|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * Driver for SanDisk SDDR-09 SmartMedia reader | 
|  | * | 
|  | *   (c) 2000, 2001 Robert Baruch (autophile@starband.net) | 
|  | *   (c) 2002 Andries Brouwer (aeb@cwi.nl) | 
|  | * Developed with the assistance of: | 
|  | *   (c) 2002 Alan Stern <stern@rowland.org> | 
|  | * | 
|  | * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip. | 
|  | * This chip is a programmable USB controller. In the SDDR-09, it has | 
|  | * been programmed to obey a certain limited set of SCSI commands. | 
|  | * This driver translates the "real" SCSI commands to the SDDR-09 SCSI | 
|  | * commands. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Known vendor commands: 12 bytes, first byte is opcode | 
|  | * | 
|  | * E7: read scatter gather | 
|  | * E8: read | 
|  | * E9: write | 
|  | * EA: erase | 
|  | * EB: reset | 
|  | * EC: read status | 
|  | * ED: read ID | 
|  | * EE: write CIS (?) | 
|  | * EF: compute checksum (?) | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <scsi/scsi.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  | #include <scsi/scsi_device.h> | 
|  |  | 
|  | #include "usb.h" | 
|  | #include "transport.h" | 
|  | #include "protocol.h" | 
|  | #include "debug.h" | 
|  | #include "scsiglue.h" | 
|  |  | 
|  | #define DRV_NAME "ums-sddr09" | 
|  |  | 
|  | MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader"); | 
|  | MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_IMPORT_NS(USB_STORAGE); | 
|  |  | 
|  | static int usb_stor_sddr09_dpcm_init(struct us_data *us); | 
|  | static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us); | 
|  | static int usb_stor_sddr09_init(struct us_data *us); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The table of devices | 
|  | */ | 
|  | #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ | 
|  | vendorName, productName, useProtocol, useTransport, \ | 
|  | initFunction, flags) \ | 
|  | { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ | 
|  | .driver_info = (flags) } | 
|  |  | 
|  | static struct usb_device_id sddr09_usb_ids[] = { | 
|  | #	include "unusual_sddr09.h" | 
|  | { }		/* Terminating entry */ | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(usb, sddr09_usb_ids); | 
|  |  | 
|  | #undef UNUSUAL_DEV | 
|  |  | 
|  | /* | 
|  | * The flags table | 
|  | */ | 
|  | #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ | 
|  | vendor_name, product_name, use_protocol, use_transport, \ | 
|  | init_function, Flags) \ | 
|  | { \ | 
|  | .vendorName = vendor_name,	\ | 
|  | .productName = product_name,	\ | 
|  | .useProtocol = use_protocol,	\ | 
|  | .useTransport = use_transport,	\ | 
|  | .initFunction = init_function,	\ | 
|  | } | 
|  |  | 
|  | static struct us_unusual_dev sddr09_unusual_dev_list[] = { | 
|  | #	include "unusual_sddr09.h" | 
|  | { }		/* Terminating entry */ | 
|  | }; | 
|  |  | 
|  | #undef UNUSUAL_DEV | 
|  |  | 
|  |  | 
|  | #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) | 
|  | #define LSB_of(s) ((s)&0xFF) | 
|  | #define MSB_of(s) ((s)>>8) | 
|  |  | 
|  | /* | 
|  | * First some stuff that does not belong here: | 
|  | * data on SmartMedia and other cards, completely | 
|  | * unrelated to this driver. | 
|  | * Similar stuff occurs in <linux/mtd/nand_ids.h>. | 
|  | */ | 
|  |  | 
|  | struct nand_flash_dev { | 
|  | int model_id; | 
|  | int chipshift;		/* 1<<cs bytes total capacity */ | 
|  | char pageshift;		/* 1<<ps bytes in a page */ | 
|  | char blockshift;	/* 1<<bs pages in an erase block */ | 
|  | char zoneshift;		/* 1<<zs blocks in a zone */ | 
|  | /* # of logical blocks is 125/128 of this */ | 
|  | char pageadrlen;	/* length of an address in bytes - 1 */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * NAND Flash Manufacturer ID Codes | 
|  | */ | 
|  | #define NAND_MFR_AMD		0x01 | 
|  | #define NAND_MFR_NATSEMI	0x8f | 
|  | #define NAND_MFR_TOSHIBA	0x98 | 
|  | #define NAND_MFR_SAMSUNG	0xec | 
|  |  | 
|  | static inline char *nand_flash_manufacturer(int manuf_id) { | 
|  | switch(manuf_id) { | 
|  | case NAND_MFR_AMD: | 
|  | return "AMD"; | 
|  | case NAND_MFR_NATSEMI: | 
|  | return "NATSEMI"; | 
|  | case NAND_MFR_TOSHIBA: | 
|  | return "Toshiba"; | 
|  | case NAND_MFR_SAMSUNG: | 
|  | return "Samsung"; | 
|  | default: | 
|  | return "unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It looks like it is unnecessary to attach manufacturer to the | 
|  | * remaining data: SSFDC prescribes manufacturer-independent id codes. | 
|  | * | 
|  | * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda. | 
|  | */ | 
|  |  | 
|  | static struct nand_flash_dev nand_flash_ids[] = { | 
|  | /* NAND flash */ | 
|  | { 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */ | 
|  | { 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */ | 
|  | { 0xec, 20, 8, 4, 8, 2},	/* 1 MB */ | 
|  | { 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */ | 
|  | { 0xea, 21, 8, 4, 9, 2},	/* 2 MB */ | 
|  | { 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */ | 
|  | { 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */ | 
|  | { 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */ | 
|  | { 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */ | 
|  | { 0x73, 24, 9, 5, 10, 2},	/* 16 MB */ | 
|  | { 0x75, 25, 9, 5, 10, 2},	/* 32 MB */ | 
|  | { 0x76, 26, 9, 5, 10, 3},	/* 64 MB */ | 
|  | { 0x79, 27, 9, 5, 10, 3},	/* 128 MB */ | 
|  |  | 
|  | /* MASK ROM */ | 
|  | { 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */ | 
|  | { 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */ | 
|  | { 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */ | 
|  | { 0x57, 24, 9, 4, 11, 2},	/* 16 MB */ | 
|  | { 0x58, 25, 9, 4, 12, 2},	/* 32 MB */ | 
|  | { 0,} | 
|  | }; | 
|  |  | 
|  | static struct nand_flash_dev * | 
|  | nand_find_id(unsigned char id) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++) | 
|  | if (nand_flash_ids[i].model_id == id) | 
|  | return &(nand_flash_ids[i]); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ECC computation. | 
|  | */ | 
|  | static unsigned char parity[256]; | 
|  | static unsigned char ecc2[256]; | 
|  |  | 
|  | static void nand_init_ecc(void) { | 
|  | int i, j, a; | 
|  |  | 
|  | parity[0] = 0; | 
|  | for (i = 1; i < 256; i++) | 
|  | parity[i] = (parity[i&(i-1)] ^ 1); | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | a = 0; | 
|  | for (j = 0; j < 8; j++) { | 
|  | if (i & (1<<j)) { | 
|  | if ((j & 1) == 0) | 
|  | a ^= 0x04; | 
|  | if ((j & 2) == 0) | 
|  | a ^= 0x10; | 
|  | if ((j & 4) == 0) | 
|  | a ^= 0x40; | 
|  | } | 
|  | } | 
|  | ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compute 3-byte ecc on 256 bytes */ | 
|  | static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | int i, j, a; | 
