		val |= FORCE_DDR_FREQ_REQ_ACK; | 
 | 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); | 
 |  | 
 | 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & | 
 | 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { | 
 | 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, " | 
 | 				      "assuming DDR DVFS is disabled\n"); | 
 | 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5; | 
 | 		} else { | 
 | 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); | 
 | 			if ((val & FORCE_DDR_HIGH_FREQ) == 0) | 
 | 				wm->level = VLV_WM_LEVEL_DDR_DVFS; | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&dev_priv->pcu_lock); | 
 | 	} | 
 |  | 
 | 	for_each_intel_crtc(dev, crtc) { | 
 | 		struct intel_crtc_state *crtc_state = | 
 | 			to_intel_crtc_state(crtc->base.state); | 
 | 		struct vlv_wm_state *active = &crtc->wm.active.vlv; | 
 | 		const struct vlv_fifo_state *fifo_state = | 
 | 			&crtc_state->wm.vlv.fifo_state; | 
 | 		enum pipe pipe = crtc->pipe; | 
 | 		enum plane_id plane_id; | 
 | 		int level; | 
 |  | 
 | 		vlv_get_fifo_size(crtc_state); | 
 |  | 
 | 		active->num_levels = wm->level + 1; | 
 | 		active->cxsr = wm->cxsr; | 
 |  | 
 | 		for (level = 0; level < active->num_levels; level++) { | 
 | 			struct g4x_pipe_wm *raw = | 
 | 				&crtc_state->wm.vlv.raw[level]; | 
 |  | 
 | 			active->sr[level].plane = wm->sr.plane; | 
 | 			active->sr[level].cursor = wm->sr.cursor; | 
 |  | 
 | 			for_each_plane_id_on_crtc(crtc, plane_id) { | 
 | 				active->wm[level].plane[plane_id] = | 
 | 					wm->pipe[pipe].plane[plane_id]; | 
 |  | 
 | 				raw->plane[plane_id] = | 
 | 					vlv_invert_wm_value(active->wm[level].plane[plane_id], | 
 | 							    fifo_state->plane[plane_id]); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for_each_plane_id_on_crtc(crtc, plane_id) | 
 | 			vlv_raw_plane_wm_set(crtc_state, level, | 
 | 					     plane_id, USHRT_MAX); | 
 | 		vlv_invalidate_wms(crtc, active, level); | 
 |  | 
 | 		crtc_state->wm.vlv.optimal = *active; | 
 | 		crtc_state->wm.vlv.intermediate = *active; | 
 |  | 
 | 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", | 
 | 			      pipe_name(pipe), | 
 | 			      wm->pipe[pipe].plane[PLANE_PRIMARY], | 
 | 			      wm->pipe[pipe].plane[PLANE_CURSOR], | 
 | 			      wm->pipe[pipe].plane[PLANE_SPRITE0], | 
 | 			      wm->pipe[pipe].plane[PLANE_SPRITE1]); | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", | 
 | 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); | 
 | } | 
 |  | 
 | void vlv_wm_sanitize(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_plane *plane; | 
 | 	struct intel_crtc *crtc; | 
 |  | 
 | 	mutex_lock(&dev_priv->wm.wm_mutex); | 
 |  | 
 | 	for_each_intel_plane(&dev_priv->drm, plane) { | 
 | 		struct intel_crtc *crtc = | 
 | 			intel_get_crtc_for_pipe(dev_priv, plane->pipe); | 
 | 		struct intel_crtc_state *crtc_state = | 
 | 			to_intel_crtc_state(crtc->base.state); | 
 | 		struct intel_plane_state *plane_state = | 
 | 			to_intel_plane_state(plane->base.state); | 
 | 		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; | 
 | 		const struct vlv_fifo_state *fifo_state = | 
 | 			&crtc_state->wm.vlv.fifo_state; | 
 | 		enum plane_id plane_id = plane->id; | 
 | 		int level; | 
 |  | 
 | 		if (plane_state->base.visible) | 
 | 			continue; | 
 |  | 
 | 		for (level = 0; level < wm_state->num_levels; level++) { | 
 | 			struct g4x_pipe_wm *raw = | 
 | 				&crtc_state->wm.vlv.raw[level]; | 
 |  | 
 | 			raw->plane[plane_id] = 0; | 
 |  | 
 | 			wm_state->wm[level].plane[plane_id] = | 
 | 				vlv_invert_wm_value(raw->plane[plane_id], | 
 | 						    fifo_state->plane[plane_id]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_intel_crtc(&dev_priv->drm, crtc) { | 
 | 		struct intel_crtc_state *crtc_state = | 
 | 			to_intel_crtc_state(crtc->base.state); | 
 |  | 
 | 		crtc_state->wm.vlv.intermediate = | 
 | 			crtc_state->wm.vlv.optimal; | 
 | 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; | 
 | 	} | 
 |  | 
 | 	vlv_program_watermarks(dev_priv); | 
 |  | 
 | 	mutex_unlock(&dev_priv->wm.wm_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME should probably kill this and improve | 
 |  * the real watermark readout/sanitation instead | 
 |  */ | 
 | static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN); | 
 | 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN); | 
 | 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN); | 
 |  | 
 | 	/* | 
 | 	 * Don't touch WM1S_LP_EN here. | 
 | 	 * Doing so could cause underruns. | 
 | 	 */ | 
 | } | 
 |  | 
 | void ilk_wm_get_hw_state(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct ilk_wm_values *hw = &dev_priv->wm.hw; | 
 | 	struct drm_crtc *crtc; | 
 |  | 
 | 	ilk_init_lp_watermarks(dev_priv); | 
 |  | 
 | 	for_each_crtc(dev, crtc) | 
 | 		ilk_pipe_wm_get_hw_state(crtc); | 
 |  | 
 | 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK); | 
 | 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK); | 
 | 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK); | 
 |  | 
 | 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK); | 
 | 	if (INTEL_GEN(dev_priv) >= 7) { | 
 | 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB); | 
 | 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB); | 
 | 	} | 
 |  | 
 | 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? | 
 | 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; | 
 | 	else if (IS_IVYBRIDGE(dev_priv)) | 
 | 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? | 
 | 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; | 
 |  | 
 | 	hw->enable_fbc_wm = | 
 | 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS); | 
 | } | 
 |  | 
 | /** | 
 |  * intel_update_watermarks - update FIFO watermark values based on current modes | 
 |  * @crtc: the #intel_crtc on which to compute the WM | 
 |  * | 
 |  * Calculate watermark values for the various WM regs based on current mode | 
 |  * and plane configuration. | 
 |  * | 
 |  * There are several cases to deal with here: | 
 |  *   - normal (i.e. non-self-refresh) | 
 |  *   - self-refresh (SR) mode | 
 |  *   - lines are large relative to FIFO size (buffer can hold up to 2) | 
 |  *   - lines are small relative to FIFO size (buffer can hold more than 2 | 
 |  *     lines), so need to account for TLB latency | 
 |  * | 
 |  *   The normal calculation is: | 
 |  *     watermark = dotclock * bytes per pixel * latency | 
 |  *   where latency is platform & configuration dependent (we assume pessimal | 
 |  *   values here). | 
 |  * | 
 |  *   The SR calculation is: | 
 |  *     watermark = (trunc(latency/line time)+1) * surface width * | 
 |  *       bytes per pixel | 
 |  *   where | 
 |  *     line time = htotal / dotclock | 
 |  *     surface width = hdisplay for normal plane and 64 for cursor | 
 |  *   and latency is assumed to be high, as above. | 
 |  * | 
 |  * The final value programmed to the register should always be rounded up, | 
 |  * and include an extra 2 entries to account for clock crossings. | 
 |  * | 
 |  * We don't use the sprite, so we can ignore that.  And on Crestline we have | 
 |  * to set the non-SR watermarks to 8. | 
 |  */ | 
 | void intel_update_watermarks(struct intel_crtc *crtc) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
 |  | 
 | 	if (dev_priv->display.update_wm) | 
 | 		dev_priv->display.update_wm(crtc); | 
 | } | 
 |  | 
 | void intel_enable_ipc(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	/* Display WA #0477 WaDisableIPC: skl */ | 
 | 	if (IS_SKYLAKE(dev_priv)) { | 
 | 		dev_priv->ipc_enabled = false; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	val = I915_READ(DISP_ARB_CTL2); | 
 |  | 
 | 	if (dev_priv->ipc_enabled) | 
 | 		val |= DISP_IPC_ENABLE; | 
 | 	else | 
 | 		val &= ~DISP_IPC_ENABLE; | 
 |  | 
 | 	I915_WRITE(DISP_ARB_CTL2, val); | 
 | } | 
 |  | 
 | void intel_init_ipc(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	dev_priv->ipc_enabled = false; | 
 | 	if (!HAS_IPC(dev_priv)) | 
 | 		return; | 
 |  | 
 | 	dev_priv->ipc_enabled = true; | 
 | 	intel_enable_ipc(dev_priv); | 
 | } | 
 |  | 
 | /* | 
 |  * Lock protecting IPS related data structures | 
 |  */ | 
 | DEFINE_SPINLOCK(mchdev_lock); | 
 |  | 
 | /* Global for IPS driver to get at the current i915 device. Protected by | 
 |  * mchdev_lock. */ | 
 | static struct drm_i915_private *i915_mch_dev; | 
 |  | 
 | bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	u16 rgvswctl; | 
 |  | 
 | 	lockdep_assert_held(&mchdev_lock); | 
 |  | 
 | 	rgvswctl = I915_READ16(MEMSWCTL); | 
 | 	if (rgvswctl & MEMCTL_CMD_STS) { | 
 | 		DRM_DEBUG("gpu busy, RCS change rejected\n"); | 
 | 		return false; /* still busy with another command */ | 
 | 	} | 
 |  | 
 | 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | | 
 | 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; | 
 | 	I915_WRITE16(MEMSWCTL, rgvswctl); | 
 | 	POSTING_READ16(MEMSWCTL); | 
 |  | 
 | 	rgvswctl |= MEMCTL_CMD_STS; | 
 | 	I915_WRITE16(MEMSWCTL, rgvswctl); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void ironlake_enable_drps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 rgvmodectl; | 
 | 	u8 fmax, fmin, fstart, vstart; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 |  | 
 | 	rgvmodectl = I915_READ(MEMMODECTL); | 
 |  | 
 | 	/* Enable temp reporting */ | 
 | 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN); | 
 | 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE); | 
 |  | 
 | 	/* 100ms RC evaluation intervals */ | 
 | 	I915_WRITE(RCUPEI, 100000); | 
 | 	I915_WRITE(RCDNEI, 100000); | 
 |  | 
 | 	/* Set max/min thresholds to 90ms and 80ms respectively */ | 
 | 	I915_WRITE(RCBMAXAVG, 90000); | 
 | 	I915_WRITE(RCBMINAVG, 80000); | 
 |  | 
 | 	I915_WRITE(MEMIHYST, 1); | 
 |  | 
 | 	/* Set up min, max, and cur for interrupt handling */ | 
 | 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; | 
 | 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK); | 
 | 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> | 
 | 		MEMMODE_FSTART_SHIFT; | 
 |  | 
 | 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >> | 
 | 		PXVFREQ_PX_SHIFT; | 
 |  | 
 | 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */ | 
 | 	dev_priv->ips.fstart = fstart; | 
 |  | 
 | 	dev_priv->ips.max_delay = fstart; | 
 | 	dev_priv->ips.min_delay = fmin; | 
 | 	dev_priv->ips.cur_delay = fstart; | 
 |  | 
 | 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", | 
 | 			 fmax, fmin, fstart); | 
 |  | 
 | 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); | 
 |  | 
 | 	/* | 
 | 	 * Interrupts will be enabled in ironlake_irq_postinstall | 
 | 	 */ | 
 |  | 
 | 	I915_WRITE(VIDSTART, vstart); | 
 | 	POSTING_READ(VIDSTART); | 
 |  | 
 | 	rgvmodectl |= MEMMODE_SWMODE_EN; | 
 | 	I915_WRITE(MEMMODECTL, rgvmodectl); | 
 |  | 
 | 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) | 
 | 		DRM_ERROR("stuck trying to change perf mode\n"); | 
 | 	mdelay(1); | 
 |  | 
 | 	ironlake_set_drps(dev_priv, fstart); | 
 |  | 
 | 	dev_priv->ips.last_count1 = I915_READ(DMIEC) + | 
 | 		I915_READ(DDREC) + I915_READ(CSIEC); | 
 | 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies); | 
 | 	dev_priv->ips.last_count2 = I915_READ(GFXEC); | 
 | 	dev_priv->ips.last_time2 = ktime_get_raw_ns(); | 
 |  | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 | } | 
 |  | 
 | static void ironlake_disable_drps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u16 rgvswctl; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 |  | 
 | 	rgvswctl = I915_READ16(MEMSWCTL); | 
 |  | 
 | 	/* Ack interrupts, disable EFC interrupt */ | 
 | 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); | 
 | 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); | 
 | 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); | 
 | 	I915_WRITE(DEIIR, DE_PCU_EVENT); | 
 | 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); | 
 |  | 
 | 	/* Go back to the starting frequency */ | 
 | 	ironlake_set_drps(dev_priv, dev_priv->ips.fstart); | 
 | 	mdelay(1); | 
 | 	rgvswctl |= MEMCTL_CMD_STS; | 
 | 	I915_WRITE(MEMSWCTL, rgvswctl); | 
 | 	mdelay(1); | 
 |  | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 | } | 
 |  | 
 | /* There's a funny hw issue where the hw returns all 0 when reading from | 
 |  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value | 
 |  * ourselves, instead of doing a rmw cycle (which might result in us clearing | 
 |  * all limits and the gpu stuck at whatever frequency it is at atm). | 
 |  */ | 
 | static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u32 limits; | 
 |  | 
 | 	/* Only set the down limit when we've reached the lowest level to avoid | 
 | 	 * getting more interrupts, otherwise leave this clear. This prevents a | 
 | 	 * race in the hw when coming out of rc6: There's a tiny window where | 
 | 	 * the hw runs at the minimal clock before selecting the desired | 
 | 	 * frequency, if the down threshold expires in that window we will not | 
 | 	 * receive a down interrupt. */ | 
 | 	if (INTEL_GEN(dev_priv) >= 9) { | 
 | 		limits = (rps->max_freq_softlimit) << 23; | 
 | 		if (val <= rps->min_freq_softlimit) | 
 | 			limits |= (rps->min_freq_softlimit) << 14; | 
 | 	} else { | 
 | 		limits = rps->max_freq_softlimit << 24; | 
 | 		if (val <= rps->min_freq_softlimit) | 
 | 			limits |= rps->min_freq_softlimit << 16; | 
 | 	} | 
 |  | 
 | 	return limits; | 
 | } | 
 |  | 
 | static void rps_set_power(struct drm_i915_private *dev_priv, int new_power) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u32 threshold_up = 0, threshold_down = 0; /* in % */ | 
 | 	u32 ei_up = 0, ei_down = 0; | 
 |  | 
 | 	lockdep_assert_held(&rps->power.mutex); | 
 |  | 
 | 	if (new_power == rps->power.mode) | 
 | 		return; | 
 |  | 
 | 	/* Note the units here are not exactly 1us, but 1280ns. */ | 
 | 	switch (new_power) { | 
 | 	case LOW_POWER: | 
 | 		/* Upclock if more than 95% busy over 16ms */ | 
 | 		ei_up = 16000; | 
 | 		threshold_up = 95; | 
 |  | 
 | 		/* Downclock if less than 85% busy over 32ms */ | 
 | 		ei_down = 32000; | 
 | 		threshold_down = 85; | 
 | 		break; | 
 |  | 
 | 	case BETWEEN: | 
 | 		/* Upclock if more than 90% busy over 13ms */ | 
 | 		ei_up = 13000; | 
 | 		threshold_up = 90; | 
 |  | 
 | 		/* Downclock if less than 75% busy over 32ms */ | 
 | 		ei_down = 32000; | 
 | 		threshold_down = 75; | 
 | 		break; | 
 |  | 
 | 	case HIGH_POWER: | 
 | 		/* Upclock if more than 85% busy over 10ms */ | 
 | 		ei_up = 10000; | 
 | 		threshold_up = 85; | 
 |  | 
 | 		/* Downclock if less than 60% busy over 32ms */ | 
 | 		ei_down = 32000; | 
 | 		threshold_down = 60; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* When byt can survive without system hang with dynamic | 
 | 	 * sw freq adjustments, this restriction can be lifted. | 
 | 	 */ | 
 | 	if (IS_VALLEYVIEW(dev_priv)) | 
 | 		goto skip_hw_write; | 
 |  | 
 | 	I915_WRITE(GEN6_RP_UP_EI, | 
 | 		   GT_INTERVAL_FROM_US(dev_priv, ei_up)); | 
 | 	I915_WRITE(GEN6_RP_UP_THRESHOLD, | 
 | 		   GT_INTERVAL_FROM_US(dev_priv, | 
 | 				       ei_up * threshold_up / 100)); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_DOWN_EI, | 
 | 		   GT_INTERVAL_FROM_US(dev_priv, ei_down)); | 
 | 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, | 
 | 		   GT_INTERVAL_FROM_US(dev_priv, | 
 | 				       ei_down * threshold_down / 100)); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_CONTROL, | 
 | 		   GEN6_RP_MEDIA_TURBO | | 
 | 		   GEN6_RP_MEDIA_HW_NORMAL_MODE | | 
 | 		   GEN6_RP_MEDIA_IS_GFX | | 
 | 		   GEN6_RP_ENABLE | | 
 | 		   GEN6_RP_UP_BUSY_AVG | | 
 | 		   GEN6_RP_DOWN_IDLE_AVG); | 
 |  | 
 | skip_hw_write: | 
 | 	rps->power.mode = new_power; | 
 | 	rps->power.up_threshold = threshold_up; | 
 | 	rps->power.down_threshold = threshold_down; | 
 | } | 
 |  | 
 | static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	int new_power; | 
 |  | 
 | 	new_power = rps->power.mode; | 
 | 	switch (rps->power.mode) { | 
 | 	case LOW_POWER: | 
 | 		if (val > rps->efficient_freq + 1 && | 
 | 		    val > rps->cur_freq) | 
 | 			new_power = BETWEEN; | 
 | 		break; | 
 |  | 
 | 	case BETWEEN: | 
