| /* | 
 |  * DMM IOMMU driver support functions for TI OMAP processors. | 
 |  * | 
 |  * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/ | 
 |  * Author: Rob Clark <rob@ti.com> | 
 |  *         Andy Gross <andy.gross@ti.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation version 2. | 
 |  * | 
 |  * This program is distributed "as is" WITHOUT ANY WARRANTY of any | 
 |  * kind, whether express or implied; without even the implied warranty | 
 |  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/completion.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/platform_device.h> /* platform_device() */ | 
 | #include <linux/sched.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/time.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/wait.h> | 
 |  | 
 | #include "omap_dmm_tiler.h" | 
 | #include "omap_dmm_priv.h" | 
 |  | 
 | #define DMM_DRIVER_NAME "dmm" | 
 |  | 
 | /* mappings for associating views to luts */ | 
 | static struct tcm *containers[TILFMT_NFORMATS]; | 
 | static struct dmm *omap_dmm; | 
 |  | 
 | #if defined(CONFIG_OF) | 
 | static const struct of_device_id dmm_of_match[]; | 
 | #endif | 
 |  | 
 | /* global spinlock for protecting lists */ | 
 | static DEFINE_SPINLOCK(list_lock); | 
 |  | 
 | /* Geometry table */ | 
 | #define GEOM(xshift, yshift, bytes_per_pixel) { \ | 
 | 		.x_shft = (xshift), \ | 
 | 		.y_shft = (yshift), \ | 
 | 		.cpp    = (bytes_per_pixel), \ | 
 | 		.slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ | 
 | 		.slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ | 
 | 	} | 
 |  | 
 | static const struct { | 
 | 	u32 x_shft;	/* unused X-bits (as part of bpp) */ | 
 | 	u32 y_shft;	/* unused Y-bits (as part of bpp) */ | 
 | 	u32 cpp;		/* bytes/chars per pixel */ | 
 | 	u32 slot_w;	/* width of each slot (in pixels) */ | 
 | 	u32 slot_h;	/* height of each slot (in pixels) */ | 
 | } geom[TILFMT_NFORMATS] = { | 
 | 	[TILFMT_8BIT]  = GEOM(0, 0, 1), | 
 | 	[TILFMT_16BIT] = GEOM(0, 1, 2), | 
 | 	[TILFMT_32BIT] = GEOM(1, 1, 4), | 
 | 	[TILFMT_PAGE]  = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), | 
 | }; | 
 |  | 
 |  | 
 | /* lookup table for registers w/ per-engine instances */ | 
 | static const u32 reg[][4] = { | 
 | 	[PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, | 
 | 			DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, | 
 | 	[PAT_DESCR]  = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, | 
 | 			DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, | 
 | }; | 
 |  | 
 | static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst) | 
 | { | 
 | 	struct dma_async_tx_descriptor *tx; | 
 | 	enum dma_status status; | 
 | 	dma_cookie_t cookie; | 
 |  | 
 | 	tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0); | 
 | 	if (!tx) { | 
 | 		dev_err(dmm->dev, "Failed to prepare DMA memcpy\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	cookie = tx->tx_submit(tx); | 
 | 	if (dma_submit_error(cookie)) { | 
 | 		dev_err(dmm->dev, "Failed to do DMA tx_submit\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	status = dma_sync_wait(dmm->wa_dma_chan, cookie); | 
 | 	if (status != DMA_COMPLETE) | 
 | 		dev_err(dmm->dev, "i878 wa DMA copy failure\n"); | 
 |  | 
 | 	dmaengine_terminate_all(dmm->wa_dma_chan); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 dmm_read_wa(struct dmm *dmm, u32 reg) | 
 | { | 
 | 	dma_addr_t src, dst; | 
 | 	int r; | 
 |  | 
 | 	src = dmm->phys_base + reg; | 
 | 	dst = dmm->wa_dma_handle; | 
 |  | 
 | 	r = dmm_dma_copy(dmm, src, dst); | 
 | 	if (r) { | 
 | 		dev_err(dmm->dev, "sDMA read transfer timeout\n"); | 
 | 		return readl(dmm->base + reg); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * As per i878 workaround, the DMA is used to access the DMM registers. | 
 | 	 * Make sure that the readl is not moved by the compiler or the CPU | 
 | 	 * earlier than the DMA finished writing the value to memory. | 
 | 	 */ | 
 | 	rmb(); | 
 | 	return readl(dmm->wa_dma_data); | 
 | } | 
 |  | 
 | static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg) | 
 | { | 
 | 	dma_addr_t src, dst; | 
 | 	int r; | 
 |  | 
 | 	writel(val, dmm->wa_dma_data); | 
 | 	/* | 
 | 	 * As per i878 workaround, the DMA is used to access the DMM registers. | 
 | 	 * Make sure that the writel is not moved by the compiler or the CPU, so | 
 | 	 * the data will be in place before we start the DMA to do the actual | 
 | 	 * register write. | 
 | 	 */ | 
 | 	wmb(); | 
 |  | 
 | 	src = dmm->wa_dma_handle; | 
 | 	dst = dmm->phys_base + reg; | 
 |  | 
 | 	r = dmm_dma_copy(dmm, src, dst); | 
 | 	if (r) { | 
 | 		dev_err(dmm->dev, "sDMA write transfer timeout\n"); | 
 | 		writel(val, dmm->base + reg); | 
 | 	} | 
