| /* SPDX-License-Identifier: GPL-2.0-or-later */ | 
 | /* | 
 |  *	Definitions for the 'struct ptr_ring' datastructure. | 
 |  * | 
 |  *	Author: | 
 |  *		Michael S. Tsirkin <mst@redhat.com> | 
 |  * | 
 |  *	Copyright (C) 2016 Red Hat, Inc. | 
 |  * | 
 |  *	This is a limited-size FIFO maintaining pointers in FIFO order, with | 
 |  *	one CPU producing entries and another consuming entries from a FIFO. | 
 |  * | 
 |  *	This implementation tries to minimize cache-contention when there is a | 
 |  *	single producer and a single consumer CPU. | 
 |  */ | 
 |  | 
 | #ifndef _LINUX_PTR_RING_H | 
 | #define _LINUX_PTR_RING_H 1 | 
 |  | 
 | #ifdef __KERNEL__ | 
 | #include <linux/spinlock.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/types.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <asm/errno.h> | 
 | #endif | 
 |  | 
 | struct ptr_ring { | 
 | 	int producer ____cacheline_aligned_in_smp; | 
 | 	spinlock_t producer_lock; | 
 | 	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */ | 
 | 	int consumer_tail; /* next entry to invalidate */ | 
 | 	spinlock_t consumer_lock; | 
 | 	/* Shared consumer/producer data */ | 
 | 	/* Read-only by both the producer and the consumer */ | 
 | 	int size ____cacheline_aligned_in_smp; /* max entries in queue */ | 
 | 	int batch; /* number of entries to consume in a batch */ | 
 | 	void **queue; | 
 | }; | 
 |  | 
 | /* Note: callers invoking this in a loop must use a compiler barrier, | 
 |  * for example cpu_relax(). | 
 |  * | 
 |  * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock: | 
 |  * see e.g. ptr_ring_full. | 
 |  */ | 
 | static inline bool __ptr_ring_full(struct ptr_ring *r) | 
 | { | 
 | 	return r->queue[r->producer]; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_full(struct ptr_ring *r) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock(&r->producer_lock); | 
 | 	ret = __ptr_ring_full(r); | 
 | 	spin_unlock(&r->producer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_full_irq(struct ptr_ring *r) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock_irq(&r->producer_lock); | 
 | 	ret = __ptr_ring_full(r); | 
 | 	spin_unlock_irq(&r->producer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_full_any(struct ptr_ring *r) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock_irqsave(&r->producer_lock, flags); | 
 | 	ret = __ptr_ring_full(r); | 
 | 	spin_unlock_irqrestore(&r->producer_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_full_bh(struct ptr_ring *r) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock_bh(&r->producer_lock); | 
 | 	ret = __ptr_ring_full(r); | 
 | 	spin_unlock_bh(&r->producer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Note: callers invoking this in a loop must use a compiler barrier, | 
 |  * for example cpu_relax(). Callers must hold producer_lock. | 
 |  * Callers are responsible for making sure pointer that is being queued | 
 |  * points to a valid data. | 
 |  */ | 
 | static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) | 
 | { | 
 | 	if (unlikely(!r->size) || r->queue[r->producer]) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* Make sure the pointer we are storing points to a valid data. */ | 
 | 	/* Pairs with the dependency ordering in __ptr_ring_consume. */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	WRITE_ONCE(r->queue[r->producer++], ptr); | 
 | 	if (unlikely(r->producer >= r->size)) | 
 | 		r->producer = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: resize (below) nests producer lock within consumer lock, so if you | 
 |  * consume in interrupt or BH context, you must disable interrupts/BH when | 
 |  * calling this. | 
 |  */ | 
 | static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock(&r->producer_lock); | 
 | 	ret = __ptr_ring_produce(r, ptr); | 
 | 	spin_unlock(&r->producer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irq(&r->producer_lock); | 
 | 	ret = __ptr_ring_produce(r, ptr); | 