|  | unsigned char par = 0, bit, bits[8] = {0}; | 
|  |  | 
|  | /* collect 16 checksum bits */ | 
|  | for (i = 0; i < 256; i++) { | 
|  | par ^= data[i]; | 
|  | bit = parity[data[i]]; | 
|  | for (j = 0; j < 8; j++) | 
|  | if ((i & (1<<j)) == 0) | 
|  | bits[j] ^= bit; | 
|  | } | 
|  |  | 
|  | /* put 4+4+4 = 12 bits in the ecc */ | 
|  | a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; | 
|  | ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); | 
|  |  | 
|  | a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; | 
|  | ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); | 
|  |  | 
|  | ecc[2] = ecc2[par]; | 
|  | } | 
|  |  | 
|  | static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); | 
|  | } | 
|  |  | 
|  | static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | memcpy(data, ecc, 3); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The actual driver starts here. | 
|  | */ | 
|  |  | 
|  | struct sddr09_card_info { | 
|  | unsigned long	capacity;	/* Size of card in bytes */ | 
|  | int		pagesize;	/* Size of page in bytes */ | 
|  | int		pageshift;	/* log2 of pagesize */ | 
|  | int		blocksize;	/* Size of block in pages */ | 
|  | int		blockshift;	/* log2 of blocksize */ | 
|  | int		blockmask;	/* 2^blockshift - 1 */ | 
|  | int		*lba_to_pba;	/* logical to physical map */ | 
|  | int		*pba_to_lba;	/* physical to logical map */ | 
|  | int		lbact;		/* number of available pages */ | 
|  | int		flags; | 
|  | #define	SDDR09_WP	1		/* write protected */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * On my 16MB card, control blocks have size 64 (16 real control bytes, | 
|  | * and 48 junk bytes). In reality of course the card uses 16 control bytes, | 
|  | * so the reader makes up the remaining 48. Don't know whether these numbers | 
|  | * depend on the card. For now a constant. | 
|  | */ | 
|  | #define CONTROL_SHIFT 6 | 
|  |  | 
|  | /* | 
|  | * On my Combo CF/SM reader, the SM reader has LUN 1. | 
|  | * (and things fail with LUN 0). | 
|  | * It seems LUN is irrelevant for others. | 
|  | */ | 
|  | #define LUN	1 | 
|  | #define	LUNBITS	(LUN << 5) | 
|  |  | 
|  | /* | 
|  | * LBA and PBA are unsigned ints. Special values. | 
|  | */ | 
|  | #define UNDEF    0xffffffff | 
|  | #define SPARE    0xfffffffe | 
|  | #define UNUSABLE 0xfffffffd | 
|  |  | 
|  | static const int erase_bad_lba_entries = 0; | 
|  |  | 
|  | /* send vendor interface command (0x41) */ | 
|  | /* called for requests 0, 1, 8 */ | 
|  | static int | 
|  | sddr09_send_command(struct us_data *us, | 
|  | unsigned char request, | 
|  | unsigned char direction, | 
|  | unsigned char *xfer_data, | 
|  | unsigned int xfer_len) { | 
|  | unsigned int pipe; | 
|  | unsigned char requesttype = (0x41 | direction); | 
|  | int rc; | 
|  |  | 
|  | // Get the receive or send control pipe number | 
|  |  | 
|  | if (direction == USB_DIR_IN) | 
|  | pipe = us->recv_ctrl_pipe; | 
|  | else | 
|  | pipe = us->send_ctrl_pipe; | 
|  |  | 
|  | rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype, | 
|  | 0, 0, xfer_data, xfer_len); | 
|  | switch (rc) { | 
|  | case USB_STOR_XFER_GOOD:	return 0; | 
|  | case USB_STOR_XFER_STALLED:	return -EPIPE; | 
|  | default:			return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_send_scsi_command(struct us_data *us, | 
|  | unsigned char *command, | 
|  | unsigned int command_len) { | 
|  | return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Test Unit Ready Command: 12 bytes. | 
|  | * byte 0: opcode: 00 | 
|  | */ | 
|  | static int | 
|  | sddr09_test_unit_ready(struct us_data *us) { | 
|  | unsigned char *command = us->iobuf; | 
|  | int result; | 
|  |  | 
|  | memset(command, 0, 6); | 
|  | command[1] = LUNBITS; | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 6); | 
|  |  | 
|  | usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result); | 
|  |  | 
|  | return result; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Request Sense Command: 12 bytes. | 
|  | * byte 0: opcode: 03 | 
|  | * byte 4: data length | 
|  | */ | 
|  | static int | 
|  | sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) { | 
|  | unsigned char *command = us->iobuf; | 
|  | int result; | 
|  |  | 
|  | memset(command, 0, 12); | 
|  | command[0] = 0x03; | 
|  | command[1] = LUNBITS; | 
|  | command[4] = buflen; | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 12); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | sensebuf, buflen, NULL); | 
|  | return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read Command: 12 bytes. | 
|  | * byte 0: opcode: E8 | 
|  | * byte 1: last two bits: 00: read data, 01: read blockwise control, | 
|  | *			10: read both, 11: read pagewise control. | 
|  | *	 It turns out we need values 20, 21, 22, 23 here (LUN 1). | 
|  | * bytes 2-5: address (interpretation depends on byte 1, see below) | 
|  | * bytes 10-11: count (idem) | 
|  | * | 
|  | * A page has 512 data bytes and 64 control bytes (16 control and 48 junk). | 
|  | * A read data command gets data in 512-byte pages. | 
|  | * A read control command gets control in 64-byte chunks. | 
|  | * A read both command gets data+control in 576-byte chunks. | 
|  | * | 
|  | * Blocks are groups of 32 pages, and read blockwise control jumps to the | 
|  | * next block, while read pagewise control jumps to the next page after | 
|  | * reading a group of 64 control bytes. | 
|  | * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?] | 
|  | * | 
|  | * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.) | 
|  | */ | 
|  |  | 
|  | static int | 
|  | sddr09_readX(struct us_data *us, int x, unsigned long fromaddress, | 
|  | int nr_of_pages, int bulklen, unsigned char *buf, | 
|  | int use_sg) { | 
|  |  | 
|  | unsigned char *command = us->iobuf; | 
|  | int result; | 
|  |  | 
|  | command[0] = 0xE8; | 
|  | command[1] = LUNBITS | x; | 
|  | command[2] = MSB_of(fromaddress>>16); | 
|  | command[3] = LSB_of(fromaddress>>16); | 
|  | command[4] = MSB_of(fromaddress & 0xFFFF); | 
|  | command[5] = LSB_of(fromaddress & 0xFFFF); | 
|  | command[6] = 0; | 
|  | command[7] = 0; | 
|  | command[8] = 0; | 
|  | command[9] = 0; | 
|  | command[10] = MSB_of(nr_of_pages); | 
|  | command[11] = LSB_of(nr_of_pages); | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 12); | 
|  |  | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n", | 
|  | x, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe, | 
|  | buf, bulklen, use_sg, NULL); | 
|  |  | 
|  | if (result != USB_STOR_XFER_GOOD) { | 
|  | usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n", | 
|  | x, result); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read Data | 
|  | * | 
|  | * fromaddress counts data shorts: | 
|  | * increasing it by 256 shifts the bytestream by 512 bytes; | 
|  | * the last 8 bits are ignored. | 