 | 		if (val <= rps->efficient_freq && | 
 | 		    val < rps->cur_freq) | 
 | 			new_power = LOW_POWER; | 
 | 		else if (val >= rps->rp0_freq && | 
 | 			 val > rps->cur_freq) | 
 | 			new_power = HIGH_POWER; | 
 | 		break; | 
 |  | 
 | 	case HIGH_POWER: | 
 | 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 && | 
 | 		    val < rps->cur_freq) | 
 | 			new_power = BETWEEN; | 
 | 		break; | 
 | 	} | 
 | 	/* Max/min bins are special */ | 
 | 	if (val <= rps->min_freq_softlimit) | 
 | 		new_power = LOW_POWER; | 
 | 	if (val >= rps->max_freq_softlimit) | 
 | 		new_power = HIGH_POWER; | 
 |  | 
 | 	mutex_lock(&rps->power.mutex); | 
 | 	if (rps->power.interactive) | 
 | 		new_power = HIGH_POWER; | 
 | 	rps_set_power(dev_priv, new_power); | 
 | 	mutex_unlock(&rps->power.mutex); | 
 | 	rps->last_adj = 0; | 
 | } | 
 |  | 
 | void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive) | 
 | { | 
 | 	struct intel_rps *rps = &i915->gt_pm.rps; | 
 |  | 
 | 	if (INTEL_GEN(i915) < 6) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&rps->power.mutex); | 
 | 	if (interactive) { | 
 | 		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake)) | 
 | 			rps_set_power(i915, HIGH_POWER); | 
 | 	} else { | 
 | 		GEM_BUG_ON(!rps->power.interactive); | 
 | 		rps->power.interactive--; | 
 | 	} | 
 | 	mutex_unlock(&rps->power.mutex); | 
 | } | 
 |  | 
 | static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u32 mask = 0; | 
 |  | 
 | 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */ | 
 | 	if (val > rps->min_freq_softlimit) | 
 | 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT; | 
 | 	if (val < rps->max_freq_softlimit) | 
 | 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; | 
 |  | 
 | 	mask &= dev_priv->pm_rps_events; | 
 |  | 
 | 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask); | 
 | } | 
 |  | 
 | /* gen6_set_rps is called to update the frequency request, but should also be | 
 |  * called when the range (min_delay and max_delay) is modified so that we can | 
 |  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */ | 
 | static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* min/max delay may still have been modified so be sure to | 
 | 	 * write the limits value. | 
 | 	 */ | 
 | 	if (val != rps->cur_freq) { | 
 | 		gen6_set_rps_thresholds(dev_priv, val); | 
 |  | 
 | 		if (INTEL_GEN(dev_priv) >= 9) | 
 | 			I915_WRITE(GEN6_RPNSWREQ, | 
 | 				   GEN9_FREQUENCY(val)); | 
 | 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 			I915_WRITE(GEN6_RPNSWREQ, | 
 | 				   HSW_FREQUENCY(val)); | 
 | 		else | 
 | 			I915_WRITE(GEN6_RPNSWREQ, | 
 | 				   GEN6_FREQUENCY(val) | | 
 | 				   GEN6_OFFSET(0) | | 
 | 				   GEN6_AGGRESSIVE_TURBO); | 
 | 	} | 
 |  | 
 | 	/* Make sure we continue to get interrupts | 
 | 	 * until we hit the minimum or maximum frequencies. | 
 | 	 */ | 
 | 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val)); | 
 | 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val)); | 
 |  | 
 | 	rps->cur_freq = val; | 
 | 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1), | 
 | 		      "Odd GPU freq value\n")) | 
 | 		val &= ~1; | 
 |  | 
 | 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val)); | 
 |  | 
 | 	if (val != dev_priv->gt_pm.rps.cur_freq) { | 
 | 		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		gen6_set_rps_thresholds(dev_priv, val); | 
 | 	} | 
 |  | 
 | 	dev_priv->gt_pm.rps.cur_freq = val; | 
 | 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down | 
 |  * | 
 |  * * If Gfx is Idle, then | 
 |  * 1. Forcewake Media well. | 
 |  * 2. Request idle freq. | 
 |  * 3. Release Forcewake of Media well. | 
 | */ | 
 | static void vlv_set_rps_idle(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u32 val = rps->idle_freq; | 
 | 	int err; | 
 |  | 
 | 	if (rps->cur_freq <= val) | 
 | 		return; | 
 |  | 
 | 	/* The punit delays the write of the frequency and voltage until it | 
 | 	 * determines the GPU is awake. During normal usage we don't want to | 
 | 	 * waste power changing the frequency if the GPU is sleeping (rc6). | 
 | 	 * However, the GPU and driver is now idle and we do not want to delay | 
 | 	 * switching to minimum voltage (reducing power whilst idle) as we do | 
 | 	 * not expect to be woken in the near future and so must flush the | 
 | 	 * change by waking the device. | 
 | 	 * | 
 | 	 * We choose to take the media powerwell (either would do to trick the | 
 | 	 * punit into committing the voltage change) as that takes a lot less | 
 | 	 * power than the render powerwell. | 
 | 	 */ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA); | 
 | 	err = valleyview_set_rps(dev_priv, val); | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA); | 
 |  | 
 | 	if (err) | 
 | 		DRM_ERROR("Failed to set RPS for idle\n"); | 
 | } | 
 |  | 
 | void gen6_rps_busy(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 | 	if (rps->enabled) { | 
 | 		u8 freq; | 
 |  | 
 | 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED) | 
 | 			gen6_rps_reset_ei(dev_priv); | 
 | 		I915_WRITE(GEN6_PMINTRMSK, | 
 | 			   gen6_rps_pm_mask(dev_priv, rps->cur_freq)); | 
 |  | 
 | 		gen6_enable_rps_interrupts(dev_priv); | 
 |  | 
 | 		/* Use the user's desired frequency as a guide, but for better | 
 | 		 * performance, jump directly to RPe as our starting frequency. | 
 | 		 */ | 
 | 		freq = max(rps->cur_freq, | 
 | 			   rps->efficient_freq); | 
 |  | 
 | 		if (intel_set_rps(dev_priv, | 
 | 				  clamp(freq, | 
 | 					rps->min_freq_softlimit, | 
 | 					rps->max_freq_softlimit))) | 
 | 			DRM_DEBUG_DRIVER("Failed to set idle frequency\n"); | 
 | 	} | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | void gen6_rps_idle(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* Flush our bottom-half so that it does not race with us | 
 | 	 * setting the idle frequency and so that it is bounded by | 
 | 	 * our rpm wakeref. And then disable the interrupts to stop any | 
 | 	 * futher RPS reclocking whilst we are asleep. | 
 | 	 */ | 
 | 	gen6_disable_rps_interrupts(dev_priv); | 
 |  | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 | 	if (rps->enabled) { | 
 | 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) | 
 | 			vlv_set_rps_idle(dev_priv); | 
 | 		else | 
 | 			gen6_set_rps(dev_priv, rps->idle_freq); | 
 | 		rps->last_adj = 0; | 
 | 		I915_WRITE(GEN6_PMINTRMSK, | 
 | 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0)); | 
 | 	} | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | void gen6_rps_boost(struct i915_request *rq, | 
 | 		    struct intel_rps_client *rps_client) | 
 | { | 
 | 	struct intel_rps *rps = &rq->i915->gt_pm.rps; | 
 | 	unsigned long flags; | 
 | 	bool boost; | 
 |  | 
 | 	/* This is intentionally racy! We peek at the state here, then | 
 | 	 * validate inside the RPS worker. | 
 | 	 */ | 
 | 	if (!rps->enabled) | 
 | 		return; | 
 |  | 
 | 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) | 
 | 		return; | 
 |  | 
 | 	/* Serializes with i915_request_retire() */ | 
 | 	boost = false; | 
 | 	spin_lock_irqsave(&rq->lock, flags); | 
 | 	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) { | 
 | 		boost = !atomic_fetch_inc(&rps->num_waiters); | 
 | 		rq->waitboost = true; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&rq->lock, flags); | 
 | 	if (!boost) | 
 | 		return; | 
 |  | 
 | 	if (READ_ONCE(rps->cur_freq) < rps->boost_freq) | 
 | 		schedule_work(&rps->work); | 
 |  | 
 | 	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts); | 
 | } | 
 |  | 
 | int intel_set_rps(struct drm_i915_private *dev_priv, u8 val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	int err; | 
 |  | 
 | 	lockdep_assert_held(&dev_priv->pcu_lock); | 
 | 	GEM_BUG_ON(val > rps->max_freq); | 
 | 	GEM_BUG_ON(val < rps->min_freq); | 
 |  | 
 | 	if (!rps->enabled) { | 
 | 		rps->cur_freq = val; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) | 
 | 		err = valleyview_set_rps(dev_priv, val); | 
 | 	else | 
 | 		err = gen6_set_rps(dev_priv, val); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void gen9_disable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 | 	I915_WRITE(GEN9_PG_ENABLE, 0); | 
 | } | 
 |  | 
 | static void gen9_disable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RP_CONTROL, 0); | 
 | } | 
 |  | 
 | static void gen6_disable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 | } | 
 |  | 
 | static void gen6_disable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31); | 
 | 	I915_WRITE(GEN6_RP_CONTROL, 0); | 
 | } | 
 |  | 
 | static void cherryview_disable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 | } | 
 |  | 
 | static void cherryview_disable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RP_CONTROL, 0); | 
 | } | 
 |  | 
 | static void valleyview_disable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* We're doing forcewake before Disabling RC6, | 
 | 	 * This what the BIOS expects when going into suspend */ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void valleyview_disable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(GEN6_RP_CONTROL, 0); | 
 | } | 
 |  | 
 | static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	bool enable_rc6 = true; | 
 | 	unsigned long rc6_ctx_base; | 
 | 	u32 rc_ctl; | 
 | 	int rc_sw_target; | 
 |  | 
 | 	rc_ctl = I915_READ(GEN6_RC_CONTROL); | 
 | 	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >> | 
 | 		       RC_SW_TARGET_STATE_SHIFT; | 
 | 	DRM_DEBUG_DRIVER("BIOS enabled RC states: " | 
 | 			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", | 
 | 			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE), | 
 | 			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), | 
 | 			 rc_sw_target); | 
 |  | 
 | 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) { | 
 | 		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n"); | 
 | 		enable_rc6 = false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The exact context size is not known for BXT, so assume a page size | 
 | 	 * for this check. | 
 | 	 */ | 
 | 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK; | 
 | 	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) && | 
 | 	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) { | 
 | 		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n"); | 
 | 		enable_rc6 = false; | 
 | 	} | 
 |  | 
 | 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) && | 
 | 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) && | 
 | 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) && | 
 | 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) { | 
 | 		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n"); | 
 | 		enable_rc6 = false; | 
 | 	} | 
 |  | 
 | 	if (!I915_READ(GEN8_PUSHBUS_CONTROL) || | 
 | 	    !I915_READ(GEN8_PUSHBUS_ENABLE) || | 
 | 	    !I915_READ(GEN8_PUSHBUS_SHIFT)) { | 
 | 		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n"); | 
 | 		enable_rc6 = false; | 
 | 	} | 
 |  | 
 | 	if (!I915_READ(GEN6_GFXPAUSE)) { | 
 | 		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n"); | 
 | 		enable_rc6 = false; | 
 | 	} | 
 |  | 
 | 	if (!I915_READ(GEN8_MISC_CTRL0)) { | 
 | 		DRM_DEBUG_DRIVER("GPM control not setup properly.\n"); | 
 | 		enable_rc6 = false; | 
 | 	} | 
 |  | 
 | 	return enable_rc6; | 
 | } | 
 |  | 
 | static bool sanitize_rc6(struct drm_i915_private *i915) | 
 | { | 
 | 	struct intel_device_info *info = mkwrite_device_info(i915); | 
 |  | 
 | 	/* Powersaving is controlled by the host when inside a VM */ | 
 | 	if (intel_vgpu_active(i915)) | 
 | 		info->has_rc6 = 0; | 
 |  | 
 | 	if (info->has_rc6 && | 
 | 	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) { | 
 | 		DRM_INFO("RC6 disabled by BIOS\n"); | 
 | 		info->has_rc6 = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We assume that we do not have any deep rc6 levels if we don't have | 
 | 	 * have the previous rc6 level supported, i.e. we use HAS_RC6() | 
 | 	 * as the initial coarse check for rc6 in general, moving on to | 
 | 	 * progressively finer/deeper levels. | 
 | 	 */ | 
 | 	if (!info->has_rc6 && info->has_rc6p) | 
 | 		info->has_rc6p = 0; | 
 |  | 
 | 	return info->has_rc6; | 
 | } | 
 |  | 
 | static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* All of these values are in units of 50MHz */ | 
 |  | 
 | 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */ | 
 | 	if (IS_GEN9_LP(dev_priv)) { | 
 | 		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP); | 
 | 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff; | 
 | 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff; | 
 | 		rps->min_freq = (rp_state_cap >>  0) & 0xff; | 
 | 	} else { | 
 | 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); | 
 | 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff; | 
 | 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff; | 
 | 		rps->min_freq = (rp_state_cap >> 16) & 0xff; | 
 | 	} | 
 | 	/* hw_max = RP0 until we check for overclocking */ | 
 | 	rps->max_freq = rps->rp0_freq; | 
 |  | 
 | 	rps->efficient_freq = rps->rp1_freq; | 
 | 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) || | 
 | 	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) { | 
 | 		u32 ddcc_status = 0; | 
 |  | 
 | 		if (sandybridge_pcode_read(dev_priv, | 
 | 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, | 
 | 					   &ddcc_status) == 0) | 
 | 			rps->efficient_freq = | 
 | 				clamp_t(u8, | 
 | 					((ddcc_status >> 8) & 0xff), | 
 | 					rps->min_freq, | 
 | 					rps->max_freq); | 
 | 	} | 
 |  | 
 | 	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) { | 
 | 		/* Store the frequency values in 16.66 MHZ units, which is | 
 | 		 * the natural hardware unit for SKL | 
 | 		 */ | 
 | 		rps->rp0_freq *= GEN9_FREQ_SCALER; | 
 | 		rps->rp1_freq *= GEN9_FREQ_SCALER; | 
 | 		rps->min_freq *= GEN9_FREQ_SCALER; | 
 | 		rps->max_freq *= GEN9_FREQ_SCALER; | 
 | 		rps->efficient_freq *= GEN9_FREQ_SCALER; | 
 | 	} | 
 | } | 
 |  | 
 | static void reset_rps(struct drm_i915_private *dev_priv, | 
 | 		      int (*set)(struct drm_i915_private *, u8)) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u8 freq = rps->cur_freq; | 
 |  | 
 | 	/* force a reset */ | 
 | 	rps->power.mode = -1; | 
 | 	rps->cur_freq = -1; | 
 |  | 
 | 	if (set(dev_priv, freq)) | 
 | 		DRM_ERROR("Failed to reset RPS to initial values\n"); | 
 | } | 
 |  | 
 | /* See the Gen9_GT_PM_Programming_Guide doc for the below */ | 
 | static void gen9_enable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* Program defaults and thresholds for RPS */ | 
 | 	if (IS_GEN9(dev_priv)) | 
 | 		I915_WRITE(GEN6_RC_VIDEO_FREQ, | 
 | 			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq)); | 
 |  | 
 | 	/* 1 second timeout*/ | 
 | 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, | 
 | 		GT_INTERVAL_FROM_US(dev_priv, 1000000)); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa); | 
 |  | 
 | 	/* Leaning on the below call to gen6_set_rps to program/setup the | 
 | 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL, | 
 | 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */ | 
 | 	reset_rps(dev_priv, gen6_set_rps); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void gen9_enable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	u32 rc6_mode; | 
 |  | 
 | 	/* 1a: Software RC state - RC0 */ | 
 | 	I915_WRITE(GEN6_RC_STATE, 0); | 
 |  | 
 | 	/* 1b: Get forcewake during program sequence. Although the driver | 
 | 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* 2a: Disable RC states. */ | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 |  | 
 | 	/* 2b: Program RC6 thresholds.*/ | 
 | 	if (INTEL_GEN(dev_priv) >= 10) { | 
 | 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); | 
 | 		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150); | 
 | 	} else if (IS_SKYLAKE(dev_priv)) { | 
 | 		/* | 
 | 		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only | 
 | 		 * when CPG is enabled | 
 | 		 */ | 
 | 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); | 
 | 	} else { | 
 | 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); | 
 | 	} | 
 |  | 
 | 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ | 