 | 	spin_unlock_irq(&r->producer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&r->producer_lock, flags); | 
 | 	ret = __ptr_ring_produce(r, ptr); | 
 | 	spin_unlock_irqrestore(&r->producer_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_bh(&r->producer_lock); | 
 | 	ret = __ptr_ring_produce(r, ptr); | 
 | 	spin_unlock_bh(&r->producer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline void *__ptr_ring_peek(struct ptr_ring *r) | 
 | { | 
 | 	if (likely(r->size)) | 
 | 		return READ_ONCE(r->queue[r->consumer_head]); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Test ring empty status without taking any locks. | 
 |  * | 
 |  * NB: This is only safe to call if ring is never resized. | 
 |  * | 
 |  * However, if some other CPU consumes ring entries at the same time, the value | 
 |  * returned is not guaranteed to be correct. | 
 |  * | 
 |  * In this case - to avoid incorrectly detecting the ring | 
 |  * as empty - the CPU consuming the ring entries is responsible | 
 |  * for either consuming all ring entries until the ring is empty, | 
 |  * or synchronizing with some other CPU and causing it to | 
 |  * re-test __ptr_ring_empty and/or consume the ring enteries | 
 |  * after the synchronization point. | 
 |  * | 
 |  * Note: callers invoking this in a loop must use a compiler barrier, | 
 |  * for example cpu_relax(). | 
 |  */ | 
 | static inline bool __ptr_ring_empty(struct ptr_ring *r) | 
 | { | 
 | 	if (likely(r->size)) | 
 | 		return !r->queue[READ_ONCE(r->consumer_head)]; | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_empty(struct ptr_ring *r) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock(&r->consumer_lock); | 
 | 	ret = __ptr_ring_empty(r); | 
 | 	spin_unlock(&r->consumer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_empty_irq(struct ptr_ring *r) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock_irq(&r->consumer_lock); | 
 | 	ret = __ptr_ring_empty(r); | 
 | 	spin_unlock_irq(&r->consumer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_empty_any(struct ptr_ring *r) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock_irqsave(&r->consumer_lock, flags); | 
 | 	ret = __ptr_ring_empty(r); | 
 | 	spin_unlock_irqrestore(&r->consumer_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool ptr_ring_empty_bh(struct ptr_ring *r) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	spin_lock_bh(&r->consumer_lock); | 
 | 	ret = __ptr_ring_empty(r); | 
 | 	spin_unlock_bh(&r->consumer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Must only be called after __ptr_ring_peek returned !NULL */ | 
 | static inline void __ptr_ring_discard_one(struct ptr_ring *r) | 
 | { | 
 | 	/* Fundamentally, what we want to do is update consumer | 
 | 	 * index and zero out the entry so producer can reuse it. | 
 | 	 * Doing it naively at each consume would be as simple as: | 
 | 	 *       consumer = r->consumer; | 
 | 	 *       r->queue[consumer++] = NULL; | 
 | 	 *       if (unlikely(consumer >= r->size)) | 
 | 	 *               consumer = 0; | 
 | 	 *       r->consumer = consumer; | 
 | 	 * but that is suboptimal when the ring is full as producer is writing | 
 | 	 * out new entries in the same cache line.  Defer these updates until a | 
 | 	 * batch of entries has been consumed. | 
 | 	 */ | 
 | 	/* Note: we must keep consumer_head valid at all times for __ptr_ring_empty | 
 | 	 * to work correctly. | 
 | 	 */ | 
 | 	int consumer_head = r->consumer_head; | 
 | 	int head = consumer_head++; | 
 |  | 
 | 	/* Once we have processed enough entries invalidate them in | 
 | 	 * the ring all at once so producer can reuse their space in the ring. | 
 | 	 * We also do this when we reach end of the ring - not mandatory | 
 | 	 * but helps keep the implementation simple. | 
 | 	 */ | 
 | 	if (unlikely(consumer_head - r->consumer_tail >= r->batch || | 
 | 		     consumer_head >= r->size)) { | 
 | 		/* Zero out entries in the reverse order: this way we touch the | 
