|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * Copyright (c) 2013 Red Hat, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_da_format.h" | 
|  | #include "xfs_da_btree.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_attr_remote.h" | 
|  | #include "xfs_attr.h" | 
|  | #include "xfs_attr_leaf.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_log.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | * xfs_attr_leaf.c | 
|  | * | 
|  | * Routines to implement leaf blocks of attributes as Btrees of hashed names. | 
|  | */ | 
|  |  | 
|  | /*======================================================================== | 
|  | * Function prototypes for the kernel. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Routines used for growing the Btree. | 
|  | */ | 
|  | STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, | 
|  | xfs_dablk_t which_block, struct xfs_buf **bpp); | 
|  | STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, | 
|  | struct xfs_attr3_icleaf_hdr *ichdr, | 
|  | struct xfs_da_args *args, int freemap_index); | 
|  | STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, | 
|  | struct xfs_attr3_icleaf_hdr *ichdr, | 
|  | struct xfs_buf *leaf_buffer); | 
|  | STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, | 
|  | xfs_da_state_blk_t *blk1, | 
|  | xfs_da_state_blk_t *blk2); | 
|  | STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, | 
|  | xfs_da_state_blk_t *leaf_blk_1, | 
|  | struct xfs_attr3_icleaf_hdr *ichdr1, | 
|  | xfs_da_state_blk_t *leaf_blk_2, | 
|  | struct xfs_attr3_icleaf_hdr *ichdr2, | 
|  | int *number_entries_in_blk1, | 
|  | int *number_usedbytes_in_blk1); | 
|  |  | 
|  | /* | 
|  | * Utility routines. | 
|  | */ | 
|  | STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, | 
|  | struct xfs_attr_leafblock *src_leaf, | 
|  | struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, | 
|  | struct xfs_attr_leafblock *dst_leaf, | 
|  | struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, | 
|  | int move_count); | 
|  | STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); | 
|  |  | 
|  | /* | 
|  | * attr3 block 'firstused' conversion helpers. | 
|  | * | 
|  | * firstused refers to the offset of the first used byte of the nameval region | 
|  | * of an attr leaf block. The region starts at the tail of the block and expands | 
|  | * backwards towards the middle. As such, firstused is initialized to the block | 
|  | * size for an empty leaf block and is reduced from there. | 
|  | * | 
|  | * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. | 
|  | * The in-core firstused field is 32-bit and thus supports the maximum fsb size. | 
|  | * The on-disk field is only 16-bit, however, and overflows at 64k. Since this | 
|  | * only occurs at exactly 64k, we use zero as a magic on-disk value to represent | 
|  | * the attr block size. The following helpers manage the conversion between the | 
|  | * in-core and on-disk formats. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | xfs_attr3_leaf_firstused_from_disk( | 
|  | struct xfs_da_geometry		*geo, | 
|  | struct xfs_attr3_icleaf_hdr	*to, | 
|  | struct xfs_attr_leafblock	*from) | 
|  | { | 
|  | struct xfs_attr3_leaf_hdr	*hdr3; | 
|  |  | 
|  | if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { | 
|  | hdr3 = (struct xfs_attr3_leaf_hdr *) from; | 
|  | to->firstused = be16_to_cpu(hdr3->firstused); | 
|  | } else { | 
|  | to->firstused = be16_to_cpu(from->hdr.firstused); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert from the magic fsb size value to actual blocksize. This | 
|  | * should only occur for empty blocks when the block size overflows | 
|  | * 16-bits. | 
|  | */ | 
|  | if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { | 
|  | ASSERT(!to->count && !to->usedbytes); | 
|  | ASSERT(geo->blksize > USHRT_MAX); | 
|  | to->firstused = geo->blksize; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_attr3_leaf_firstused_to_disk( | 
|  | struct xfs_da_geometry		*geo, | 
|  | struct xfs_attr_leafblock	*to, | 
|  | struct xfs_attr3_icleaf_hdr	*from) | 
|  | { | 
|  | struct xfs_attr3_leaf_hdr	*hdr3; | 
|  | uint32_t			firstused; | 
|  |  | 
|  | /* magic value should only be seen on disk */ | 
|  | ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); | 
|  |  | 
|  | /* | 
|  | * Scale down the 32-bit in-core firstused value to the 16-bit on-disk | 
|  | * value. This only overflows at the max supported value of 64k. Use the | 
|  | * magic on-disk value to represent block size in this case. | 
|  | */ | 
|  | firstused = from->firstused; | 
|  | if (firstused > USHRT_MAX) { | 
|  | ASSERT(from->firstused == geo->blksize); | 
|  | firstused = XFS_ATTR3_LEAF_NULLOFF; | 
|  | } | 
|  |  | 
|  | if (from->magic == XFS_ATTR3_LEAF_MAGIC) { | 
|  | hdr3 = (struct xfs_attr3_leaf_hdr *) to; | 
|  | hdr3->firstused = cpu_to_be16(firstused); | 
|  | } else { | 
|  | to->hdr.firstused = cpu_to_be16(firstused); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_attr3_leaf_hdr_from_disk( | 
|  | struct xfs_da_geometry		*geo, | 
|  | struct xfs_attr3_icleaf_hdr	*to, | 
|  | struct xfs_attr_leafblock	*from) | 
|  | { | 
|  | int	i; | 
|  |  | 
|  | ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || | 
|  | from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); | 
|  |  | 
|  | if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { | 
|  | struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; | 
|  |  | 
|  | to->forw = be32_to_cpu(hdr3->info.hdr.forw); | 
|  | to->back = be32_to_cpu(hdr3->info.hdr.back); | 
|  | to->magic = be16_to_cpu(hdr3->info.hdr.magic); | 
|  | to->count = be16_to_cpu(hdr3->count); | 
|  | to->usedbytes = be16_to_cpu(hdr3->usedbytes); | 
|  | xfs_attr3_leaf_firstused_from_disk(geo, to, from); | 
|  | to->holes = hdr3->holes; | 
|  |  | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); | 
|  | to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); | 
|  | } | 
|  | return; | 
|  | } | 
|  | to->forw = be32_to_cpu(from->hdr.info.forw); | 
|  | to->back = be32_to_cpu(from->hdr.info.back); | 
|  | to->magic = be16_to_cpu(from->hdr.info.magic); | 
|  | to->count = be16_to_cpu(from->hdr.count); | 
|  | to->usedbytes = be16_to_cpu(from->hdr.usedbytes); | 
|  | xfs_attr3_leaf_firstused_from_disk(geo, to, from); | 
|  | to->holes = from->hdr.holes; | 
|  |  | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); | 
|  | to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_attr3_leaf_hdr_to_disk( | 
|  | struct xfs_da_geometry		*geo, | 
|  | struct xfs_attr_leafblock	*to, | 
|  | struct xfs_attr3_icleaf_hdr	*from) | 
|  | { | 
|  | int				i; | 
|  |  | 
|  | ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || | 
|  | from->magic == XFS_ATTR3_LEAF_MAGIC); | 
|  |  | 
|  | if (from->magic == XFS_ATTR3_LEAF_MAGIC) { | 
|  | struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; | 
|  |  | 
|  | hdr3->info.hdr.forw = cpu_to_be32(from->forw); | 
|  | hdr3->info.hdr.back = cpu_to_be32(from->back); | 
|  | hdr3->info.hdr.magic = cpu_to_be16(from->magic); | 
|  | hdr3->count = cpu_to_be16(from->count); | 
|  | hdr3->usedbytes = cpu_to_be16(from->usedbytes); | 
|  | xfs_attr3_leaf_firstused_to_disk(geo, to, from); | 
|  | hdr3->holes = from->holes; | 
|  | hdr3->pad1 = 0; | 
|  |  | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); | 
|  | hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); | 
|  | } | 
|  | return; | 
|  | } | 
|  | to->hdr.info.forw = cpu_to_be32(from->forw); | 
|  | to->hdr.info.back = cpu_to_be32(from->back); | 
|  | to->hdr.info.magic = cpu_to_be16(from->magic); | 
|  | to->hdr.count = cpu_to_be16(from->count); | 
|  | to->hdr.usedbytes = cpu_to_be16(from->usedbytes); | 
|  | xfs_attr3_leaf_firstused_to_disk(geo, to, from); | 
|  | to->hdr.holes = from->holes; | 
|  | to->hdr.pad1 = 0; | 
|  |  | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); | 
|  | to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static xfs_failaddr_t | 
|  | xfs_attr3_leaf_verify( | 
|  | struct xfs_buf			*bp) | 
|  | { | 
|  | struct xfs_attr3_icleaf_hdr	ichdr; | 
|  | struct xfs_mount		*mp = bp->b_mount; | 
|  | struct xfs_attr_leafblock	*leaf = bp->b_addr; | 
|  | struct xfs_attr_leaf_entry	*entries; | 
|  | uint32_t			end;	/* must be 32bit - see below */ | 
|  | int				i; | 
|  | xfs_failaddr_t			fa; | 
|  |  | 
|  | xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); | 
|  |  | 
|  | fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); | 
|  | if (fa) | 
|  | return fa; | 
|  |  | 
|  | /* | 
|  | * In recovery there is a transient state where count == 0 is valid | 
|  | * because we may have transitioned an empty shortform attr to a leaf | 
|  | * if the attr didn't fit in shortform. | 
|  | */ | 
|  | if (!xfs_log_in_recovery(mp) && ichdr.count == 0) | 
|  | return __this_address; | 
|  |  | 
|  | /* | 
|  | * firstused is the block offset of the first name info structure. | 
|  | * Make sure it doesn't go off the block or crash into the header. | 
|  | */ | 
|  | if (ichdr.firstused > mp->m_attr_geo->blksize) | 
|  | return __this_address; | 
|  | if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) | 
|  | return __this_address; | 
|  |  | 
|  | /* Make sure the entries array doesn't crash into the name info. */ | 
|  | entries = xfs_attr3_leaf_entryp(bp->b_addr); | 
|  | if ((char *)&entries[ichdr.count] > | 
|  | (char *)bp->b_addr + ichdr.firstused) | 
|  | return __this_address; | 
|  |  | 
|  | /* XXX: need to range check rest of attr header values */ | 
|  | /* XXX: hash order check? */ | 
|  |  | 
|  | /* | 
|  | * Quickly check the freemap information.  Attribute data has to be | 
|  | * aligned to 4-byte boundaries, and likewise for the free space. | 
|  | * | 
|  | * Note that for 64k block size filesystems, the freemap entries cannot | 
|  | * overflow as they are only be16 fields. However, when checking end | 
|  | * pointer of the freemap, we have to be careful to detect overflows and | 
|  | * so use uint32_t for those checks. | 
|  | */ | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) | 
|  | return __this_address; | 
|  | if (ichdr.freemap[i].base & 0x3) | 
|  | return __this_address; | 
|  | if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) | 
|  | return __this_address; | 
|  | if (ichdr.freemap[i].size & 0x3) | 
|  | return __this_address; | 
|  |  | 
|  | /* be care of 16 bit overflows here */ | 
|  | end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; | 
|  | if (end < ichdr.freemap[i].base) | 
|  | return __this_address; | 
|  | if (end > mp->m_attr_geo->blksize) | 
|  | return __this_address; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_attr3_leaf_write_verify( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_buf_log_item	*bip = bp->b_log_item; | 
|  | struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; | 
|  | xfs_failaddr_t		fa; | 
|  |  | 
|  | fa = xfs_attr3_leaf_verify(bp); | 
|  | if (fa) { | 
|  | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!xfs_sb_version_hascrc(&mp->m_sb)) | 
|  | return; | 
|  |  | 
|  | if (bip) | 
|  | hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); | 
|  |  | 
|  | xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * leaf/node format detection on trees is sketchy, so a node read can be done on | 
|  | * leaf level blocks when detection identifies the tree as a node format tree | 
|  | * incorrectly. In this case, we need to swap the verifier to match the correct | 
|  | * format of the block being read. | 
|  | */ | 
|  | static void | 
|  | xfs_attr3_leaf_read_verify( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | xfs_failaddr_t		fa; | 
|  |  | 
