blob: 87a4ff888ddd47c93d6beaa2a8b1901825fe3b49 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021 pureLiFi
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/gpio.h>
#include <linux/jiffies.h>
#include <net/ieee80211_radiotap.h>
#include "chip.h"
#include "mac.h"
#include "usb.h"
static const struct ieee80211_rate plfxlc_rates[] = {
{ .bitrate = 10,
.hw_value = PURELIFI_CCK_RATE_1M,
.flags = 0 },
{ .bitrate = 20,
.hw_value = PURELIFI_CCK_RATE_2M,
.hw_value_short = PURELIFI_CCK_RATE_2M
| PURELIFI_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = PURELIFI_CCK_RATE_5_5M,
.hw_value_short = PURELIFI_CCK_RATE_5_5M
| PURELIFI_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = PURELIFI_CCK_RATE_11M,
.hw_value_short = PURELIFI_CCK_RATE_11M
| PURELIFI_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60,
.hw_value = PURELIFI_OFDM_RATE_6M,
.flags = 0 },
{ .bitrate = 90,
.hw_value = PURELIFI_OFDM_RATE_9M,
.flags = 0 },
{ .bitrate = 120,
.hw_value = PURELIFI_OFDM_RATE_12M,
.flags = 0 },
{ .bitrate = 180,
.hw_value = PURELIFI_OFDM_RATE_18M,
.flags = 0 },
{ .bitrate = 240,
.hw_value = PURELIFI_OFDM_RATE_24M,
.flags = 0 },
{ .bitrate = 360,
.hw_value = PURELIFI_OFDM_RATE_36M,
.flags = 0 },
{ .bitrate = 480,
.hw_value = PURELIFI_OFDM_RATE_48M,
.flags = 0 },
{ .bitrate = 540,
.hw_value = PURELIFI_OFDM_RATE_54M,
.flags = 0 }
};
static const struct ieee80211_channel plfxlc_channels[] = {
{ .center_freq = 2412, .hw_value = 1 },
{ .center_freq = 2417, .hw_value = 2 },
{ .center_freq = 2422, .hw_value = 3 },
{ .center_freq = 2427, .hw_value = 4 },
{ .center_freq = 2432, .hw_value = 5 },
{ .center_freq = 2437, .hw_value = 6 },
{ .center_freq = 2442, .hw_value = 7 },
{ .center_freq = 2447, .hw_value = 8 },
{ .center_freq = 2452, .hw_value = 9 },
{ .center_freq = 2457, .hw_value = 10 },
{ .center_freq = 2462, .hw_value = 11 },
{ .center_freq = 2467, .hw_value = 12 },
{ .center_freq = 2472, .hw_value = 13 },
{ .center_freq = 2484, .hw_value = 14 },
};
int plfxlc_mac_preinit_hw(struct ieee80211_hw *hw, const u8 *hw_address)
{
SET_IEEE80211_PERM_ADDR(hw, hw_address);
return 0;
}
int plfxlc_mac_init_hw(struct ieee80211_hw *hw)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
struct plfxlc_chip *chip = &mac->chip;
int r;
r = plfxlc_chip_init_hw(chip);
if (r) {
dev_warn(plfxlc_mac_dev(mac), "init hw failed (%d)\n", r);
return r;
}
dev_dbg(plfxlc_mac_dev(mac), "irq_disabled (%d)\n", irqs_disabled());
regulatory_hint(hw->wiphy, "00");
return r;
}
void plfxlc_mac_release(struct plfxlc_mac *mac)
{
plfxlc_chip_release(&mac->chip);
lockdep_assert_held(&mac->lock);
}
int plfxlc_op_start(struct ieee80211_hw *hw)
{
plfxlc_hw_mac(hw)->chip.usb.initialized = 1;
return 0;
}
void plfxlc_op_stop(struct ieee80211_hw *hw)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
clear_bit(PURELIFI_DEVICE_RUNNING, &mac->flags);
}
int plfxlc_restore_settings(struct plfxlc_mac *mac)
{
int beacon_interval, beacon_period;
struct sk_buff *beacon;
spin_lock_irq(&mac->lock);
beacon_interval = mac->beacon.interval;
beacon_period = mac->beacon.period;
spin_unlock_irq(&mac->lock);
if (mac->type != NL80211_IFTYPE_ADHOC)
return 0;
if (mac->vif) {
beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0);
if (beacon) {
/*beacon is hardcoded in firmware */
kfree_skb(beacon);
/* Returned skb is used only once and lowlevel
* driver is responsible for freeing it.