 | } | 
 |  | 
 | static u32 dmm_read(struct dmm *dmm, u32 reg) | 
 | { | 
 | 	if (dmm->dmm_workaround) { | 
 | 		u32 v; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&dmm->wa_lock, flags); | 
 | 		v = dmm_read_wa(dmm, reg); | 
 | 		spin_unlock_irqrestore(&dmm->wa_lock, flags); | 
 |  | 
 | 		return v; | 
 | 	} else { | 
 | 		return readl(dmm->base + reg); | 
 | 	} | 
 | } | 
 |  | 
 | static void dmm_write(struct dmm *dmm, u32 val, u32 reg) | 
 | { | 
 | 	if (dmm->dmm_workaround) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&dmm->wa_lock, flags); | 
 | 		dmm_write_wa(dmm, val, reg); | 
 | 		spin_unlock_irqrestore(&dmm->wa_lock, flags); | 
 | 	} else { | 
 | 		writel(val, dmm->base + reg); | 
 | 	} | 
 | } | 
 |  | 
 | static int dmm_workaround_init(struct dmm *dmm) | 
 | { | 
 | 	dma_cap_mask_t mask; | 
 |  | 
 | 	spin_lock_init(&dmm->wa_lock); | 
 |  | 
 | 	dmm->wa_dma_data = dma_alloc_coherent(dmm->dev,  sizeof(u32), | 
 | 					      &dmm->wa_dma_handle, GFP_KERNEL); | 
 | 	if (!dmm->wa_dma_data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dma_cap_zero(mask); | 
 | 	dma_cap_set(DMA_MEMCPY, mask); | 
 |  | 
 | 	dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL); | 
 | 	if (!dmm->wa_dma_chan) { | 
 | 		dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dmm_workaround_uninit(struct dmm *dmm) | 
 | { | 
 | 	dma_release_channel(dmm->wa_dma_chan); | 
 |  | 
 | 	dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); | 
 | } | 
 |  | 
 | /* simple allocator to grab next 16 byte aligned memory from txn */ | 
 | static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) | 
 | { | 
 | 	void *ptr; | 
 | 	struct refill_engine *engine = txn->engine_handle; | 
 |  | 
 | 	/* dmm programming requires 16 byte aligned addresses */ | 
 | 	txn->current_pa = round_up(txn->current_pa, 16); | 
 | 	txn->current_va = (void *)round_up((long)txn->current_va, 16); | 
 |  | 
 | 	ptr = txn->current_va; | 
 | 	*pa = txn->current_pa; | 
 |  | 
 | 	txn->current_pa += sz; | 
 | 	txn->current_va += sz; | 
 |  | 
 | 	BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | /* check status and spin until wait_mask comes true */ | 
 | static int wait_status(struct refill_engine *engine, u32 wait_mask) | 
 | { | 
 | 	struct dmm *dmm = engine->dmm; | 
 | 	u32 r = 0, err, i; | 
 |  | 
 | 	i = DMM_FIXED_RETRY_COUNT; | 
 | 	while (true) { | 
 | 		r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); | 
 | 		err = r & DMM_PATSTATUS_ERR; | 
 | 		if (err) { | 
 | 			dev_err(dmm->dev, | 
 | 				"%s: error (engine%d). PAT_STATUS: 0x%08x\n", | 
 | 				__func__, engine->id, r); | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		if ((r & wait_mask) == wait_mask) | 
 | 			break; | 
 |  | 
 | 		if (--i == 0) { | 
 | 			dev_err(dmm->dev, | 
 | 				"%s: timeout (engine%d). PAT_STATUS: 0x%08x\n", | 
 | 				__func__, engine->id, r); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 |  | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void release_engine(struct refill_engine *engine) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&list_lock, flags); | 
 | 	list_add(&engine->idle_node, &omap_dmm->idle_head); | 
 | 	spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 	atomic_inc(&omap_dmm->engine_counter); | 
 | 	wake_up_interruptible(&omap_dmm->engine_queue); | 
 | } | 
 |  | 
 | static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) | 
 | { | 
 | 	struct dmm *dmm = arg; | 
 | 	u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS); | 
 | 	int i; | 
 |  | 
 | 	/* ack IRQ */ | 
 | 	dmm_write(dmm, status, DMM_PAT_IRQSTATUS); | 
 |  | 
 | 	for (i = 0; i < dmm->num_engines; i++) { | 
 | 		if (status & DMM_IRQSTAT_ERR_MASK) | 
 | 			dev_err(dmm->dev, | 
 | 				"irq error(engine%d): IRQSTAT 0x%02x\n", | 
 | 				i, status & 0xff); | 
 |  | 
 | 		if (status & DMM_IRQSTAT_LST) { | 
 | 			if (dmm->engines[i].async) | 
 | 				release_engine(&dmm->engines[i]); | 
 |  | 
 | 			complete(&dmm->engines[i].compl); | 
 | 		} | 
 |  | 
 | 		status >>= 8; | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a handle for a DMM transaction | 
 |  */ | 
 | static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) | 
 | { | 
 | 	struct dmm_txn *txn = NULL; | 
 | 	struct refill_engine *engine = NULL; | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 |  | 
 |  | 
 | 	/* wait until an engine is available */ | 
 | 	ret = wait_event_interruptible(omap_dmm->engine_queue, | 
 | 		atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	/* grab an idle engine */ | 
 | 	spin_lock_irqsave(&list_lock, flags); | 
 | 	if (!list_empty(&dmm->idle_head)) { | 
 | 		engine = list_entry(dmm->idle_head.next, struct refill_engine, | 