|  | if (xfs_sb_version_hascrc(&mp->m_sb) && | 
|  | !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) | 
|  | xfs_verifier_error(bp, -EFSBADCRC, __this_address); | 
|  | else { | 
|  | fa = xfs_attr3_leaf_verify(bp); | 
|  | if (fa) | 
|  | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { | 
|  | .name = "xfs_attr3_leaf", | 
|  | .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), | 
|  | cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, | 
|  | .verify_read = xfs_attr3_leaf_read_verify, | 
|  | .verify_write = xfs_attr3_leaf_write_verify, | 
|  | .verify_struct = xfs_attr3_leaf_verify, | 
|  | }; | 
|  |  | 
|  | int | 
|  | xfs_attr3_leaf_read( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*dp, | 
|  | xfs_dablk_t		bno, | 
|  | xfs_daddr_t		mappedbno, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | int			err; | 
|  |  | 
|  | err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, | 
|  | XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops); | 
|  | if (!err && tp && *bpp) | 
|  | xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Namespace helper routines | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * If namespace bits don't match return 0. | 
|  | * If all match then return 1. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_namesp_match(int arg_flags, int ondisk_flags) | 
|  | { | 
|  | return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_attr_copy_value( | 
|  | struct xfs_da_args	*args, | 
|  | unsigned char		*value, | 
|  | int			valuelen) | 
|  | { | 
|  | /* | 
|  | * No copy if all we have to do is get the length | 
|  | */ | 
|  | if (args->flags & ATTR_KERNOVAL) { | 
|  | args->valuelen = valuelen; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No copy if the length of the existing buffer is too small | 
|  | */ | 
|  | if (args->valuelen < valuelen) { | 
|  | args->valuelen = valuelen; | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | if (args->op_flags & XFS_DA_OP_ALLOCVAL) { | 
|  | args->value = kmem_alloc_large(valuelen, 0); | 
|  | if (!args->value) | 
|  | return -ENOMEM; | 
|  | } | 
|  | args->valuelen = valuelen; | 
|  |  | 
|  | /* remote block xattr requires IO for copy-in */ | 
|  | if (args->rmtblkno) | 
|  | return xfs_attr_rmtval_get(args); | 
|  |  | 
|  | /* | 
|  | * This is to prevent a GCC warning because the remote xattr case | 
|  | * doesn't have a value to pass in. In that case, we never reach here, | 
|  | * but GCC can't work that out and so throws a "passing NULL to | 
|  | * memcpy" warning. | 
|  | */ | 
|  | if (!value) | 
|  | return -EINVAL; | 
|  | memcpy(args->value, value, valuelen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * External routines when attribute fork size < XFS_LITINO(mp). | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Query whether the requested number of additional bytes of extended | 
|  | * attribute space will be able to fit inline. | 
|  | * | 
|  | * Returns zero if not, else the di_forkoff fork offset to be used in the | 
|  | * literal area for attribute data once the new bytes have been added. | 
|  | * | 
|  | * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; | 
|  | * special case for dev/uuid inodes, they have fixed size data forks. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes) | 
|  | { | 
|  | int offset; | 
|  | int minforkoff;	/* lower limit on valid forkoff locations */ | 
|  | int maxforkoff;	/* upper limit on valid forkoff locations */ | 
|  | int dsize; | 
|  | xfs_mount_t *mp = dp->i_mount; | 
|  |  | 
|  | /* rounded down */ | 
|  | offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3; | 
|  |  | 
|  | if (dp->i_d.di_format == XFS_DINODE_FMT_DEV) { | 
|  | minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; | 
|  | return (offset >= minforkoff) ? minforkoff : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the requested numbers of bytes is smaller or equal to the | 
|  | * current attribute fork size we can always proceed. | 
|  | * | 
|  | * Note that if_bytes in the data fork might actually be larger than | 
|  | * the current data fork size is due to delalloc extents. In that | 
|  | * case either the extent count will go down when they are converted | 
|  | * to real extents, or the delalloc conversion will take care of the | 
|  | * literal area rebalancing. | 
|  | */ | 
|  | if (bytes <= XFS_IFORK_ASIZE(dp)) | 
|  | return dp->i_d.di_forkoff; | 
|  |  | 
|  | /* | 
|  | * For attr2 we can try to move the forkoff if there is space in the | 
|  | * literal area, but for the old format we are done if there is no | 
|  | * space in the fixed attribute fork. | 
|  | */ | 
|  | if (!(mp->m_flags & XFS_MOUNT_ATTR2)) | 
|  | return 0; | 
|  |  | 
|  | dsize = dp->i_df.if_bytes; | 
|  |  | 
|  | switch (dp->i_d.di_format) { | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | /* | 
|  | * If there is no attr fork and the data fork is extents, | 
|  | * determine if creating the default attr fork will result | 
|  | * in the extents form migrating to btree. If so, the | 
|  | * minimum offset only needs to be the space required for | 
|  | * the btree root. | 
|  | */ | 
|  | if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > | 
|  | xfs_default_attroffset(dp)) | 
|  | dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); | 
|  | break; | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | /* | 
|  | * If we have a data btree then keep forkoff if we have one, | 
|  | * otherwise we are adding a new attr, so then we set | 
|  | * minforkoff to where the btree root can finish so we have | 
|  | * plenty of room for attrs | 
|  | */ | 
|  | if (dp->i_d.di_forkoff) { | 
|  | if (offset < dp->i_d.di_forkoff) | 
|  | return 0; | 
|  | return dp->i_d.di_forkoff; | 
|  | } | 
|  | dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A data fork btree root must have space for at least | 
|  | * MINDBTPTRS key/ptr pairs if the data fork is small or empty. | 
|  | */ | 
|  | minforkoff = max(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); | 
|  | minforkoff = roundup(minforkoff, 8) >> 3; | 
|  |  | 
|  | /* attr fork btree root can have at least this many key/ptr pairs */ | 
|  | maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) - | 
|  | XFS_BMDR_SPACE_CALC(MINABTPTRS); | 
|  | maxforkoff = maxforkoff >> 3;	/* rounded down */ | 
|  |  | 
|  | if (offset >= maxforkoff) | 
|  | return maxforkoff; | 
|  | if (offset >= minforkoff) | 
|  | return offset; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch on the ATTR2 superblock bit (implies also FEATURES2) | 
|  | */ | 
|  | STATIC void | 
|  | xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) | 
|  | { | 
|  | if ((mp->m_flags & XFS_MOUNT_ATTR2) && | 
|  | !(xfs_sb_version_hasattr2(&mp->m_sb))) { | 
|  | spin_lock(&mp->m_sb_lock); | 
|  | if (!xfs_sb_version_hasattr2(&mp->m_sb)) { | 
|  | xfs_sb_version_addattr2(&mp->m_sb); | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | xfs_log_sb(tp); | 
|  | } else | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the initial contents of a shortform attribute list. | 
|  | */ | 
|  | void | 
|  | xfs_attr_shortform_create(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_sf_hdr_t *hdr; | 
|  | xfs_inode_t *dp; | 
|  | struct xfs_ifork *ifp; | 
|  |  | 
|  | trace_xfs_attr_sf_create(args); | 
|  |  | 
|  | dp = args->dp; | 
|  | ASSERT(dp != NULL); | 
|  | ifp = dp->i_afp; | 
|  | ASSERT(ifp != NULL); | 
|  | ASSERT(ifp->if_bytes == 0); | 
|  | if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { | 
|  | ifp->if_flags &= ~XFS_IFEXTENTS;	/* just in case */ | 
|  | dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; | 
|  | ifp->if_flags |= XFS_IFINLINE; | 
|  | } else { | 
|  | ASSERT(ifp->if_flags & XFS_IFINLINE); | 
|  | } | 
|  | xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); | 
|  | hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; | 
|  | hdr->count = 0; | 
|  | hdr->totsize = cpu_to_be16(sizeof(*hdr)); | 
|  | xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a name/value pair to the shortform attribute list. | 
|  | * Overflow from the inode has already been checked for. | 
|  | */ | 
|  | void | 
|  | xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int i, offset, size; | 
|  | xfs_mount_t *mp; | 
|  | xfs_inode_t *dp; | 
|  | struct xfs_ifork *ifp; | 
|  |  | 
|  | trace_xfs_attr_sf_add(args); | 
|  |  | 
|  | dp = args->dp; | 
|  | mp = dp->i_mount; | 
|  | dp->i_d.di_forkoff = forkoff; | 
|  |  | 
|  | ifp = dp->i_afp; | 
|  | ASSERT(ifp->if_flags & XFS_IFINLINE); | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { | 
|  | #ifdef DEBUG | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, sfe->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | ASSERT(0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | offset = (char *)sfe - (char *)sf; | 
|  | size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); | 
|  | xfs_idata_realloc(dp, size, XFS_ATTR_FORK); | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); | 
|  |  | 
|  | sfe->namelen = args->namelen; | 
|  | sfe->valuelen = args->valuelen; | 
|  | sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); | 
|  | memcpy(sfe->nameval, args->name, args->namelen); | 
|  | memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); | 
|  | sf->hdr.count++; | 
|  | be16_add_cpu(&sf->hdr.totsize, size); | 
|  | xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); | 
|  |  | 
|  | xfs_sbversion_add_attr2(mp, args->trans); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After the last attribute is removed revert to original inode format, | 
|  | * making all literal area available to the data fork once more. | 
|  | */ | 
|  | void | 
|  | xfs_attr_fork_remove( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
|  | ip->i_d.di_forkoff = 0; | 
|  | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
|  |  | 
|  | ASSERT(ip->i_d.di_anextents == 0); | 
|  | ASSERT(ip->i_afp == NULL); | 
|  |  | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove an attribute from the shortform attribute list structure. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_remove(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int base, size=0, end, totsize, i; | 
|  | xfs_mount_t *mp; | 
|  | xfs_inode_t *dp; | 
|  |  | 
|  | trace_xfs_attr_sf_remove(args); | 
|  |  | 
|  | dp = args->dp; | 
|  | mp = dp->i_mount; | 
|  | base = sizeof(xfs_attr_sf_hdr_t); | 
|  | sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | end = sf->hdr.count; | 
|  | for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), | 
|  | base += size, i++) { | 
|  | size = XFS_ATTR_SF_ENTSIZE(sfe); | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(sfe->nameval, args->name, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | if (i == end) | 
|  | return -ENOATTR; | 
|  |  | 
|  | /* | 
|  | * Fix up the attribute fork data, covering the hole | 
|  | */ | 
|  | end = base + size; | 
|  | totsize = be16_to_cpu(sf->hdr.totsize); | 
|  | if (end != totsize) | 
|  | memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); | 
|  | sf->hdr.count--; | 
|  | be16_add_cpu(&sf->hdr.totsize, -size); | 
|  |  | 
|  | /* | 
|  | * Fix up the start offset of the attribute fork | 
|  | */ | 
|  | totsize -= size; | 
|  | if (totsize == sizeof(xfs_attr_sf_hdr_t) && | 
|  | (mp->m_flags & XFS_MOUNT_ATTR2) && | 
|  | (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
|  | !(args->op_flags & XFS_DA_OP_ADDNAME)) { | 
|  | xfs_attr_fork_remove(dp, args->trans); | 
|  | } else { | 
|  | xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); | 
|  | dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); | 
|  | ASSERT(dp->i_d.di_forkoff); | 