*/
}
}
plfxlc_set_beacon_interval(&mac->chip, beacon_interval,
beacon_period, mac->type);
spin_lock_irq(&mac->lock);
mac->beacon.last_update = jiffies;
spin_unlock_irq(&mac->lock);
return 0;
}
static void plfxlc_mac_tx_status(struct ieee80211_hw *hw,
struct sk_buff *skb,
int ackssi,
struct tx_status *tx_status)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int success = 1;
ieee80211_tx_info_clear_status(info);
if (tx_status)
success = !tx_status->failure;
if (success)
info->flags |= IEEE80211_TX_STAT_ACK;
else
info->flags &= ~IEEE80211_TX_STAT_ACK;
info->status.ack_signal = 50;
ieee80211_tx_status_irqsafe(hw, skb);
}
void plfxlc_mac_tx_to_dev(struct sk_buff *skb, int error)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hw *hw = info->rate_driver_data[0];
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
struct sk_buff_head *q = NULL;
ieee80211_tx_info_clear_status(info);
skb_pull(skb, sizeof(struct plfxlc_ctrlset));
if (unlikely(error ||
(info->flags & IEEE80211_TX_CTL_NO_ACK))) {
ieee80211_tx_status_irqsafe(hw, skb);
return;
}
q = &mac->ack_wait_queue;
skb_queue_tail(q, skb);
while (skb_queue_len(q)/* > PURELIFI_MAC_MAX_ACK_WAITERS*/) {
plfxlc_mac_tx_status(hw, skb_dequeue(q),
mac->ack_pending ?
mac->ack_signal : 0,
NULL);
mac->ack_pending = 0;
}
}
static int plfxlc_fill_ctrlset(struct plfxlc_mac *mac, struct sk_buff *skb)
{
unsigned int frag_len = skb->len;
struct plfxlc_ctrlset *cs;
u32 temp_payload_len = 0;
unsigned int tmp;
u32 temp_len = 0;
if (skb_headroom(skb) < sizeof(struct plfxlc_ctrlset)) {
dev_dbg(plfxlc_mac_dev(mac), "Not enough hroom(1)\n");
return 1;
}
cs = (void *)skb_push(skb, sizeof(struct plfxlc_ctrlset));
temp_payload_len = frag_len;
temp_len = temp_payload_len +
sizeof(struct plfxlc_ctrlset) -
sizeof(cs->id) - sizeof(cs->len);
/* Data packet lengths must be multiple of four bytes and must
* not be a multiple of 512 bytes. First, it is attempted to
* append the data packet in the tailroom of the skb. In rare
* occasions, the tailroom is too small. In this case, the
* content of the packet is shifted into the headroom of the skb
* by memcpy. Headroom is allocated at startup (below in this
* file). Therefore, there will be always enough headroom. The
* call skb_headroom is an additional safety which might be
* dropped.
*/
/* check if 32 bit aligned and align data */
tmp = skb->len & 3;
if (tmp) {
if (skb_tailroom(skb) < (3 - tmp)) {
if (skb_headroom(skb) >= 4 - tmp) {
u8 len;
u8 *src_pt;
u8 *dest_pt;
len = skb->len;
src_pt = skb->data;
dest_pt = skb_push(skb, 4 - tmp);
memmove(dest_pt, src_pt, len);
} else {
return -ENOBUFS;
}
} else {
skb_put(skb, 4 - tmp);
}
temp_len += 4 - tmp;
}
/* check if not multiple of 512 and align data */
tmp = skb->len & 0x1ff;
if (!tmp) {
if (skb_tailroom(skb) < 4) {
if (skb_headroom(skb) >= 4) {
u8 len = skb->len;
u8 *src_pt = skb->data;
u8 *dest_pt = skb_push(skb, 4);
memmove(dest_pt, src_pt, len);
} else {
/* should never happen because
* sufficient headroom was reserved
*/
return -ENOBUFS;
}
} else {
skb_put(skb, 4);
}
temp_len += 4;
}
cs->id = cpu_to_be32(USB_REQ_DATA_TX);
cs->len = cpu_to_be32(temp_len);
cs->payload_len_nw = cpu_to_be32(temp_payload_len);
return 0;
}
static void plfxlc_op_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct plfxlc_header *plhdr = (void *)skb->data;
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
struct plfxlc_usb *usb = &mac->chip.usb;
unsigned long flags;
int r;
r = plfxlc_fill_ctrlset(mac, skb);
if (r)
goto fail;
info->rate_driver_data[0] = hw;
if (plhdr->frametype == IEEE80211_FTYPE_DATA) {
u8 *dst_mac = plhdr->dmac;
u8 sidx;
bool found = false;