 | 					idle_node); | 
 | 		list_del(&engine->idle_node); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 	BUG_ON(!engine); | 
 |  | 
 | 	txn = &engine->txn; | 
 | 	engine->tcm = tcm; | 
 | 	txn->engine_handle = engine; | 
 | 	txn->last_pat = NULL; | 
 | 	txn->current_va = engine->refill_va; | 
 | 	txn->current_pa = engine->refill_pa; | 
 |  | 
 | 	return txn; | 
 | } | 
 |  | 
 | /* | 
 |  * Add region to DMM transaction.  If pages or pages[i] is NULL, then the | 
 |  * corresponding slot is cleared (ie. dummy_pa is programmed) | 
 |  */ | 
 | static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, | 
 | 		struct page **pages, u32 npages, u32 roll) | 
 | { | 
 | 	dma_addr_t pat_pa = 0, data_pa = 0; | 
 | 	u32 *data; | 
 | 	struct pat *pat; | 
 | 	struct refill_engine *engine = txn->engine_handle; | 
 | 	int columns = (1 + area->x1 - area->x0); | 
 | 	int rows = (1 + area->y1 - area->y0); | 
 | 	int i = columns*rows; | 
 |  | 
 | 	pat = alloc_dma(txn, sizeof(*pat), &pat_pa); | 
 |  | 
 | 	if (txn->last_pat) | 
 | 		txn->last_pat->next_pa = (u32)pat_pa; | 
 |  | 
 | 	pat->area = *area; | 
 |  | 
 | 	/* adjust Y coordinates based off of container parameters */ | 
 | 	pat->area.y0 += engine->tcm->y_offset; | 
 | 	pat->area.y1 += engine->tcm->y_offset; | 
 |  | 
 | 	pat->ctrl = (struct pat_ctrl){ | 
 | 			.start = 1, | 
 | 			.lut_id = engine->tcm->lut_id, | 
 | 		}; | 
 |  | 
 | 	data = alloc_dma(txn, 4*i, &data_pa); | 
 | 	/* FIXME: what if data_pa is more than 32-bit ? */ | 
 | 	pat->data_pa = data_pa; | 
 |  | 
 | 	while (i--) { | 
 | 		int n = i + roll; | 
 | 		if (n >= npages) | 
 | 			n -= npages; | 
 | 		data[i] = (pages && pages[n]) ? | 
 | 			page_to_phys(pages[n]) : engine->dmm->dummy_pa; | 
 | 	} | 
 |  | 
 | 	txn->last_pat = pat; | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Commit the DMM transaction. | 
 |  */ | 
 | static int dmm_txn_commit(struct dmm_txn *txn, bool wait) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct refill_engine *engine = txn->engine_handle; | 
 | 	struct dmm *dmm = engine->dmm; | 
 |  | 
 | 	if (!txn->last_pat) { | 
 | 		dev_err(engine->dmm->dev, "need at least one txn\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	txn->last_pat->next_pa = 0; | 
 | 	/* ensure that the written descriptors are visible to DMM */ | 
 | 	wmb(); | 
 |  | 
 | 	/* | 
 | 	 * NOTE: the wmb() above should be enough, but there seems to be a bug | 
 | 	 * in OMAP's memory barrier implementation, which in some rare cases may | 
 | 	 * cause the writes not to be observable after wmb(). | 
 | 	 */ | 
 |  | 
 | 	/* read back to ensure the data is in RAM */ | 
 | 	readl(&txn->last_pat->next_pa); | 
 |  | 
 | 	/* write to PAT_DESCR to clear out any pending transaction */ | 
 | 	dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); | 
 |  | 
 | 	/* wait for engine ready: */ | 
 | 	ret = wait_status(engine, DMM_PATSTATUS_READY); | 
 | 	if (ret) { | 
 | 		ret = -EFAULT; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	/* mark whether it is async to denote list management in IRQ handler */ | 
 | 	engine->async = wait ? false : true; | 
 | 	reinit_completion(&engine->compl); | 
 | 	/* verify that the irq handler sees the 'async' and completion value */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* kick reload */ | 
 | 	dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); | 
 |  | 
 | 	if (wait) { | 
 | 		if (!wait_for_completion_timeout(&engine->compl, | 
 | 				msecs_to_jiffies(100))) { | 
 | 			dev_err(dmm->dev, "timed out waiting for done\n"); | 
 | 			ret = -ETIMEDOUT; | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		/* Check the engine status before continue */ | 
 | 		ret = wait_status(engine, DMM_PATSTATUS_READY | | 
 | 				  DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE); | 
 | 	} | 
 |  | 
 | cleanup: | 
 | 	/* only place engine back on list if we are done with it */ | 
 | 	if (ret || wait) | 
 | 		release_engine(engine); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * DMM programming | 
 |  */ | 
 | static int fill(struct tcm_area *area, struct page **pages, | 
 | 		u32 npages, u32 roll, bool wait) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct tcm_area slice, area_s; | 
 | 	struct dmm_txn *txn; | 
 |  | 
 | 	/* | 
 | 	 * FIXME | 
 | 	 * | 
 | 	 * Asynchronous fill does not work reliably, as the driver does not | 
 | 	 * handle errors in the async code paths. The fill operation may | 
 | 	 * silently fail, leading to leaking DMM engines, which may eventually | 
 | 	 * lead to deadlock if we run out of DMM engines. | 
 | 	 * | 
 | 	 * For now, always set 'wait' so that we only use sync fills. Async | 