|  | * | 
|  | * nr_of_pages counts pages of size (1 << pageshift). | 
|  | */ | 
|  | static int | 
|  | sddr09_read20(struct us_data *us, unsigned long fromaddress, | 
|  | int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) { | 
|  | int bulklen = nr_of_pages << pageshift; | 
|  |  | 
|  | /* The last 8 bits of fromaddress are ignored. */ | 
|  | return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen, | 
|  | buf, use_sg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read Blockwise Control | 
|  | * | 
|  | * fromaddress gives the starting position (as in read data; | 
|  | * the last 8 bits are ignored); increasing it by 32*256 shifts | 
|  | * the output stream by 64 bytes. | 
|  | * | 
|  | * count counts control groups of size (1 << controlshift). | 
|  | * For me, controlshift = 6. Is this constant? | 
|  | * | 
|  | * After getting one control group, jump to the next block | 
|  | * (fromaddress += 8192). | 
|  | */ | 
|  | static int | 
|  | sddr09_read21(struct us_data *us, unsigned long fromaddress, | 
|  | int count, int controlshift, unsigned char *buf, int use_sg) { | 
|  |  | 
|  | int bulklen = (count << controlshift); | 
|  | return sddr09_readX(us, 1, fromaddress, count, bulklen, | 
|  | buf, use_sg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read both Data and Control | 
|  | * | 
|  | * fromaddress counts data shorts, ignoring control: | 
|  | * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes; | 
|  | * the last 8 bits are ignored. | 
|  | * | 
|  | * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift). | 
|  | */ | 
|  | static int | 
|  | sddr09_read22(struct us_data *us, unsigned long fromaddress, | 
|  | int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) { | 
|  |  | 
|  | int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT); | 
|  | usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen); | 
|  | return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen, | 
|  | buf, use_sg); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Read Pagewise Control | 
|  | * | 
|  | * fromaddress gives the starting position (as in read data; | 
|  | * the last 8 bits are ignored); increasing it by 256 shifts | 
|  | * the output stream by 64 bytes. | 
|  | * | 
|  | * count counts control groups of size (1 << controlshift). | 
|  | * For me, controlshift = 6. Is this constant? | 
|  | * | 
|  | * After getting one control group, jump to the next page | 
|  | * (fromaddress += 256). | 
|  | */ | 
|  | static int | 
|  | sddr09_read23(struct us_data *us, unsigned long fromaddress, | 
|  | int count, int controlshift, unsigned char *buf, int use_sg) { | 
|  |  | 
|  | int bulklen = (count << controlshift); | 
|  | return sddr09_readX(us, 3, fromaddress, count, bulklen, | 
|  | buf, use_sg); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Erase Command: 12 bytes. | 
|  | * byte 0: opcode: EA | 
|  | * bytes 6-9: erase address (big-endian, counting shorts, sector aligned). | 
|  | * | 
|  | * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored. | 
|  | * The byte address being erased is 2*Eaddress. | 
|  | * The CIS cannot be erased. | 
|  | */ | 
|  | static int | 
|  | sddr09_erase(struct us_data *us, unsigned long Eaddress) { | 
|  | unsigned char *command = us->iobuf; | 
|  | int result; | 
|  |  | 
|  | usb_stor_dbg(us, "erase address %lu\n", Eaddress); | 
|  |  | 
|  | memset(command, 0, 12); | 
|  | command[0] = 0xEA; | 
|  | command[1] = LUNBITS; | 
|  | command[6] = MSB_of(Eaddress>>16); | 
|  | command[7] = LSB_of(Eaddress>>16); | 
|  | command[8] = MSB_of(Eaddress & 0xFFFF); | 
|  | command[9] = LSB_of(Eaddress & 0xFFFF); | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 12); | 
|  |  | 
|  | if (result) | 
|  | usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n", | 
|  | result); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write CIS Command: 12 bytes. | 
|  | * byte 0: opcode: EE | 
|  | * bytes 2-5: write address in shorts | 
|  | * bytes 10-11: sector count | 
|  | * | 
|  | * This writes at the indicated address. Don't know how it differs | 
|  | * from E9. Maybe it does not erase? However, it will also write to | 
|  | * the CIS. | 
|  | * | 
|  | * When two such commands on the same page follow each other directly, | 
|  | * the second one is not done. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Write Command: 12 bytes. | 
|  | * byte 0: opcode: E9 | 
|  | * bytes 2-5: write address (big-endian, counting shorts, sector aligned). | 
|  | * bytes 6-9: erase address (big-endian, counting shorts, sector aligned). | 
|  | * bytes 10-11: sector count (big-endian, in 512-byte sectors). | 
|  | * | 
|  | * If write address equals erase address, the erase is done first, | 
|  | * otherwise the write is done first. When erase address equals zero | 
|  | * no erase is done? | 
|  | */ | 
|  | static int | 
|  | sddr09_writeX(struct us_data *us, | 
|  | unsigned long Waddress, unsigned long Eaddress, | 
|  | int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) { | 
|  |  | 
|  | unsigned char *command = us->iobuf; | 
|  | int result; | 
|  |  | 
|  | command[0] = 0xE9; | 
|  | command[1] = LUNBITS; | 
|  |  | 
|  | command[2] = MSB_of(Waddress>>16); | 
|  | command[3] = LSB_of(Waddress>>16); | 
|  | command[4] = MSB_of(Waddress & 0xFFFF); | 
|  | command[5] = LSB_of(Waddress & 0xFFFF); | 
|  |  | 
|  | command[6] = MSB_of(Eaddress>>16); | 
|  | command[7] = LSB_of(Eaddress>>16); | 
|  | command[8] = MSB_of(Eaddress & 0xFFFF); | 
|  | command[9] = LSB_of(Eaddress & 0xFFFF); | 
|  |  | 
|  | command[10] = MSB_of(nr_of_pages); | 
|  | command[11] = LSB_of(nr_of_pages); | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 12); | 
|  |  | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n", | 
|  | result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe, | 
|  | buf, bulklen, use_sg, NULL); | 
|  |  | 
|  | if (result != USB_STOR_XFER_GOOD) { | 
|  | usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n", | 
|  | result); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* erase address, write same address */ | 
|  | static int | 
|  | sddr09_write_inplace(struct us_data *us, unsigned long address, | 
|  | int nr_of_pages, int pageshift, unsigned char *buf, | 
|  | int use_sg) { | 
|  | int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT); | 
|  | return sddr09_writeX(us, address, address, nr_of_pages, bulklen, | 
|  | buf, use_sg); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Read Scatter Gather Command: 3+4n bytes. | 
|  | * byte 0: opcode E7 | 
|  | * byte 2: n | 
|  | * bytes 4i-1,4i,4i+1: page address | 
|  | * byte 4i+2: page count | 
|  | * (i=1..n) | 
|  | * | 
|  | * This reads several pages from the card to a single memory buffer. | 