 | 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ | 
 | 	for_each_engine(engine, dev_priv, id) | 
 | 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); | 
 |  | 
 | 	if (HAS_GUC(dev_priv)) | 
 | 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA); | 
 |  | 
 | 	I915_WRITE(GEN6_RC_SLEEP, 0); | 
 |  | 
 | 	/* | 
 | 	 * 2c: Program Coarse Power Gating Policies. | 
 | 	 * | 
 | 	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we | 
 | 	 * use instead is a more conservative estimate for the maximum time | 
 | 	 * it takes us to service a CS interrupt and submit a new ELSP - that | 
 | 	 * is the time which the GPU is idle waiting for the CPU to select the | 
 | 	 * next request to execute. If the idle hysteresis is less than that | 
 | 	 * interrupt service latency, the hardware will automatically gate | 
 | 	 * the power well and we will then incur the wake up cost on top of | 
 | 	 * the service latency. A similar guide from intel_pstate is that we | 
 | 	 * do not want the enable hysteresis to less than the wakeup latency. | 
 | 	 * | 
 | 	 * igt/gem_exec_nop/sequential provides a rough estimate for the | 
 | 	 * service latency, and puts it around 10us for Broadwell (and other | 
 | 	 * big core) and around 40us for Broxton (and other low power cores). | 
 | 	 * [Note that for legacy ringbuffer submission, this is less than 1us!] | 
 | 	 * However, the wakeup latency on Broxton is closer to 100us. To be | 
 | 	 * conservative, we have to factor in a context switch on top (due | 
 | 	 * to ksoftirqd). | 
 | 	 */ | 
 | 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250); | 
 | 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250); | 
 |  | 
 | 	/* 3a: Enable RC6 */ | 
 | 	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ | 
 |  | 
 | 	/* WaRsUseTimeoutMode:cnl (pre-prod) */ | 
 | 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0)) | 
 | 		rc6_mode = GEN7_RC_CTL_TO_MODE; | 
 | 	else | 
 | 		rc6_mode = GEN6_RC_CTL_EI_MODE(1); | 
 |  | 
 | 	I915_WRITE(GEN6_RC_CONTROL, | 
 | 		   GEN6_RC_CTL_HW_ENABLE | | 
 | 		   GEN6_RC_CTL_RC6_ENABLE | | 
 | 		   rc6_mode); | 
 |  | 
 | 	/* | 
 | 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled. | 
 | 	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6. | 
 | 	 */ | 
 | 	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) | 
 | 		I915_WRITE(GEN9_PG_ENABLE, 0); | 
 | 	else | 
 | 		I915_WRITE(GEN9_PG_ENABLE, | 
 | 			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void gen8_enable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	/* 1a: Software RC state - RC0 */ | 
 | 	I915_WRITE(GEN6_RC_STATE, 0); | 
 |  | 
 | 	/* 1b: Get forcewake during program sequence. Although the driver | 
 | 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* 2a: Disable RC states. */ | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 |  | 
 | 	/* 2b: Program RC6 thresholds.*/ | 
 | 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); | 
 | 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ | 
 | 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ | 
 | 	for_each_engine(engine, dev_priv, id) | 
 | 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); | 
 | 	I915_WRITE(GEN6_RC_SLEEP, 0); | 
 | 	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ | 
 |  | 
 | 	/* 3: Enable RC6 */ | 
 |  | 
 | 	I915_WRITE(GEN6_RC_CONTROL, | 
 | 		   GEN6_RC_CTL_HW_ENABLE | | 
 | 		   GEN7_RC_CTL_TO_MODE | | 
 | 		   GEN6_RC_CTL_RC6_ENABLE); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void gen8_enable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* 1 Program defaults and thresholds for RPS*/ | 
 | 	I915_WRITE(GEN6_RPNSWREQ, | 
 | 		   HSW_FREQUENCY(rps->rp1_freq)); | 
 | 	I915_WRITE(GEN6_RC_VIDEO_FREQ, | 
 | 		   HSW_FREQUENCY(rps->rp1_freq)); | 
 | 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */ | 
 | 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */ | 
 |  | 
 | 	/* Docs recommend 900MHz, and 300 MHz respectively */ | 
 | 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, | 
 | 		   rps->max_freq_softlimit << 24 | | 
 | 		   rps->min_freq_softlimit << 16); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */ | 
 | 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/ | 
 | 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */ | 
 | 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */ | 
 |  | 
 | 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); | 
 |  | 
 | 	/* 2: Enable RPS */ | 
 | 	I915_WRITE(GEN6_RP_CONTROL, | 
 | 		   GEN6_RP_MEDIA_TURBO | | 
 | 		   GEN6_RP_MEDIA_HW_NORMAL_MODE | | 
 | 		   GEN6_RP_MEDIA_IS_GFX | | 
 | 		   GEN6_RP_ENABLE | | 
 | 		   GEN6_RP_UP_BUSY_AVG | | 
 | 		   GEN6_RP_DOWN_IDLE_AVG); | 
 |  | 
 | 	reset_rps(dev_priv, gen6_set_rps); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void gen6_enable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	u32 rc6vids, rc6_mask; | 
 | 	u32 gtfifodbg; | 
 | 	int ret; | 
 |  | 
 | 	I915_WRITE(GEN6_RC_STATE, 0); | 
 |  | 
 | 	/* Clear the DBG now so we don't confuse earlier errors */ | 
 | 	gtfifodbg = I915_READ(GTFIFODBG); | 
 | 	if (gtfifodbg) { | 
 | 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg); | 
 | 		I915_WRITE(GTFIFODBG, gtfifodbg); | 
 | 	} | 
 |  | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* disable the counters and set deterministic thresholds */ | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 |  | 
 | 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); | 
 | 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); | 
 | 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30); | 
 | 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); | 
 | 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) | 
 | 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); | 
 |  | 
 | 	I915_WRITE(GEN6_RC_SLEEP, 0); | 
 | 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000); | 
 | 	if (IS_IVYBRIDGE(dev_priv)) | 
 | 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000); | 
 | 	else | 
 | 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); | 
 | 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000); | 
 | 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */ | 
 |  | 
 | 	/* We don't use those on Haswell */ | 
 | 	rc6_mask = GEN6_RC_CTL_RC6_ENABLE; | 
 | 	if (HAS_RC6p(dev_priv)) | 
 | 		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; | 
 | 	if (HAS_RC6pp(dev_priv)) | 
 | 		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; | 
 | 	I915_WRITE(GEN6_RC_CONTROL, | 
 | 		   rc6_mask | | 
 | 		   GEN6_RC_CTL_EI_MODE(1) | | 
 | 		   GEN6_RC_CTL_HW_ENABLE); | 
 |  | 
 | 	rc6vids = 0; | 
 | 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); | 
 | 	if (IS_GEN6(dev_priv) && ret) { | 
 | 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n"); | 
 | 	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { | 
 | 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", | 
 | 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); | 
 | 		rc6vids &= 0xffff00; | 
 | 		rc6vids |= GEN6_ENCODE_RC6_VID(450); | 
 | 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); | 
 | 		if (ret) | 
 | 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n"); | 
 | 	} | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void gen6_enable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* Here begins a magic sequence of register writes to enable | 
 | 	 * auto-downclocking. | 
 | 	 * | 
 | 	 * Perhaps there might be some value in exposing these to | 
 | 	 * userspace... | 
 | 	 */ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* Power down if completely idle for over 50ms */ | 
 | 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000); | 
 | 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); | 
 |  | 
 | 	reset_rps(dev_priv, gen6_set_rps); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void gen6_update_ring_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	const int min_freq = 15; | 
 | 	const int scaling_factor = 180; | 
 | 	unsigned int gpu_freq; | 
 | 	unsigned int max_ia_freq, min_ring_freq; | 
 | 	unsigned int max_gpu_freq, min_gpu_freq; | 
 | 	struct cpufreq_policy *policy; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock)); | 
 |  | 
 | 	if (rps->max_freq <= rps->min_freq) | 
 | 		return; | 
 |  | 
 | 	policy = cpufreq_cpu_get(0); | 
 | 	if (policy) { | 
 | 		max_ia_freq = policy->cpuinfo.max_freq; | 
 | 		cpufreq_cpu_put(policy); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Default to measured freq if none found, PCU will ensure we | 
 | 		 * don't go over | 
 | 		 */ | 
 | 		max_ia_freq = tsc_khz; | 
 | 	} | 
 |  | 
 | 	/* Convert from kHz to MHz */ | 
 | 	max_ia_freq /= 1000; | 
 |  | 
 | 	min_ring_freq = I915_READ(DCLK) & 0xf; | 
 | 	/* convert DDR frequency from units of 266.6MHz to bandwidth */ | 
 | 	min_ring_freq = mult_frac(min_ring_freq, 8, 3); | 
 |  | 
 | 	min_gpu_freq = rps->min_freq; | 
 | 	max_gpu_freq = rps->max_freq; | 
 | 	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) { | 
 | 		/* Convert GT frequency to 50 HZ units */ | 
 | 		min_gpu_freq /= GEN9_FREQ_SCALER; | 
 | 		max_gpu_freq /= GEN9_FREQ_SCALER; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For each potential GPU frequency, load a ring frequency we'd like | 
 | 	 * to use for memory access.  We do this by specifying the IA frequency | 
 | 	 * the PCU should use as a reference to determine the ring frequency. | 
 | 	 */ | 
 | 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) { | 
 | 		const int diff = max_gpu_freq - gpu_freq; | 
 | 		unsigned int ia_freq = 0, ring_freq = 0; | 
 |  | 
 | 		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) { | 
 | 			/* | 
 | 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units | 
 | 			 * No floor required for ring frequency on SKL. | 
 | 			 */ | 
 | 			ring_freq = gpu_freq; | 
 | 		} else if (INTEL_GEN(dev_priv) >= 8) { | 
 | 			/* max(2 * GT, DDR). NB: GT is 50MHz units */ | 
 | 			ring_freq = max(min_ring_freq, gpu_freq); | 
 | 		} else if (IS_HASWELL(dev_priv)) { | 
 | 			ring_freq = mult_frac(gpu_freq, 5, 4); | 
 | 			ring_freq = max(min_ring_freq, ring_freq); | 
 | 			/* leave ia_freq as the default, chosen by cpufreq */ | 
 | 		} else { | 
 | 			/* On older processors, there is no separate ring | 
 | 			 * clock domain, so in order to boost the bandwidth | 
 | 			 * of the ring, we need to upclock the CPU (ia_freq). | 
 | 			 * | 
 | 			 * For GPU frequencies less than 750MHz, | 
 | 			 * just use the lowest ring freq. | 
 | 			 */ | 
 | 			if (gpu_freq < min_freq) | 
 | 				ia_freq = 800; | 
 | 			else | 
 | 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2); | 
 | 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); | 
 | 		} | 
 |  | 
 | 		sandybridge_pcode_write(dev_priv, | 
 | 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE, | 
 | 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT | | 
 | 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT | | 
 | 					gpu_freq); | 
 | 	} | 
 | } | 
 |  | 
 | static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rp0; | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE); | 
 |  | 
 | 	switch (INTEL_INFO(dev_priv)->sseu.eu_total) { | 
 | 	case 8: | 
 | 		/* (2 * 4) config */ | 
 | 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT); | 
 | 		break; | 
 | 	case 12: | 
 | 		/* (2 * 6) config */ | 
 | 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT); | 
 | 		break; | 
 | 	case 16: | 
 | 		/* (2 * 8) config */ | 
 | 	default: | 
 | 		/* Setting (2 * 8) Min RP0 for any other combination */ | 
 | 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK); | 
 |  | 
 | 	return rp0; | 
 | } | 
 |  | 
 | static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rpe; | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG); | 
 | 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; | 
 |  | 
 | 	return rpe; | 
 | } | 
 |  | 
 | static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rp1; | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE); | 
 | 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK); | 
 |  | 
 | 	return rp1; | 
 | } | 
 |  | 
 | static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rpn; | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE); | 
 | 	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) & | 
 | 		       FB_GFX_FREQ_FUSE_MASK); | 
 |  | 
 | 	return rpn; | 
 | } | 
 |  | 
 | static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rp1; | 
 |  | 
 | 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE); | 
 |  | 
 | 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; | 
 |  | 
 | 	return rp1; | 
 | } | 
 |  | 
 | static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rp0; | 
 |  | 
 | 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE); | 
 |  | 
 | 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; | 
 | 	/* Clamp to max */ | 
 | 	rp0 = min_t(u32, rp0, 0xea); | 
 |  | 
 | 	return rp0; | 
 | } | 
 |  | 
 | static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val, rpe; | 
 |  | 
 | 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO); | 
 | 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; | 
 | 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI); | 
 | 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; | 
 |  | 
 | 	return rpe; | 
 | } | 
 |  | 
 | static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff; | 
 | 	/* | 
 | 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value | 
 | 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on | 
 | 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting | 
 | 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 | 
 | 	 * to make sure it matches what Punit accepts. | 
 | 	 */ | 
 | 	return max_t(u32, val, 0xc0); | 
 | } | 
 |  | 
 | /* Check that the pctx buffer wasn't move under us. */ | 
 | static void valleyview_check_pctx(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095; | 
 |  | 
 | 	WARN_ON(pctx_addr != dev_priv->dsm.start + | 
 | 			     dev_priv->vlv_pctx->stolen->start); | 
 | } | 
 |  | 
 |  | 
 | /* Check that the pcbr address is not empty. */ | 
 | static void cherryview_check_pctx(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095; | 
 |  | 
 | 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0); | 
 | } | 
 |  | 
 | static void cherryview_setup_pctx(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	resource_size_t pctx_paddr, paddr; | 
 | 	resource_size_t pctx_size = 32*1024; | 
 | 	u32 pcbr; | 
 |  | 
 | 	pcbr = I915_READ(VLV_PCBR); | 
 | 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { | 
 | 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); | 
 | 		paddr = dev_priv->dsm.end + 1 - pctx_size; | 
 | 		GEM_BUG_ON(paddr > U32_MAX); | 
 |  | 
 | 		pctx_paddr = (paddr & (~4095)); | 
 | 		I915_WRITE(VLV_PCBR, pctx_paddr); | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR)); | 
 | } | 
 |  | 
 | static void valleyview_setup_pctx(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_i915_gem_object *pctx; | 
 | 	resource_size_t pctx_paddr; | 
 | 	resource_size_t pctx_size = 24*1024; | 
 | 	u32 pcbr; | 
 |  | 
 | 	pcbr = I915_READ(VLV_PCBR); | 
 | 	if (pcbr) { | 
 | 		/* BIOS set it up already, grab the pre-alloc'd space */ | 
 | 		resource_size_t pcbr_offset; | 
 |  | 
 | 		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start; | 
 | 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv, | 
 | 								      pcbr_offset, | 
 | 								      I915_GTT_OFFSET_NONE, | 
 | 								      pctx_size); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); | 
 |  | 
 | 	/* | 
 | 	 * From the Gunit register HAS: | 
 | 	 * The Gfx driver is expected to program this register and ensure | 
 | 	 * proper allocation within Gfx stolen memory.  For example, this | 
 | 	 * register should be programmed such than the PCBR range does not | 
 | 	 * overlap with other ranges, such as the frame buffer, protected | 
 | 	 * memory, or any other relevant ranges. | 
 | 	 */ | 
 | 	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size); | 
 | 	if (!pctx) { | 