struct plfxlc_usb_tx *tx = &usb->tx;
for (sidx = 0; sidx < MAX_STA_NUM; sidx++) {
if (!(tx->station[sidx].flag & STATION_CONNECTED_FLAG))
continue;
if (memcmp(tx->station[sidx].mac, dst_mac, ETH_ALEN))
continue;
found = true;
break;
}
/* Default to broadcast address for unknown MACs */
if (!found)
sidx = STA_BROADCAST_INDEX;
/* Stop OS from sending packets, if the queue is half full */
if (skb_queue_len(&tx->station[sidx].data_list) > 60)
ieee80211_stop_queues(plfxlc_usb_to_hw(usb));
/* Schedule packet for transmission if queue is not full */
if (skb_queue_len(&tx->station[sidx].data_list) > 256)
goto fail;
skb_queue_tail(&tx->station[sidx].data_list, skb);
plfxlc_send_packet_from_data_queue(usb);
} else {
spin_lock_irqsave(&usb->tx.lock, flags);
r = plfxlc_usb_wreq_async(&mac->chip.usb, skb->data, skb->len,
USB_REQ_DATA_TX, plfxlc_tx_urb_complete, skb);
spin_unlock_irqrestore(&usb->tx.lock, flags);
if (r)
goto fail;
}
return;
fail:
dev_kfree_skb(skb);
}
static int plfxlc_filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
struct ieee80211_rx_status *stats)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
struct sk_buff_head *q;
int i, position = 0;
unsigned long flags;
struct sk_buff *skb;
bool found = false;
if (!ieee80211_is_ack(rx_hdr->frame_control))
return 0;
dev_dbg(plfxlc_mac_dev(mac), "ACK Received\n");
/* code based on zy driver, this logic may need fix */
q = &mac->ack_wait_queue;
spin_lock_irqsave(&q->lock, flags);
skb_queue_walk(q, skb) {
struct ieee80211_hdr *tx_hdr;
position++;
if (mac->ack_pending && skb_queue_is_first(q, skb))
continue;
if (mac->ack_pending == 0)
break;
tx_hdr = (struct ieee80211_hdr *)skb->data;
if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1))) {
found = 1;
break;
}
}
if (found) {
for (i = 1; i < position; i++)
skb = __skb_dequeue(q);
if (i == position) {
plfxlc_mac_tx_status(hw, skb,
mac->ack_pending ?
mac->ack_signal : 0,
NULL);
mac->ack_pending = 0;
}
mac->ack_pending = skb_queue_len(q) ? 1 : 0;
mac->ack_signal = stats->signal;
}
spin_unlock_irqrestore(&q->lock, flags);
return 1;
}
int plfxlc_mac_rx(struct ieee80211_hw *hw, const u8 *buffer,
unsigned int length)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
struct ieee80211_rx_status stats;
const struct rx_status *status;
unsigned int payload_length;
struct plfxlc_usb_tx *tx;
struct sk_buff *skb;
int need_padding;
__le16 fc;
int sidx;
/* Packet blockade during disabled interface. */
if (!mac->vif)
return 0;
status = (struct rx_status *)buffer;
memset(&stats, 0, sizeof(stats));
stats.flag = 0;
stats.freq = 2412;
stats.band = NL80211_BAND_LC;
mac->rssi = -15 * be16_to_cpu(status->rssi) / 10;
stats.signal = mac->rssi;
if (status->rate_idx > 7)
stats.rate_idx = 0;
else
stats.rate_idx = status->rate_idx;
mac->crc_errors = be64_to_cpu(status->crc_error_count);
/* TODO bad frame check for CRC error*/
if (plfxlc_filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) &&
!mac->pass_ctrl)
return 0;
buffer += sizeof(struct rx_status);
payload_length = get_unaligned_be32(buffer);
if (payload_length > 1560) {
dev_err(plfxlc_mac_dev(mac), " > MTU %u\n", payload_length);
return 0;
}
buffer += sizeof(u32);
fc = get_unaligned((__le16 *)buffer);
need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
tx = &mac->chip.usb.tx;
for (sidx = 0; sidx < MAX_STA_NUM - 1; sidx++) {
if (memcmp(&buffer[10], tx->station[sidx].mac, ETH_ALEN))
continue;
if (tx->station[sidx].flag & STATION_CONNECTED_FLAG) {
tx->station[sidx].flag |= STATION_HEARTBEAT_FLAG;
break;
}
}
if (sidx == MAX_STA_NUM - 1) {
for (sidx = 0; sidx < MAX_STA_NUM - 1; sidx++) {
if (tx->station[sidx].flag & STATION_CONNECTED_FLAG)