|  | * The last two bits of byte 1 have the same meaning as for E8. | 
|  | */ | 
|  | static int | 
|  | sddr09_read_sg_test_only(struct us_data *us) { | 
|  | unsigned char *command = us->iobuf; | 
|  | int result, bulklen, nsg, ct; | 
|  | unsigned char *buf; | 
|  | unsigned long address; | 
|  |  | 
|  | nsg = bulklen = 0; | 
|  | command[0] = 0xE7; | 
|  | command[1] = LUNBITS; | 
|  | command[2] = 0; | 
|  | address = 040000; ct = 1; | 
|  | nsg++; | 
|  | bulklen += (ct << 9); | 
|  | command[4*nsg+2] = ct; | 
|  | command[4*nsg+1] = ((address >> 9) & 0xFF); | 
|  | command[4*nsg+0] = ((address >> 17) & 0xFF); | 
|  | command[4*nsg-1] = ((address >> 25) & 0xFF); | 
|  |  | 
|  | address = 0340000; ct = 1; | 
|  | nsg++; | 
|  | bulklen += (ct << 9); | 
|  | command[4*nsg+2] = ct; | 
|  | command[4*nsg+1] = ((address >> 9) & 0xFF); | 
|  | command[4*nsg+0] = ((address >> 17) & 0xFF); | 
|  | command[4*nsg-1] = ((address >> 25) & 0xFF); | 
|  |  | 
|  | address = 01000000; ct = 2; | 
|  | nsg++; | 
|  | bulklen += (ct << 9); | 
|  | command[4*nsg+2] = ct; | 
|  | command[4*nsg+1] = ((address >> 9) & 0xFF); | 
|  | command[4*nsg+0] = ((address >> 17) & 0xFF); | 
|  | command[4*nsg-1] = ((address >> 25) & 0xFF); | 
|  |  | 
|  | command[2] = nsg; | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 4*nsg+3); | 
|  |  | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n", | 
|  | result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | buf = kmalloc(bulklen, GFP_NOIO); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | buf, bulklen, NULL); | 
|  | kfree(buf); | 
|  | if (result != USB_STOR_XFER_GOOD) { | 
|  | usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n", | 
|  | result); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Read Status Command: 12 bytes. | 
|  | * byte 0: opcode: EC | 
|  | * | 
|  | * Returns 64 bytes, all zero except for the first. | 
|  | * bit 0: 1: Error | 
|  | * bit 5: 1: Suspended | 
|  | * bit 6: 1: Ready | 
|  | * bit 7: 1: Not write-protected | 
|  | */ | 
|  |  | 
|  | static int | 
|  | sddr09_read_status(struct us_data *us, unsigned char *status) { | 
|  |  | 
|  | unsigned char *command = us->iobuf; | 
|  | unsigned char *data = us->iobuf; | 
|  | int result; | 
|  |  | 
|  | usb_stor_dbg(us, "Reading status...\n"); | 
|  |  | 
|  | memset(command, 0, 12); | 
|  | command[0] = 0xEC; | 
|  | command[1] = LUNBITS; | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 12); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | data, 64, NULL); | 
|  | *status = data[0]; | 
|  | return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_read_data(struct us_data *us, | 
|  | unsigned long address, | 
|  | unsigned int sectors) { | 
|  |  | 
|  | struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; | 
|  | unsigned char *buffer; | 
|  | unsigned int lba, maxlba, pba; | 
|  | unsigned int page, pages; | 
|  | unsigned int len, offset; | 
|  | struct scatterlist *sg; | 
|  | int result; | 
|  |  | 
|  | // Figure out the initial LBA and page | 
|  | lba = address >> info->blockshift; | 
|  | page = (address & info->blockmask); | 
|  | maxlba = info->capacity >> (info->pageshift + info->blockshift); | 
|  | if (lba >= maxlba) | 
|  | return -EIO; | 
|  |  | 
|  | // Since we only read in one block at a time, we have to create | 
|  | // a bounce buffer and move the data a piece at a time between the | 
|  | // bounce buffer and the actual transfer buffer. | 
|  |  | 
|  | len = min(sectors, (unsigned int) info->blocksize) * info->pagesize; | 
|  | buffer = kmalloc(len, GFP_NOIO); | 
|  | if (!buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | // This could be made much more efficient by checking for | 
|  | // contiguous LBA's. Another exercise left to the student. | 
|  |  | 
|  | result = 0; | 
|  | offset = 0; | 
|  | sg = NULL; | 
|  |  | 
|  | while (sectors > 0) { | 
|  |  | 
|  | /* Find number of pages we can read in this block */ | 
|  | pages = min(sectors, info->blocksize - page); | 
|  | len = pages << info->pageshift; | 
|  |  | 
|  | /* Not overflowing capacity? */ | 
|  | if (lba >= maxlba) { | 
|  | usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", | 
|  | lba, maxlba); | 
|  | result = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Find where this lba lives on disk */ | 
|  | pba = info->lba_to_pba[lba]; | 
|  |  | 
|  | if (pba == UNDEF) {	/* this lba was never written */ | 
|  |  | 
|  | usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", | 
|  | pages, lba, page); | 
|  |  | 
|  | /* | 
|  | * This is not really an error. It just means | 
|  | * that the block has never been written. | 
|  | * Instead of returning an error | 
|  | * it is better to return all zero data. | 
|  | */ | 
|  |  | 
|  | memset(buffer, 0, len); | 
|  |  | 
|  | } else { | 
|  | usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", | 
|  | pages, pba, lba, page); | 
|  |  | 
|  | address = ((pba << info->blockshift) + page) << | 
|  | info->pageshift; | 
|  |  | 
|  | result = sddr09_read20(us, address>>1, | 
|  | pages, info->pageshift, buffer, 0); | 
|  | if (result) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Store the data in the transfer buffer | 
|  | usb_stor_access_xfer_buf(buffer, len, us->srb, | 
|  | &sg, &offset, TO_XFER_BUF); | 
|  |  | 
|  | page = 0; | 
|  | lba++; | 
|  | sectors -= pages; | 
|  | } | 
|  |  | 
|  | kfree(buffer); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) { | 
|  | static unsigned int lastpba = 1; | 
|  | int zonestart, end, i; | 
|  |  | 
|  | zonestart = (lba/1000) << 10; | 
|  | end = info->capacity >> (info->blockshift + info->pageshift); | 
|  | end -= zonestart; | 
|  | if (end > 1024) | 
|  | end = 1024; | 
|  |  | 
|  | for (i = lastpba+1; i < end; i++) { | 
|  | if (info->pba_to_lba[zonestart+i] == UNDEF) { | 
|  | lastpba = i; | 
|  | return zonestart+i; | 
|  | } | 
|  | } | 
|  | for (i = 0; i <= lastpba; i++) { | 
|  | if (info->pba_to_lba[zonestart+i] == UNDEF) { | 
|  | lastpba = i; | 
|  | return zonestart+i; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_write_lba(struct us_data *us, unsigned int lba, | 
|  | unsigned int page, unsigned int pages, | 
|  | unsigned char *ptr, unsigned char *blockbuffer) { | 
|  |  | 
|  | struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; | 
|  | unsigned long address; | 
|  | unsigned int pba, lbap; | 
|  | unsigned int pagelen; | 
|  | unsigned char *bptr, *cptr, *xptr; | 
|  | unsigned char ecc[3]; | 
|  | int i, result; | 
|  |  | 
|  | lbap = ((lba % 1000) << 1) | 0x1000; | 
|  | if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) | 
|  | lbap ^= 1; | 
|  | pba = info->lba_to_pba[lba]; | 
|  |  | 
|  | if (pba == UNDEF) { | 
|  | pba = sddr09_find_unused_pba(info, lba); | 
|  | if (!pba) { | 
|  | printk(KERN_WARNING | 