 | 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	GEM_BUG_ON(range_overflows_t(u64, | 
 | 				     dev_priv->dsm.start, | 
 | 				     pctx->stolen->start, | 
 | 				     U32_MAX)); | 
 | 	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start; | 
 | 	I915_WRITE(VLV_PCBR, pctx_paddr); | 
 |  | 
 | out: | 
 | 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR)); | 
 | 	dev_priv->vlv_pctx = pctx; | 
 | } | 
 |  | 
 | static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_i915_gem_object *pctx; | 
 |  | 
 | 	pctx = fetch_and_zero(&dev_priv->vlv_pctx); | 
 | 	if (pctx) | 
 | 		i915_gem_object_put(pctx); | 
 | } | 
 |  | 
 | static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	dev_priv->gt_pm.rps.gpll_ref_freq = | 
 | 		vlv_get_cck_clock(dev_priv, "GPLL ref", | 
 | 				  CCK_GPLL_CLOCK_CONTROL, | 
 | 				  dev_priv->czclk_freq); | 
 |  | 
 | 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", | 
 | 			 dev_priv->gt_pm.rps.gpll_ref_freq); | 
 | } | 
 |  | 
 | static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u32 val; | 
 |  | 
 | 	valleyview_setup_pctx(dev_priv); | 
 |  | 
 | 	vlv_init_gpll_ref_freq(dev_priv); | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); | 
 | 	switch ((val >> 6) & 3) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 		dev_priv->mem_freq = 800; | 
 | 		break; | 
 | 	case 2: | 
 | 		dev_priv->mem_freq = 1066; | 
 | 		break; | 
 | 	case 3: | 
 | 		dev_priv->mem_freq = 1333; | 
 | 		break; | 
 | 	} | 
 | 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq); | 
 |  | 
 | 	rps->max_freq = valleyview_rps_max_freq(dev_priv); | 
 | 	rps->rp0_freq = rps->max_freq; | 
 | 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->max_freq), | 
 | 			 rps->max_freq); | 
 |  | 
 | 	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv); | 
 | 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->efficient_freq), | 
 | 			 rps->efficient_freq); | 
 |  | 
 | 	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv); | 
 | 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->rp1_freq), | 
 | 			 rps->rp1_freq); | 
 |  | 
 | 	rps->min_freq = valleyview_rps_min_freq(dev_priv); | 
 | 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->min_freq), | 
 | 			 rps->min_freq); | 
 | } | 
 |  | 
 | static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 | 	u32 val; | 
 |  | 
 | 	cherryview_setup_pctx(dev_priv); | 
 |  | 
 | 	vlv_init_gpll_ref_freq(dev_priv); | 
 |  | 
 | 	mutex_lock(&dev_priv->sb_lock); | 
 | 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG); | 
 | 	mutex_unlock(&dev_priv->sb_lock); | 
 |  | 
 | 	switch ((val >> 2) & 0x7) { | 
 | 	case 3: | 
 | 		dev_priv->mem_freq = 2000; | 
 | 		break; | 
 | 	default: | 
 | 		dev_priv->mem_freq = 1600; | 
 | 		break; | 
 | 	} | 
 | 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq); | 
 |  | 
 | 	rps->max_freq = cherryview_rps_max_freq(dev_priv); | 
 | 	rps->rp0_freq = rps->max_freq; | 
 | 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->max_freq), | 
 | 			 rps->max_freq); | 
 |  | 
 | 	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv); | 
 | 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->efficient_freq), | 
 | 			 rps->efficient_freq); | 
 |  | 
 | 	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv); | 
 | 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->rp1_freq), | 
 | 			 rps->rp1_freq); | 
 |  | 
 | 	rps->min_freq = cherryview_rps_min_freq(dev_priv); | 
 | 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", | 
 | 			 intel_gpu_freq(dev_priv, rps->min_freq), | 
 | 			 rps->min_freq); | 
 |  | 
 | 	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq | | 
 | 		   rps->min_freq) & 1, | 
 | 		  "Odd GPU freq values\n"); | 
 | } | 
 |  | 
 | static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	valleyview_cleanup_pctx(dev_priv); | 
 | } | 
 |  | 
 | static void cherryview_enable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	u32 gtfifodbg, rc6_mode, pcbr; | 
 |  | 
 | 	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV | | 
 | 					     GT_FIFO_FREE_ENTRIES_CHV); | 
 | 	if (gtfifodbg) { | 
 | 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n", | 
 | 				 gtfifodbg); | 
 | 		I915_WRITE(GTFIFODBG, gtfifodbg); | 
 | 	} | 
 |  | 
 | 	cherryview_check_pctx(dev_priv); | 
 |  | 
 | 	/* 1a & 1b: Get forcewake during program sequence. Although the driver | 
 | 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/*  Disable RC states. */ | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 |  | 
 | 	/* 2a: Program RC6 thresholds.*/ | 
 | 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); | 
 | 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ | 
 | 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) | 
 | 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); | 
 | 	I915_WRITE(GEN6_RC_SLEEP, 0); | 
 |  | 
 | 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */ | 
 | 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186); | 
 |  | 
 | 	/* Allows RC6 residency counter to work */ | 
 | 	I915_WRITE(VLV_COUNTER_CONTROL, | 
 | 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | | 
 | 				      VLV_MEDIA_RC6_COUNT_EN | | 
 | 				      VLV_RENDER_RC6_COUNT_EN)); | 
 |  | 
 | 	/* For now we assume BIOS is allocating and populating the PCBR  */ | 
 | 	pcbr = I915_READ(VLV_PCBR); | 
 |  | 
 | 	/* 3: Enable RC6 */ | 
 | 	rc6_mode = 0; | 
 | 	if (pcbr >> VLV_PCBR_ADDR_SHIFT) | 
 | 		rc6_mode = GEN7_RC_CTL_TO_MODE; | 
 | 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void cherryview_enable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/* 1: Program defaults and thresholds for RPS*/ | 
 | 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); | 
 | 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); | 
 | 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); | 
 | 	I915_WRITE(GEN6_RP_UP_EI, 66000); | 
 | 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); | 
 |  | 
 | 	/* 2: Enable RPS */ | 
 | 	I915_WRITE(GEN6_RP_CONTROL, | 
 | 		   GEN6_RP_MEDIA_HW_NORMAL_MODE | | 
 | 		   GEN6_RP_MEDIA_IS_GFX | | 
 | 		   GEN6_RP_ENABLE | | 
 | 		   GEN6_RP_UP_BUSY_AVG | | 
 | 		   GEN6_RP_DOWN_IDLE_AVG); | 
 |  | 
 | 	/* Setting Fixed Bias */ | 
 | 	val = VLV_OVERRIDE_EN | | 
 | 		  VLV_SOC_TDP_EN | | 
 | 		  CHV_BIAS_CPU_50_SOC_50; | 
 | 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val); | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); | 
 |  | 
 | 	/* RPS code assumes GPLL is used */ | 
 | 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); | 
 |  | 
 | 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); | 
 | 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); | 
 |  | 
 | 	reset_rps(dev_priv, valleyview_set_rps); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void valleyview_enable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	u32 gtfifodbg; | 
 |  | 
 | 	valleyview_check_pctx(dev_priv); | 
 |  | 
 | 	gtfifodbg = I915_READ(GTFIFODBG); | 
 | 	if (gtfifodbg) { | 
 | 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n", | 
 | 				 gtfifodbg); | 
 | 		I915_WRITE(GTFIFODBG, gtfifodbg); | 
 | 	} | 
 |  | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	/*  Disable RC states. */ | 
 | 	I915_WRITE(GEN6_RC_CONTROL, 0); | 
 |  | 
 | 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); | 
 | 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); | 
 | 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) | 
 | 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); | 
 |  | 
 | 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557); | 
 |  | 
 | 	/* Allows RC6 residency counter to work */ | 
 | 	I915_WRITE(VLV_COUNTER_CONTROL, | 
 | 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | | 
 | 				      VLV_MEDIA_RC0_COUNT_EN | | 
 | 				      VLV_RENDER_RC0_COUNT_EN | | 
 | 				      VLV_MEDIA_RC6_COUNT_EN | | 
 | 				      VLV_RENDER_RC6_COUNT_EN)); | 
 |  | 
 | 	I915_WRITE(GEN6_RC_CONTROL, | 
 | 		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static void valleyview_enable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); | 
 | 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); | 
 | 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); | 
 | 	I915_WRITE(GEN6_RP_UP_EI, 66000); | 
 | 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); | 
 |  | 
 | 	I915_WRITE(GEN6_RP_CONTROL, | 
 | 		   GEN6_RP_MEDIA_TURBO | | 
 | 		   GEN6_RP_MEDIA_HW_NORMAL_MODE | | 
 | 		   GEN6_RP_MEDIA_IS_GFX | | 
 | 		   GEN6_RP_ENABLE | | 
 | 		   GEN6_RP_UP_BUSY_AVG | | 
 | 		   GEN6_RP_DOWN_IDLE_CONT); | 
 |  | 
 | 	/* Setting Fixed Bias */ | 
 | 	val = VLV_OVERRIDE_EN | | 
 | 		  VLV_SOC_TDP_EN | | 
 | 		  VLV_BIAS_CPU_125_SOC_875; | 
 | 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val); | 
 |  | 
 | 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); | 
 |  | 
 | 	/* RPS code assumes GPLL is used */ | 
 | 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); | 
 |  | 
 | 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); | 
 | 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); | 
 |  | 
 | 	reset_rps(dev_priv, valleyview_set_rps); | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | static unsigned long intel_pxfreq(u32 vidfreq) | 
 | { | 
 | 	unsigned long freq; | 
 | 	int div = (vidfreq & 0x3f0000) >> 16; | 
 | 	int post = (vidfreq & 0x3000) >> 12; | 
 | 	int pre = (vidfreq & 0x7); | 
 |  | 
 | 	if (!pre) | 
 | 		return 0; | 
 |  | 
 | 	freq = ((div * 133333) / ((1<<post) * pre)); | 
 |  | 
 | 	return freq; | 
 | } | 
 |  | 
 | static const struct cparams { | 
 | 	u16 i; | 
 | 	u16 t; | 
 | 	u16 m; | 
 | 	u16 c; | 
 | } cparams[] = { | 
 | 	{ 1, 1333, 301, 28664 }, | 
 | 	{ 1, 1066, 294, 24460 }, | 
 | 	{ 1, 800, 294, 25192 }, | 
 | 	{ 0, 1333, 276, 27605 }, | 
 | 	{ 0, 1066, 276, 27605 }, | 
 | 	{ 0, 800, 231, 23784 }, | 
 | }; | 
 |  | 
 | static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u64 total_count, diff, ret; | 
 | 	u32 count1, count2, count3, m = 0, c = 0; | 
 | 	unsigned long now = jiffies_to_msecs(jiffies), diff1; | 
 | 	int i; | 
 |  | 
 | 	lockdep_assert_held(&mchdev_lock); | 
 |  | 
 | 	diff1 = now - dev_priv->ips.last_time1; | 
 |  | 
 | 	/* Prevent division-by-zero if we are asking too fast. | 
 | 	 * Also, we don't get interesting results if we are polling | 
 | 	 * faster than once in 10ms, so just return the saved value | 
 | 	 * in such cases. | 
 | 	 */ | 
 | 	if (diff1 <= 10) | 
 | 		return dev_priv->ips.chipset_power; | 
 |  | 
 | 	count1 = I915_READ(DMIEC); | 
 | 	count2 = I915_READ(DDREC); | 
 | 	count3 = I915_READ(CSIEC); | 
 |  | 
 | 	total_count = count1 + count2 + count3; | 
 |  | 
 | 	/* FIXME: handle per-counter overflow */ | 
 | 	if (total_count < dev_priv->ips.last_count1) { | 
 | 		diff = ~0UL - dev_priv->ips.last_count1; | 
 | 		diff += total_count; | 
 | 	} else { | 
 | 		diff = total_count - dev_priv->ips.last_count1; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(cparams); i++) { | 
 | 		if (cparams[i].i == dev_priv->ips.c_m && | 
 | 		    cparams[i].t == dev_priv->ips.r_t) { | 
 | 			m = cparams[i].m; | 
 | 			c = cparams[i].c; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	diff = div_u64(diff, diff1); | 
 | 	ret = ((m * diff) + c); | 
 | 	ret = div_u64(ret, 10); | 
 |  | 
 | 	dev_priv->ips.last_count1 = total_count; | 
 | 	dev_priv->ips.last_time1 = now; | 
 |  | 
 | 	dev_priv->ips.chipset_power = ret; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long i915_chipset_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	if (!IS_GEN5(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 |  | 
 | 	val = __i915_chipset_val(dev_priv); | 
 |  | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | unsigned long i915_mch_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	unsigned long m, x, b; | 
 | 	u32 tsfs; | 
 |  | 
 | 	tsfs = I915_READ(TSFS); | 
 |  | 
 | 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT); | 
 | 	x = I915_READ8(TR1); | 
 |  | 
 | 	b = tsfs & TSFS_INTR_MASK; | 
 |  | 
 | 	return ((m * x) / 127) - b; | 
 | } | 
 |  | 
 | static int _pxvid_to_vd(u8 pxvid) | 
 | { | 
 | 	if (pxvid == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (pxvid >= 8 && pxvid < 31) | 
 | 		pxvid = 31; | 
 |  | 
 | 	return (pxvid + 2) * 125; | 
 | } | 
 |  | 
 | static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid) | 
 | { | 
 | 	const int vd = _pxvid_to_vd(pxvid); | 
 | 	const int vm = vd - 1125; | 
 |  | 
 | 	if (INTEL_INFO(dev_priv)->is_mobile) | 
 | 		return vm > 0 ? vm : 0; | 
 |  | 
 | 	return vd; | 
 | } | 
 |  | 
 | static void __i915_update_gfx_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u64 now, diff, diffms; | 
 | 	u32 count; | 
 |  | 
 | 	lockdep_assert_held(&mchdev_lock); | 
 |  | 
 | 	now = ktime_get_raw_ns(); | 
 | 	diffms = now - dev_priv->ips.last_time2; | 
 | 	do_div(diffms, NSEC_PER_MSEC); | 
 |  | 
 | 	/* Don't divide by 0 */ | 
 | 	if (!diffms) | 
 | 		return; | 
 |  | 
 | 	count = I915_READ(GFXEC); | 
 |  | 
 | 	if (count < dev_priv->ips.last_count2) { | 
 | 		diff = ~0UL - dev_priv->ips.last_count2; | 
 | 		diff += count; | 
 | 	} else { | 
 | 		diff = count - dev_priv->ips.last_count2; | 
 | 	} | 
 |  | 
 | 	dev_priv->ips.last_count2 = count; | 
 | 	dev_priv->ips.last_time2 = now; | 
 |  | 
 | 	/* More magic constants... */ | 
 | 	diff = diff * 1181; | 
 | 	diff = div_u64(diff, diffms * 10); | 
 | 	dev_priv->ips.gfx_power = diff; | 
 | } | 
 |  | 
 | void i915_update_gfx_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (!IS_GEN5(dev_priv)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 |  | 
 | 	__i915_update_gfx_val(dev_priv); | 
 |  | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 | } | 
 |  | 
 | static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	unsigned long t, corr, state1, corr2, state2; | 
 | 	u32 pxvid, ext_v; | 
 |  | 
 | 	lockdep_assert_held(&mchdev_lock); | 
 |  | 
 | 	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq)); | 
 | 	pxvid = (pxvid >> 24) & 0x7f; | 
 | 	ext_v = pvid_to_extvid(dev_priv, pxvid); | 
 |  | 
 | 	state1 = ext_v; | 
 |  | 
 | 	t = i915_mch_val(dev_priv); | 
 |  | 
 | 	/* Revel in the empirically derived constants */ | 
 |  | 
 | 	/* Correction factor in 1/100000 units */ | 
 | 	if (t > 80) | 
 | 		corr = ((t * 2349) + 135940); | 
 | 	else if (t >= 50) | 
 | 		corr = ((t * 964) + 29317); | 
 | 	else /* < 50 */ | 
 | 		corr = ((t * 301) + 1004); | 
 |  | 
 | 	corr = corr * ((150142 * state1) / 10000 - 78642); | 
 | 	corr /= 100000; | 
 | 	corr2 = (corr * dev_priv->ips.corr); | 
 |  | 
 | 	state2 = (corr2 * state1) / 10000; | 
 | 	state2 /= 100; /* convert to mW */ | 
 |  | 
 | 	__i915_update_gfx_val(dev_priv); | 
 |  | 
 | 	return dev_priv->ips.gfx_power + state2; | 
 | } | 
 |  | 
 | unsigned long i915_gfx_val(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	if (!IS_GEN5(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 |  | 
 | 	val = __i915_gfx_val(dev_priv); | 
 |  | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_read_mch_val - return value for IPS use | 
 |  * | 
 |  * Calculate and return a value for the IPS driver to use when deciding whether | 
 |  * we have thermal and power headroom to increase CPU or GPU power budget. | 
 |  */ | 
 | unsigned long i915_read_mch_val(void) | 
 | { | 
 | 	struct drm_i915_private *dev_priv; | 
 | 	unsigned long chipset_val, graphics_val, ret = 0; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	if (!i915_mch_dev) | 
 | 		goto out_unlock; | 
 | 	dev_priv = i915_mch_dev; | 
 |  | 
 | 	chipset_val = __i915_chipset_val(dev_priv); | 
 | 	graphics_val = __i915_gfx_val(dev_priv); | 
 |  | 
 | 	ret = chipset_val + graphics_val; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(i915_read_mch_val); | 
 |  | 
 | /** | 
 |  * i915_gpu_raise - raise GPU frequency limit | 
 |  * | 
 |  * Raise the limit; IPS indicates we have thermal headroom. | 
 |  */ | 
 | bool i915_gpu_raise(void) | 
 | { | 
 | 	struct drm_i915_private *dev_priv; | 
 | 	bool ret = true; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	if (!i915_mch_dev) { | 
 | 		ret = false; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	dev_priv = i915_mch_dev; | 