|  | ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || | 
|  | (args->op_flags & XFS_DA_OP_ADDNAME) || | 
|  | !(mp->m_flags & XFS_MOUNT_ATTR2) || | 
|  | dp->i_d.di_format == XFS_DINODE_FMT_BTREE); | 
|  | xfs_trans_log_inode(args->trans, dp, | 
|  | XFS_ILOG_CORE | XFS_ILOG_ADATA); | 
|  | } | 
|  |  | 
|  | xfs_sbversion_add_attr2(mp, args->trans); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up a name in a shortform attribute list structure. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | int | 
|  | xfs_attr_shortform_lookup(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int i; | 
|  | struct xfs_ifork *ifp; | 
|  |  | 
|  | trace_xfs_attr_sf_lookup(args); | 
|  |  | 
|  | ifp = args->dp->i_afp; | 
|  | ASSERT(ifp->if_flags & XFS_IFINLINE); | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, sfe->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | return -EEXIST; | 
|  | } | 
|  | return -ENOATTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retreive the attribute value and length. | 
|  | * | 
|  | * If ATTR_KERNOVAL is specified, only the length needs to be returned. | 
|  | * Unlike a lookup, we only return an error if the attribute does not | 
|  | * exist or we can't retrieve the value. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_getvalue( | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_shortform *sf; | 
|  | struct xfs_attr_sf_entry *sfe; | 
|  | int			i; | 
|  |  | 
|  | ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE); | 
|  | sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, sfe->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | return xfs_attr_copy_value(args, &sfe->nameval[args->namelen], | 
|  | sfe->valuelen); | 
|  | } | 
|  | return -ENOATTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert from using the shortform to the leaf.  On success, return the | 
|  | * buffer so that we can keep it locked until we're totally done with it. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_to_leaf( | 
|  | struct xfs_da_args		*args, | 
|  | struct xfs_buf			**leaf_bp) | 
|  | { | 
|  | struct xfs_inode		*dp; | 
|  | struct xfs_attr_shortform	*sf; | 
|  | struct xfs_attr_sf_entry	*sfe; | 
|  | struct xfs_da_args		nargs; | 
|  | char				*tmpbuffer; | 
|  | int				error, i, size; | 
|  | xfs_dablk_t			blkno; | 
|  | struct xfs_buf			*bp; | 
|  | struct xfs_ifork		*ifp; | 
|  |  | 
|  | trace_xfs_attr_sf_to_leaf(args); | 
|  |  | 
|  | dp = args->dp; | 
|  | ifp = dp->i_afp; | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | size = be16_to_cpu(sf->hdr.totsize); | 
|  | tmpbuffer = kmem_alloc(size, 0); | 
|  | ASSERT(tmpbuffer != NULL); | 
|  | memcpy(tmpbuffer, ifp->if_u1.if_data, size); | 
|  | sf = (xfs_attr_shortform_t *)tmpbuffer; | 
|  |  | 
|  | xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); | 
|  | xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); | 
|  |  | 
|  | bp = NULL; | 
|  | error = xfs_da_grow_inode(args, &blkno); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | ASSERT(blkno == 0); | 
|  | error = xfs_attr3_leaf_create(args, blkno, &bp); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | memset((char *)&nargs, 0, sizeof(nargs)); | 
|  | nargs.dp = dp; | 
|  | nargs.geo = args->geo; | 
|  | nargs.total = args->total; | 
|  | nargs.whichfork = XFS_ATTR_FORK; | 
|  | nargs.trans = args->trans; | 
|  | nargs.op_flags = XFS_DA_OP_OKNOENT; | 
|  |  | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; i++) { | 
|  | nargs.name = sfe->nameval; | 
|  | nargs.namelen = sfe->namelen; | 
|  | nargs.value = &sfe->nameval[nargs.namelen]; | 
|  | nargs.valuelen = sfe->valuelen; | 
|  | nargs.hashval = xfs_da_hashname(sfe->nameval, | 
|  | sfe->namelen); | 
|  | nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags); | 
|  | error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ | 
|  | ASSERT(error == -ENOATTR); | 
|  | error = xfs_attr3_leaf_add(bp, &nargs); | 
|  | ASSERT(error != -ENOSPC); | 
|  | if (error) | 
|  | goto out; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe); | 
|  | } | 
|  | error = 0; | 
|  | *leaf_bp = bp; | 
|  | out: | 
|  | kmem_free(tmpbuffer); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check a leaf attribute block to see if all the entries would fit into | 
|  | * a shortform attribute list. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_allfit( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_inode	*dp) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | struct xfs_attr3_icleaf_hdr leafhdr; | 
|  | int			bytes; | 
|  | int			i; | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); | 
|  | entry = xfs_attr3_leaf_entryp(leaf); | 
|  |  | 
|  | bytes = sizeof(struct xfs_attr_sf_hdr); | 
|  | for (i = 0; i < leafhdr.count; entry++, i++) { | 
|  | if (entry->flags & XFS_ATTR_INCOMPLETE) | 
|  | continue;		/* don't copy partial entries */ | 
|  | if (!(entry->flags & XFS_ATTR_LOCAL)) | 
|  | return 0; | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, i); | 
|  | if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) | 
|  | return 0; | 
|  | if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) | 
|  | return 0; | 
|  | bytes += sizeof(struct xfs_attr_sf_entry) - 1 | 
|  | + name_loc->namelen | 
|  | + be16_to_cpu(name_loc->valuelen); | 
|  | } | 
|  | if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && | 
|  | (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
|  | (bytes == sizeof(struct xfs_attr_sf_hdr))) | 
|  | return -1; | 
|  | return xfs_attr_shortform_bytesfit(dp, bytes); | 
|  | } | 
|  |  | 
|  | /* Verify the consistency of an inline attribute fork. */ | 
|  | xfs_failaddr_t | 
|  | xfs_attr_shortform_verify( | 
|  | struct xfs_inode		*ip) | 
|  | { | 
|  | struct xfs_attr_shortform	*sfp; | 
|  | struct xfs_attr_sf_entry	*sfep; | 
|  | struct xfs_attr_sf_entry	*next_sfep; | 
|  | char				*endp; | 
|  | struct xfs_ifork		*ifp; | 
|  | int				i; | 
|  | int				size; | 
|  |  | 
|  | ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_LOCAL); | 
|  | ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); | 
|  | sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; | 
|  | size = ifp->if_bytes; | 
|  |  | 
|  | /* | 
|  | * Give up if the attribute is way too short. | 
|  | */ | 
|  | if (size < sizeof(struct xfs_attr_sf_hdr)) | 
|  | return __this_address; | 
|  |  | 
|  | endp = (char *)sfp + size; | 
|  |  | 
|  | /* Check all reported entries */ | 
|  | sfep = &sfp->list[0]; | 
|  | for (i = 0; i < sfp->hdr.count; i++) { | 
|  | /* | 
|  | * struct xfs_attr_sf_entry has a variable length. | 
|  | * Check the fixed-offset parts of the structure are | 
|  | * within the data buffer. | 
|  | */ | 
|  | if (((char *)sfep + sizeof(*sfep)) >= endp) | 
|  | return __this_address; | 
|  |  | 
|  | /* Don't allow names with known bad length. */ | 
|  | if (sfep->namelen == 0) | 
|  | return __this_address; | 
|  |  | 
|  | /* | 
|  | * Check that the variable-length part of the structure is | 
|  | * within the data buffer.  The next entry starts after the | 
|  | * name component, so nextentry is an acceptable test. | 
|  | */ | 
|  | next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep); | 
|  | if ((char *)next_sfep > endp) | 
|  | return __this_address; | 
|  |  | 
|  | /* | 
|  | * Check for unknown flags.  Short form doesn't support | 
|  | * the incomplete or local bits, so we can use the namespace | 
|  | * mask here. | 
|  | */ | 
|  | if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) | 
|  | return __this_address; | 
|  |  | 
|  | /* | 
|  | * Check for invalid namespace combinations.  We only allow | 
|  | * one namespace flag per xattr, so we can just count the | 
|  | * bits (i.e. hweight) here. | 
|  | */ | 
|  | if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) | 
|  | return __this_address; | 
|  |  | 
|  | sfep = next_sfep; | 
|  | } | 
|  | if ((void *)sfep != (void *)endp) | 
|  | return __this_address; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a leaf attribute list to shortform attribute list | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_to_shortform( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_da_args	*args, | 
|  | int			forkoff) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | struct xfs_attr_leaf_name_local *name_loc; | 
|  | struct xfs_da_args	nargs; | 
|  | struct xfs_inode	*dp = args->dp; | 
|  | char			*tmpbuffer; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | trace_xfs_attr_leaf_to_sf(args); | 
|  |  | 
|  | tmpbuffer = kmem_alloc(args->geo->blksize, 0); | 
|  | if (!tmpbuffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); | 
|  |  | 
|  | leaf = (xfs_attr_leafblock_t *)tmpbuffer; | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  | entry = xfs_attr3_leaf_entryp(leaf); | 
|  |  | 
|  | /* XXX (dgc): buffer is about to be marked stale - why zero it? */ | 
|  | memset(bp->b_addr, 0, args->geo->blksize); | 
|  |  | 
|  | /* | 
|  | * Clean out the prior contents of the attribute list. | 
|  | */ | 
|  | error = xfs_da_shrink_inode(args, 0, bp); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if (forkoff == -1) { | 
|  | ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); | 
|  | ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE); | 
|  | xfs_attr_fork_remove(dp, args->trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | xfs_attr_shortform_create(args); | 
|  |  | 
|  | /* | 
|  | * Copy the attributes | 
|  | */ | 
|  | memset((char *)&nargs, 0, sizeof(nargs)); | 
|  | nargs.geo = args->geo; | 
|  | nargs.dp = dp; | 
|  | nargs.total = args->total; | 
|  | nargs.whichfork = XFS_ATTR_FORK; | 
|  | nargs.trans = args->trans; | 
|  | nargs.op_flags = XFS_DA_OP_OKNOENT; | 
|  |  | 
|  | for (i = 0; i < ichdr.count; entry++, i++) { | 
|  | if (entry->flags & XFS_ATTR_INCOMPLETE) | 
|  | continue;	/* don't copy partial entries */ | 
|  | if (!entry->nameidx) | 
|  | continue; | 
|  | ASSERT(entry->flags & XFS_ATTR_LOCAL); | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, i); | 
|  | nargs.name = name_loc->nameval; | 
|  | nargs.namelen = name_loc->namelen; | 
|  | nargs.value = &name_loc->nameval[nargs.namelen]; | 
|  | nargs.valuelen = be16_to_cpu(name_loc->valuelen); | 
|  | nargs.hashval = be32_to_cpu(entry->hashval); | 
|  | nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags); | 
|  | xfs_attr_shortform_add(&nargs, forkoff); | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | out: | 
|  | kmem_free(tmpbuffer); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert from using a single leaf to a root node and a leaf. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_to_node( | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr icleafhdr; | 
|  | struct xfs_attr_leaf_entry *entries; | 
|  | struct xfs_da_node_entry *btree; | 
|  | struct xfs_da3_icnode_hdr icnodehdr; | 
|  | struct xfs_da_intnode	*node; | 
|  | struct xfs_inode	*dp = args->dp; | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_buf		*bp1 = NULL; | 
|  | struct xfs_buf		*bp2 = NULL; | 
|  | xfs_dablk_t		blkno; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_attr_leaf_to_node(args); | 
|  |  | 
|  | error = xfs_da_grow_inode(args, &blkno); | 
|  | if (error) | 
|  | goto out; | 
|  | error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* copy leaf to new buffer, update identifiers */ | 
|  | xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); | 
|  | bp2->b_ops = bp1->b_ops; | 
|  | memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); | 
|  | if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
|  | struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; | 
|  | hdr3->blkno = cpu_to_be64(bp2->b_bn); | 