 | 		 * cache line that producer might currently be reading the last; | 
 | 		 * producer won't make progress and touch other cache lines | 
 | 		 * besides the first one until we write out all entries. | 
 | 		 */ | 
 | 		while (likely(head >= r->consumer_tail)) | 
 | 			r->queue[head--] = NULL; | 
 | 		r->consumer_tail = consumer_head; | 
 | 	} | 
 | 	if (unlikely(consumer_head >= r->size)) { | 
 | 		consumer_head = 0; | 
 | 		r->consumer_tail = 0; | 
 | 	} | 
 | 	/* matching READ_ONCE in __ptr_ring_empty for lockless tests */ | 
 | 	WRITE_ONCE(r->consumer_head, consumer_head); | 
 | } | 
 |  | 
 | static inline void *__ptr_ring_consume(struct ptr_ring *r) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	/* The READ_ONCE in __ptr_ring_peek guarantees that anyone | 
 | 	 * accessing data through the pointer is up to date. Pairs | 
 | 	 * with smp_wmb in __ptr_ring_produce. | 
 | 	 */ | 
 | 	ptr = __ptr_ring_peek(r); | 
 | 	if (ptr) | 
 | 		__ptr_ring_discard_one(r); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static inline int __ptr_ring_consume_batched(struct ptr_ring *r, | 
 | 					     void **array, int n) | 
 | { | 
 | 	void *ptr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < n; i++) { | 
 | 		ptr = __ptr_ring_consume(r); | 
 | 		if (!ptr) | 
 | 			break; | 
 | 		array[i] = ptr; | 
 | 	} | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: resize (below) nests producer lock within consumer lock, so if you | 
 |  * call this in interrupt or BH context, you must disable interrupts/BH when | 
 |  * producing. | 
 |  */ | 
 | static inline void *ptr_ring_consume(struct ptr_ring *r) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	spin_lock(&r->consumer_lock); | 
 | 	ptr = __ptr_ring_consume(r); | 
 | 	spin_unlock(&r->consumer_lock); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static inline void *ptr_ring_consume_irq(struct ptr_ring *r) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	spin_lock_irq(&r->consumer_lock); | 
 | 	ptr = __ptr_ring_consume(r); | 
 | 	spin_unlock_irq(&r->consumer_lock); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static inline void *ptr_ring_consume_any(struct ptr_ring *r) | 
 | { | 
 | 	unsigned long flags; | 
 | 	void *ptr; | 
 |  | 
 | 	spin_lock_irqsave(&r->consumer_lock, flags); | 
 | 	ptr = __ptr_ring_consume(r); | 
 | 	spin_unlock_irqrestore(&r->consumer_lock, flags); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static inline void *ptr_ring_consume_bh(struct ptr_ring *r) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	spin_lock_bh(&r->consumer_lock); | 
 | 	ptr = __ptr_ring_consume(r); | 
 | 	spin_unlock_bh(&r->consumer_lock); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static inline int ptr_ring_consume_batched(struct ptr_ring *r, | 
 | 					   void **array, int n) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock(&r->consumer_lock); | 
 | 	ret = __ptr_ring_consume_batched(r, array, n); | 
 | 	spin_unlock(&r->consumer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r, | 
 | 					       void **array, int n) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irq(&r->consumer_lock); | 
 | 	ret = __ptr_ring_consume_batched(r, array, n); | 
 | 	spin_unlock_irq(&r->consumer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int ptr_ring_consume_batched_any(struct ptr_ring *r, | 
 | 					       void **array, int n) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&r->consumer_lock, flags); | 
 | 	ret = __ptr_ring_consume_batched(r, array, n); | 
 | 	spin_unlock_irqrestore(&r->consumer_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r, | 
 | 					      void **array, int n) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_bh(&r->consumer_lock); | 
 | 	ret = __ptr_ring_consume_batched(r, array, n); | 
 | 	spin_unlock_bh(&r->consumer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Cast to structure type and call a function without discarding from FIFO. | 