|  | "sddr09_write_lba: Out of unused blocks\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  | info->pba_to_lba[pba] = lba; | 
|  | info->lba_to_pba[lba] = pba; | 
|  | } | 
|  |  | 
|  | if (pba == 1) { | 
|  | /* | 
|  | * Maybe it is impossible to write to PBA 1. | 
|  | * Fake success, but don't do anything. | 
|  | */ | 
|  | printk(KERN_WARNING "sddr09: avoid writing to pba 1\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT); | 
|  |  | 
|  | /* read old contents */ | 
|  | address = (pba << (info->pageshift + info->blockshift)); | 
|  | result = sddr09_read22(us, address>>1, info->blocksize, | 
|  | info->pageshift, blockbuffer, 0); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | /* check old contents and fill lba */ | 
|  | for (i = 0; i < info->blocksize; i++) { | 
|  | bptr = blockbuffer + i*pagelen; | 
|  | cptr = bptr + info->pagesize; | 
|  | nand_compute_ecc(bptr, ecc); | 
|  | if (!nand_compare_ecc(cptr+13, ecc)) { | 
|  | usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", | 
|  | i, pba); | 
|  | nand_store_ecc(cptr+13, ecc); | 
|  | } | 
|  | nand_compute_ecc(bptr+(info->pagesize / 2), ecc); | 
|  | if (!nand_compare_ecc(cptr+8, ecc)) { | 
|  | usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", | 
|  | i, pba); | 
|  | nand_store_ecc(cptr+8, ecc); | 
|  | } | 
|  | cptr[6] = cptr[11] = MSB_of(lbap); | 
|  | cptr[7] = cptr[12] = LSB_of(lbap); | 
|  | } | 
|  |  | 
|  | /* copy in new stuff and compute ECC */ | 
|  | xptr = ptr; | 
|  | for (i = page; i < page+pages; i++) { | 
|  | bptr = blockbuffer + i*pagelen; | 
|  | cptr = bptr + info->pagesize; | 
|  | memcpy(bptr, xptr, info->pagesize); | 
|  | xptr += info->pagesize; | 
|  | nand_compute_ecc(bptr, ecc); | 
|  | nand_store_ecc(cptr+13, ecc); | 
|  | nand_compute_ecc(bptr+(info->pagesize / 2), ecc); | 
|  | nand_store_ecc(cptr+8, ecc); | 
|  | } | 
|  |  | 
|  | usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba); | 
|  |  | 
|  | result = sddr09_write_inplace(us, address>>1, info->blocksize, | 
|  | info->pageshift, blockbuffer, 0); | 
|  |  | 
|  | usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result); | 
|  |  | 
|  | #if 0 | 
|  | { | 
|  | unsigned char status = 0; | 
|  | int result2 = sddr09_read_status(us, &status); | 
|  | if (result2) | 
|  | usb_stor_dbg(us, "cannot read status\n"); | 
|  | else if (status != 0xc0) | 
|  | usb_stor_dbg(us, "status after write: 0x%x\n", status); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | { | 
|  | int result2 = sddr09_test_unit_ready(us); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_write_data(struct us_data *us, | 
|  | unsigned long address, | 
|  | unsigned int sectors) { | 
|  |  | 
|  | struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; | 
|  | unsigned int lba, maxlba, page, pages; | 
|  | unsigned int pagelen, blocklen; | 
|  | unsigned char *blockbuffer; | 
|  | unsigned char *buffer; | 
|  | unsigned int len, offset; | 
|  | struct scatterlist *sg; | 
|  | int result; | 
|  |  | 
|  | /* Figure out the initial LBA and page */ | 
|  | lba = address >> info->blockshift; | 
|  | page = (address & info->blockmask); | 
|  | maxlba = info->capacity >> (info->pageshift + info->blockshift); | 
|  | if (lba >= maxlba) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * blockbuffer is used for reading in the old data, overwriting | 
|  | * with the new data, and performing ECC calculations | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * TODO: instead of doing kmalloc/kfree for each write, | 
|  | * add a bufferpointer to the info structure | 
|  | */ | 
|  |  | 
|  | pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT); | 
|  | blocklen = (pagelen << info->blockshift); | 
|  | blockbuffer = kmalloc(blocklen, GFP_NOIO); | 
|  | if (!blockbuffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Since we don't write the user data directly to the device, | 
|  | * we have to create a bounce buffer and move the data a piece | 
|  | * at a time between the bounce buffer and the actual transfer buffer. | 
|  | */ | 
|  |  | 
|  | len = min(sectors, (unsigned int) info->blocksize) * info->pagesize; | 
|  | buffer = kmalloc(len, GFP_NOIO); | 
|  | if (!buffer) { | 
|  | kfree(blockbuffer); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | result = 0; | 
|  | offset = 0; | 
|  | sg = NULL; | 
|  |  | 
|  | while (sectors > 0) { | 
|  |  | 
|  | /* Write as many sectors as possible in this block */ | 
|  |  | 
|  | pages = min(sectors, info->blocksize - page); | 
|  | len = (pages << info->pageshift); | 
|  |  | 
|  | /* Not overflowing capacity? */ | 
|  | if (lba >= maxlba) { | 
|  | usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", | 
|  | lba, maxlba); | 
|  | result = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Get the data from the transfer buffer */ | 
|  | usb_stor_access_xfer_buf(buffer, len, us->srb, | 
|  | &sg, &offset, FROM_XFER_BUF); | 
|  |  | 
|  | result = sddr09_write_lba(us, lba, page, pages, | 
|  | buffer, blockbuffer); | 
|  | if (result) | 
|  | break; | 
|  |  | 
|  | page = 0; | 
|  | lba++; | 
|  | sectors -= pages; | 
|  | } | 
|  |  | 
|  | kfree(buffer); | 
|  | kfree(blockbuffer); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_read_control(struct us_data *us, | 
|  | unsigned long address, | 
|  | unsigned int blocks, | 
|  | unsigned char *content, | 
|  | int use_sg) { | 
|  |  | 
|  | usb_stor_dbg(us, "Read control address %lu, blocks %d\n", | 
|  | address, blocks); | 
|  |  | 
|  | return sddr09_read21(us, address, blocks, | 
|  | CONTROL_SHIFT, content, use_sg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read Device ID Command: 12 bytes. | 
|  | * byte 0: opcode: ED | 
|  | * | 
|  | * Returns 2 bytes: Manufacturer ID and Device ID. | 
|  | * On more recent cards 3 bytes: the third byte is an option code A5 | 
|  | * signifying that the secret command to read an 128-bit ID is available. | 
|  | * On still more recent cards 4 bytes: the fourth byte C0 means that | 
|  | * a second read ID cmd is available. | 
|  | */ | 
|  | static int | 
|  | sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) { | 
|  | unsigned char *command = us->iobuf; | 
|  | unsigned char *content = us->iobuf; | 
|  | int result, i; | 
|  |  | 
|  | memset(command, 0, 12); | 
|  | command[0] = 0xED; | 
|  | command[1] = LUNBITS; | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, command, 12); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | content, 64, NULL); | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | deviceID[i] = content[i]; | 
|  |  | 
|  | return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) { | 
|  | int result; | 
|  | unsigned char status; | 
|  | const char *wp_fmt; | 
|  |  | 