continue;
memcpy(tx->station[sidx].mac, &buffer[10], ETH_ALEN);
tx->station[sidx].flag |= STATION_CONNECTED_FLAG;
tx->station[sidx].flag |= STATION_HEARTBEAT_FLAG;
break;
}
}
switch (buffer[0]) {
case IEEE80211_STYPE_PROBE_REQ:
dev_dbg(plfxlc_mac_dev(mac), "Probe request\n");
break;
case IEEE80211_STYPE_ASSOC_REQ:
dev_dbg(plfxlc_mac_dev(mac), "Association request\n");
break;
case IEEE80211_STYPE_AUTH:
dev_dbg(plfxlc_mac_dev(mac), "Authentication req\n");
break;
case IEEE80211_FTYPE_DATA:
dev_dbg(plfxlc_mac_dev(mac), "802.11 data frame\n");
break;
}
skb = dev_alloc_skb(payload_length + (need_padding ? 2 : 0));
if (!skb)
return -ENOMEM;
if (need_padding)
/* Make sure that the payload data is 4 byte aligned. */
skb_reserve(skb, 2);
skb_put_data(skb, buffer, payload_length);
memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
ieee80211_rx_irqsafe(hw, skb);
return 0;
}
static int plfxlc_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
static const char * const iftype80211[] = {
[NL80211_IFTYPE_STATION] = "Station",
[NL80211_IFTYPE_ADHOC] = "Adhoc"
};
if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
return -EOPNOTSUPP;
if (vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_STATION) {
dev_dbg(plfxlc_mac_dev(mac), "%s %s\n", __func__,
iftype80211[vif->type]);
mac->type = vif->type;
mac->vif = vif;
return 0;
}
dev_dbg(plfxlc_mac_dev(mac), "unsupported iftype\n");
return -EOPNOTSUPP;
}
static void plfxlc_op_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
mac->type = NL80211_IFTYPE_UNSPECIFIED;
mac->vif = NULL;
}
static int plfxlc_op_config(struct ieee80211_hw *hw, u32 changed)
{
return 0;
}
#define SUPPORTED_FIF_FLAGS \
(FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
static void plfxlc_op_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
u64 multicast)
{
struct plfxlc_mc_hash hash = {
.low = multicast,
.high = multicast >> 32,
};
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
unsigned long flags;
/* Only deal with supported flags */
*new_flags &= SUPPORTED_FIF_FLAGS;
/* If multicast parameter
* (as returned by plfxlc_op_prepare_multicast)
* has changed, no bit in changed_flags is set. To handle this
* situation, we do not return if changed_flags is 0. If we do so,
* we will have some issue with IPv6 which uses multicast for link
* layer address resolution.
*/
if (*new_flags & (FIF_ALLMULTI))
plfxlc_mc_add_all(&hash);
spin_lock_irqsave(&mac->lock, flags);
mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
mac->multicast_hash = hash;
spin_unlock_irqrestore(&mac->lock, flags);
/* no handling required for FIF_OTHER_BSS as we don't currently
* do BSSID filtering
*/
/* FIXME: in future it would be nice to enable the probe response
* filter (so that the driver doesn't see them) until
* FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
* have to schedule work to enable prbresp reception, which might
* happen too late. For now we'll just listen and forward them all the
* time.
*/
}
static void plfxlc_op_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u64 changes)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
int associated;
dev_dbg(plfxlc_mac_dev(mac), "changes: %llx\n", changes);
if (mac->type != NL80211_IFTYPE_ADHOC) { /* for STATION */
associated = is_valid_ether_addr(bss_conf->bssid);
goto exit_all;
}
/* for ADHOC */
associated = true;
if (changes & BSS_CHANGED_BEACON) {
struct sk_buff *beacon = ieee80211_beacon_get(hw, vif, 0);
if (beacon) {
/*beacon is hardcoded in firmware */
kfree_skb(beacon);
/*Returned skb is used only once and
* low-level driver is
* responsible for freeing it.