 |  * Function must return a value. | 
 |  * Callers must take consumer_lock. | 
 |  */ | 
 | #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) | 
 |  | 
 | #define PTR_RING_PEEK_CALL(r, f) ({ \ | 
 | 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ | 
 | 	\ | 
 | 	spin_lock(&(r)->consumer_lock); \ | 
 | 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ | 
 | 	spin_unlock(&(r)->consumer_lock); \ | 
 | 	__PTR_RING_PEEK_CALL_v; \ | 
 | }) | 
 |  | 
 | #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \ | 
 | 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ | 
 | 	\ | 
 | 	spin_lock_irq(&(r)->consumer_lock); \ | 
 | 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ | 
 | 	spin_unlock_irq(&(r)->consumer_lock); \ | 
 | 	__PTR_RING_PEEK_CALL_v; \ | 
 | }) | 
 |  | 
 | #define PTR_RING_PEEK_CALL_BH(r, f) ({ \ | 
 | 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ | 
 | 	\ | 
 | 	spin_lock_bh(&(r)->consumer_lock); \ | 
 | 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ | 
 | 	spin_unlock_bh(&(r)->consumer_lock); \ | 
 | 	__PTR_RING_PEEK_CALL_v; \ | 
 | }) | 
 |  | 
 | #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \ | 
 | 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ | 
 | 	unsigned long __PTR_RING_PEEK_CALL_f;\ | 
 | 	\ | 
 | 	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ | 
 | 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ | 
 | 	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ | 
 | 	__PTR_RING_PEEK_CALL_v; \ | 
 | }) | 
 |  | 
 | /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See | 
 |  * documentation for vmalloc for which of them are legal. | 
 |  */ | 
 | static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp) | 
 | { | 
 | 	if (size > KMALLOC_MAX_SIZE / sizeof(void *)) | 
 | 		return NULL; | 
 | 	return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO); | 
 | } | 
 |  | 
 | static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) | 
 | { | 
 | 	r->size = size; | 
 | 	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue)); | 
 | 	/* We need to set batch at least to 1 to make logic | 
 | 	 * in __ptr_ring_discard_one work correctly. | 
 | 	 * Batching too much (because ring is small) would cause a lot of | 
 | 	 * burstiness. Needs tuning, for now disable batching. | 
 | 	 */ | 
 | 	if (r->batch > r->size / 2 || !r->batch) | 
 | 		r->batch = 1; | 
 | } | 
 |  | 
 | static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp) | 
 | { | 
 | 	r->queue = __ptr_ring_init_queue_alloc(size, gfp); | 
 | 	if (!r->queue) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	__ptr_ring_set_size(r, size); | 
 | 	r->producer = r->consumer_head = r->consumer_tail = 0; | 
 | 	spin_lock_init(&r->producer_lock); | 
 | 	spin_lock_init(&r->consumer_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return entries into ring. Destroy entries that don't fit. | 
 |  * | 
 |  * Note: this is expected to be a rare slow path operation. | 
 |  * | 
 |  * Note: producer lock is nested within consumer lock, so if you | 
 |  * resize you must make sure all uses nest correctly. | 
 |  * In particular if you consume ring in interrupt or BH context, you must | 
 |  * disable interrupts/BH when doing so. | 
 |  */ | 
 | static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, | 
 | 				      void (*destroy)(void *)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int head; | 
 |  | 
 | 	spin_lock_irqsave(&r->consumer_lock, flags); | 
 | 	spin_lock(&r->producer_lock); | 
 |  | 
 | 	if (!r->size) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * Clean out buffered entries (for simplicity). This way following code | 
 | 	 * can test entries for NULL and if not assume they are valid. | 
 | 	 */ | 
 | 	head = r->consumer_head - 1; | 
 | 	while (likely(head >= r->consumer_tail)) | 
 | 		r->queue[head--] = NULL; | 
 | 	r->consumer_tail = r->consumer_head; | 
 |  | 
 | 	/* | 