|  | } | 
|  | xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); | 
|  |  | 
|  | /* | 
|  | * Set up the new root node. | 
|  | */ | 
|  | error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | goto out; | 
|  | node = bp1->b_addr; | 
|  | dp->d_ops->node_hdr_from_disk(&icnodehdr, node); | 
|  | btree = dp->d_ops->node_tree_p(node); | 
|  |  | 
|  | leaf = bp2->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); | 
|  | entries = xfs_attr3_leaf_entryp(leaf); | 
|  |  | 
|  | /* both on-disk, don't endian-flip twice */ | 
|  | btree[0].hashval = entries[icleafhdr.count - 1].hashval; | 
|  | btree[0].before = cpu_to_be32(blkno); | 
|  | icnodehdr.count = 1; | 
|  | dp->d_ops->node_hdr_to_disk(node, &icnodehdr); | 
|  | xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Routines used for growing the Btree. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Create the initial contents of a leaf attribute list | 
|  | * or a leaf in a node attribute list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr3_leaf_create( | 
|  | struct xfs_da_args	*args, | 
|  | xfs_dablk_t		blkno, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_inode	*dp = args->dp; | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_attr_leaf_create(args); | 
|  |  | 
|  | error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return error; | 
|  | bp->b_ops = &xfs_attr3_leaf_buf_ops; | 
|  | xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); | 
|  | leaf = bp->b_addr; | 
|  | memset(leaf, 0, args->geo->blksize); | 
|  |  | 
|  | memset(&ichdr, 0, sizeof(ichdr)); | 
|  | ichdr.firstused = args->geo->blksize; | 
|  |  | 
|  | if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
|  | struct xfs_da3_blkinfo *hdr3 = bp->b_addr; | 
|  |  | 
|  | ichdr.magic = XFS_ATTR3_LEAF_MAGIC; | 
|  |  | 
|  | hdr3->blkno = cpu_to_be64(bp->b_bn); | 
|  | hdr3->owner = cpu_to_be64(dp->i_ino); | 
|  | uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); | 
|  |  | 
|  | ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); | 
|  | } else { | 
|  | ichdr.magic = XFS_ATTR_LEAF_MAGIC; | 
|  | ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); | 
|  | } | 
|  | ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; | 
|  |  | 
|  | xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); | 
|  | xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split the leaf node, rebalance, then add the new entry. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_split( | 
|  | struct xfs_da_state	*state, | 
|  | struct xfs_da_state_blk	*oldblk, | 
|  | struct xfs_da_state_blk	*newblk) | 
|  | { | 
|  | xfs_dablk_t blkno; | 
|  | int error; | 
|  |  | 
|  | trace_xfs_attr_leaf_split(state->args); | 
|  |  | 
|  | /* | 
|  | * Allocate space for a new leaf node. | 
|  | */ | 
|  | ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | error = xfs_da_grow_inode(state->args, &blkno); | 
|  | if (error) | 
|  | return error; | 
|  | error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); | 
|  | if (error) | 
|  | return error; | 
|  | newblk->blkno = blkno; | 
|  | newblk->magic = XFS_ATTR_LEAF_MAGIC; | 
|  |  | 
|  | /* | 
|  | * Rebalance the entries across the two leaves. | 
|  | * NOTE: rebalance() currently depends on the 2nd block being empty. | 
|  | */ | 
|  | xfs_attr3_leaf_rebalance(state, oldblk, newblk); | 
|  | error = xfs_da3_blk_link(state, oldblk, newblk); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Save info on "old" attribute for "atomic rename" ops, leaf_add() | 
|  | * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the | 
|  | * "new" attrs info.  Will need the "old" info to remove it later. | 
|  | * | 
|  | * Insert the "new" entry in the correct block. | 
|  | */ | 
|  | if (state->inleaf) { | 
|  | trace_xfs_attr_leaf_add_old(state->args); | 
|  | error = xfs_attr3_leaf_add(oldblk->bp, state->args); | 
|  | } else { | 
|  | trace_xfs_attr_leaf_add_new(state->args); | 
|  | error = xfs_attr3_leaf_add(newblk->bp, state->args); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update last hashval in each block since we added the name. | 
|  | */ | 
|  | oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); | 
|  | newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a name to the leaf attribute list structure. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_add( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | int			tablesize; | 
|  | int			entsize; | 
|  | int			sum; | 
|  | int			tmp; | 
|  | int			i; | 
|  |  | 
|  | trace_xfs_attr_leaf_add(args); | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  | ASSERT(args->index >= 0 && args->index <= ichdr.count); | 
|  | entsize = xfs_attr_leaf_newentsize(args, NULL); | 
|  |  | 
|  | /* | 
|  | * Search through freemap for first-fit on new name length. | 
|  | * (may need to figure in size of entry struct too) | 
|  | */ | 
|  | tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) | 
|  | + xfs_attr3_leaf_hdr_size(leaf); | 
|  | for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { | 
|  | if (tablesize > ichdr.firstused) { | 
|  | sum += ichdr.freemap[i].size; | 
|  | continue; | 
|  | } | 
|  | if (!ichdr.freemap[i].size) | 
|  | continue;	/* no space in this map */ | 
|  | tmp = entsize; | 
|  | if (ichdr.freemap[i].base < ichdr.firstused) | 
|  | tmp += sizeof(xfs_attr_leaf_entry_t); | 
|  | if (ichdr.freemap[i].size >= tmp) { | 
|  | tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); | 
|  | goto out_log_hdr; | 
|  | } | 
|  | sum += ichdr.freemap[i].size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no holes in the address space of the block, | 
|  | * and we don't have enough freespace, then compaction will do us | 
|  | * no good and we should just give up. | 
|  | */ | 
|  | if (!ichdr.holes && sum < entsize) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * Compact the entries to coalesce free space. | 
|  | * This may change the hdr->count via dropping INCOMPLETE entries. | 
|  | */ | 
|  | xfs_attr3_leaf_compact(args, &ichdr, bp); | 
|  |  | 
|  | /* | 
|  | * After compaction, the block is guaranteed to have only one | 
|  | * free region, in freemap[0].  If it is not big enough, give up. | 
|  | */ | 
|  | if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { | 
|  | tmp = -ENOSPC; | 
|  | goto out_log_hdr; | 
|  | } | 
|  |  | 
|  | tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); | 
|  |  | 
|  | out_log_hdr: | 
|  | xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, &leaf->hdr, | 
|  | xfs_attr3_leaf_hdr_size(leaf))); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a name to a leaf attribute list structure. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr3_leaf_add_work( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_attr3_icleaf_hdr *ichdr, | 
|  | struct xfs_da_args	*args, | 
|  | int			mapindex) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | struct xfs_attr_leaf_name_local *name_loc; | 
|  | struct xfs_attr_leaf_name_remote *name_rmt; | 
|  | struct xfs_mount	*mp; | 
|  | int			tmp; | 
|  | int			i; | 
|  |  | 
|  | trace_xfs_attr_leaf_add_work(args); | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); | 
|  | ASSERT(args->index >= 0 && args->index <= ichdr->count); | 
|  |  | 
|  | /* | 
|  | * Force open some space in the entry array and fill it in. | 
|  | */ | 
|  | entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; | 
|  | if (args->index < ichdr->count) { | 
|  | tmp  = ichdr->count - args->index; | 
|  | tmp *= sizeof(xfs_attr_leaf_entry_t); | 
|  | memmove(entry + 1, entry, tmp); | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); | 
|  | } | 
|  | ichdr->count++; | 
|  |  | 
|  | /* | 
|  | * Allocate space for the new string (at the end of the run). | 
|  | */ | 
|  | mp = args->trans->t_mountp; | 
|  | ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); | 
|  | ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); | 
|  | ASSERT(ichdr->freemap[mapindex].size >= | 
|  | xfs_attr_leaf_newentsize(args, NULL)); | 
|  | ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); | 
|  | ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); | 
|  |  | 
|  | ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); | 
|  |  | 
|  | entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + | 
|  | ichdr->freemap[mapindex].size); | 
|  | entry->hashval = cpu_to_be32(args->hashval); | 
|  | entry->flags = tmp ? XFS_ATTR_LOCAL : 0; | 
|  | entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); | 
|  | if (args->op_flags & XFS_DA_OP_RENAME) { | 
|  | entry->flags |= XFS_ATTR_INCOMPLETE; | 
|  | if ((args->blkno2 == args->blkno) && | 
|  | (args->index2 <= args->index)) { | 
|  | args->index2++; | 
|  | } | 
|  | } | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); | 
|  | ASSERT((args->index == 0) || | 
|  | (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); | 
|  | ASSERT((args->index == ichdr->count - 1) || | 
|  | (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); | 
|  |  | 
|  | /* | 
|  | * For "remote" attribute values, simply note that we need to | 
|  | * allocate space for the "remote" value.  We can't actually | 
|  | * allocate the extents in this transaction, and we can't decide | 
|  | * which blocks they should be as we might allocate more blocks | 
|  | * as part of this transaction (a split operation for example). | 
|  | */ | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, args->index); | 
|  | name_loc->namelen = args->namelen; | 
|  | name_loc->valuelen = cpu_to_be16(args->valuelen); | 
|  | memcpy((char *)name_loc->nameval, args->name, args->namelen); | 
|  | memcpy((char *)&name_loc->nameval[args->namelen], args->value, | 
|  | be16_to_cpu(name_loc->valuelen)); | 
|  | } else { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); | 
|  | name_rmt->namelen = args->namelen; | 
|  | memcpy((char *)name_rmt->name, args->name, args->namelen); | 
|  | entry->flags |= XFS_ATTR_INCOMPLETE; | 
|  | /* just in case */ | 
|  | name_rmt->valuelen = 0; | 
|  | name_rmt->valueblk = 0; | 
|  | args->rmtblkno = 1; | 
|  | args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); | 
|  | args->rmtvaluelen = args->valuelen; | 
|  | } | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), | 
|  | xfs_attr_leaf_entsize(leaf, args->index))); | 
|  |  | 
|  | /* | 
|  | * Update the control info for this leaf node | 
|  | */ | 
|  | if (be16_to_cpu(entry->nameidx) < ichdr->firstused) | 
|  | ichdr->firstused = be16_to_cpu(entry->nameidx); | 
|  |  | 
|  | ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) | 
|  | + xfs_attr3_leaf_hdr_size(leaf)); | 
|  | tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) | 
|  | + xfs_attr3_leaf_hdr_size(leaf); | 
|  |  | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | if (ichdr->freemap[i].base == tmp) { | 
|  | ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); | 
|  | ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t); | 
|  | } | 
|  | } | 
|  | ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Garbage collect a leaf attribute list block by copying it to a new buffer. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_attr3_leaf_compact( | 
|  | struct xfs_da_args	*args, | 
|  | struct xfs_attr3_icleaf_hdr *ichdr_dst, | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf_src; | 
|  | struct xfs_attr_leafblock *leaf_dst; | 
|  | struct xfs_attr3_icleaf_hdr ichdr_src; | 
|  | struct xfs_trans	*trans = args->trans; | 
|  | char			*tmpbuffer; | 
|  |  | 
|  | trace_xfs_attr_leaf_compact(args); | 
|  |  | 
|  | tmpbuffer = kmem_alloc(args->geo->blksize, 0); | 
|  | memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); | 