 | 	 * fills should be fixed, or alternatively we could decide to only | 
 | 	 * support sync fills and so the whole async code path could be removed. | 
 | 	 */ | 
 |  | 
 | 	wait = true; | 
 |  | 
 | 	txn = dmm_txn_init(omap_dmm, area->tcm); | 
 | 	if (IS_ERR_OR_NULL(txn)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	tcm_for_each_slice(slice, *area, area_s) { | 
 | 		struct pat_area p_area = { | 
 | 				.x0 = slice.p0.x,  .y0 = slice.p0.y, | 
 | 				.x1 = slice.p1.x,  .y1 = slice.p1.y, | 
 | 		}; | 
 |  | 
 | 		dmm_txn_append(txn, &p_area, pages, npages, roll); | 
 |  | 
 | 		roll += tcm_sizeof(slice); | 
 | 	} | 
 |  | 
 | 	ret = dmm_txn_commit(txn, wait); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Pin/unpin | 
 |  */ | 
 |  | 
 | /* note: slots for which pages[i] == NULL are filled w/ dummy page | 
 |  */ | 
 | int tiler_pin(struct tiler_block *block, struct page **pages, | 
 | 		u32 npages, u32 roll, bool wait) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = fill(&block->area, pages, npages, roll, wait); | 
 |  | 
 | 	if (ret) | 
 | 		tiler_unpin(block); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int tiler_unpin(struct tiler_block *block) | 
 | { | 
 | 	return fill(&block->area, NULL, 0, 0, false); | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve/release | 
 |  */ | 
 | struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w, | 
 | 		u16 h, u16 align) | 
 | { | 
 | 	struct tiler_block *block; | 
 | 	u32 min_align = 128; | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 | 	u32 slot_bytes; | 
 |  | 
 | 	block = kzalloc(sizeof(*block), GFP_KERNEL); | 
 | 	if (!block) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	BUG_ON(!validfmt(fmt)); | 
 |  | 
 | 	/* convert width/height to slots */ | 
 | 	w = DIV_ROUND_UP(w, geom[fmt].slot_w); | 
 | 	h = DIV_ROUND_UP(h, geom[fmt].slot_h); | 
 |  | 
 | 	/* convert alignment to slots */ | 
 | 	slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; | 
 | 	min_align = max(min_align, slot_bytes); | 
 | 	align = (align > min_align) ? ALIGN(align, min_align) : min_align; | 
 | 	align /= slot_bytes; | 
 |  | 
 | 	block->fmt = fmt; | 
 |  | 
 | 	ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, | 
 | 			&block->area); | 
 | 	if (ret) { | 
 | 		kfree(block); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	/* add to allocation list */ | 
 | 	spin_lock_irqsave(&list_lock, flags); | 
 | 	list_add(&block->alloc_node, &omap_dmm->alloc_head); | 
 | 	spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 	return block; | 
 | } | 
 |  | 
 | struct tiler_block *tiler_reserve_1d(size_t size) | 
 | { | 
 | 	struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); | 
 | 	int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!block) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	block->fmt = TILFMT_PAGE; | 
 |  | 
 | 	if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, | 
 | 				&block->area)) { | 
 | 		kfree(block); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&list_lock, flags); | 
 | 	list_add(&block->alloc_node, &omap_dmm->alloc_head); | 
 | 	spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 	return block; | 
 | } | 
 |  | 
 | /* note: if you have pin'd pages, you should have already unpin'd first! */ | 
 | int tiler_release(struct tiler_block *block) | 
 | { | 
 | 	int ret = tcm_free(&block->area); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (block->area.tcm) | 
 | 		dev_err(omap_dmm->dev, "failed to release block\n"); | 
 |  | 
 | 	spin_lock_irqsave(&list_lock, flags); | 
 | 	list_del(&block->alloc_node); | 
 | 	spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 	kfree(block); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Utils | 
 |  */ | 
 |  | 
 | /* calculate the tiler space address of a pixel in a view orientation... | 
 |  * below description copied from the display subsystem section of TRM: | 
 |  * | 
 |  * When the TILER is addressed, the bits: | 
 |  *   [28:27] = 0x0 for 8-bit tiled | 
 |  *             0x1 for 16-bit tiled | 
 |  *             0x2 for 32-bit tiled | 
 |  *             0x3 for page mode | 
 |  *   [31:29] = 0x0 for 0-degree view | 
 |  *             0x1 for 180-degree view + mirroring | 
 |  *             0x2 for 0-degree view + mirroring | 
 |  *             0x3 for 180-degree view | 
 |  *             0x4 for 270-degree view + mirroring | 
 |  *             0x5 for 270-degree view | 
 |  *             0x6 for 90-degree view | 
 |  *             0x7 for 90-degree view + mirroring | 
 |  * Otherwise the bits indicated the corresponding bit address to access | 
 |  * the SDRAM. | 
 |  */ | 
 | static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) | 
 | { | 