 |  | 
 | 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax) | 
 | 		dev_priv->ips.max_delay--; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(i915_gpu_raise); | 
 |  | 
 | /** | 
 |  * i915_gpu_lower - lower GPU frequency limit | 
 |  * | 
 |  * IPS indicates we're close to a thermal limit, so throttle back the GPU | 
 |  * frequency maximum. | 
 |  */ | 
 | bool i915_gpu_lower(void) | 
 | { | 
 | 	struct drm_i915_private *dev_priv; | 
 | 	bool ret = true; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	if (!i915_mch_dev) { | 
 | 		ret = false; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	dev_priv = i915_mch_dev; | 
 |  | 
 | 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay) | 
 | 		dev_priv->ips.max_delay++; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(i915_gpu_lower); | 
 |  | 
 | /** | 
 |  * i915_gpu_busy - indicate GPU business to IPS | 
 |  * | 
 |  * Tell the IPS driver whether or not the GPU is busy. | 
 |  */ | 
 | bool i915_gpu_busy(void) | 
 | { | 
 | 	bool ret = false; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	if (i915_mch_dev) | 
 | 		ret = i915_mch_dev->gt.awake; | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(i915_gpu_busy); | 
 |  | 
 | /** | 
 |  * i915_gpu_turbo_disable - disable graphics turbo | 
 |  * | 
 |  * Disable graphics turbo by resetting the max frequency and setting the | 
 |  * current frequency to the default. | 
 |  */ | 
 | bool i915_gpu_turbo_disable(void) | 
 | { | 
 | 	struct drm_i915_private *dev_priv; | 
 | 	bool ret = true; | 
 |  | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	if (!i915_mch_dev) { | 
 | 		ret = false; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	dev_priv = i915_mch_dev; | 
 |  | 
 | 	dev_priv->ips.max_delay = dev_priv->ips.fstart; | 
 |  | 
 | 	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart)) | 
 | 		ret = false; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); | 
 |  | 
 | /** | 
 |  * Tells the intel_ips driver that the i915 driver is now loaded, if | 
 |  * IPS got loaded first. | 
 |  * | 
 |  * This awkward dance is so that neither module has to depend on the | 
 |  * other in order for IPS to do the appropriate communication of | 
 |  * GPU turbo limits to i915. | 
 |  */ | 
 | static void | 
 | ips_ping_for_i915_load(void) | 
 | { | 
 | 	void (*link)(void); | 
 |  | 
 | 	link = symbol_get(ips_link_to_i915_driver); | 
 | 	if (link) { | 
 | 		link(); | 
 | 		symbol_put(ips_link_to_i915_driver); | 
 | 	} | 
 | } | 
 |  | 
 | void intel_gpu_ips_init(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* We only register the i915 ips part with intel-ips once everything is | 
 | 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */ | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	i915_mch_dev = dev_priv; | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 |  | 
 | 	ips_ping_for_i915_load(); | 
 | } | 
 |  | 
 | void intel_gpu_ips_teardown(void) | 
 | { | 
 | 	spin_lock_irq(&mchdev_lock); | 
 | 	i915_mch_dev = NULL; | 
 | 	spin_unlock_irq(&mchdev_lock); | 
 | } | 
 |  | 
 | static void intel_init_emon(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 lcfuse; | 
 | 	u8 pxw[16]; | 
 | 	int i; | 
 |  | 
 | 	/* Disable to program */ | 
 | 	I915_WRITE(ECR, 0); | 
 | 	POSTING_READ(ECR); | 
 |  | 
 | 	/* Program energy weights for various events */ | 
 | 	I915_WRITE(SDEW, 0x15040d00); | 
 | 	I915_WRITE(CSIEW0, 0x007f0000); | 
 | 	I915_WRITE(CSIEW1, 0x1e220004); | 
 | 	I915_WRITE(CSIEW2, 0x04000004); | 
 |  | 
 | 	for (i = 0; i < 5; i++) | 
 | 		I915_WRITE(PEW(i), 0); | 
 | 	for (i = 0; i < 3; i++) | 
 | 		I915_WRITE(DEW(i), 0); | 
 |  | 
 | 	/* Program P-state weights to account for frequency power adjustment */ | 
 | 	for (i = 0; i < 16; i++) { | 
 | 		u32 pxvidfreq = I915_READ(PXVFREQ(i)); | 
 | 		unsigned long freq = intel_pxfreq(pxvidfreq); | 
 | 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> | 
 | 			PXVFREQ_PX_SHIFT; | 
 | 		unsigned long val; | 
 |  | 
 | 		val = vid * vid; | 
 | 		val *= (freq / 1000); | 
 | 		val *= 255; | 
 | 		val /= (127*127*900); | 
 | 		if (val > 0xff) | 
 | 			DRM_ERROR("bad pxval: %ld\n", val); | 
 | 		pxw[i] = val; | 
 | 	} | 
 | 	/* Render standby states get 0 weight */ | 
 | 	pxw[14] = 0; | 
 | 	pxw[15] = 0; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | | 
 | 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); | 
 | 		I915_WRITE(PXW(i), val); | 
 | 	} | 
 |  | 
 | 	/* Adjust magic regs to magic values (more experimental results) */ | 
 | 	I915_WRITE(OGW0, 0); | 
 | 	I915_WRITE(OGW1, 0); | 
 | 	I915_WRITE(EG0, 0x00007f00); | 
 | 	I915_WRITE(EG1, 0x0000000e); | 
 | 	I915_WRITE(EG2, 0x000e0000); | 
 | 	I915_WRITE(EG3, 0x68000300); | 
 | 	I915_WRITE(EG4, 0x42000000); | 
 | 	I915_WRITE(EG5, 0x00140031); | 
 | 	I915_WRITE(EG6, 0); | 
 | 	I915_WRITE(EG7, 0); | 
 |  | 
 | 	for (i = 0; i < 8; i++) | 
 | 		I915_WRITE(PXWL(i), 0); | 
 |  | 
 | 	/* Enable PMON + select events */ | 
 | 	I915_WRITE(ECR, 0x80000019); | 
 |  | 
 | 	lcfuse = I915_READ(LCFUSE02); | 
 |  | 
 | 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK); | 
 | } | 
 |  | 
 | static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	return !I915_READ(GEN8_RC6_CTX_INFO); | 
 | } | 
 |  | 
 | static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915) | 
 | { | 
 | 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) | 
 | 		return; | 
 |  | 
 | 	if (i915_rc6_ctx_corrupted(i915)) { | 
 | 		DRM_INFO("RC6 context corrupted, disabling runtime power management\n"); | 
 | 		i915->gt_pm.rc6.ctx_corrupted = true; | 
 | 		intel_runtime_pm_get(i915); | 
 | 	} | 
 | } | 
 |  | 
 | static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915) | 
 | { | 
 | 	if (i915->gt_pm.rc6.ctx_corrupted) { | 
 | 		intel_runtime_pm_put(i915); | 
 | 		i915->gt_pm.rc6.ctx_corrupted = false; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA | 
 |  * @i915: i915 device | 
 |  * | 
 |  * Perform any steps needed to clean up the RC6 CTX WA before system suspend. | 
 |  */ | 
 | void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915) | 
 | { | 
 | 	if (i915->gt_pm.rc6.ctx_corrupted) | 
 | 		intel_runtime_pm_put(i915); | 
 | } | 
 |  | 
 | /** | 
 |  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA | 
 |  * @i915: i915 device | 
 |  * | 
 |  * Perform any steps needed to re-init the RC6 CTX WA after system resume. | 
 |  */ | 
 | void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915) | 
 | { | 
 | 	if (!i915->gt_pm.rc6.ctx_corrupted) | 
 | 		return; | 
 |  | 
 | 	if (i915_rc6_ctx_corrupted(i915)) { | 
 | 		intel_runtime_pm_get(i915); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	DRM_INFO("RC6 context restored, re-enabling runtime power management\n"); | 
 | 	i915->gt_pm.rc6.ctx_corrupted = false; | 
 | } | 
 |  | 
 | static void intel_disable_rc6(struct drm_i915_private *dev_priv); | 
 |  | 
 | /** | 
 |  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption | 
 |  * @i915: i915 device | 
 |  * | 
 |  * Check if an RC6 CTX corruption has happened since the last check and if so | 
 |  * disable RC6 and runtime power management. | 
 |  * | 
 |  * Return false if no context corruption has happened since the last call of | 
 |  * this function, true otherwise. | 
 | */ | 
 | bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915) | 
 | { | 
 | 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) | 
 | 		return false; | 
 |  | 
 | 	if (i915->gt_pm.rc6.ctx_corrupted) | 
 | 		return false; | 
 |  | 
 | 	if (!i915_rc6_ctx_corrupted(i915)) | 
 | 		return false; | 
 |  | 
 | 	DRM_NOTE("RC6 context corruption, disabling runtime power management\n"); | 
 |  | 
 | 	intel_disable_rc6(i915); | 
 | 	i915->gt_pm.rc6.ctx_corrupted = true; | 
 | 	intel_runtime_pm_get_noresume(i915); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void intel_init_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* | 
 | 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a | 
 | 	 * requirement. | 
 | 	 */ | 
 | 	if (!sanitize_rc6(dev_priv)) { | 
 | 		DRM_INFO("RC6 disabled, disabling runtime PM support\n"); | 
 | 		intel_runtime_pm_get(dev_priv); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	i915_rc6_ctx_wa_init(dev_priv); | 
 |  | 
 | 	/* Initialize RPS limits (for userspace) */ | 
 | 	if (IS_CHERRYVIEW(dev_priv)) | 
 | 		cherryview_init_gt_powersave(dev_priv); | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		valleyview_init_gt_powersave(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 6) | 
 | 		gen6_init_rps_frequencies(dev_priv); | 
 |  | 
 | 	/* Derive initial user preferences/limits from the hardware limits */ | 
 | 	rps->idle_freq = rps->min_freq; | 
 | 	rps->cur_freq = rps->idle_freq; | 
 |  | 
 | 	rps->max_freq_softlimit = rps->max_freq; | 
 | 	rps->min_freq_softlimit = rps->min_freq; | 
 |  | 
 | 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		rps->min_freq_softlimit = | 
 | 			max_t(int, | 
 | 			      rps->efficient_freq, | 
 | 			      intel_freq_opcode(dev_priv, 450)); | 
 |  | 
 | 	/* After setting max-softlimit, find the overclock max freq */ | 
 | 	if (IS_GEN6(dev_priv) || | 
 | 	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) { | 
 | 		u32 params = 0; | 
 |  | 
 | 		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms); | 
 | 		if (params & BIT(31)) { /* OC supported */ | 
 | 			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n", | 
 | 					 (rps->max_freq & 0xff) * 50, | 
 | 					 (params & 0xff) * 50); | 
 | 			rps->max_freq = params & 0xff; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Finally allow us to boost to max by default */ | 
 | 	rps->boost_freq = rps->max_freq; | 
 |  | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (IS_VALLEYVIEW(dev_priv)) | 
 | 		valleyview_cleanup_gt_powersave(dev_priv); | 
 |  | 
 | 	i915_rc6_ctx_wa_cleanup(dev_priv); | 
 |  | 
 | 	if (!HAS_RC6(dev_priv)) | 
 | 		intel_runtime_pm_put(dev_priv); | 
 | } | 
 |  | 
 | /** | 
 |  * intel_suspend_gt_powersave - suspend PM work and helper threads | 
 |  * @dev_priv: i915 device | 
 |  * | 
 |  * We don't want to disable RC6 or other features here, we just want | 
 |  * to make sure any work we've queued has finished and won't bother | 
 |  * us while we're suspended. | 
 |  */ | 
 | void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) < 6) | 
 | 		return; | 
 |  | 
 | 	/* gen6_rps_idle() will be called later to disable interrupts */ | 
 | } | 
 |  | 
 | void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */ | 
 | 	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */ | 
 | 	intel_disable_gt_powersave(dev_priv); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 11) | 
 | 		gen11_reset_rps_interrupts(dev_priv); | 
 | 	else | 
 | 		gen6_reset_rps_interrupts(dev_priv); | 
 | } | 
 |  | 
 | static inline void intel_disable_llc_pstate(struct drm_i915_private *i915) | 
 | { | 
 | 	lockdep_assert_held(&i915->pcu_lock); | 
 |  | 
 | 	if (!i915->gt_pm.llc_pstate.enabled) | 
 | 		return; | 
 |  | 
 | 	/* Currently there is no HW configuration to be done to disable. */ | 
 |  | 
 | 	i915->gt_pm.llc_pstate.enabled = false; | 
 | } | 
 |  | 
 | static void __intel_disable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	lockdep_assert_held(&dev_priv->pcu_lock); | 
 |  | 
 | 	if (!dev_priv->gt_pm.rc6.enabled) | 
 | 		return; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 9) | 
 | 		gen9_disable_rc6(dev_priv); | 
 | 	else if (IS_CHERRYVIEW(dev_priv)) | 
 | 		cherryview_disable_rc6(dev_priv); | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		valleyview_disable_rc6(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 6) | 
 | 		gen6_disable_rc6(dev_priv); | 
 |  | 
 | 	dev_priv->gt_pm.rc6.enabled = false; | 
 | } | 
 |  | 
 | static void intel_disable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 | 	__intel_disable_rc6(dev_priv); | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | static void intel_disable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	lockdep_assert_held(&dev_priv->pcu_lock); | 
 |  | 
 | 	if (!dev_priv->gt_pm.rps.enabled) | 
 | 		return; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 9) | 
 | 		gen9_disable_rps(dev_priv); | 
 | 	else if (IS_CHERRYVIEW(dev_priv)) | 
 | 		cherryview_disable_rps(dev_priv); | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		valleyview_disable_rps(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 6) | 
 | 		gen6_disable_rps(dev_priv); | 
 | 	else if (IS_IRONLAKE_M(dev_priv)) | 
 | 		ironlake_disable_drps(dev_priv); | 
 |  | 
 | 	dev_priv->gt_pm.rps.enabled = false; | 
 | } | 
 |  | 
 | void intel_disable_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	__intel_disable_rc6(dev_priv); | 
 | 	intel_disable_rps(dev_priv); | 
 | 	if (HAS_LLC(dev_priv)) | 
 | 		intel_disable_llc_pstate(dev_priv); | 
 |  | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | static inline void intel_enable_llc_pstate(struct drm_i915_private *i915) | 
 | { | 
 | 	lockdep_assert_held(&i915->pcu_lock); | 
 |  | 
 | 	if (i915->gt_pm.llc_pstate.enabled) | 
 | 		return; | 
 |  | 
 | 	gen6_update_ring_freq(i915); | 
 |  | 
 | 	i915->gt_pm.llc_pstate.enabled = true; | 
 | } | 
 |  | 
 | static void intel_enable_rc6(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	lockdep_assert_held(&dev_priv->pcu_lock); | 
 |  | 
 | 	if (dev_priv->gt_pm.rc6.enabled) | 
 | 		return; | 
 |  | 
 | 	if (dev_priv->gt_pm.rc6.ctx_corrupted) | 
 | 		return; | 
 |  | 
 | 	if (IS_CHERRYVIEW(dev_priv)) | 
 | 		cherryview_enable_rc6(dev_priv); | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		valleyview_enable_rc6(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 9) | 
 | 		gen9_enable_rc6(dev_priv); | 
 | 	else if (IS_BROADWELL(dev_priv)) | 
 | 		gen8_enable_rc6(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 6) | 
 | 		gen6_enable_rc6(dev_priv); | 
 |  | 
 | 	dev_priv->gt_pm.rc6.enabled = true; | 
 | } | 
 |  | 
 | static void intel_enable_rps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	lockdep_assert_held(&dev_priv->pcu_lock); | 
 |  | 
 | 	if (rps->enabled) | 
 | 		return; | 
 |  | 
 | 	if (IS_CHERRYVIEW(dev_priv)) { | 
 | 		cherryview_enable_rps(dev_priv); | 
 | 	} else if (IS_VALLEYVIEW(dev_priv)) { | 
 | 		valleyview_enable_rps(dev_priv); | 
 | 	} else if (INTEL_GEN(dev_priv) >= 9) { | 
 | 		gen9_enable_rps(dev_priv); | 
 | 	} else if (IS_BROADWELL(dev_priv)) { | 
 | 		gen8_enable_rps(dev_priv); | 
 | 	} else if (INTEL_GEN(dev_priv) >= 6) { | 
 | 		gen6_enable_rps(dev_priv); | 
 | 	} else if (IS_IRONLAKE_M(dev_priv)) { | 
 | 		ironlake_enable_drps(dev_priv); | 
 | 		intel_init_emon(dev_priv); | 
 | 	} | 
 |  | 
 | 	WARN_ON(rps->max_freq < rps->min_freq); | 
 | 	WARN_ON(rps->idle_freq > rps->max_freq); | 
 |  | 
 | 	WARN_ON(rps->efficient_freq < rps->min_freq); | 
 | 	WARN_ON(rps->efficient_freq > rps->max_freq); | 
 |  | 
 | 	rps->enabled = true; | 
 | } | 
 |  | 
 | void intel_enable_gt_powersave(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* Powersaving is controlled by the host when inside a VM */ | 
 | 	if (intel_vgpu_active(dev_priv)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&dev_priv->pcu_lock); | 
 |  | 
 | 	if (HAS_RC6(dev_priv)) | 
 | 		intel_enable_rc6(dev_priv); | 
 | 	intel_enable_rps(dev_priv); | 
 | 	if (HAS_LLC(dev_priv)) | 
 | 		intel_enable_llc_pstate(dev_priv); | 
 |  | 
 | 	mutex_unlock(&dev_priv->pcu_lock); | 
 | } | 
 |  | 
 | static void ibx_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* | 
 | 	 * On Ibex Peak and Cougar Point, we need to disable clock | 
 | 	 * gating for the panel power sequencer or it will fail to | 
 | 	 * start up when no ports are active. | 
 | 	 */ | 
 | 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); | 
 | } | 
 |  | 
 | static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	enum pipe pipe; | 
 |  | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		I915_WRITE(DSPCNTR(pipe), | 
 | 			   I915_READ(DSPCNTR(pipe)) | | 
 | 			   DISPPLANE_TRICKLE_FEED_DISABLE); | 
 |  | 
 | 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe))); | 