|  | memset(bp->b_addr, 0, args->geo->blksize); | 
|  | leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; | 
|  | leaf_dst = bp->b_addr; | 
|  |  | 
|  | /* | 
|  | * Copy the on-disk header back into the destination buffer to ensure | 
|  | * all the information in the header that is not part of the incore | 
|  | * header structure is preserved. | 
|  | */ | 
|  | memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); | 
|  |  | 
|  | /* Initialise the incore headers */ | 
|  | ichdr_src = *ichdr_dst;	/* struct copy */ | 
|  | ichdr_dst->firstused = args->geo->blksize; | 
|  | ichdr_dst->usedbytes = 0; | 
|  | ichdr_dst->count = 0; | 
|  | ichdr_dst->holes = 0; | 
|  | ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); | 
|  | ichdr_dst->freemap[0].size = ichdr_dst->firstused - | 
|  | ichdr_dst->freemap[0].base; | 
|  |  | 
|  | /* write the header back to initialise the underlying buffer */ | 
|  | xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); | 
|  |  | 
|  | /* | 
|  | * Copy all entry's in the same (sorted) order, | 
|  | * but allocate name/value pairs packed and in sequence. | 
|  | */ | 
|  | xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, | 
|  | leaf_dst, ichdr_dst, 0, ichdr_src.count); | 
|  | /* | 
|  | * this logs the entire buffer, but the caller must write the header | 
|  | * back to the buffer when it is finished modifying it. | 
|  | */ | 
|  | xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); | 
|  |  | 
|  | kmem_free(tmpbuffer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare two leaf blocks "order". | 
|  | * Return 0 unless leaf2 should go before leaf1. | 
|  | */ | 
|  | static int | 
|  | xfs_attr3_leaf_order( | 
|  | struct xfs_buf	*leaf1_bp, | 
|  | struct xfs_attr3_icleaf_hdr *leaf1hdr, | 
|  | struct xfs_buf	*leaf2_bp, | 
|  | struct xfs_attr3_icleaf_hdr *leaf2hdr) | 
|  | { | 
|  | struct xfs_attr_leaf_entry *entries1; | 
|  | struct xfs_attr_leaf_entry *entries2; | 
|  |  | 
|  | entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); | 
|  | entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); | 
|  | if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && | 
|  | ((be32_to_cpu(entries2[0].hashval) < | 
|  | be32_to_cpu(entries1[0].hashval)) || | 
|  | (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < | 
|  | be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_attr_leaf_order( | 
|  | struct xfs_buf	*leaf1_bp, | 
|  | struct xfs_buf	*leaf2_bp) | 
|  | { | 
|  | struct xfs_attr3_icleaf_hdr ichdr1; | 
|  | struct xfs_attr3_icleaf_hdr ichdr2; | 
|  | struct xfs_mount *mp = leaf1_bp->b_mount; | 
|  |  | 
|  | xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); | 
|  | xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); | 
|  | return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Redistribute the attribute list entries between two leaf nodes, | 
|  | * taking into account the size of the new entry. | 
|  | * | 
|  | * NOTE: if new block is empty, then it will get the upper half of the | 
|  | * old block.  At present, all (one) callers pass in an empty second block. | 
|  | * | 
|  | * This code adjusts the args->index/blkno and args->index2/blkno2 fields | 
|  | * to match what it is doing in splitting the attribute leaf block.  Those | 
|  | * values are used in "atomic rename" operations on attributes.  Note that | 
|  | * the "new" and "old" values can end up in different blocks. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_attr3_leaf_rebalance( | 
|  | struct xfs_da_state	*state, | 
|  | struct xfs_da_state_blk	*blk1, | 
|  | struct xfs_da_state_blk	*blk2) | 
|  | { | 
|  | struct xfs_da_args	*args; | 
|  | struct xfs_attr_leafblock *leaf1; | 
|  | struct xfs_attr_leafblock *leaf2; | 
|  | struct xfs_attr3_icleaf_hdr ichdr1; | 
|  | struct xfs_attr3_icleaf_hdr ichdr2; | 
|  | struct xfs_attr_leaf_entry *entries1; | 
|  | struct xfs_attr_leaf_entry *entries2; | 
|  | int			count; | 
|  | int			totallen; | 
|  | int			max; | 
|  | int			space; | 
|  | int			swap; | 
|  |  | 
|  | /* | 
|  | * Set up environment. | 
|  | */ | 
|  | ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | leaf1 = blk1->bp->b_addr; | 
|  | leaf2 = blk2->bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); | 
|  | xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); | 
|  | ASSERT(ichdr2.count == 0); | 
|  | args = state->args; | 
|  |  | 
|  | trace_xfs_attr_leaf_rebalance(args); | 
|  |  | 
|  | /* | 
|  | * Check ordering of blocks, reverse if it makes things simpler. | 
|  | * | 
|  | * NOTE: Given that all (current) callers pass in an empty | 
|  | * second block, this code should never set "swap". | 
|  | */ | 
|  | swap = 0; | 
|  | if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { | 
|  | swap(blk1, blk2); | 
|  |  | 
|  | /* swap structures rather than reconverting them */ | 
|  | swap(ichdr1, ichdr2); | 
|  |  | 
|  | leaf1 = blk1->bp->b_addr; | 
|  | leaf2 = blk2->bp->b_addr; | 
|  | swap = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine entries until we reduce the absolute difference in | 
|  | * byte usage between the two blocks to a minimum.  Then get | 
|  | * the direction to copy and the number of elements to move. | 
|  | * | 
|  | * "inleaf" is true if the new entry should be inserted into blk1. | 
|  | * If "swap" is also true, then reverse the sense of "inleaf". | 
|  | */ | 
|  | state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, | 
|  | blk2, &ichdr2, | 
|  | &count, &totallen); | 
|  | if (swap) | 
|  | state->inleaf = !state->inleaf; | 
|  |  | 
|  | /* | 
|  | * Move any entries required from leaf to leaf: | 
|  | */ | 
|  | if (count < ichdr1.count) { | 
|  | /* | 
|  | * Figure the total bytes to be added to the destination leaf. | 
|  | */ | 
|  | /* number entries being moved */ | 
|  | count = ichdr1.count - count; | 
|  | space  = ichdr1.usedbytes - totallen; | 
|  | space += count * sizeof(xfs_attr_leaf_entry_t); | 
|  |  | 
|  | /* | 
|  | * leaf2 is the destination, compact it if it looks tight. | 
|  | */ | 
|  | max  = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); | 
|  | max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); | 
|  | if (space > max) | 
|  | xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); | 
|  |  | 
|  | /* | 
|  | * Move high entries from leaf1 to low end of leaf2. | 
|  | */ | 
|  | xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, | 
|  | ichdr1.count - count, leaf2, &ichdr2, 0, count); | 
|  |  | 
|  | } else if (count > ichdr1.count) { | 
|  | /* | 
|  | * I assert that since all callers pass in an empty | 
|  | * second buffer, this code should never execute. | 
|  | */ | 
|  | ASSERT(0); | 
|  |  | 
|  | /* | 
|  | * Figure the total bytes to be added to the destination leaf. | 
|  | */ | 
|  | /* number entries being moved */ | 
|  | count -= ichdr1.count; | 
|  | space  = totallen - ichdr1.usedbytes; | 
|  | space += count * sizeof(xfs_attr_leaf_entry_t); | 
|  |  | 
|  | /* | 
|  | * leaf1 is the destination, compact it if it looks tight. | 
|  | */ | 
|  | max  = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); | 
|  | max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); | 
|  | if (space > max) | 
|  | xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); | 
|  |  | 
|  | /* | 
|  | * Move low entries from leaf2 to high end of leaf1. | 
|  | */ | 
|  | xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, | 
|  | ichdr1.count, count); | 
|  | } | 
|  |  | 
|  | xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); | 
|  | xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); | 
|  | xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); | 
|  | xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); | 
|  |  | 
|  | /* | 
|  | * Copy out last hashval in each block for B-tree code. | 
|  | */ | 
|  | entries1 = xfs_attr3_leaf_entryp(leaf1); | 
|  | entries2 = xfs_attr3_leaf_entryp(leaf2); | 
|  | blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); | 
|  | blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); | 
|  |  | 
|  | /* | 
|  | * Adjust the expected index for insertion. | 
|  | * NOTE: this code depends on the (current) situation that the | 
|  | * second block was originally empty. | 
|  | * | 
|  | * If the insertion point moved to the 2nd block, we must adjust | 
|  | * the index.  We must also track the entry just following the | 
|  | * new entry for use in an "atomic rename" operation, that entry | 
|  | * is always the "old" entry and the "new" entry is what we are | 
|  | * inserting.  The index/blkno fields refer to the "old" entry, | 
|  | * while the index2/blkno2 fields refer to the "new" entry. | 
|  | */ | 
|  | if (blk1->index > ichdr1.count) { | 
|  | ASSERT(state->inleaf == 0); | 
|  | blk2->index = blk1->index - ichdr1.count; | 
|  | args->index = args->index2 = blk2->index; | 
|  | args->blkno = args->blkno2 = blk2->blkno; | 
|  | } else if (blk1->index == ichdr1.count) { | 
|  | if (state->inleaf) { | 
|  | args->index = blk1->index; | 
|  | args->blkno = blk1->blkno; | 
|  | args->index2 = 0; | 
|  | args->blkno2 = blk2->blkno; | 
|  | } else { | 
|  | /* | 
|  | * On a double leaf split, the original attr location | 
|  | * is already stored in blkno2/index2, so don't | 
|  | * overwrite it overwise we corrupt the tree. | 
|  | */ | 
|  | blk2->index = blk1->index - ichdr1.count; | 
|  | args->index = blk2->index; | 
|  | args->blkno = blk2->blkno; | 
|  | if (!state->extravalid) { | 
|  | /* | 
|  | * set the new attr location to match the old | 
|  | * one and let the higher level split code | 
|  | * decide where in the leaf to place it. | 
|  | */ | 
|  | args->index2 = blk2->index; | 
|  | args->blkno2 = blk2->blkno; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ASSERT(state->inleaf == 1); | 
|  | args->index = args->index2 = blk1->index; | 
|  | args->blkno = args->blkno2 = blk1->blkno; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine entries until we reduce the absolute difference in | 
|  | * byte usage between the two blocks to a minimum. | 
|  | * GROT: Is this really necessary?  With other than a 512 byte blocksize, | 
|  | * GROT: there will always be enough room in either block for a new entry. | 
|  | * GROT: Do a double-split for this case? | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr3_leaf_figure_balance( | 
|  | struct xfs_da_state		*state, | 
|  | struct xfs_da_state_blk		*blk1, | 
|  | struct xfs_attr3_icleaf_hdr	*ichdr1, | 
|  | struct xfs_da_state_blk		*blk2, | 
|  | struct xfs_attr3_icleaf_hdr	*ichdr2, | 
|  | int				*countarg, | 
|  | int				*usedbytesarg) | 
|  | { | 
|  | struct xfs_attr_leafblock	*leaf1 = blk1->bp->b_addr; | 
|  | struct xfs_attr_leafblock	*leaf2 = blk2->bp->b_addr; | 
|  | struct xfs_attr_leaf_entry	*entry; | 
|  | int				count; | 
|  | int				max; | 
|  | int				index; | 
|  | int				totallen = 0; | 
|  | int				half; | 
|  | int				lastdelta; | 
|  | int				foundit = 0; | 
|  | int				tmp; | 
|  |  | 
|  | /* | 
|  | * Examine entries until we reduce the absolute difference in | 
|  | * byte usage between the two blocks to a minimum. | 
|  | */ | 
|  | max = ichdr1->count + ichdr2->count; | 
|  | half = (max + 1) * sizeof(*entry); | 
|  | half += ichdr1->usedbytes + ichdr2->usedbytes + | 
|  | xfs_attr_leaf_newentsize(state->args, NULL); | 
|  | half /= 2; | 
|  | lastdelta = state->args->geo->blksize; | 
|  | entry = xfs_attr3_leaf_entryp(leaf1); | 
|  | for (count = index = 0; count < max; entry++, index++, count++) { | 
|  |  | 
|  | #define XFS_ATTR_ABS(A)	(((A) < 0) ? -(A) : (A)) | 
|  | /* | 
|  | * The new entry is in the first block, account for it. | 