|  | result = sddr09_read_status(us, &status); | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "read_status fails\n"); | 
|  | return result; | 
|  | } | 
|  | if ((status & 0x80) == 0) { | 
|  | info->flags |= SDDR09_WP;	/* write protected */ | 
|  | wp_fmt = " WP"; | 
|  | } else { | 
|  | wp_fmt = ""; | 
|  | } | 
|  | usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt, | 
|  | status & 0x40 ? " Ready" : "", | 
|  | status & LUNBITS ? " Suspended" : "", | 
|  | status & 0x01 ? " Error" : ""); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Reset Command: 12 bytes. | 
|  | * byte 0: opcode: EB | 
|  | */ | 
|  | static int | 
|  | sddr09_reset(struct us_data *us) { | 
|  |  | 
|  | unsigned char *command = us->iobuf; | 
|  |  | 
|  | memset(command, 0, 12); | 
|  | command[0] = 0xEB; | 
|  | command[1] = LUNBITS; | 
|  |  | 
|  | return sddr09_send_scsi_command(us, command, 12); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct nand_flash_dev * | 
|  | sddr09_get_cardinfo(struct us_data *us, unsigned char flags) { | 
|  | struct nand_flash_dev *cardinfo; | 
|  | unsigned char deviceID[4]; | 
|  | char blurbtxt[256]; | 
|  | int result; | 
|  |  | 
|  | usb_stor_dbg(us, "Reading capacity...\n"); | 
|  |  | 
|  | result = sddr09_read_deviceID(us, deviceID); | 
|  |  | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "Result of read_deviceID is %d\n", result); | 
|  | printk(KERN_WARNING "sddr09: could not read card info\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID); | 
|  |  | 
|  | /* Byte 0 is the manufacturer */ | 
|  | sprintf(blurbtxt + strlen(blurbtxt), | 
|  | ": Manuf. %s", | 
|  | nand_flash_manufacturer(deviceID[0])); | 
|  |  | 
|  | /* Byte 1 is the device type */ | 
|  | cardinfo = nand_find_id(deviceID[1]); | 
|  | if (cardinfo) { | 
|  | /* | 
|  | * MB or MiB? It is neither. A 16 MB card has | 
|  | * 17301504 raw bytes, of which 16384000 are | 
|  | * usable for user data. | 
|  | */ | 
|  | sprintf(blurbtxt + strlen(blurbtxt), | 
|  | ", %d MB", 1<<(cardinfo->chipshift - 20)); | 
|  | } else { | 
|  | sprintf(blurbtxt + strlen(blurbtxt), | 
|  | ", type unrecognized"); | 
|  | } | 
|  |  | 
|  | /* Byte 2 is code to signal availability of 128-bit ID */ | 
|  | if (deviceID[2] == 0xa5) { | 
|  | sprintf(blurbtxt + strlen(blurbtxt), | 
|  | ", 128-bit ID"); | 
|  | } | 
|  |  | 
|  | /* Byte 3 announces the availability of another read ID command */ | 
|  | if (deviceID[3] == 0xc0) { | 
|  | sprintf(blurbtxt + strlen(blurbtxt), | 
|  | ", extra cmd"); | 
|  | } | 
|  |  | 
|  | if (flags & SDDR09_WP) | 
|  | sprintf(blurbtxt + strlen(blurbtxt), | 
|  | ", WP"); | 
|  |  | 
|  | printk(KERN_WARNING "%s\n", blurbtxt); | 
|  |  | 
|  | return cardinfo; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_read_map(struct us_data *us) { | 
|  |  | 
|  | struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; | 
|  | int numblocks, alloc_len, alloc_blocks; | 
|  | int i, j, result; | 
|  | unsigned char *buffer, *buffer_end, *ptr; | 
|  | unsigned int lba, lbact; | 
|  |  | 
|  | if (!info->capacity) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * size of a block is 1 << (blockshift + pageshift) bytes | 
|  | * divide into the total capacity to get the number of blocks | 
|  | */ | 
|  |  | 
|  | numblocks = info->capacity >> (info->blockshift + info->pageshift); | 
|  |  | 
|  | /* | 
|  | * read 64 bytes for every block (actually 1 << CONTROL_SHIFT) | 
|  | * but only use a 64 KB buffer | 
|  | * buffer size used must be a multiple of (1 << CONTROL_SHIFT) | 
|  | */ | 
|  | #define SDDR09_READ_MAP_BUFSZ 65536 | 
|  |  | 
|  | alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT); | 
|  | alloc_len = (alloc_blocks << CONTROL_SHIFT); | 
|  | buffer = kmalloc(alloc_len, GFP_NOIO); | 
|  | if (!buffer) { | 
|  | result = -1; | 
|  | goto done; | 
|  | } | 
|  | buffer_end = buffer + alloc_len; | 
|  |  | 
|  | #undef SDDR09_READ_MAP_BUFSZ | 
|  |  | 
|  | kfree(info->lba_to_pba); | 
|  | kfree(info->pba_to_lba); | 
|  | info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO); | 
|  | info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO); | 
|  |  | 
|  | if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) { | 
|  | printk(KERN_WARNING "sddr09_read_map: out of memory\n"); | 
|  | result = -1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < numblocks; i++) | 
|  | info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF; | 
|  |  | 
|  | /* | 
|  | * Define lba-pba translation table | 
|  | */ | 
|  |  | 
|  | ptr = buffer_end; | 
|  | for (i = 0; i < numblocks; i++) { | 
|  | ptr += (1 << CONTROL_SHIFT); | 
|  | if (ptr >= buffer_end) { | 
|  | unsigned long address; | 
|  |  | 
|  | address = i << (info->pageshift + info->blockshift); | 
|  | result = sddr09_read_control( | 
|  | us, address>>1, | 
|  | min(alloc_blocks, numblocks - i), | 
|  | buffer, 0); | 
|  | if (result) { | 
|  | result = -1; | 
|  | goto done; | 
|  | } | 
|  | ptr = buffer; | 
|  | } | 
|  |  | 
|  | if (i == 0 || i == 1) { | 
|  | info->pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* special PBAs have control field 0^16 */ | 
|  | for (j = 0; j < 16; j++) | 
|  | if (ptr[j] != 0) | 
|  | goto nonz; | 
|  | info->pba_to_lba[i] = UNUSABLE; | 
|  | printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n", | 
|  | i); | 
|  | continue; | 
|  |  | 
|  | nonz: | 
|  | /* unwritten PBAs have control field FF^16 */ | 
|  | for (j = 0; j < 16; j++) | 
|  | if (ptr[j] != 0xff) | 
|  | goto nonff; | 
|  | continue; | 
|  |  | 
|  | nonff: | 
|  | /* normal PBAs start with six FFs */ | 
|  | if (j < 6) { | 
|  | printk(KERN_WARNING | 
|  | "sddr09: PBA %d has no logical mapping: " | 
|  | "reserved area = %02X%02X%02X%02X " | 
|  | "data status %02X block status %02X\n", | 
|  | i, ptr[0], ptr[1], ptr[2], ptr[3], | 
|  | ptr[4], ptr[5]); | 
|  | info->pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((ptr[6] >> 4) != 0x01) { | 
|  | printk(KERN_WARNING | 
|  | "sddr09: PBA %d has invalid address field " | 
|  | "%02X%02X/%02X%02X\n", | 
|  | i, ptr[6], ptr[7], ptr[11], ptr[12]); | 
|  | info->pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* check even parity */ | 
|  | if (parity[ptr[6] ^ ptr[7]]) { | 
|  | printk(KERN_WARNING | 
|  | "sddr09: Bad parity in LBA for block %d" | 
|  | " (%02X %02X)\n", i, ptr[6], ptr[7]); | 
|  | info->pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lba = short_pack(ptr[7], ptr[6]); | 
|  | lba = (lba & 0x07FF) >> 1; | 
|  |  | 
|  | /* | 
|  | * Every 1024 physical blocks ("zone"), the LBA numbers | 
|  | * go back to zero, but are within a higher block of LBA's. | 
|  | * Also, there is a maximum of 1000 LBA's per zone. | 
|  | * In other words, in PBA 1024-2047 you will find LBA 0-999 | 
|  | * which are really LBA 1000-1999. This allows for 24 bad | 