 | 	u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; | 
 |  | 
 | 	x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; | 
 | 	y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; | 
 | 	alignment = geom[fmt].x_shft + geom[fmt].y_shft; | 
 |  | 
 | 	/* validate coordinate */ | 
 | 	x_mask = MASK(x_bits); | 
 | 	y_mask = MASK(y_bits); | 
 |  | 
 | 	if (x < 0 || x > x_mask || y < 0 || y > y_mask) { | 
 | 		DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", | 
 | 				x, x, x_mask, y, y, y_mask); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* account for mirroring */ | 
 | 	if (orient & MASK_X_INVERT) | 
 | 		x ^= x_mask; | 
 | 	if (orient & MASK_Y_INVERT) | 
 | 		y ^= y_mask; | 
 |  | 
 | 	/* get coordinate address */ | 
 | 	if (orient & MASK_XY_FLIP) | 
 | 		tmp = ((x << y_bits) + y); | 
 | 	else | 
 | 		tmp = ((y << x_bits) + x); | 
 |  | 
 | 	return TIL_ADDR((tmp << alignment), orient, fmt); | 
 | } | 
 |  | 
 | dma_addr_t tiler_ssptr(struct tiler_block *block) | 
 | { | 
 | 	BUG_ON(!validfmt(block->fmt)); | 
 |  | 
 | 	return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, | 
 | 			block->area.p0.x * geom[block->fmt].slot_w, | 
 | 			block->area.p0.y * geom[block->fmt].slot_h); | 
 | } | 
 |  | 
 | dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient, | 
 | 		u32 x, u32 y) | 
 | { | 
 | 	struct tcm_pt *p = &block->area.p0; | 
 | 	BUG_ON(!validfmt(block->fmt)); | 
 |  | 
 | 	return tiler_get_address(block->fmt, orient, | 
 | 			(p->x * geom[block->fmt].slot_w) + x, | 
 | 			(p->y * geom[block->fmt].slot_h) + y); | 
 | } | 
 |  | 
 | void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h) | 
 | { | 
 | 	BUG_ON(!validfmt(fmt)); | 
 | 	*w = round_up(*w, geom[fmt].slot_w); | 
 | 	*h = round_up(*h, geom[fmt].slot_h); | 
 | } | 
 |  | 
 | u32 tiler_stride(enum tiler_fmt fmt, u32 orient) | 
 | { | 
 | 	BUG_ON(!validfmt(fmt)); | 
 |  | 
 | 	if (orient & MASK_XY_FLIP) | 
 | 		return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); | 
 | 	else | 
 | 		return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); | 
 | } | 
 |  | 
 | size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h) | 
 | { | 
 | 	tiler_align(fmt, &w, &h); | 
 | 	return geom[fmt].cpp * w * h; | 
 | } | 
 |  | 
 | size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h) | 
 | { | 
 | 	BUG_ON(!validfmt(fmt)); | 
 | 	return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; | 
 | } | 
 |  | 
 | u32 tiler_get_cpu_cache_flags(void) | 
 | { | 
 | 	return omap_dmm->plat_data->cpu_cache_flags; | 
 | } | 
 |  | 
 | bool dmm_is_available(void) | 
 | { | 
 | 	return omap_dmm ? true : false; | 
 | } | 
 |  | 
 | static int omap_dmm_remove(struct platform_device *dev) | 
 | { | 
 | 	struct tiler_block *block, *_block; | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (omap_dmm) { | 
 | 		/* Disable all enabled interrupts */ | 
 | 		dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR); | 
 | 		free_irq(omap_dmm->irq, omap_dmm); | 
 |  | 
 | 		/* free all area regions */ | 
 | 		spin_lock_irqsave(&list_lock, flags); | 
 | 		list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, | 
 | 					alloc_node) { | 
 | 			list_del(&block->alloc_node); | 
 | 			kfree(block); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 		for (i = 0; i < omap_dmm->num_lut; i++) | 
 | 			if (omap_dmm->tcm && omap_dmm->tcm[i]) | 
 | 				omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); | 
 | 		kfree(omap_dmm->tcm); | 
 |  | 
 | 		kfree(omap_dmm->engines); | 
 | 		if (omap_dmm->refill_va) | 
 | 			dma_free_wc(omap_dmm->dev, | 
 | 				    REFILL_BUFFER_SIZE * omap_dmm->num_engines, | 
 | 				    omap_dmm->refill_va, omap_dmm->refill_pa); | 
 | 		if (omap_dmm->dummy_page) | 
 | 			__free_page(omap_dmm->dummy_page); | 
 |  | 
 | 		if (omap_dmm->dmm_workaround) | 
 | 			dmm_workaround_uninit(omap_dmm); | 
 |  | 
 | 		iounmap(omap_dmm->base); | 
 | 		kfree(omap_dmm); | 
 | 		omap_dmm = NULL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int omap_dmm_probe(struct platform_device *dev) | 
 | { | 
 | 	int ret = -EFAULT, i; | 
 | 	struct tcm_area area = {0}; | 
 | 	u32 hwinfo, pat_geom; | 
 | 	struct resource *mem; | 
 |  | 
 | 	omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); | 
 | 	if (!omap_dmm) | 
 | 		goto fail; | 
 |  | 
 | 	/* initialize lists */ | 
 | 	INIT_LIST_HEAD(&omap_dmm->alloc_head); | 
 | 	INIT_LIST_HEAD(&omap_dmm->idle_head); | 
 |  | 
 | 	init_waitqueue_head(&omap_dmm->engine_queue); | 
 |  | 
 | 	if (dev->dev.of_node) { | 
 | 		const struct of_device_id *match; | 
 |  | 
 | 		match = of_match_node(dmm_of_match, dev->dev.of_node); | 
 | 		if (!match) { | 
 | 			dev_err(&dev->dev, "failed to find matching device node\n"); | 