|  | */ | 
|  | if (count == blk1->index) { | 
|  | tmp = totallen + sizeof(*entry) + | 
|  | xfs_attr_leaf_newentsize(state->args, NULL); | 
|  | if (XFS_ATTR_ABS(half - tmp) > lastdelta) | 
|  | break; | 
|  | lastdelta = XFS_ATTR_ABS(half - tmp); | 
|  | totallen = tmp; | 
|  | foundit = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrap around into the second block if necessary. | 
|  | */ | 
|  | if (count == ichdr1->count) { | 
|  | leaf1 = leaf2; | 
|  | entry = xfs_attr3_leaf_entryp(leaf1); | 
|  | index = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out if next leaf entry would be too much. | 
|  | */ | 
|  | tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, | 
|  | index); | 
|  | if (XFS_ATTR_ABS(half - tmp) > lastdelta) | 
|  | break; | 
|  | lastdelta = XFS_ATTR_ABS(half - tmp); | 
|  | totallen = tmp; | 
|  | #undef XFS_ATTR_ABS | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of usedbytes that will end up in lower block. | 
|  | * If new entry not in lower block, fix up the count. | 
|  | */ | 
|  | totallen -= count * sizeof(*entry); | 
|  | if (foundit) { | 
|  | totallen -= sizeof(*entry) + | 
|  | xfs_attr_leaf_newentsize(state->args, NULL); | 
|  | } | 
|  |  | 
|  | *countarg = count; | 
|  | *usedbytesarg = totallen; | 
|  | return foundit; | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Routines used for shrinking the Btree. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Check a leaf block and its neighbors to see if the block should be | 
|  | * collapsed into one or the other neighbor.  Always keep the block | 
|  | * with the smaller block number. | 
|  | * If the current block is over 50% full, don't try to join it, return 0. | 
|  | * If the block is empty, fill in the state structure and return 2. | 
|  | * If it can be collapsed, fill in the state structure and return 1. | 
|  | * If nothing can be done, return 0. | 
|  | * | 
|  | * GROT: allow for INCOMPLETE entries in calculation. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_toosmall( | 
|  | struct xfs_da_state	*state, | 
|  | int			*action) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_da_state_blk	*blk; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_buf		*bp; | 
|  | xfs_dablk_t		blkno; | 
|  | int			bytes; | 
|  | int			forward; | 
|  | int			error; | 
|  | int			retval; | 
|  | int			i; | 
|  |  | 
|  | trace_xfs_attr_leaf_toosmall(state->args); | 
|  |  | 
|  | /* | 
|  | * Check for the degenerate case of the block being over 50% full. | 
|  | * If so, it's not worth even looking to see if we might be able | 
|  | * to coalesce with a sibling. | 
|  | */ | 
|  | blk = &state->path.blk[ state->path.active-1 ]; | 
|  | leaf = blk->bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); | 
|  | bytes = xfs_attr3_leaf_hdr_size(leaf) + | 
|  | ichdr.count * sizeof(xfs_attr_leaf_entry_t) + | 
|  | ichdr.usedbytes; | 
|  | if (bytes > (state->args->geo->blksize >> 1)) { | 
|  | *action = 0;	/* blk over 50%, don't try to join */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the degenerate case of the block being empty. | 
|  | * If the block is empty, we'll simply delete it, no need to | 
|  | * coalesce it with a sibling block.  We choose (arbitrarily) | 
|  | * to merge with the forward block unless it is NULL. | 
|  | */ | 
|  | if (ichdr.count == 0) { | 
|  | /* | 
|  | * Make altpath point to the block we want to keep and | 
|  | * path point to the block we want to drop (this one). | 
|  | */ | 
|  | forward = (ichdr.forw != 0); | 
|  | memcpy(&state->altpath, &state->path, sizeof(state->path)); | 
|  | error = xfs_da3_path_shift(state, &state->altpath, forward, | 
|  | 0, &retval); | 
|  | if (error) | 
|  | return error; | 
|  | if (retval) { | 
|  | *action = 0; | 
|  | } else { | 
|  | *action = 2; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine each sibling block to see if we can coalesce with | 
|  | * at least 25% free space to spare.  We need to figure out | 
|  | * whether to merge with the forward or the backward block. | 
|  | * We prefer coalescing with the lower numbered sibling so as | 
|  | * to shrink an attribute list over time. | 
|  | */ | 
|  | /* start with smaller blk num */ | 
|  | forward = ichdr.forw < ichdr.back; | 
|  | for (i = 0; i < 2; forward = !forward, i++) { | 
|  | struct xfs_attr3_icleaf_hdr ichdr2; | 
|  | if (forward) | 
|  | blkno = ichdr.forw; | 
|  | else | 
|  | blkno = ichdr.back; | 
|  | if (blkno == 0) | 
|  | continue; | 
|  | error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, | 
|  | blkno, -1, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); | 
|  |  | 
|  | bytes = state->args->geo->blksize - | 
|  | (state->args->geo->blksize >> 2) - | 
|  | ichdr.usedbytes - ichdr2.usedbytes - | 
|  | ((ichdr.count + ichdr2.count) * | 
|  | sizeof(xfs_attr_leaf_entry_t)) - | 
|  | xfs_attr3_leaf_hdr_size(leaf); | 
|  |  | 
|  | xfs_trans_brelse(state->args->trans, bp); | 
|  | if (bytes >= 0) | 
|  | break;	/* fits with at least 25% to spare */ | 
|  | } | 
|  | if (i >= 2) { | 
|  | *action = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make altpath point to the block we want to keep (the lower | 
|  | * numbered block) and path point to the block we want to drop. | 
|  | */ | 
|  | memcpy(&state->altpath, &state->path, sizeof(state->path)); | 
|  | if (blkno < blk->blkno) { | 
|  | error = xfs_da3_path_shift(state, &state->altpath, forward, | 
|  | 0, &retval); | 
|  | } else { | 
|  | error = xfs_da3_path_shift(state, &state->path, forward, | 
|  | 0, &retval); | 
|  | } | 
|  | if (error) | 
|  | return error; | 
|  | if (retval) { | 
|  | *action = 0; | 
|  | } else { | 
|  | *action = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a name from the leaf attribute list structure. | 
|  | * | 
|  | * Return 1 if leaf is less than 37% full, 0 if >= 37% full. | 
|  | * If two leaves are 37% full, when combined they will leave 25% free. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_remove( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | int			before; | 
|  | int			after; | 
|  | int			smallest; | 
|  | int			entsize; | 
|  | int			tablesize; | 
|  | int			tmp; | 
|  | int			i; | 
|  |  | 
|  | trace_xfs_attr_leaf_remove(args); | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  |  | 
|  | ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); | 
|  | ASSERT(args->index >= 0 && args->index < ichdr.count); | 
|  | ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + | 
|  | xfs_attr3_leaf_hdr_size(leaf)); | 
|  |  | 
|  | entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; | 
|  |  | 
|  | ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); | 
|  | ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); | 
|  |  | 
|  | /* | 
|  | * Scan through free region table: | 
|  | *    check for adjacency of free'd entry with an existing one, | 
|  | *    find smallest free region in case we need to replace it, | 
|  | *    adjust any map that borders the entry table, | 
|  | */ | 
|  | tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) | 
|  | + xfs_attr3_leaf_hdr_size(leaf); | 
|  | tmp = ichdr.freemap[0].size; | 
|  | before = after = -1; | 
|  | smallest = XFS_ATTR_LEAF_MAPSIZE - 1; | 
|  | entsize = xfs_attr_leaf_entsize(leaf, args->index); | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { | 
|  | ASSERT(ichdr.freemap[i].base < args->geo->blksize); | 
|  | ASSERT(ichdr.freemap[i].size < args->geo->blksize); | 
|  | if (ichdr.freemap[i].base == tablesize) { | 
|  | ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); | 
|  | ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); | 
|  | } | 
|  |  | 
|  | if (ichdr.freemap[i].base + ichdr.freemap[i].size == | 
|  | be16_to_cpu(entry->nameidx)) { | 
|  | before = i; | 
|  | } else if (ichdr.freemap[i].base == | 
|  | (be16_to_cpu(entry->nameidx) + entsize)) { | 
|  | after = i; | 
|  | } else if (ichdr.freemap[i].size < tmp) { | 
|  | tmp = ichdr.freemap[i].size; | 
|  | smallest = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Coalesce adjacent freemap regions, | 
|  | * or replace the smallest region. | 
|  | */ | 
|  | if ((before >= 0) || (after >= 0)) { | 
|  | if ((before >= 0) && (after >= 0)) { | 
|  | ichdr.freemap[before].size += entsize; | 
|  | ichdr.freemap[before].size += ichdr.freemap[after].size; | 
|  | ichdr.freemap[after].base = 0; | 
|  | ichdr.freemap[after].size = 0; | 
|  | } else if (before >= 0) { | 
|  | ichdr.freemap[before].size += entsize; | 
|  | } else { | 
|  | ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); | 
|  | ichdr.freemap[after].size += entsize; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Replace smallest region (if it is smaller than free'd entry) | 
|  | */ | 
|  | if (ichdr.freemap[smallest].size < entsize) { | 
|  | ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); | 
|  | ichdr.freemap[smallest].size = entsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Did we remove the first entry? | 
|  | */ | 
|  | if (be16_to_cpu(entry->nameidx) == ichdr.firstused) | 
|  | smallest = 1; | 
|  | else | 
|  | smallest = 0; | 
|  |  | 
|  | /* | 
|  | * Compress the remaining entries and zero out the removed stuff. | 
|  | */ | 
|  | memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); | 
|  | ichdr.usedbytes -= entsize; | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), | 
|  | entsize)); | 
|  |  | 
|  | tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); | 
|  | memmove(entry, entry + 1, tmp); | 
|  | ichdr.count--; | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); | 
|  |  | 
|  | entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; | 
|  | memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); | 
|  |  | 
|  | /* | 
|  | * If we removed the first entry, re-find the first used byte | 
|  | * in the name area.  Note that if the entry was the "firstused", | 
|  | * then we don't have a "hole" in our block resulting from | 
|  | * removing the name. | 
|  | */ | 
|  | if (smallest) { | 
|  | tmp = args->geo->blksize; | 
|  | entry = xfs_attr3_leaf_entryp(leaf); | 
|  | for (i = ichdr.count - 1; i >= 0; entry++, i--) { | 
|  | ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); | 
|  | ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); | 
|  |  | 
|  | if (be16_to_cpu(entry->nameidx) < tmp) | 
|  | tmp = be16_to_cpu(entry->nameidx); | 
|  | } | 
|  | ichdr.firstused = tmp; | 
|  | ASSERT(ichdr.firstused != 0); | 
|  | } else { | 
|  | ichdr.holes = 1;	/* mark as needing compaction */ | 
|  | } | 
|  | xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, &leaf->hdr, | 
|  | xfs_attr3_leaf_hdr_size(leaf))); | 
|  |  | 
|  | /* | 
|  | * Check if leaf is less than 50% full, caller may want to | 
|  | * "join" the leaf with a sibling if so. | 
|  | */ | 
|  | tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + | 
|  | ichdr.count * sizeof(xfs_attr_leaf_entry_t); | 
|  |  | 
|  | return tmp < args->geo->magicpct; /* leaf is < 37% full */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move all the attribute list entries from drop_leaf into save_leaf. | 
|  | */ | 
|  | void | 
|  | xfs_attr3_leaf_unbalance( | 
|  | struct xfs_da_state	*state, | 
|  | struct xfs_da_state_blk	*drop_blk, | 
|  | struct xfs_da_state_blk	*save_blk) | 
|  | { | 
|  | struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; | 
|  | struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; | 
|  | struct xfs_attr3_icleaf_hdr drophdr; | 
|  | struct xfs_attr3_icleaf_hdr savehdr; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  |  | 
|  | trace_xfs_attr_leaf_unbalance(state->args); | 
|  |  | 
|  | drop_leaf = drop_blk->bp->b_addr; | 