|  | * or special physical blocks per zone. | 
|  | */ | 
|  |  | 
|  | if (lba >= 1000) { | 
|  | printk(KERN_WARNING | 
|  | "sddr09: Bad low LBA %d for block %d\n", | 
|  | lba, i); | 
|  | goto possibly_erase; | 
|  | } | 
|  |  | 
|  | lba += 1000*(i/0x400); | 
|  |  | 
|  | if (info->lba_to_pba[lba] != UNDEF) { | 
|  | printk(KERN_WARNING | 
|  | "sddr09: LBA %d seen for PBA %d and %d\n", | 
|  | lba, info->lba_to_pba[lba], i); | 
|  | goto possibly_erase; | 
|  | } | 
|  |  | 
|  | info->pba_to_lba[i] = lba; | 
|  | info->lba_to_pba[lba] = i; | 
|  | continue; | 
|  |  | 
|  | possibly_erase: | 
|  | if (erase_bad_lba_entries) { | 
|  | unsigned long address; | 
|  |  | 
|  | address = (i << (info->pageshift + info->blockshift)); | 
|  | sddr09_erase(us, address>>1); | 
|  | info->pba_to_lba[i] = UNDEF; | 
|  | } else | 
|  | info->pba_to_lba[i] = UNUSABLE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Approximate capacity. This is not entirely correct yet, | 
|  | * since a zone with less than 1000 usable pages leads to | 
|  | * missing LBAs. Especially if it is the last zone, some | 
|  | * LBAs can be past capacity. | 
|  | */ | 
|  | lbact = 0; | 
|  | for (i = 0; i < numblocks; i += 1024) { | 
|  | int ct = 0; | 
|  |  | 
|  | for (j = 0; j < 1024 && i+j < numblocks; j++) { | 
|  | if (info->pba_to_lba[i+j] != UNUSABLE) { | 
|  | if (ct >= 1000) | 
|  | info->pba_to_lba[i+j] = SPARE; | 
|  | else | 
|  | ct++; | 
|  | } | 
|  | } | 
|  | lbact += ct; | 
|  | } | 
|  | info->lbact = lbact; | 
|  | usb_stor_dbg(us, "Found %d LBA's\n", lbact); | 
|  | result = 0; | 
|  |  | 
|  | done: | 
|  | if (result != 0) { | 
|  | kfree(info->lba_to_pba); | 
|  | kfree(info->pba_to_lba); | 
|  | info->lba_to_pba = NULL; | 
|  | info->pba_to_lba = NULL; | 
|  | } | 
|  | kfree(buffer); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void | 
|  | sddr09_card_info_destructor(void *extra) { | 
|  | struct sddr09_card_info *info = (struct sddr09_card_info *)extra; | 
|  |  | 
|  | if (!info) | 
|  | return; | 
|  |  | 
|  | kfree(info->lba_to_pba); | 
|  | kfree(info->pba_to_lba); | 
|  | } | 
|  |  | 
|  | static int | 
|  | sddr09_common_init(struct us_data *us) { | 
|  | int result; | 
|  |  | 
|  | /* set the configuration -- STALL is an acceptable response here */ | 
|  | if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) { | 
|  | usb_stor_dbg(us, "active config #%d != 1 ??\n", | 
|  | us->pusb_dev->actconfig->desc.bConfigurationValue); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | result = usb_reset_configuration(us->pusb_dev); | 
|  | usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result); | 
|  | if (result == -EPIPE) { | 
|  | usb_stor_dbg(us, "-- stall on control interface\n"); | 
|  | } else if (result != 0) { | 
|  | /* it's not a stall, but another error -- time to bail */ | 
|  | usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO); | 
|  | if (!us->extra) | 
|  | return -ENOMEM; | 
|  | us->extra_destructor = sddr09_card_info_destructor; | 
|  |  | 
|  | nand_init_ecc(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is needed at a very early stage. If this is not listed in the | 
|  | * unusual devices list but called from here then LUN 0 of the combo reader | 
|  | * is not recognized. But I do not know what precisely these calls do. | 
|  | */ | 
|  | static int | 
|  | usb_stor_sddr09_dpcm_init(struct us_data *us) { | 
|  | int result; | 
|  | unsigned char *data = us->iobuf; | 
|  |  | 
|  | result = sddr09_common_init(us); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2); | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "send_command fails\n"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]); | 
|  | // get 07 02 | 
|  |  | 
|  | result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2); | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "2nd send_command fails\n"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]); | 
|  | // get 07 00 | 
|  |  | 
|  | result = sddr09_request_sense(us, data, 18); | 
|  | if (result == 0 && data[2] != 0) { | 
|  | int j; | 
|  | for (j=0; j<18; j++) | 
|  | printk(" %02X", data[j]); | 
|  | printk("\n"); | 
|  | // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00 | 
|  | // 70: current command | 
|  | // sense key 0, sense code 0, extd sense code 0 | 
|  | // additional transfer length * = sizeof(data) - 7 | 
|  | // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00 | 
|  | // sense key 06, sense code 28: unit attention, | 
|  | // not ready to ready transition | 
|  | } | 
|  |  | 
|  | // test unit ready | 
|  |  | 
|  | return 0;		/* not result */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transport for the Microtech DPCM-USB | 
|  | */ | 
|  | static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun); | 
|  |  | 
|  | switch (srb->device->lun) { | 
|  | case 0: | 
|  |  | 
|  | /* | 
|  | * LUN 0 corresponds to the CompactFlash card reader. | 
|  | */ | 
|  | ret = usb_stor_CB_transport(srb, us); | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  |  | 
|  | /* | 
|  | * LUN 1 corresponds to the SmartMedia card reader. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Set the LUN to 0 (just in case). | 
|  | */ | 
|  | srb->device->lun = 0; | 
|  | ret = sddr09_transport(srb, us); | 
|  | srb->device->lun = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun); | 
|  | ret = USB_STOR_TRANSPORT_ERROR; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Transport for the Sandisk SDDR-09 | 
|  | */ | 
|  | static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us) | 
|  | { | 
|  | static unsigned char sensekey = 0, sensecode = 0; | 
|  | static unsigned char havefakesense = 0; | 
|  | int result, i; | 
|  | unsigned char *ptr = us->iobuf; | 
|  | unsigned long capacity; | 
|  | unsigned int page, pages; | 
|  |  | 
|  | struct sddr09_card_info *info; | 
|  |  | 
|  | static unsigned char inquiry_response[8] = { | 
|  | 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00 | 
|  | }; | 
|  |  | 
|  | /* note: no block descriptor support */ | 
|  | static unsigned char mode_page_01[19] = { | 
|  | 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00, | 
|  | 0x01, 0x0A, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 | 
|  | }; | 
|  |  | 
|  | info = (struct sddr09_card_info *)us->extra; | 
|  |  | 
|  | if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) { | 
|  | /* for a faked command, we have to follow with a faked sense */ | 
|  | memset(ptr, 0, 18); | 
|  | ptr[0] = 0x70; | 
|  | ptr[2] = sensekey; | 
|  | ptr[7] = 11; | 
|  | ptr[12] = sensecode; | 
|  | usb_stor_set_xfer_buf(ptr, 18, srb); | 
|  | sensekey = sensecode = havefakesense = 0; | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | havefakesense = 1; | 
|  |  | 
|  | /* | 