 | 		POSTING_READ(DSPSURF(pipe)); | 
 | 	} | 
 | } | 
 |  | 
 | static void ilk_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; | 
 |  | 
 | 	/* | 
 | 	 * Required for FBC | 
 | 	 * WaFbcDisableDpfcClockGating:ilk | 
 | 	 */ | 
 | 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | | 
 | 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE | | 
 | 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE; | 
 |  | 
 | 	I915_WRITE(PCH_3DCGDIS0, | 
 | 		   MARIUNIT_CLOCK_GATE_DISABLE | | 
 | 		   SVSMUNIT_CLOCK_GATE_DISABLE); | 
 | 	I915_WRITE(PCH_3DCGDIS1, | 
 | 		   VFMUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* | 
 | 	 * According to the spec the following bits should be set in | 
 | 	 * order to enable memory self-refresh | 
 | 	 * The bit 22/21 of 0x42004 | 
 | 	 * The bit 5 of 0x42020 | 
 | 	 * The bit 15 of 0x45000 | 
 | 	 */ | 
 | 	I915_WRITE(ILK_DISPLAY_CHICKEN2, | 
 | 		   (I915_READ(ILK_DISPLAY_CHICKEN2) | | 
 | 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL)); | 
 | 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; | 
 | 	I915_WRITE(DISP_ARB_CTL, | 
 | 		   (I915_READ(DISP_ARB_CTL) | | 
 | 		    DISP_FBC_WM_DIS)); | 
 |  | 
 | 	/* | 
 | 	 * Based on the document from hardware guys the following bits | 
 | 	 * should be set unconditionally in order to enable FBC. | 
 | 	 * The bit 22 of 0x42000 | 
 | 	 * The bit 22 of 0x42004 | 
 | 	 * The bit 7,8,9 of 0x42020. | 
 | 	 */ | 
 | 	if (IS_IRONLAKE_M(dev_priv)) { | 
 | 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */ | 
 | 		I915_WRITE(ILK_DISPLAY_CHICKEN1, | 
 | 			   I915_READ(ILK_DISPLAY_CHICKEN1) | | 
 | 			   ILK_FBCQ_DIS); | 
 | 		I915_WRITE(ILK_DISPLAY_CHICKEN2, | 
 | 			   I915_READ(ILK_DISPLAY_CHICKEN2) | | 
 | 			   ILK_DPARB_GATE); | 
 | 	} | 
 |  | 
 | 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); | 
 |  | 
 | 	I915_WRITE(ILK_DISPLAY_CHICKEN2, | 
 | 		   I915_READ(ILK_DISPLAY_CHICKEN2) | | 
 | 		   ILK_ELPIN_409_SELECT); | 
 | 	I915_WRITE(_3D_CHICKEN2, | 
 | 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 | | 
 | 		   _3D_CHICKEN2_WM_READ_PIPELINED); | 
 |  | 
 | 	/* WaDisableRenderCachePipelinedFlush:ilk */ | 
 | 	I915_WRITE(CACHE_MODE_0, | 
 | 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:ilk */ | 
 | 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 |  | 
 | 	g4x_disable_trickle_feed(dev_priv); | 
 |  | 
 | 	ibx_init_clock_gating(dev_priv); | 
 | } | 
 |  | 
 | static void cpt_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int pipe; | 
 | 	uint32_t val; | 
 |  | 
 | 	/* | 
 | 	 * On Ibex Peak and Cougar Point, we need to disable clock | 
 | 	 * gating for the panel power sequencer or it will fail to | 
 | 	 * start up when no ports are active. | 
 | 	 */ | 
 | 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE | | 
 | 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE | | 
 | 		   PCH_CPUNIT_CLOCK_GATE_DISABLE); | 
 | 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | | 
 | 		   DPLS_EDP_PPS_FIX_DIS); | 
 | 	/* The below fixes the weird display corruption, a few pixels shifted | 
 | 	 * downward, on (only) LVDS of some HP laptops with IVY. | 
 | 	 */ | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		val = I915_READ(TRANS_CHICKEN2(pipe)); | 
 | 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE; | 
 | 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED; | 
 | 		if (dev_priv->vbt.fdi_rx_polarity_inverted) | 
 | 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED; | 
 | 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; | 
 | 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER; | 
 | 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH; | 
 | 		I915_WRITE(TRANS_CHICKEN2(pipe), val); | 
 | 	} | 
 | 	/* WADP0ClockGatingDisable */ | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		I915_WRITE(TRANS_CHICKEN1(pipe), | 
 | 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); | 
 | 	} | 
 | } | 
 |  | 
 | static void gen6_check_mch_setup(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t tmp; | 
 |  | 
 | 	tmp = I915_READ(MCH_SSKPD); | 
 | 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) | 
 | 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n", | 
 | 			      tmp); | 
 | } | 
 |  | 
 | static void gen6_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; | 
 |  | 
 | 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); | 
 |  | 
 | 	I915_WRITE(ILK_DISPLAY_CHICKEN2, | 
 | 		   I915_READ(ILK_DISPLAY_CHICKEN2) | | 
 | 		   ILK_ELPIN_409_SELECT); | 
 |  | 
 | 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */ | 
 | 	I915_WRITE(_3D_CHICKEN, | 
 | 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:snb */ | 
 | 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 |  | 
 | 	/* | 
 | 	 * BSpec recoomends 8x4 when MSAA is used, | 
 | 	 * however in practice 16x4 seems fastest. | 
 | 	 * | 
 | 	 * Note that PS/WM thread counts depend on the WIZ hashing | 
 | 	 * disable bit, which we don't touch here, but it's good | 
 | 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). | 
 | 	 */ | 
 | 	I915_WRITE(GEN6_GT_MODE, | 
 | 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); | 
 |  | 
 | 	I915_WRITE(CACHE_MODE_0, | 
 | 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); | 
 |  | 
 | 	I915_WRITE(GEN6_UCGCTL1, | 
 | 		   I915_READ(GEN6_UCGCTL1) | | 
 | 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE | | 
 | 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock | 
 | 	 * gating disable must be set.  Failure to set it results in | 
 | 	 * flickering pixels due to Z write ordering failures after | 
 | 	 * some amount of runtime in the Mesa "fire" demo, and Unigine | 
 | 	 * Sanctuary and Tropics, and apparently anything else with | 
 | 	 * alpha test or pixel discard. | 
 | 	 * | 
 | 	 * According to the spec, bit 11 (RCCUNIT) must also be set, | 
 | 	 * but we didn't debug actual testcases to find it out. | 
 | 	 * | 
 | 	 * WaDisableRCCUnitClockGating:snb | 
 | 	 * WaDisableRCPBUnitClockGating:snb | 
 | 	 */ | 
 | 	I915_WRITE(GEN6_UCGCTL2, | 
 | 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | | 
 | 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaStripsFansDisableFastClipPerformanceFix:snb */ | 
 | 	I915_WRITE(_3D_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL)); | 
 |  | 
 | 	/* | 
 | 	 * Bspec says: | 
 | 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and | 
 | 	 * 3DSTATE_SF number of SF output attributes is more than 16." | 
 | 	 */ | 
 | 	I915_WRITE(_3D_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH)); | 
 |  | 
 | 	/* | 
 | 	 * According to the spec the following bits should be | 
 | 	 * set in order to enable memory self-refresh and fbc: | 
 | 	 * The bit21 and bit22 of 0x42000 | 
 | 	 * The bit21 and bit22 of 0x42004 | 
 | 	 * The bit5 and bit7 of 0x42020 | 
 | 	 * The bit14 of 0x70180 | 
 | 	 * The bit14 of 0x71180 | 
 | 	 * | 
 | 	 * WaFbcAsynchFlipDisableFbcQueue:snb | 
 | 	 */ | 
 | 	I915_WRITE(ILK_DISPLAY_CHICKEN1, | 
 | 		   I915_READ(ILK_DISPLAY_CHICKEN1) | | 
 | 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); | 
 | 	I915_WRITE(ILK_DISPLAY_CHICKEN2, | 
 | 		   I915_READ(ILK_DISPLAY_CHICKEN2) | | 
 | 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL); | 
 | 	I915_WRITE(ILK_DSPCLK_GATE_D, | 
 | 		   I915_READ(ILK_DSPCLK_GATE_D) | | 
 | 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  | | 
 | 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE); | 
 |  | 
 | 	g4x_disable_trickle_feed(dev_priv); | 
 |  | 
 | 	cpt_init_clock_gating(dev_priv); | 
 |  | 
 | 	gen6_check_mch_setup(dev_priv); | 
 | } | 
 |  | 
 | static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE); | 
 |  | 
 | 	/* | 
 | 	 * WaVSThreadDispatchOverride:ivb,vlv | 
 | 	 * | 
 | 	 * This actually overrides the dispatch | 
 | 	 * mode for all thread types. | 
 | 	 */ | 
 | 	reg &= ~GEN7_FF_SCHED_MASK; | 
 | 	reg |= GEN7_FF_TS_SCHED_HW; | 
 | 	reg |= GEN7_FF_VS_SCHED_HW; | 
 | 	reg |= GEN7_FF_DS_SCHED_HW; | 
 |  | 
 | 	I915_WRITE(GEN7_FF_THREAD_MODE, reg); | 
 | } | 
 |  | 
 | static void lpt_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* | 
 | 	 * TODO: this bit should only be enabled when really needed, then | 
 | 	 * disabled when not needed anymore in order to save power. | 
 | 	 */ | 
 | 	if (HAS_PCH_LPT_LP(dev_priv)) | 
 | 		I915_WRITE(SOUTH_DSPCLK_GATE_D, | 
 | 			   I915_READ(SOUTH_DSPCLK_GATE_D) | | 
 | 			   PCH_LP_PARTITION_LEVEL_DISABLE); | 
 |  | 
 | 	/* WADPOClockGatingDisable:hsw */ | 
 | 	I915_WRITE(TRANS_CHICKEN1(PIPE_A), | 
 | 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) | | 
 | 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); | 
 | } | 
 |  | 
 | static void lpt_suspend_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (HAS_PCH_LPT_LP(dev_priv)) { | 
 | 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D); | 
 |  | 
 | 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; | 
 | 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val); | 
 | 	} | 
 | } | 
 |  | 
 | static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv, | 
 | 				   int general_prio_credits, | 
 | 				   int high_prio_credits) | 
 | { | 
 | 	u32 misccpctl; | 
 | 	u32 val; | 
 |  | 
 | 	/* WaTempDisableDOPClkGating:bdw */ | 
 | 	misccpctl = I915_READ(GEN7_MISCCPCTL); | 
 | 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); | 
 |  | 
 | 	val = I915_READ(GEN8_L3SQCREG1); | 
 | 	val &= ~L3_PRIO_CREDITS_MASK; | 
 | 	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits); | 
 | 	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits); | 
 | 	I915_WRITE(GEN8_L3SQCREG1, val); | 
 |  | 
 | 	/* | 
 | 	 * Wait at least 100 clocks before re-enabling clock gating. | 
 | 	 * See the definition of L3SQCREG1 in BSpec. | 
 | 	 */ | 
 | 	POSTING_READ(GEN8_L3SQCREG1); | 
 | 	udelay(1); | 
 | 	I915_WRITE(GEN7_MISCCPCTL, misccpctl); | 
 | } | 
 |  | 
 | static void icl_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* This is not an Wa. Enable to reduce Sampler power */ | 
 | 	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN, | 
 | 		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE); | 
 | } | 
 |  | 
 | static void cnp_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (!HAS_PCH_CNP(dev_priv)) | 
 | 		return; | 
 |  | 
 | 	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */ | 
 | 	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) | | 
 | 		   CNP_PWM_CGE_GATING_DISABLE); | 
 | } | 
 |  | 
 | static void cnl_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 val; | 
 | 	cnp_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* This is not an Wa. Enable for better image quality */ | 
 | 	I915_WRITE(_3D_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE)); | 
 |  | 
 | 	/* WaEnableChickenDCPR:cnl */ | 
 | 	I915_WRITE(GEN8_CHICKEN_DCPR_1, | 
 | 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); | 
 |  | 
 | 	/* WaFbcWakeMemOn:cnl */ | 
 | 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | | 
 | 		   DISP_FBC_MEMORY_WAKE); | 
 |  | 
 | 	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE); | 
 | 	/* ReadHitWriteOnlyDisable:cnl */ | 
 | 	val |= RCCUNIT_CLKGATE_DIS; | 
 | 	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */ | 
 | 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) | 
 | 		val |= SARBUNIT_CLKGATE_DIS; | 
 | 	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val); | 
 |  | 
 | 	/* Wa_2201832410:cnl */ | 
 | 	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE); | 
 | 	val |= GWUNIT_CLKGATE_DIS; | 
 | 	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val); | 
 |  | 
 | 	/* WaDisableVFclkgate:cnl */ | 
 | 	/* WaVFUnitClockGatingDisable:cnl */ | 
 | 	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE); | 
 | 	val |= VFUNIT_CLKGATE_DIS; | 
 | 	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val); | 
 | } | 
 |  | 
 | static void cfl_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	cnp_init_clock_gating(dev_priv); | 
 | 	gen9_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* WaFbcNukeOnHostModify:cfl */ | 
 | 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | | 
 | 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION); | 
 | } | 
 |  | 
 | static void kbl_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	gen9_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* WaDisableSDEUnitClockGating:kbl */ | 
 | 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) | 
 | 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | | 
 | 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaDisableGamClockGating:kbl */ | 
 | 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) | 
 | 		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | | 
 | 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaFbcNukeOnHostModify:kbl */ | 
 | 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | | 
 | 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION); | 
 | } | 
 |  | 
 | static void skl_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	gen9_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* WAC6entrylatency:skl */ | 
 | 	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) | | 
 | 		   FBC_LLC_FULLY_OPEN); | 
 |  | 
 | 	/* WaFbcNukeOnHostModify:skl */ | 
 | 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | | 
 | 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION); | 
 | } | 
 |  | 
 | static void bdw_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* The GTT cache must be disabled if the system is using 2M pages. */ | 
 | 	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv, | 
 | 						 I915_GTT_PAGE_SIZE_2M); | 
 | 	enum pipe pipe; | 
 |  | 
 | 	/* WaSwitchSolVfFArbitrationPriority:bdw */ | 
 | 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); | 
 |  | 
 | 	/* WaPsrDPAMaskVBlankInSRD:bdw */ | 
 | 	I915_WRITE(CHICKEN_PAR1_1, | 
 | 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD); | 
 |  | 
 | 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */ | 
 | 	for_each_pipe(dev_priv, pipe) { | 
 | 		I915_WRITE(CHICKEN_PIPESL_1(pipe), | 
 | 			   I915_READ(CHICKEN_PIPESL_1(pipe)) | | 
 | 			   BDW_DPRS_MASK_VBLANK_SRD); | 
 | 	} | 
 |  | 
 | 	/* WaVSRefCountFullforceMissDisable:bdw */ | 
 | 	/* WaDSRefCountFullforceMissDisable:bdw */ | 
 | 	I915_WRITE(GEN7_FF_THREAD_MODE, | 
 | 		   I915_READ(GEN7_FF_THREAD_MODE) & | 
 | 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); | 
 |  | 
 | 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, | 
 | 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); | 
 |  | 
 | 	/* WaDisableSDEUnitClockGating:bdw */ | 
 | 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | | 
 | 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaProgramL3SqcReg1Default:bdw */ | 
 | 	gen8_set_l3sqc_credits(dev_priv, 30, 2); | 
 |  | 
 | 	/* WaGttCachingOffByDefault:bdw */ | 
 | 	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); | 
 |  | 
 | 	/* WaKVMNotificationOnConfigChange:bdw */ | 
 | 	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1) | 
 | 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT); | 
 |  | 
 | 	lpt_init_clock_gating(dev_priv); | 
 |  | 
 | 	/* WaDisableDopClockGating:bdw | 
 | 	 * | 
 | 	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP | 
 | 	 * clock gating. | 
 | 	 */ | 
 | 	I915_WRITE(GEN6_UCGCTL1, | 
 | 		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE); | 
 | } | 
 |  | 
 | static void hsw_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* L3 caching of data atomics doesn't work -- disable it. */ | 
 | 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); | 
 | 	I915_WRITE(HSW_ROW_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE)); | 
 |  | 
 | 	/* This is required by WaCatErrorRejectionIssue:hsw */ | 
 | 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, | 
 | 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | | 
 | 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); | 
 |  | 
 | 	/* WaVSRefCountFullforceMissDisable:hsw */ | 
 | 	I915_WRITE(GEN7_FF_THREAD_MODE, | 
 | 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:hsw */ | 