*/
}
}
if (changes & BSS_CHANGED_BEACON_ENABLED) {
u16 interval = 0;
u8 period = 0;
if (bss_conf->enable_beacon) {
period = bss_conf->dtim_period;
interval = bss_conf->beacon_int;
}
spin_lock_irq(&mac->lock);
mac->beacon.period = period;
mac->beacon.interval = interval;
mac->beacon.last_update = jiffies;
spin_unlock_irq(&mac->lock);
plfxlc_set_beacon_interval(&mac->chip, interval,
period, mac->type);
}
exit_all:
spin_lock_irq(&mac->lock);
mac->associated = associated;
spin_unlock_irq(&mac->lock);
}
static int plfxlc_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
stats->dot11ACKFailureCount = 0;
stats->dot11RTSFailureCount = 0;
stats->dot11FCSErrorCount = 0;
stats->dot11RTSSuccessCount = 0;
return 0;
}
static const char et_strings[][ETH_GSTRING_LEN] = {
"phy_rssi",
"phy_rx_crc_err"
};
static int plfxlc_get_et_sset_count(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int sset)
{
if (sset == ETH_SS_STATS)
return ARRAY_SIZE(et_strings);
return 0;
}
static void plfxlc_get_et_strings(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 sset, u8 *data)
{
if (sset == ETH_SS_STATS)
memcpy(data, et_strings, sizeof(et_strings));
}
static void plfxlc_get_et_stats(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ethtool_stats *stats, u64 *data)
{
struct plfxlc_mac *mac = plfxlc_hw_mac(hw);
data[0] = mac->rssi;
data[1] = mac->crc_errors;
}
static int plfxlc_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
return 0;
}
static const struct ieee80211_ops plfxlc_ops = {
.tx = plfxlc_op_tx,
.start = plfxlc_op_start,
.stop = plfxlc_op_stop,
.add_interface = plfxlc_op_add_interface,
.remove_interface = plfxlc_op_remove_interface,
.set_rts_threshold = plfxlc_set_rts_threshold,
.config = plfxlc_op_config,
.configure_filter = plfxlc_op_configure_filter,
.bss_info_changed = plfxlc_op_bss_info_changed,
.get_stats = plfxlc_get_stats,
.get_et_sset_count = plfxlc_get_et_sset_count,
.get_et_stats = plfxlc_get_et_stats,
.get_et_strings = plfxlc_get_et_strings,
};
struct ieee80211_hw *plfxlc_mac_alloc_hw(struct usb_interface *intf)
{
struct ieee80211_hw *hw;
struct plfxlc_mac *mac;
hw = ieee80211_alloc_hw(sizeof(struct plfxlc_mac), &plfxlc_ops);
if (!hw) {
dev_dbg(&intf->dev, "out of memory\n");
return NULL;
}
set_wiphy_dev(hw->wiphy, &intf->dev);
mac = plfxlc_hw_mac(hw);
memset(mac, 0, sizeof(*mac));
spin_lock_init(&mac->lock);
mac->hw = hw;
mac->type = NL80211_IFTYPE_UNSPECIFIED;
memcpy(mac->channels, plfxlc_channels, sizeof(plfxlc_channels));
memcpy(mac->rates, plfxlc_rates, sizeof(plfxlc_rates));
mac->band.n_bitrates = ARRAY_SIZE(plfxlc_rates);
mac->band.bitrates = mac->rates;
mac->band.n_channels = ARRAY_SIZE(plfxlc_channels);
mac->band.channels = mac->channels;
hw->wiphy->bands[NL80211_BAND_LC] = &mac->band;
hw->conf.chandef.width = NL80211_CHAN_WIDTH_20;
ieee80211_hw_set(hw, RX_INCLUDES_FCS);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(hw, MFP_CAPABLE);
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
hw->max_signal = 100;
hw->queues = 1;
/* 4 for 32 bit alignment if no tailroom */
hw->extra_tx_headroom = sizeof(struct plfxlc_ctrlset) + 4;
/* Tell mac80211 that we support multi rate retries */
hw->max_rates = IEEE80211_TX_MAX_RATES;
hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
skb_queue_head_init(&mac->ack_wait_queue);
mac->ack_pending = 0;
plfxlc_chip_init(&mac->chip, hw, intf);
SET_IEEE80211_DEV(hw, &intf->dev);
return hw;
}