|  | save_leaf = save_blk->bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); | 
|  | xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); | 
|  | entry = xfs_attr3_leaf_entryp(drop_leaf); | 
|  |  | 
|  | /* | 
|  | * Save last hashval from dying block for later Btree fixup. | 
|  | */ | 
|  | drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); | 
|  |  | 
|  | /* | 
|  | * Check if we need a temp buffer, or can we do it in place. | 
|  | * Note that we don't check "leaf" for holes because we will | 
|  | * always be dropping it, toosmall() decided that for us already. | 
|  | */ | 
|  | if (savehdr.holes == 0) { | 
|  | /* | 
|  | * dest leaf has no holes, so we add there.  May need | 
|  | * to make some room in the entry array. | 
|  | */ | 
|  | if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, | 
|  | drop_blk->bp, &drophdr)) { | 
|  | xfs_attr3_leaf_moveents(state->args, | 
|  | drop_leaf, &drophdr, 0, | 
|  | save_leaf, &savehdr, 0, | 
|  | drophdr.count); | 
|  | } else { | 
|  | xfs_attr3_leaf_moveents(state->args, | 
|  | drop_leaf, &drophdr, 0, | 
|  | save_leaf, &savehdr, | 
|  | savehdr.count, drophdr.count); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Destination has holes, so we make a temporary copy | 
|  | * of the leaf and add them both to that. | 
|  | */ | 
|  | struct xfs_attr_leafblock *tmp_leaf; | 
|  | struct xfs_attr3_icleaf_hdr tmphdr; | 
|  |  | 
|  | tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); | 
|  |  | 
|  | /* | 
|  | * Copy the header into the temp leaf so that all the stuff | 
|  | * not in the incore header is present and gets copied back in | 
|  | * once we've moved all the entries. | 
|  | */ | 
|  | memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); | 
|  |  | 
|  | memset(&tmphdr, 0, sizeof(tmphdr)); | 
|  | tmphdr.magic = savehdr.magic; | 
|  | tmphdr.forw = savehdr.forw; | 
|  | tmphdr.back = savehdr.back; | 
|  | tmphdr.firstused = state->args->geo->blksize; | 
|  |  | 
|  | /* write the header to the temp buffer to initialise it */ | 
|  | xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); | 
|  |  | 
|  | if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, | 
|  | drop_blk->bp, &drophdr)) { | 
|  | xfs_attr3_leaf_moveents(state->args, | 
|  | drop_leaf, &drophdr, 0, | 
|  | tmp_leaf, &tmphdr, 0, | 
|  | drophdr.count); | 
|  | xfs_attr3_leaf_moveents(state->args, | 
|  | save_leaf, &savehdr, 0, | 
|  | tmp_leaf, &tmphdr, tmphdr.count, | 
|  | savehdr.count); | 
|  | } else { | 
|  | xfs_attr3_leaf_moveents(state->args, | 
|  | save_leaf, &savehdr, 0, | 
|  | tmp_leaf, &tmphdr, 0, | 
|  | savehdr.count); | 
|  | xfs_attr3_leaf_moveents(state->args, | 
|  | drop_leaf, &drophdr, 0, | 
|  | tmp_leaf, &tmphdr, tmphdr.count, | 
|  | drophdr.count); | 
|  | } | 
|  | memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); | 
|  | savehdr = tmphdr; /* struct copy */ | 
|  | kmem_free(tmp_leaf); | 
|  | } | 
|  |  | 
|  | xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); | 
|  | xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, | 
|  | state->args->geo->blksize - 1); | 
|  |  | 
|  | /* | 
|  | * Copy out last hashval in each block for B-tree code. | 
|  | */ | 
|  | entry = xfs_attr3_leaf_entryp(save_leaf); | 
|  | save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Routines used for finding things in the Btree. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Look up a name in a leaf attribute list structure. | 
|  | * This is the internal routine, it uses the caller's buffer. | 
|  | * | 
|  | * Note that duplicate keys are allowed, but only check within the | 
|  | * current leaf node.  The Btree code must check in adjacent leaf nodes. | 
|  | * | 
|  | * Return in args->index the index into the entry[] array of either | 
|  | * the found entry, or where the entry should have been (insert before | 
|  | * that entry). | 
|  | * | 
|  | * Don't change the args->value unless we find the attribute. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_lookup_int( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | struct xfs_attr_leaf_entry *entries; | 
|  | struct xfs_attr_leaf_name_local *name_loc; | 
|  | struct xfs_attr_leaf_name_remote *name_rmt; | 
|  | xfs_dahash_t		hashval; | 
|  | int			probe; | 
|  | int			span; | 
|  |  | 
|  | trace_xfs_attr_leaf_lookup(args); | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  | entries = xfs_attr3_leaf_entryp(leaf); | 
|  | if (ichdr.count >= args->geo->blksize / 8) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | /* | 
|  | * Binary search.  (note: small blocks will skip this loop) | 
|  | */ | 
|  | hashval = args->hashval; | 
|  | probe = span = ichdr.count / 2; | 
|  | for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { | 
|  | span /= 2; | 
|  | if (be32_to_cpu(entry->hashval) < hashval) | 
|  | probe += span; | 
|  | else if (be32_to_cpu(entry->hashval) > hashval) | 
|  | probe -= span; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) | 
|  | return -EFSCORRUPTED; | 
|  | if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | /* | 
|  | * Since we may have duplicate hashval's, find the first matching | 
|  | * hashval in the leaf. | 
|  | */ | 
|  | while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { | 
|  | entry--; | 
|  | probe--; | 
|  | } | 
|  | while (probe < ichdr.count && | 
|  | be32_to_cpu(entry->hashval) < hashval) { | 
|  | entry++; | 
|  | probe++; | 
|  | } | 
|  | if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { | 
|  | args->index = probe; | 
|  | return -ENOATTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Duplicate keys may be present, so search all of them for a match. | 
|  | */ | 
|  | for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); | 
|  | entry++, probe++) { | 
|  | /* | 
|  | * GROT: Add code to remove incomplete entries. | 
|  | */ | 
|  | /* | 
|  | * If we are looking for INCOMPLETE entries, show only those. | 
|  | * If we are looking for complete entries, show only those. | 
|  | */ | 
|  | if ((args->flags & XFS_ATTR_INCOMPLETE) != | 
|  | (entry->flags & XFS_ATTR_INCOMPLETE)) { | 
|  | continue; | 
|  | } | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, probe); | 
|  | if (name_loc->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, name_loc->nameval, | 
|  | args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, entry->flags)) | 
|  | continue; | 
|  | args->index = probe; | 
|  | return -EEXIST; | 
|  | } else { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); | 
|  | if (name_rmt->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, name_rmt->name, | 
|  | args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, entry->flags)) | 
|  | continue; | 
|  | args->index = probe; | 
|  | args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); | 
|  | args->rmtblkno = be32_to_cpu(name_rmt->valueblk); | 
|  | args->rmtblkcnt = xfs_attr3_rmt_blocks( | 
|  | args->dp->i_mount, | 
|  | args->rmtvaluelen); | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  | args->index = probe; | 
|  | return -ENOATTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the value associated with an attribute name from a leaf attribute | 
|  | * list structure. | 
|  | * | 
|  | * If ATTR_KERNOVAL is specified, only the length needs to be returned. | 
|  | * Unlike a lookup, we only return an error if the attribute does not | 
|  | * exist or we can't retrieve the value. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_getvalue( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | struct xfs_attr_leaf_name_local *name_loc; | 
|  | struct xfs_attr_leaf_name_remote *name_rmt; | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  | ASSERT(ichdr.count < args->geo->blksize / 8); | 
|  | ASSERT(args->index < ichdr.count); | 
|  |  | 
|  | entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, args->index); | 
|  | ASSERT(name_loc->namelen == args->namelen); | 
|  | ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); | 
|  | return xfs_attr_copy_value(args, | 
|  | &name_loc->nameval[args->namelen], | 
|  | be16_to_cpu(name_loc->valuelen)); | 
|  | } | 
|  |  | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); | 
|  | ASSERT(name_rmt->namelen == args->namelen); | 
|  | ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); | 
|  | args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); | 
|  | args->rmtblkno = be32_to_cpu(name_rmt->valueblk); | 
|  | args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, | 
|  | args->rmtvaluelen); | 
|  | return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Utility routines. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Move the indicated entries from one leaf to another. | 
|  | * NOTE: this routine modifies both source and destination leaves. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_attr3_leaf_moveents( | 
|  | struct xfs_da_args		*args, | 
|  | struct xfs_attr_leafblock	*leaf_s, | 
|  | struct xfs_attr3_icleaf_hdr	*ichdr_s, | 
|  | int				start_s, | 
|  | struct xfs_attr_leafblock	*leaf_d, | 
|  | struct xfs_attr3_icleaf_hdr	*ichdr_d, | 
|  | int				start_d, | 
|  | int				count) | 
|  | { | 
|  | struct xfs_attr_leaf_entry	*entry_s; | 
|  | struct xfs_attr_leaf_entry	*entry_d; | 
|  | int				desti; | 
|  | int				tmp; | 
|  | int				i; | 
|  |  | 
|  | /* | 
|  | * Check for nothing to do. | 
|  | */ | 
|  | if (count == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Set up environment. | 
|  | */ | 
|  | ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || | 
|  | ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); | 
|  | ASSERT(ichdr_s->magic == ichdr_d->magic); | 
|  | ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); | 
|  | ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) | 
|  | + xfs_attr3_leaf_hdr_size(leaf_s)); | 
|  | ASSERT(ichdr_d->count < args->geo->blksize / 8); | 
|  | ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) | 
|  | + xfs_attr3_leaf_hdr_size(leaf_d)); | 
|  |  | 
|  | ASSERT(start_s < ichdr_s->count); | 
|  | ASSERT(start_d <= ichdr_d->count); | 
|  | ASSERT(count <= ichdr_s->count); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Move the entries in the destination leaf up to make a hole? | 
|  | */ | 
|  | if (start_d < ichdr_d->count) { | 
|  | tmp  = ichdr_d->count - start_d; | 
|  | tmp *= sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; | 
|  | entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; | 
|  | memmove(entry_d, entry_s, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy all entry's in the same (sorted) order, | 
|  | * but allocate attribute info packed and in sequence. | 
|  | */ | 
|  | entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; | 
|  | entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; | 
|  | desti = start_d; | 
|  | for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { | 
|  | ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); | 
|  | tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); | 
|  | #ifdef GROT | 
|  | /* | 
|  | * Code to drop INCOMPLETE entries.  Difficult to use as we | 
|  | * may also need to change the insertion index.  Code turned | 
|  | * off for 6.2, should be revisited later. | 
|  | */ | 
|  | if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ | 
|  | memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); | 
|  | ichdr_s->usedbytes -= tmp; | 
|  | ichdr_s->count -= 1; | 
|  | entry_d--;	/* to compensate for ++ in loop hdr */ | 
|  | desti--; | 
|  | if ((start_s + i) < offset) | 
|  | result++;	/* insertion index adjustment */ | 
|  | } else { | 
|  | #endif /* GROT */ | 
|  | ichdr_d->firstused -= tmp; | 