 | 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 |  | 
 | 	/* enable HiZ Raw Stall Optimization */ | 
 | 	I915_WRITE(CACHE_MODE_0_GEN7, | 
 | 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE)); | 
 |  | 
 | 	/* WaDisable4x2SubspanOptimization:hsw */ | 
 | 	I915_WRITE(CACHE_MODE_1, | 
 | 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); | 
 |  | 
 | 	/* | 
 | 	 * BSpec recommends 8x4 when MSAA is used, | 
 | 	 * however in practice 16x4 seems fastest. | 
 | 	 * | 
 | 	 * Note that PS/WM thread counts depend on the WIZ hashing | 
 | 	 * disable bit, which we don't touch here, but it's good | 
 | 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). | 
 | 	 */ | 
 | 	I915_WRITE(GEN7_GT_MODE, | 
 | 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); | 
 |  | 
 | 	/* WaSampleCChickenBitEnable:hsw */ | 
 | 	I915_WRITE(HALF_SLICE_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE)); | 
 |  | 
 | 	/* WaSwitchSolVfFArbitrationPriority:hsw */ | 
 | 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); | 
 |  | 
 | 	lpt_init_clock_gating(dev_priv); | 
 | } | 
 |  | 
 | static void ivb_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t snpcr; | 
 |  | 
 | 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaDisableEarlyCull:ivb */ | 
 | 	I915_WRITE(_3D_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); | 
 |  | 
 | 	/* WaDisableBackToBackFlipFix:ivb */ | 
 | 	I915_WRITE(IVB_CHICKEN3, | 
 | 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | | 
 | 		   CHICKEN3_DGMG_DONE_FIX_DISABLE); | 
 |  | 
 | 	/* WaDisablePSDDualDispatchEnable:ivb */ | 
 | 	if (IS_IVB_GT1(dev_priv)) | 
 | 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, | 
 | 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:ivb */ | 
 | 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 |  | 
 | 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ | 
 | 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, | 
 | 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); | 
 |  | 
 | 	/* WaApplyL3ControlAndL3ChickenMode:ivb */ | 
 | 	I915_WRITE(GEN7_L3CNTLREG1, | 
 | 			GEN7_WA_FOR_GEN7_L3_CONTROL); | 
 | 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, | 
 | 		   GEN7_WA_L3_CHICKEN_MODE); | 
 | 	if (IS_IVB_GT1(dev_priv)) | 
 | 		I915_WRITE(GEN7_ROW_CHICKEN2, | 
 | 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); | 
 | 	else { | 
 | 		/* must write both registers */ | 
 | 		I915_WRITE(GEN7_ROW_CHICKEN2, | 
 | 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); | 
 | 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2, | 
 | 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); | 
 | 	} | 
 |  | 
 | 	/* WaForceL3Serialization:ivb */ | 
 | 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & | 
 | 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE); | 
 |  | 
 | 	/* | 
 | 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB. | 
 | 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround. | 
 | 	 */ | 
 | 	I915_WRITE(GEN6_UCGCTL2, | 
 | 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* This is required by WaCatErrorRejectionIssue:ivb */ | 
 | 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, | 
 | 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | | 
 | 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); | 
 |  | 
 | 	g4x_disable_trickle_feed(dev_priv); | 
 |  | 
 | 	gen7_setup_fixed_func_scheduler(dev_priv); | 
 |  | 
 | 	if (0) { /* causes HiZ corruption on ivb:gt1 */ | 
 | 		/* enable HiZ Raw Stall Optimization */ | 
 | 		I915_WRITE(CACHE_MODE_0_GEN7, | 
 | 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE)); | 
 | 	} | 
 |  | 
 | 	/* WaDisable4x2SubspanOptimization:ivb */ | 
 | 	I915_WRITE(CACHE_MODE_1, | 
 | 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); | 
 |  | 
 | 	/* | 
 | 	 * BSpec recommends 8x4 when MSAA is used, | 
 | 	 * however in practice 16x4 seems fastest. | 
 | 	 * | 
 | 	 * Note that PS/WM thread counts depend on the WIZ hashing | 
 | 	 * disable bit, which we don't touch here, but it's good | 
 | 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). | 
 | 	 */ | 
 | 	I915_WRITE(GEN7_GT_MODE, | 
 | 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); | 
 |  | 
 | 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); | 
 | 	snpcr &= ~GEN6_MBC_SNPCR_MASK; | 
 | 	snpcr |= GEN6_MBC_SNPCR_MED; | 
 | 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); | 
 |  | 
 | 	if (!HAS_PCH_NOP(dev_priv)) | 
 | 		cpt_init_clock_gating(dev_priv); | 
 |  | 
 | 	gen6_check_mch_setup(dev_priv); | 
 | } | 
 |  | 
 | static void vlv_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* WaDisableEarlyCull:vlv */ | 
 | 	I915_WRITE(_3D_CHICKEN3, | 
 | 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); | 
 |  | 
 | 	/* WaDisableBackToBackFlipFix:vlv */ | 
 | 	I915_WRITE(IVB_CHICKEN3, | 
 | 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | | 
 | 		   CHICKEN3_DGMG_DONE_FIX_DISABLE); | 
 |  | 
 | 	/* WaPsdDispatchEnable:vlv */ | 
 | 	/* WaDisablePSDDualDispatchEnable:vlv */ | 
 | 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, | 
 | 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP | | 
 | 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:vlv */ | 
 | 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 |  | 
 | 	/* WaForceL3Serialization:vlv */ | 
 | 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & | 
 | 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE); | 
 |  | 
 | 	/* WaDisableDopClockGating:vlv */ | 
 | 	I915_WRITE(GEN7_ROW_CHICKEN2, | 
 | 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); | 
 |  | 
 | 	/* This is required by WaCatErrorRejectionIssue:vlv */ | 
 | 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, | 
 | 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | | 
 | 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); | 
 |  | 
 | 	gen7_setup_fixed_func_scheduler(dev_priv); | 
 |  | 
 | 	/* | 
 | 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB. | 
 | 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround. | 
 | 	 */ | 
 | 	I915_WRITE(GEN6_UCGCTL2, | 
 | 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaDisableL3Bank2xClockGate:vlv | 
 | 	 * Disabling L3 clock gating- MMIO 940c[25] = 1 | 
 | 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */ | 
 | 	I915_WRITE(GEN7_UCGCTL4, | 
 | 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* | 
 | 	 * BSpec says this must be set, even though | 
 | 	 * WaDisable4x2SubspanOptimization isn't listed for VLV. | 
 | 	 */ | 
 | 	I915_WRITE(CACHE_MODE_1, | 
 | 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); | 
 |  | 
 | 	/* | 
 | 	 * BSpec recommends 8x4 when MSAA is used, | 
 | 	 * however in practice 16x4 seems fastest. | 
 | 	 * | 
 | 	 * Note that PS/WM thread counts depend on the WIZ hashing | 
 | 	 * disable bit, which we don't touch here, but it's good | 
 | 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). | 
 | 	 */ | 
 | 	I915_WRITE(GEN7_GT_MODE, | 
 | 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); | 
 |  | 
 | 	/* | 
 | 	 * WaIncreaseL3CreditsForVLVB0:vlv | 
 | 	 * This is the hardware default actually. | 
 | 	 */ | 
 | 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); | 
 |  | 
 | 	/* | 
 | 	 * WaDisableVLVClockGating_VBIIssue:vlv | 
 | 	 * Disable clock gating on th GCFG unit to prevent a delay | 
 | 	 * in the reporting of vblank events. | 
 | 	 */ | 
 | 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS); | 
 | } | 
 |  | 
 | static void chv_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* WaVSRefCountFullforceMissDisable:chv */ | 
 | 	/* WaDSRefCountFullforceMissDisable:chv */ | 
 | 	I915_WRITE(GEN7_FF_THREAD_MODE, | 
 | 		   I915_READ(GEN7_FF_THREAD_MODE) & | 
 | 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); | 
 |  | 
 | 	/* WaDisableSemaphoreAndSyncFlipWait:chv */ | 
 | 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, | 
 | 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); | 
 |  | 
 | 	/* WaDisableCSUnitClockGating:chv */ | 
 | 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | | 
 | 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* WaDisableSDEUnitClockGating:chv */ | 
 | 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | | 
 | 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* | 
 | 	 * WaProgramL3SqcReg1Default:chv | 
 | 	 * See gfxspecs/Related Documents/Performance Guide/ | 
 | 	 * LSQC Setting Recommendations. | 
 | 	 */ | 
 | 	gen8_set_l3sqc_credits(dev_priv, 38, 2); | 
 |  | 
 | 	/* | 
 | 	 * GTT cache may not work with big pages, so if those | 
 | 	 * are ever enabled GTT cache may need to be disabled. | 
 | 	 */ | 
 | 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL); | 
 | } | 
 |  | 
 | static void g4x_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t dspclk_gate; | 
 |  | 
 | 	I915_WRITE(RENCLK_GATE_D1, 0); | 
 | 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | | 
 | 		   GS_UNIT_CLOCK_GATE_DISABLE | | 
 | 		   CL_UNIT_CLOCK_GATE_DISABLE); | 
 | 	I915_WRITE(RAMCLK_GATE_D, 0); | 
 | 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | | 
 | 		OVRUNIT_CLOCK_GATE_DISABLE | | 
 | 		OVCUNIT_CLOCK_GATE_DISABLE; | 
 | 	if (IS_GM45(dev_priv)) | 
 | 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; | 
 | 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate); | 
 |  | 
 | 	/* WaDisableRenderCachePipelinedFlush */ | 
 | 	I915_WRITE(CACHE_MODE_0, | 
 | 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:g4x */ | 
 | 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 |  | 
 | 	g4x_disable_trickle_feed(dev_priv); | 
 | } | 
 |  | 
 | static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); | 
 | 	I915_WRITE(RENCLK_GATE_D2, 0); | 
 | 	I915_WRITE(DSPCLK_GATE_D, 0); | 
 | 	I915_WRITE(RAMCLK_GATE_D, 0); | 
 | 	I915_WRITE16(DEUC, 0); | 
 | 	I915_WRITE(MI_ARB_STATE, | 
 | 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:gen4 */ | 
 | 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 | } | 
 |  | 
 | static void i965g_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | | 
 | 		   I965_RCC_CLOCK_GATE_DISABLE | | 
 | 		   I965_RCPB_CLOCK_GATE_DISABLE | | 
 | 		   I965_ISC_CLOCK_GATE_DISABLE | | 
 | 		   I965_FBC_CLOCK_GATE_DISABLE); | 
 | 	I915_WRITE(RENCLK_GATE_D2, 0); | 
 | 	I915_WRITE(MI_ARB_STATE, | 
 | 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); | 
 |  | 
 | 	/* WaDisable_RenderCache_OperationalFlush:gen4 */ | 
 | 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); | 
 | } | 
 |  | 
 | static void gen3_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 dstate = I915_READ(D_STATE); | 
 |  | 
 | 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | | 
 | 		DSTATE_DOT_CLOCK_GATING; | 
 | 	I915_WRITE(D_STATE, dstate); | 
 |  | 
 | 	if (IS_PINEVIEW(dev_priv)) | 
 | 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); | 
 |  | 
 | 	/* IIR "flip pending" means done if this bit is set */ | 
 | 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); | 
 |  | 
 | 	/* interrupts should cause a wake up from C3 */ | 
 | 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN)); | 
 |  | 
 | 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */ | 
 | 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); | 
 |  | 
 | 	I915_WRITE(MI_ARB_STATE, | 
 | 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); | 
 | } | 
 |  | 
 | static void i85x_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); | 
 |  | 
 | 	/* interrupts should cause a wake up from C3 */ | 
 | 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) | | 
 | 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE)); | 
 |  | 
 | 	I915_WRITE(MEM_MODE, | 
 | 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE)); | 
 | } | 
 |  | 
 | static void i830_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	I915_WRITE(MEM_MODE, | 
 | 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) | | 
 | 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE)); | 
 | } | 
 |  | 
 | void intel_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	dev_priv->display.init_clock_gating(dev_priv); | 
 | } | 
 |  | 
 | void intel_suspend_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (HAS_PCH_LPT(dev_priv)) | 
 | 		lpt_suspend_hw(dev_priv); | 
 | } | 
 |  | 
 | static void nop_init_clock_gating(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n"); | 
 | } | 
 |  | 
 | /** | 
 |  * intel_init_clock_gating_hooks - setup the clock gating hooks | 
 |  * @dev_priv: device private | 
 |  * | 
 |  * Setup the hooks that configure which clocks of a given platform can be | 
 |  * gated and also apply various GT and display specific workarounds for these | 
 |  * platforms. Note that some GT specific workarounds are applied separately | 
 |  * when GPU contexts or batchbuffers start their execution. | 
 |  */ | 
 | void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (IS_ICELAKE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = icl_init_clock_gating; | 
 | 	else if (IS_CANNONLAKE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = cnl_init_clock_gating; | 
 | 	else if (IS_COFFEELAKE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = cfl_init_clock_gating; | 
 | 	else if (IS_SKYLAKE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = skl_init_clock_gating; | 
 | 	else if (IS_KABYLAKE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = kbl_init_clock_gating; | 
 | 	else if (IS_BROXTON(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = bxt_init_clock_gating; | 
 | 	else if (IS_GEMINILAKE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = glk_init_clock_gating; | 
 | 	else if (IS_BROADWELL(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = bdw_init_clock_gating; | 
 | 	else if (IS_CHERRYVIEW(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = chv_init_clock_gating; | 
 | 	else if (IS_HASWELL(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = hsw_init_clock_gating; | 
 | 	else if (IS_IVYBRIDGE(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = ivb_init_clock_gating; | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = vlv_init_clock_gating; | 
 | 	else if (IS_GEN6(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = gen6_init_clock_gating; | 
 | 	else if (IS_GEN5(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = ilk_init_clock_gating; | 
 | 	else if (IS_G4X(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = g4x_init_clock_gating; | 
 | 	else if (IS_I965GM(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = i965gm_init_clock_gating; | 
 | 	else if (IS_I965G(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = i965g_init_clock_gating; | 
 | 	else if (IS_GEN3(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = gen3_init_clock_gating; | 
 | 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = i85x_init_clock_gating; | 
 | 	else if (IS_GEN2(dev_priv)) | 
 | 		dev_priv->display.init_clock_gating = i830_init_clock_gating; | 
 | 	else { | 
 | 		MISSING_CASE(INTEL_DEVID(dev_priv)); | 
 | 		dev_priv->display.init_clock_gating = nop_init_clock_gating; | 
 | 	} | 
 | } | 
 |  | 
 | /* Set up chip specific power management-related functions */ | 
 | void intel_init_pm(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	intel_fbc_init(dev_priv); | 
 |  | 
 | 	/* For cxsr */ | 
 | 	if (IS_PINEVIEW(dev_priv)) | 
 | 		i915_pineview_get_mem_freq(dev_priv); | 
 | 	else if (IS_GEN5(dev_priv)) | 
 | 		i915_ironlake_get_mem_freq(dev_priv); | 
 |  | 
 | 	/* For FIFO watermark updates */ | 
 | 	if (INTEL_GEN(dev_priv) >= 9) { | 
 | 		skl_setup_wm_latency(dev_priv); | 
 | 		dev_priv->display.initial_watermarks = skl_initial_wm; | 
 | 		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm; | 
 | 		dev_priv->display.compute_global_watermarks = skl_compute_wm; | 
 | 	} else if (HAS_PCH_SPLIT(dev_priv)) { | 
 | 		ilk_setup_wm_latency(dev_priv); | 
 |  | 
 | 		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] && | 
 | 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) || | 
 | 		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] && | 
 | 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) { | 