 | 			ret = -ENODEV; | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		omap_dmm->plat_data = match->data; | 
 | 	} | 
 |  | 
 | 	/* lookup hwmod data - base address and irq */ | 
 | 	mem = platform_get_resource(dev, IORESOURCE_MEM, 0); | 
 | 	if (!mem) { | 
 | 		dev_err(&dev->dev, "failed to get base address resource\n"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	omap_dmm->phys_base = mem->start; | 
 | 	omap_dmm->base = ioremap(mem->start, SZ_2K); | 
 |  | 
 | 	if (!omap_dmm->base) { | 
 | 		dev_err(&dev->dev, "failed to get dmm base address\n"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	omap_dmm->irq = platform_get_irq(dev, 0); | 
 | 	if (omap_dmm->irq < 0) { | 
 | 		dev_err(&dev->dev, "failed to get IRQ resource\n"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	omap_dmm->dev = &dev->dev; | 
 |  | 
 | 	if (of_machine_is_compatible("ti,dra7")) { | 
 | 		/* | 
 | 		 * DRA7 Errata i878 says that MPU should not be used to access | 
 | 		 * RAM and DMM at the same time. As it's not possible to prevent | 
 | 		 * MPU accessing RAM, we need to access DMM via a proxy. | 
 | 		 */ | 
 | 		if (!dmm_workaround_init(omap_dmm)) { | 
 | 			omap_dmm->dmm_workaround = true; | 
 | 			dev_info(&dev->dev, | 
 | 				"workaround for errata i878 in use\n"); | 
 | 		} else { | 
 | 			dev_warn(&dev->dev, | 
 | 				 "failed to initialize work-around for i878\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); | 
 | 	omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; | 
 | 	omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; | 
 | 	omap_dmm->container_width = 256; | 
 | 	omap_dmm->container_height = 128; | 
 |  | 
 | 	atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); | 
 |  | 
 | 	/* read out actual LUT width and height */ | 
 | 	pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); | 
 | 	omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; | 
 | 	omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; | 
 |  | 
 | 	/* increment LUT by one if on OMAP5 */ | 
 | 	/* LUT has twice the height, and is split into a separate container */ | 
 | 	if (omap_dmm->lut_height != omap_dmm->container_height) | 
 | 		omap_dmm->num_lut++; | 
 |  | 
 | 	/* initialize DMM registers */ | 
 | 	dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); | 
 | 	dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); | 
 | 	dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); | 
 | 	dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); | 
 | 	dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); | 
 | 	dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); | 
 |  | 
 | 	omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
 | 	if (!omap_dmm->dummy_page) { | 
 | 		dev_err(&dev->dev, "could not allocate dummy page\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* set dma mask for device */ | 
 | 	ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); | 
 |  | 
 | 	/* alloc refill memory */ | 
 | 	omap_dmm->refill_va = dma_alloc_wc(&dev->dev, | 
 | 					   REFILL_BUFFER_SIZE * omap_dmm->num_engines, | 
 | 					   &omap_dmm->refill_pa, GFP_KERNEL); | 
 | 	if (!omap_dmm->refill_va) { | 
 | 		dev_err(&dev->dev, "could not allocate refill memory\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* alloc engines */ | 
 | 	omap_dmm->engines = kcalloc(omap_dmm->num_engines, | 
 | 				    sizeof(*omap_dmm->engines), GFP_KERNEL); | 
 | 	if (!omap_dmm->engines) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < omap_dmm->num_engines; i++) { | 
 | 		omap_dmm->engines[i].id = i; | 
 | 		omap_dmm->engines[i].dmm = omap_dmm; | 
 | 		omap_dmm->engines[i].refill_va = omap_dmm->refill_va + | 
 | 						(REFILL_BUFFER_SIZE * i); | 
 | 		omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + | 
 | 						(REFILL_BUFFER_SIZE * i); | 
 | 		init_completion(&omap_dmm->engines[i].compl); | 
 |  | 
 | 		list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); | 
 | 	} | 
 |  | 
 | 	omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), | 
 | 				GFP_KERNEL); | 
 | 	if (!omap_dmm->tcm) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* init containers */ | 
 | 	/* Each LUT is associated with a TCM (container manager).  We use the | 
 | 	   lut_id to denote the lut_id used to identify the correct LUT for | 
 | 	   programming during reill operations */ | 
 | 	for (i = 0; i < omap_dmm->num_lut; i++) { | 
 | 		omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, | 
 | 						omap_dmm->container_height); | 
 |  | 
 | 		if (!omap_dmm->tcm[i]) { | 
 | 			dev_err(&dev->dev, "failed to allocate container\n"); | 
 | 			ret = -ENOMEM; | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		omap_dmm->tcm[i]->lut_id = i; | 