 | 	 * Go over entries in batch, start moving head back and copy entries. | 
 | 	 * Stop when we run into previously unconsumed entries. | 
 | 	 */ | 
 | 	while (n) { | 
 | 		head = r->consumer_head - 1; | 
 | 		if (head < 0) | 
 | 			head = r->size - 1; | 
 | 		if (r->queue[head]) { | 
 | 			/* This batch entry will have to be destroyed. */ | 
 | 			goto done; | 
 | 		} | 
 | 		r->queue[head] = batch[--n]; | 
 | 		r->consumer_tail = head; | 
 | 		/* matching READ_ONCE in __ptr_ring_empty for lockless tests */ | 
 | 		WRITE_ONCE(r->consumer_head, head); | 
 | 	} | 
 |  | 
 | done: | 
 | 	/* Destroy all entries left in the batch. */ | 
 | 	while (n) | 
 | 		destroy(batch[--n]); | 
 | 	spin_unlock(&r->producer_lock); | 
 | 	spin_unlock_irqrestore(&r->consumer_lock, flags); | 
 | } | 
 |  | 
 | static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, | 
 | 					   int size, gfp_t gfp, | 
 | 					   void (*destroy)(void *)) | 
 | { | 
 | 	int producer = 0; | 
 | 	void **old; | 
 | 	void *ptr; | 
 |  | 
 | 	while ((ptr = __ptr_ring_consume(r))) | 
 | 		if (producer < size) | 
 | 			queue[producer++] = ptr; | 
 | 		else if (destroy) | 
 | 			destroy(ptr); | 
 |  | 
 | 	if (producer >= size) | 
 | 		producer = 0; | 
 | 	__ptr_ring_set_size(r, size); | 
 | 	r->producer = producer; | 
 | 	r->consumer_head = 0; | 
 | 	r->consumer_tail = 0; | 
 | 	old = r->queue; | 
 | 	r->queue = queue; | 
 |  | 
 | 	return old; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: producer lock is nested within consumer lock, so if you | 
 |  * resize you must make sure all uses nest correctly. | 
 |  * In particular if you consume ring in interrupt or BH context, you must | 
 |  * disable interrupts/BH when doing so. | 
 |  */ | 
 | static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp, | 
 | 				  void (*destroy)(void *)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	void **queue = __ptr_ring_init_queue_alloc(size, gfp); | 
 | 	void **old; | 
 |  | 
 | 	if (!queue) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock_irqsave(&(r)->consumer_lock, flags); | 
 | 	spin_lock(&(r)->producer_lock); | 
 |  | 
 | 	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy); | 
 |  | 
 | 	spin_unlock(&(r)->producer_lock); | 
 | 	spin_unlock_irqrestore(&(r)->consumer_lock, flags); | 
 |  | 
 | 	kvfree(old); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: producer lock is nested within consumer lock, so if you | 
 |  * resize you must make sure all uses nest correctly. | 
 |  * In particular if you consume ring in interrupt or BH context, you must | 
 |  * disable interrupts/BH when doing so. | 
 |  */ | 
 | static inline int ptr_ring_resize_multiple(struct ptr_ring **rings, | 
 | 					   unsigned int nrings, | 
 | 					   int size, | 
 | 					   gfp_t gfp, void (*destroy)(void *)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	void ***queues; | 
 | 	int i; | 
 |  | 
 | 	queues = kmalloc_array(nrings, sizeof(*queues), gfp); | 
 | 	if (!queues) | 
 | 		goto noqueues; | 
 |  | 
 | 	for (i = 0; i < nrings; ++i) { | 
 | 		queues[i] = __ptr_ring_init_queue_alloc(size, gfp); | 
 | 		if (!queues[i]) | 
 | 			goto nomem; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nrings; ++i) { | 
 | 		spin_lock_irqsave(&(rings[i])->consumer_lock, flags); | 
 | 		spin_lock(&(rings[i])->producer_lock); | 
 | 		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i], | 
 | 						  size, gfp, destroy); | 
 | 		spin_unlock(&(rings[i])->producer_lock); | 
 | 		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nrings; ++i) | 
 | 		kvfree(queues[i]); | 
 |  | 
 | 	kfree(queues); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	while (--i >= 0) | 
 | 		kvfree(queues[i]); | 
 |  | 
 | 	kfree(queues); | 
 |  | 
 | noqueues: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	if (destroy) | 
 | 		while ((ptr = ptr_ring_consume(r))) | 
 | 			destroy(ptr); | 
 | 	kvfree(r->queue); | 
 | } | 
 |  | 
 | #endif /* _LINUX_PTR_RING_H  */ |