|  | * Dummy up a response for INQUIRY since SDDR09 doesn't | 
|  | * respond to INQUIRY commands | 
|  | */ | 
|  |  | 
|  | if (srb->cmnd[0] == INQUIRY) { | 
|  | memcpy(ptr, inquiry_response, 8); | 
|  | fill_inquiry_response(us, ptr, 36); | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == READ_CAPACITY) { | 
|  | struct nand_flash_dev *cardinfo; | 
|  |  | 
|  | sddr09_get_wp(us, info);	/* read WP bit */ | 
|  |  | 
|  | cardinfo = sddr09_get_cardinfo(us, info->flags); | 
|  | if (!cardinfo) { | 
|  | /* probably no media */ | 
|  | init_error: | 
|  | sensekey = 0x02;	/* not ready */ | 
|  | sensecode = 0x3a;	/* medium not present */ | 
|  | return USB_STOR_TRANSPORT_FAILED; | 
|  | } | 
|  |  | 
|  | info->capacity = (1 << cardinfo->chipshift); | 
|  | info->pageshift = cardinfo->pageshift; | 
|  | info->pagesize = (1 << info->pageshift); | 
|  | info->blockshift = cardinfo->blockshift; | 
|  | info->blocksize = (1 << info->blockshift); | 
|  | info->blockmask = info->blocksize - 1; | 
|  |  | 
|  | // map initialization, must follow get_cardinfo() | 
|  | if (sddr09_read_map(us)) { | 
|  | /* probably out of memory */ | 
|  | goto init_error; | 
|  | } | 
|  |  | 
|  | // Report capacity | 
|  |  | 
|  | capacity = (info->lbact << info->blockshift) - 1; | 
|  |  | 
|  | ((__be32 *) ptr)[0] = cpu_to_be32(capacity); | 
|  |  | 
|  | // Report page size | 
|  |  | 
|  | ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize); | 
|  | usb_stor_set_xfer_buf(ptr, 8, srb); | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == MODE_SENSE_10) { | 
|  | int modepage = (srb->cmnd[2] & 0x3F); | 
|  |  | 
|  | /* | 
|  | * They ask for the Read/Write error recovery page, | 
|  | * or for all pages. | 
|  | */ | 
|  | /* %% We should check DBD %% */ | 
|  | if (modepage == 0x01 || modepage == 0x3F) { | 
|  | usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n", | 
|  | modepage); | 
|  |  | 
|  | memcpy(ptr, mode_page_01, sizeof(mode_page_01)); | 
|  | ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2); | 
|  | ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0; | 
|  | usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb); | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | sensekey = 0x05;	/* illegal request */ | 
|  | sensecode = 0x24;	/* invalid field in CDB */ | 
|  | return USB_STOR_TRANSPORT_FAILED; | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  |  | 
|  | havefakesense = 0; | 
|  |  | 
|  | if (srb->cmnd[0] == READ_10) { | 
|  |  | 
|  | page = short_pack(srb->cmnd[3], srb->cmnd[2]); | 
|  | page <<= 16; | 
|  | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); | 
|  | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); | 
|  |  | 
|  | usb_stor_dbg(us, "READ_10: read page %d pagect %d\n", | 
|  | page, pages); | 
|  |  | 
|  | result = sddr09_read_data(us, page, pages); | 
|  | return (result == 0 ? USB_STOR_TRANSPORT_GOOD : | 
|  | USB_STOR_TRANSPORT_ERROR); | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == WRITE_10) { | 
|  |  | 
|  | page = short_pack(srb->cmnd[3], srb->cmnd[2]); | 
|  | page <<= 16; | 
|  | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); | 
|  | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); | 
|  |  | 
|  | usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n", | 
|  | page, pages); | 
|  |  | 
|  | result = sddr09_write_data(us, page, pages); | 
|  | return (result == 0 ? USB_STOR_TRANSPORT_GOOD : | 
|  | USB_STOR_TRANSPORT_ERROR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * catch-all for all other commands, except | 
|  | * pass TEST_UNIT_READY and REQUEST_SENSE through | 
|  | */ | 
|  | if (srb->cmnd[0] != TEST_UNIT_READY && | 
|  | srb->cmnd[0] != REQUEST_SENSE) { | 
|  | sensekey = 0x05;	/* illegal request */ | 
|  | sensecode = 0x20;	/* invalid command */ | 
|  | havefakesense = 1; | 
|  | return USB_STOR_TRANSPORT_FAILED; | 
|  | } | 
|  |  | 
|  | for (; srb->cmd_len<12; srb->cmd_len++) | 
|  | srb->cmnd[srb->cmd_len] = 0; | 
|  |  | 
|  | srb->cmnd[1] = LUNBITS; | 
|  |  | 
|  | ptr[0] = 0; | 
|  | for (i=0; i<12; i++) | 
|  | sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]); | 
|  |  | 
|  | usb_stor_dbg(us, "Send control for command %s\n", ptr); | 
|  |  | 
|  | result = sddr09_send_scsi_command(us, srb->cmnd, 12); | 
|  | if (result) { | 
|  | usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n", | 
|  | result); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | if (scsi_bufflen(srb) == 0) | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  |  | 
|  | if (srb->sc_data_direction == DMA_TO_DEVICE || | 
|  | srb->sc_data_direction == DMA_FROM_DEVICE) { | 
|  | unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE) | 
|  | ? us->send_bulk_pipe : us->recv_bulk_pipe; | 
|  |  | 
|  | usb_stor_dbg(us, "%s %d bytes\n", | 
|  | (srb->sc_data_direction == DMA_TO_DEVICE) ? | 
|  | "sending" : "receiving", | 
|  | scsi_bufflen(srb)); | 
|  |  | 
|  | result = usb_stor_bulk_srb(us, pipe, srb); | 
|  |  | 
|  | return (result == USB_STOR_XFER_GOOD ? | 
|  | USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR); | 
|  | } | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization routine for the sddr09 subdriver | 
|  | */ | 
|  | static int | 
|  | usb_stor_sddr09_init(struct us_data *us) { | 
|  | return sddr09_common_init(us); | 
|  | } | 
|  |  | 
|  | static struct scsi_host_template sddr09_host_template; | 
|  |  | 
|  | static int sddr09_probe(struct usb_interface *intf, | 
|  | const struct usb_device_id *id) | 
|  | { | 
|  | struct us_data *us; | 
|  | int result; | 
|  |  | 
|  | result = usb_stor_probe1(&us, intf, id, | 
|  | (id - sddr09_usb_ids) + sddr09_unusual_dev_list, | 
|  | &sddr09_host_template); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | if (us->protocol == USB_PR_DPCM_USB) { | 
|  | us->transport_name = "Control/Bulk-EUSB/SDDR09"; | 
|  | us->transport = dpcm_transport; | 
|  | us->transport_reset = usb_stor_CB_reset; | 
|  | us->max_lun = 1; | 
|  | } else { | 
|  | us->transport_name = "EUSB/SDDR09"; | 
|  | us->transport = sddr09_transport; | 
|  | us->transport_reset = usb_stor_CB_reset; | 
|  | us->max_lun = 0; | 
|  | } | 
|  |  | 
|  | result = usb_stor_probe2(us); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static struct usb_driver sddr09_driver = { | 
|  | .name =		DRV_NAME, | 
|  | .probe =	sddr09_probe, | 
|  | .disconnect =	usb_stor_disconnect, | 
|  | .suspend =	usb_stor_suspend, | 
|  | .resume =	usb_stor_resume, | 
|  | .reset_resume =	usb_stor_reset_resume, | 
|  | .pre_reset =	usb_stor_pre_reset, | 
|  | .post_reset =	usb_stor_post_reset, | 
|  | .id_table =	sddr09_usb_ids, | 
|  | .soft_unbind =	1, | 
|  | .no_dynamic_id = 1, | 
|  | }; | 
|  |  | 
|  | module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME); |