|  | /* both on-disk, don't endian flip twice */ | 
|  | entry_d->hashval = entry_s->hashval; | 
|  | entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); | 
|  | entry_d->flags = entry_s->flags; | 
|  | ASSERT(be16_to_cpu(entry_d->nameidx) + tmp | 
|  | <= args->geo->blksize); | 
|  | memmove(xfs_attr3_leaf_name(leaf_d, desti), | 
|  | xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); | 
|  | ASSERT(be16_to_cpu(entry_s->nameidx) + tmp | 
|  | <= args->geo->blksize); | 
|  | memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); | 
|  | ichdr_s->usedbytes -= tmp; | 
|  | ichdr_d->usedbytes += tmp; | 
|  | ichdr_s->count -= 1; | 
|  | ichdr_d->count += 1; | 
|  | tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) | 
|  | + xfs_attr3_leaf_hdr_size(leaf_d); | 
|  | ASSERT(ichdr_d->firstused >= tmp); | 
|  | #ifdef GROT | 
|  | } | 
|  | #endif /* GROT */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zero out the entries we just copied. | 
|  | */ | 
|  | if (start_s == ichdr_s->count) { | 
|  | tmp = count * sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; | 
|  | ASSERT(((char *)entry_s + tmp) <= | 
|  | ((char *)leaf_s + args->geo->blksize)); | 
|  | memset(entry_s, 0, tmp); | 
|  | } else { | 
|  | /* | 
|  | * Move the remaining entries down to fill the hole, | 
|  | * then zero the entries at the top. | 
|  | */ | 
|  | tmp  = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; | 
|  | entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; | 
|  | memmove(entry_d, entry_s, tmp); | 
|  |  | 
|  | tmp = count * sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; | 
|  | ASSERT(((char *)entry_s + tmp) <= | 
|  | ((char *)leaf_s + args->geo->blksize)); | 
|  | memset(entry_s, 0, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the freemap information | 
|  | */ | 
|  | ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); | 
|  | ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); | 
|  | ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; | 
|  | ichdr_d->freemap[1].base = 0; | 
|  | ichdr_d->freemap[2].base = 0; | 
|  | ichdr_d->freemap[1].size = 0; | 
|  | ichdr_d->freemap[2].size = 0; | 
|  | ichdr_s->holes = 1;	/* leaf may not be compact */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pick up the last hashvalue from a leaf block. | 
|  | */ | 
|  | xfs_dahash_t | 
|  | xfs_attr_leaf_lasthash( | 
|  | struct xfs_buf	*bp, | 
|  | int		*count) | 
|  | { | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | struct xfs_attr_leaf_entry *entries; | 
|  | struct xfs_mount *mp = bp->b_mount; | 
|  |  | 
|  | xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); | 
|  | entries = xfs_attr3_leaf_entryp(bp->b_addr); | 
|  | if (count) | 
|  | *count = ichdr.count; | 
|  | if (!ichdr.count) | 
|  | return 0; | 
|  | return be32_to_cpu(entries[ichdr.count - 1].hashval); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of bytes used to store the indicated attribute | 
|  | * (whether local or remote only calculate bytes in this block). | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) | 
|  | { | 
|  | struct xfs_attr_leaf_entry *entries; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | int size; | 
|  |  | 
|  | entries = xfs_attr3_leaf_entryp(leaf); | 
|  | if (entries[index].flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, index); | 
|  | size = xfs_attr_leaf_entsize_local(name_loc->namelen, | 
|  | be16_to_cpu(name_loc->valuelen)); | 
|  | } else { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, index); | 
|  | size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); | 
|  | } | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of bytes that would be required to store the new | 
|  | * attribute (whether local or remote only calculate bytes in this block). | 
|  | * This routine decides as a side effect whether the attribute will be | 
|  | * a "local" or a "remote" attribute. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_newentsize( | 
|  | struct xfs_da_args	*args, | 
|  | int			*local) | 
|  | { | 
|  | int			size; | 
|  |  | 
|  | size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); | 
|  | if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { | 
|  | if (local) | 
|  | *local = 1; | 
|  | return size; | 
|  | } | 
|  | if (local) | 
|  | *local = 0; | 
|  | return xfs_attr_leaf_entsize_remote(args->namelen); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*======================================================================== | 
|  | * Manage the INCOMPLETE flag in a leaf entry | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Clear the INCOMPLETE flag on an entry in a leaf block. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_clearflag( | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | struct xfs_attr_leaf_name_remote *name_rmt; | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  | #ifdef DEBUG | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | int namelen; | 
|  | char *name; | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | trace_xfs_attr_leaf_clearflag(args); | 
|  | /* | 
|  | * Set up the operation. | 
|  | */ | 
|  | error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; | 
|  | ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  | ASSERT(args->index < ichdr.count); | 
|  | ASSERT(args->index >= 0); | 
|  |  | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf, args->index); | 
|  | namelen = name_loc->namelen; | 
|  | name = (char *)name_loc->nameval; | 
|  | } else { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); | 
|  | namelen = name_rmt->namelen; | 
|  | name = (char *)name_rmt->name; | 
|  | } | 
|  | ASSERT(be32_to_cpu(entry->hashval) == args->hashval); | 
|  | ASSERT(namelen == args->namelen); | 
|  | ASSERT(memcmp(name, args->name, namelen) == 0); | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | entry->flags &= ~XFS_ATTR_INCOMPLETE; | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); | 
|  |  | 
|  | if (args->rmtblkno) { | 
|  | ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); | 
|  | name_rmt->valueblk = cpu_to_be32(args->rmtblkno); | 
|  | name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the flag value change and start the next trans in series. | 
|  | */ | 
|  | return xfs_trans_roll_inode(&args->trans, args->dp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the INCOMPLETE flag on an entry in a leaf block. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_setflag( | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf; | 
|  | struct xfs_attr_leaf_entry *entry; | 
|  | struct xfs_attr_leaf_name_remote *name_rmt; | 
|  | struct xfs_buf		*bp; | 
|  | int error; | 
|  | #ifdef DEBUG | 
|  | struct xfs_attr3_icleaf_hdr ichdr; | 
|  | #endif | 
|  |  | 
|  | trace_xfs_attr_leaf_setflag(args); | 
|  |  | 
|  | /* | 
|  | * Set up the operation. | 
|  | */ | 
|  | error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | leaf = bp->b_addr; | 
|  | #ifdef DEBUG | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); | 
|  | ASSERT(args->index < ichdr.count); | 
|  | ASSERT(args->index >= 0); | 
|  | #endif | 
|  | entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; | 
|  |  | 
|  | ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); | 
|  | entry->flags |= XFS_ATTR_INCOMPLETE; | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); | 
|  | if ((entry->flags & XFS_ATTR_LOCAL) == 0) { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); | 
|  | name_rmt->valueblk = 0; | 
|  | name_rmt->valuelen = 0; | 
|  | xfs_trans_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the flag value change and start the next trans in series. | 
|  | */ | 
|  | return xfs_trans_roll_inode(&args->trans, args->dp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In a single transaction, clear the INCOMPLETE flag on the leaf entry | 
|  | * given by args->blkno/index and set the INCOMPLETE flag on the leaf | 
|  | * entry given by args->blkno2/index2. | 
|  | * | 
|  | * Note that they could be in different blocks, or in the same block. | 
|  | */ | 
|  | int | 
|  | xfs_attr3_leaf_flipflags( | 
|  | struct xfs_da_args	*args) | 
|  | { | 
|  | struct xfs_attr_leafblock *leaf1; | 
|  | struct xfs_attr_leafblock *leaf2; | 
|  | struct xfs_attr_leaf_entry *entry1; | 
|  | struct xfs_attr_leaf_entry *entry2; | 
|  | struct xfs_attr_leaf_name_remote *name_rmt; | 
|  | struct xfs_buf		*bp1; | 
|  | struct xfs_buf		*bp2; | 
|  | int error; | 
|  | #ifdef DEBUG | 
|  | struct xfs_attr3_icleaf_hdr ichdr1; | 
|  | struct xfs_attr3_icleaf_hdr ichdr2; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | int namelen1, namelen2; | 
|  | char *name1, *name2; | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | trace_xfs_attr_leaf_flipflags(args); | 
|  |  | 
|  | /* | 
|  | * Read the block containing the "old" attr | 
|  | */ | 
|  | error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Read the block containing the "new" attr, if it is different | 
|  | */ | 
|  | if (args->blkno2 != args->blkno) { | 
|  | error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, | 
|  | -1, &bp2); | 
|  | if (error) | 
|  | return error; | 
|  | } else { | 
|  | bp2 = bp1; | 
|  | } | 
|  |  | 
|  | leaf1 = bp1->b_addr; | 
|  | entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; | 
|  |  | 
|  | leaf2 = bp2->b_addr; | 
|  | entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); | 
|  | ASSERT(args->index < ichdr1.count); | 
|  | ASSERT(args->index >= 0); | 
|  |  | 
|  | xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); | 
|  | ASSERT(args->index2 < ichdr2.count); | 
|  | ASSERT(args->index2 >= 0); | 
|  |  | 
|  | if (entry1->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); | 
|  | namelen1 = name_loc->namelen; | 
|  | name1 = (char *)name_loc->nameval; | 
|  | } else { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); | 
|  | namelen1 = name_rmt->namelen; | 
|  | name1 = (char *)name_rmt->name; | 
|  | } | 
|  | if (entry2->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); | 
|  | namelen2 = name_loc->namelen; | 
|  | name2 = (char *)name_loc->nameval; | 
|  | } else { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); | 
|  | namelen2 = name_rmt->namelen; | 
|  | name2 = (char *)name_rmt->name; | 
|  | } | 
|  | ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); | 
|  | ASSERT(namelen1 == namelen2); | 
|  | ASSERT(memcmp(name1, name2, namelen1) == 0); | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); | 
|  | ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); | 
|  |  | 
|  | entry1->flags &= ~XFS_ATTR_INCOMPLETE; | 
|  | xfs_trans_log_buf(args->trans, bp1, | 
|  | XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); | 
|  | if (args->rmtblkno) { | 
|  | ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); | 
|  | name_rmt->valueblk = cpu_to_be32(args->rmtblkno); | 
|  | name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); | 
|  | xfs_trans_log_buf(args->trans, bp1, | 
|  | XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  |  | 
|  | entry2->flags |= XFS_ATTR_INCOMPLETE; | 
|  | xfs_trans_log_buf(args->trans, bp2, | 
|  | XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); | 
|  | if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { | 
|  | name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); | 
|  | name_rmt->valueblk = 0; | 
|  | name_rmt->valuelen = 0; | 
|  | xfs_trans_log_buf(args->trans, bp2, | 
|  | XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the flag value change and start the next trans in series. | 
|  | */ | 
|  | error = xfs_trans_roll_inode(&args->trans, args->dp); | 
|  |  | 
|  | return error; | 
|  | } |