 | 	} | 
 |  | 
 | 	/* assign access mode containers to applicable tcm container */ | 
 | 	/* OMAP 4 has 1 container for all 4 views */ | 
 | 	/* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ | 
 | 	containers[TILFMT_8BIT] = omap_dmm->tcm[0]; | 
 | 	containers[TILFMT_16BIT] = omap_dmm->tcm[0]; | 
 | 	containers[TILFMT_32BIT] = omap_dmm->tcm[0]; | 
 |  | 
 | 	if (omap_dmm->container_height != omap_dmm->lut_height) { | 
 | 		/* second LUT is used for PAGE mode.  Programming must use | 
 | 		   y offset that is added to all y coordinates.  LUT id is still | 
 | 		   0, because it is the same LUT, just the upper 128 lines */ | 
 | 		containers[TILFMT_PAGE] = omap_dmm->tcm[1]; | 
 | 		omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; | 
 | 		omap_dmm->tcm[1]->lut_id = 0; | 
 | 	} else { | 
 | 		containers[TILFMT_PAGE] = omap_dmm->tcm[0]; | 
 | 	} | 
 |  | 
 | 	area = (struct tcm_area) { | 
 | 		.tcm = NULL, | 
 | 		.p1.x = omap_dmm->container_width - 1, | 
 | 		.p1.y = omap_dmm->container_height - 1, | 
 | 	}; | 
 |  | 
 | 	ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, | 
 | 				"omap_dmm_irq_handler", omap_dmm); | 
 |  | 
 | 	if (ret) { | 
 | 		dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", | 
 | 			omap_dmm->irq, ret); | 
 | 		omap_dmm->irq = -1; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* Enable all interrupts for each refill engine except | 
 | 	 * ERR_LUT_MISS<n> (which is just advisory, and we don't care | 
 | 	 * about because we want to be able to refill live scanout | 
 | 	 * buffers for accelerated pan/scroll) and FILL_DSC<n> which | 
 | 	 * we just generally don't care about. | 
 | 	 */ | 
 | 	dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); | 
 |  | 
 | 	/* initialize all LUTs to dummy page entries */ | 
 | 	for (i = 0; i < omap_dmm->num_lut; i++) { | 
 | 		area.tcm = omap_dmm->tcm[i]; | 
 | 		if (fill(&area, NULL, 0, 0, true)) | 
 | 			dev_err(omap_dmm->dev, "refill failed"); | 
 | 	} | 
 |  | 
 | 	dev_info(omap_dmm->dev, "initialized all PAT entries\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	if (omap_dmm_remove(dev)) | 
 | 		dev_err(&dev->dev, "cleanup failed\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * debugfs support | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 |  | 
 | static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" | 
 | 				"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; | 
 | static const char *special = ".,:;'\"`~!^-+"; | 
 |  | 
 | static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, | 
 | 							char c, bool ovw) | 
 | { | 
 | 	int x, y; | 
 | 	for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) | 
 | 		for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) | 
 | 			if (map[y][x] == ' ' || ovw) | 
 | 				map[y][x] = c; | 
 | } | 
 |  | 
 | static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, | 
 | 									char c) | 
 | { | 
 | 	map[p->y / ydiv][p->x / xdiv] = c; | 
 | } | 
 |  | 
 | static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) | 
 | { | 
 | 	return map[p->y / ydiv][p->x / xdiv]; | 
 | } | 
 |  | 
 | static int map_width(int xdiv, int x0, int x1) | 
 | { | 
 | 	return (x1 / xdiv) - (x0 / xdiv) + 1; | 
 | } | 
 |  | 
 | static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) | 
 | { | 
 | 	char *p = map[yd] + (x0 / xdiv); | 
 | 	int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; | 
 | 	if (w >= 0) { | 
 | 		p += w; | 
 | 		while (*nice) | 
 | 			*p++ = *nice++; | 
 | 	} | 
 | } | 
 |  | 
 | static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, | 
 | 							struct tcm_area *a) | 
 | { | 
 | 	sprintf(nice, "%dK", tcm_sizeof(*a) * 4); | 
 | 	if (a->p0.y + 1 < a->p1.y) { | 
 | 		text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, | 
 | 							256 - 1); | 
 | 	} else if (a->p0.y < a->p1.y) { | 
 | 		if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) | 
 | 			text_map(map, xdiv, nice, a->p0.y / ydiv, | 
 | 					a->p0.x + xdiv,	256 - 1); | 
 | 		else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) | 
 | 			text_map(map, xdiv, nice, a->p1.y / ydiv, | 
 | 					0, a->p1.y - xdiv); | 
 | 	} else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { | 
 | 		text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); | 
 | 	} | 
 | } | 
 |  | 
 | static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, | 
 | 							struct tcm_area *a) | 
 | { | 
 | 	sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); | 
 | 	if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) | 
 | 		text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, | 
 | 							a->p0.x, a->p1.x); | 
 | } | 
 |  | 