 | 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm; | 
 | 			dev_priv->display.compute_intermediate_wm = | 
 | 				ilk_compute_intermediate_wm; | 
 | 			dev_priv->display.initial_watermarks = | 
 | 				ilk_initial_watermarks; | 
 | 			dev_priv->display.optimize_watermarks = | 
 | 				ilk_optimize_watermarks; | 
 | 		} else { | 
 | 			DRM_DEBUG_KMS("Failed to read display plane latency. " | 
 | 				      "Disable CxSR\n"); | 
 | 		} | 
 | 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { | 
 | 		vlv_setup_wm_latency(dev_priv); | 
 | 		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm; | 
 | 		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm; | 
 | 		dev_priv->display.initial_watermarks = vlv_initial_watermarks; | 
 | 		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks; | 
 | 		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo; | 
 | 	} else if (IS_G4X(dev_priv)) { | 
 | 		g4x_setup_wm_latency(dev_priv); | 
 | 		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm; | 
 | 		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm; | 
 | 		dev_priv->display.initial_watermarks = g4x_initial_watermarks; | 
 | 		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks; | 
 | 	} else if (IS_PINEVIEW(dev_priv)) { | 
 | 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), | 
 | 					    dev_priv->is_ddr3, | 
 | 					    dev_priv->fsb_freq, | 
 | 					    dev_priv->mem_freq)) { | 
 | 			DRM_INFO("failed to find known CxSR latency " | 
 | 				 "(found ddr%s fsb freq %d, mem freq %d), " | 
 | 				 "disabling CxSR\n", | 
 | 				 (dev_priv->is_ddr3 == 1) ? "3" : "2", | 
 | 				 dev_priv->fsb_freq, dev_priv->mem_freq); | 
 | 			/* Disable CxSR and never update its watermark again */ | 
 | 			intel_set_memory_cxsr(dev_priv, false); | 
 | 			dev_priv->display.update_wm = NULL; | 
 | 		} else | 
 | 			dev_priv->display.update_wm = pineview_update_wm; | 
 | 	} else if (IS_GEN4(dev_priv)) { | 
 | 		dev_priv->display.update_wm = i965_update_wm; | 
 | 	} else if (IS_GEN3(dev_priv)) { | 
 | 		dev_priv->display.update_wm = i9xx_update_wm; | 
 | 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size; | 
 | 	} else if (IS_GEN2(dev_priv)) { | 
 | 		if (INTEL_INFO(dev_priv)->num_pipes == 1) { | 
 | 			dev_priv->display.update_wm = i845_update_wm; | 
 | 			dev_priv->display.get_fifo_size = i845_get_fifo_size; | 
 | 		} else { | 
 | 			dev_priv->display.update_wm = i9xx_update_wm; | 
 | 			dev_priv->display.get_fifo_size = i830_get_fifo_size; | 
 | 		} | 
 | 	} else { | 
 | 		DRM_ERROR("unexpected fall-through in intel_init_pm\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t flags = | 
 | 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK; | 
 |  | 
 | 	switch (flags) { | 
 | 	case GEN6_PCODE_SUCCESS: | 
 | 		return 0; | 
 | 	case GEN6_PCODE_UNIMPLEMENTED_CMD: | 
 | 		return -ENODEV; | 
 | 	case GEN6_PCODE_ILLEGAL_CMD: | 
 | 		return -ENXIO; | 
 | 	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: | 
 | 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: | 
 | 		return -EOVERFLOW; | 
 | 	case GEN6_PCODE_TIMEOUT: | 
 | 		return -ETIMEDOUT; | 
 | 	default: | 
 | 		MISSING_CASE(flags); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	uint32_t flags = | 
 | 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK; | 
 |  | 
 | 	switch (flags) { | 
 | 	case GEN6_PCODE_SUCCESS: | 
 | 		return 0; | 
 | 	case GEN6_PCODE_ILLEGAL_CMD: | 
 | 		return -ENXIO; | 
 | 	case GEN7_PCODE_TIMEOUT: | 
 | 		return -ETIMEDOUT; | 
 | 	case GEN7_PCODE_ILLEGAL_DATA: | 
 | 		return -EINVAL; | 
 | 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: | 
 | 		return -EOVERFLOW; | 
 | 	default: | 
 | 		MISSING_CASE(flags); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock)); | 
 |  | 
 | 	/* GEN6_PCODE_* are outside of the forcewake domain, we can | 
 | 	 * use te fw I915_READ variants to reduce the amount of work | 
 | 	 * required when reading/writing. | 
 | 	 */ | 
 |  | 
 | 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { | 
 | 		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n", | 
 | 				 mbox, __builtin_return_address(0)); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	I915_WRITE_FW(GEN6_PCODE_DATA, *val); | 
 | 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0); | 
 | 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); | 
 |  | 
 | 	if (__intel_wait_for_register_fw(dev_priv, | 
 | 					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, | 
 | 					 500, 0, NULL)) { | 
 | 		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n", | 
 | 			  mbox, __builtin_return_address(0)); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	*val = I915_READ_FW(GEN6_PCODE_DATA); | 
 | 	I915_WRITE_FW(GEN6_PCODE_DATA, 0); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) > 6) | 
 | 		status = gen7_check_mailbox_status(dev_priv); | 
 | 	else | 
 | 		status = gen6_check_mailbox_status(dev_priv); | 
 |  | 
 | 	if (status) { | 
 | 		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n", | 
 | 				 mbox, __builtin_return_address(0), status); | 
 | 		return status; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, | 
 | 				    u32 mbox, u32 val, | 
 | 				    int fast_timeout_us, int slow_timeout_ms) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock)); | 
 |  | 
 | 	/* GEN6_PCODE_* are outside of the forcewake domain, we can | 
 | 	 * use te fw I915_READ variants to reduce the amount of work | 
 | 	 * required when reading/writing. | 
 | 	 */ | 
 |  | 
 | 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { | 
 | 		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n", | 
 | 				 val, mbox, __builtin_return_address(0)); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	I915_WRITE_FW(GEN6_PCODE_DATA, val); | 
 | 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0); | 
 | 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); | 
 |  | 
 | 	if (__intel_wait_for_register_fw(dev_priv, | 
 | 					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, | 
 | 					 fast_timeout_us, slow_timeout_ms, | 
 | 					 NULL)) { | 
 | 		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n", | 
 | 			  val, mbox, __builtin_return_address(0)); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	I915_WRITE_FW(GEN6_PCODE_DATA, 0); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) > 6) | 
 | 		status = gen7_check_mailbox_status(dev_priv); | 
 | 	else | 
 | 		status = gen6_check_mailbox_status(dev_priv); | 
 |  | 
 | 	if (status) { | 
 | 		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n", | 
 | 				 val, mbox, __builtin_return_address(0), status); | 
 | 		return status; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox, | 
 | 				  u32 request, u32 reply_mask, u32 reply, | 
 | 				  u32 *status) | 
 | { | 
 | 	u32 val = request; | 
 |  | 
 | 	*status = sandybridge_pcode_read(dev_priv, mbox, &val); | 
 |  | 
 | 	return *status || ((val & reply_mask) == reply); | 
 | } | 
 |  | 
 | /** | 
 |  * skl_pcode_request - send PCODE request until acknowledgment | 
 |  * @dev_priv: device private | 
 |  * @mbox: PCODE mailbox ID the request is targeted for | 
 |  * @request: request ID | 
 |  * @reply_mask: mask used to check for request acknowledgment | 
 |  * @reply: value used to check for request acknowledgment | 
 |  * @timeout_base_ms: timeout for polling with preemption enabled | 
 |  * | 
 |  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE | 
 |  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires. | 
 |  * The request is acknowledged once the PCODE reply dword equals @reply after | 
 |  * applying @reply_mask. Polling is first attempted with preemption enabled | 
 |  * for @timeout_base_ms and if this times out for another 50 ms with | 
 |  * preemption disabled. | 
 |  * | 
 |  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some | 
 |  * other error as reported by PCODE. | 
 |  */ | 
 | int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, | 
 | 		      u32 reply_mask, u32 reply, int timeout_base_ms) | 
 | { | 
 | 	u32 status; | 
 | 	int ret; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock)); | 
 |  | 
 | #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \ | 
 | 				   &status) | 
 |  | 
 | 	/* | 
 | 	 * Prime the PCODE by doing a request first. Normally it guarantees | 
 | 	 * that a subsequent request, at most @timeout_base_ms later, succeeds. | 
 | 	 * _wait_for() doesn't guarantee when its passed condition is evaluated | 
 | 	 * first, so send the first request explicitly. | 
 | 	 */ | 
 | 	if (COND) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10); | 
 | 	if (!ret) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * The above can time out if the number of requests was low (2 in the | 
 | 	 * worst case) _and_ PCODE was busy for some reason even after a | 
 | 	 * (queued) request and @timeout_base_ms delay. As a workaround retry | 
 | 	 * the poll with preemption disabled to maximize the number of | 
 | 	 * requests. Increase the timeout from @timeout_base_ms to 50ms to | 
 | 	 * account for interrupts that could reduce the number of these | 
 | 	 * requests, and for any quirks of the PCODE firmware that delays | 
 | 	 * the request completion. | 
 | 	 */ | 
 | 	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n"); | 
 | 	WARN_ON_ONCE(timeout_base_ms > 3); | 
 | 	preempt_disable(); | 
 | 	ret = wait_for_atomic(COND, 50); | 
 | 	preempt_enable(); | 
 |  | 
 | out: | 
 | 	return ret ? ret : status; | 
 | #undef COND | 
 | } | 
 |  | 
 | static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* | 
 | 	 * N = val - 0xb7 | 
 | 	 * Slow = Fast = GPLL ref * N | 
 | 	 */ | 
 | 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000); | 
 | } | 
 |  | 
 | static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7; | 
 | } | 
 |  | 
 | static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* | 
 | 	 * N = val / 2 | 
 | 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 | 
 | 	 */ | 
 | 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000); | 
 | } | 
 |  | 
 | static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val) | 
 | { | 
 | 	struct intel_rps *rps = &dev_priv->gt_pm.rps; | 
 |  | 
 | 	/* CHV needs even values */ | 
 | 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2; | 
 | } | 
 |  | 
 | int intel_gpu_freq(struct drm_i915_private *dev_priv, int val) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 9) | 
 | 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, | 
 | 					 GEN9_FREQ_SCALER); | 
 | 	else if (IS_CHERRYVIEW(dev_priv)) | 
 | 		return chv_gpu_freq(dev_priv, val); | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		return byt_gpu_freq(dev_priv, val); | 
 | 	else | 
 | 		return val * GT_FREQUENCY_MULTIPLIER; | 
 | } | 
 |  | 
 | int intel_freq_opcode(struct drm_i915_private *dev_priv, int val) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) >= 9) | 
 | 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, | 
 | 					 GT_FREQUENCY_MULTIPLIER); | 
 | 	else if (IS_CHERRYVIEW(dev_priv)) | 
 | 		return chv_freq_opcode(dev_priv, val); | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		return byt_freq_opcode(dev_priv, val); | 
 | 	else | 
 | 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); | 
 | } | 
 |  | 
 | void intel_pm_setup(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	mutex_init(&dev_priv->pcu_lock); | 
 | 	mutex_init(&dev_priv->gt_pm.rps.power.mutex); | 
 |  | 
 | 	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0); | 
 |  | 
 | 	dev_priv->runtime_pm.suspended = false; | 
 | 	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0); | 
 | } | 
 |  | 
 | static u64 vlv_residency_raw(struct drm_i915_private *dev_priv, | 
 | 			     const i915_reg_t reg) | 
 | { | 
 | 	u32 lower, upper, tmp; | 
 | 	int loop = 2; | 
 |  | 
 | 	/* | 
 | 	 * The register accessed do not need forcewake. We borrow | 
 | 	 * uncore lock to prevent concurrent access to range reg. | 
 | 	 */ | 
 | 	lockdep_assert_held(&dev_priv->uncore.lock); | 
 |  | 
 | 	/* | 
 | 	 * vlv and chv residency counters are 40 bits in width. | 
 | 	 * With a control bit, we can choose between upper or lower | 
 | 	 * 32bit window into this counter. | 
 | 	 * | 
 | 	 * Although we always use the counter in high-range mode elsewhere, | 
 | 	 * userspace may attempt to read the value before rc6 is initialised, | 
 | 	 * before we have set the default VLV_COUNTER_CONTROL value. So always | 
 | 	 * set the high bit to be safe. | 
 | 	 */ | 
 | 	I915_WRITE_FW(VLV_COUNTER_CONTROL, | 
 | 		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); | 
 | 	upper = I915_READ_FW(reg); | 
 | 	do { | 
 | 		tmp = upper; | 
 |  | 
 | 		I915_WRITE_FW(VLV_COUNTER_CONTROL, | 
 | 			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); | 
 | 		lower = I915_READ_FW(reg); | 
 |  | 
 | 		I915_WRITE_FW(VLV_COUNTER_CONTROL, | 
 | 			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); | 
 | 		upper = I915_READ_FW(reg); | 
 | 	} while (upper != tmp && --loop); | 
 |  | 
 | 	/* | 
 | 	 * Everywhere else we always use VLV_COUNTER_CONTROL with the | 
 | 	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set | 
 | 	 * now. | 
 | 	 */ | 
 |  | 
 | 	return lower | (u64)upper << 8; | 
 | } | 
 |  | 
 | u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, | 
 | 			   const i915_reg_t reg) | 
 | { | 
 | 	u64 time_hw, prev_hw, overflow_hw; | 
 | 	unsigned int fw_domains; | 
 | 	unsigned long flags; | 
 | 	unsigned int i; | 
 | 	u32 mul, div; | 
 |  | 
 | 	if (!HAS_RC6(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Store previous hw counter values for counter wrap-around handling. | 
 | 	 * | 
 | 	 * There are only four interesting registers and they live next to each | 
 | 	 * other so we can use the relative address, compared to the smallest | 
 | 	 * one as the index into driver storage. | 
 | 	 */ | 
 | 	i = (i915_mmio_reg_offset(reg) - | 
 | 	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32); | 
 | 	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency))) | 
 | 		return 0; | 
 |  | 
 | 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ); | 
 |  | 
 | 	spin_lock_irqsave(&dev_priv->uncore.lock, flags); | 
 | 	intel_uncore_forcewake_get__locked(dev_priv, fw_domains); | 
 |  | 
 | 	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */ | 
 | 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { | 
 | 		mul = 1000000; | 
 | 		div = dev_priv->czclk_freq; | 
 | 		overflow_hw = BIT_ULL(40); | 
 | 		time_hw = vlv_residency_raw(dev_priv, reg); | 
 | 	} else { | 
 | 		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */ | 
 | 		if (IS_GEN9_LP(dev_priv)) { | 
 | 			mul = 10000; | 
 | 			div = 12; | 
 | 		} else { | 
 | 			mul = 1280; | 
 | 			div = 1; | 
 | 		} | 
 |  | 
 | 		overflow_hw = BIT_ULL(32); | 
 | 		time_hw = I915_READ_FW(reg); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Counter wrap handling. | 
 | 	 * | 
 | 	 * But relying on a sufficient frequency of queries otherwise counters | 
 | 	 * can still wrap. | 
 | 	 */ | 
 | 	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i]; | 
 | 	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw; | 
 |  | 
 | 	/* RC6 delta from last sample. */ | 
 | 	if (time_hw >= prev_hw) | 
 | 		time_hw -= prev_hw; | 
 | 	else | 
 | 		time_hw += overflow_hw - prev_hw; | 
 |  | 
 | 	/* Add delta to RC6 extended raw driver copy. */ | 
 | 	time_hw += dev_priv->gt_pm.rc6.cur_residency[i]; | 
 | 	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw; | 
 |  | 
 | 	intel_uncore_forcewake_put__locked(dev_priv, fw_domains); | 
 | 	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags); | 
 |  | 
 | 	return mul_u64_u32_div(time_hw, mul, div); | 
 | } | 
 |  | 
 | u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat) | 
 | { | 
 | 	u32 cagf; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 9) | 
 | 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; | 
 | 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) | 
 | 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; | 
 | 	else | 
 | 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; | 
 |  | 
 | 	return  cagf; | 
 | } |