 | int tiler_map_show(struct seq_file *s, void *arg) | 
 | { | 
 | 	int xdiv = 2, ydiv = 1; | 
 | 	char **map = NULL, *global_map; | 
 | 	struct tiler_block *block; | 
 | 	struct tcm_area a, p; | 
 | 	int i; | 
 | 	const char *m2d = alphabet; | 
 | 	const char *a2d = special; | 
 | 	const char *m2dp = m2d, *a2dp = a2d; | 
 | 	char nice[128]; | 
 | 	int h_adj; | 
 | 	int w_adj; | 
 | 	unsigned long flags; | 
 | 	int lut_idx; | 
 |  | 
 |  | 
 | 	if (!omap_dmm) { | 
 | 		/* early return if dmm/tiler device is not initialized */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	h_adj = omap_dmm->container_height / ydiv; | 
 | 	w_adj = omap_dmm->container_width / xdiv; | 
 |  | 
 | 	map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL); | 
 | 	global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL); | 
 |  | 
 | 	if (!map || !global_map) | 
 | 		goto error; | 
 |  | 
 | 	for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { | 
 | 		memset(map, 0, h_adj * sizeof(*map)); | 
 | 		memset(global_map, ' ', (w_adj + 1) * h_adj); | 
 |  | 
 | 		for (i = 0; i < omap_dmm->container_height; i++) { | 
 | 			map[i] = global_map + i * (w_adj + 1); | 
 | 			map[i][w_adj] = 0; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&list_lock, flags); | 
 |  | 
 | 		list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { | 
 | 			if (block->area.tcm == omap_dmm->tcm[lut_idx]) { | 
 | 				if (block->fmt != TILFMT_PAGE) { | 
 | 					fill_map(map, xdiv, ydiv, &block->area, | 
 | 						*m2dp, true); | 
 | 					if (!*++a2dp) | 
 | 						a2dp = a2d; | 
 | 					if (!*++m2dp) | 
 | 						m2dp = m2d; | 
 | 					map_2d_info(map, xdiv, ydiv, nice, | 
 | 							&block->area); | 
 | 				} else { | 
 | 					bool start = read_map_pt(map, xdiv, | 
 | 						ydiv, &block->area.p0) == ' '; | 
 | 					bool end = read_map_pt(map, xdiv, ydiv, | 
 | 							&block->area.p1) == ' '; | 
 |  | 
 | 					tcm_for_each_slice(a, block->area, p) | 
 | 						fill_map(map, xdiv, ydiv, &a, | 
 | 							'=', true); | 
 | 					fill_map_pt(map, xdiv, ydiv, | 
 | 							&block->area.p0, | 
 | 							start ? '<' : 'X'); | 
 | 					fill_map_pt(map, xdiv, ydiv, | 
 | 							&block->area.p1, | 
 | 							end ? '>' : 'X'); | 
 | 					map_1d_info(map, xdiv, ydiv, nice, | 
 | 							&block->area); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		spin_unlock_irqrestore(&list_lock, flags); | 
 |  | 
 | 		if (s) { | 
 | 			seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); | 
 | 			for (i = 0; i < 128; i++) | 
 | 				seq_printf(s, "%03d:%s\n", i, map[i]); | 
 | 			seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); | 
 | 		} else { | 
 | 			dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", | 
 | 				lut_idx); | 
 | 			for (i = 0; i < 128; i++) | 
 | 				dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); | 
 | 			dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", | 
 | 				lut_idx); | 
 | 		} | 
 | 	} | 
 |  | 
 | error: | 
 | 	kfree(map); | 
 | 	kfree(global_map); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int omap_dmm_resume(struct device *dev) | 
 | { | 
 | 	struct tcm_area area; | 
 | 	int i; | 
 |  | 
 | 	if (!omap_dmm) | 
 | 		return -ENODEV; | 
 |  | 
 | 	area = (struct tcm_area) { | 
 | 		.tcm = NULL, | 
 | 		.p1.x = omap_dmm->container_width - 1, | 
 | 		.p1.y = omap_dmm->container_height - 1, | 
 | 	}; | 
 |  | 
 | 	/* initialize all LUTs to dummy page entries */ | 
 | 	for (i = 0; i < omap_dmm->num_lut; i++) { | 
 | 		area.tcm = omap_dmm->tcm[i]; | 
 | 		if (fill(&area, NULL, 0, 0, true)) | 
 | 			dev_err(dev, "refill failed"); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); | 
 |  | 
 | #if defined(CONFIG_OF) | 
 | static const struct dmm_platform_data dmm_omap4_platform_data = { | 
 | 	.cpu_cache_flags = OMAP_BO_WC, | 
 | }; | 
 |  | 
 | static const struct dmm_platform_data dmm_omap5_platform_data = { | 
 | 	.cpu_cache_flags = OMAP_BO_UNCACHED, | 
 | }; | 
 |  | 
 | static const struct of_device_id dmm_of_match[] = { | 
 | 	{ | 
 | 		.compatible = "ti,omap4-dmm", | 
 | 		.data = &dmm_omap4_platform_data, | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "ti,omap5-dmm", | 
 | 		.data = &dmm_omap5_platform_data, | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 | #endif | 
 |  | 
 | struct platform_driver omap_dmm_driver = { | 
 | 	.probe = omap_dmm_probe, | 
 | 	.remove = omap_dmm_remove, | 
 | 	.driver = { | 
 | 		.owner = THIS_MODULE, | 
 | 		.name = DMM_DRIVER_NAME, | 
 | 		.of_match_table = of_match_ptr(dmm_of_match), | 
 | 		.pm = &omap_dmm_pm_ops, | 
 | 	}, | 
 | }; | 
 |  | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); | 
 | MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); |