|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | /* | 
|  | * Prevent the compiler from merging or refetching reads or writes. The | 
|  | * compiler is also forbidden from reordering successive instances of | 
|  | * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some | 
|  | * particular ordering. One way to make the compiler aware of ordering is to | 
|  | * put the two invocations of READ_ONCE or WRITE_ONCE in different C | 
|  | * statements. | 
|  | * | 
|  | * These two macros will also work on aggregate data types like structs or | 
|  | * unions. | 
|  | * | 
|  | * Their two major use cases are: (1) Mediating communication between | 
|  | * process-level code and irq/NMI handlers, all running on the same CPU, | 
|  | * and (2) Ensuring that the compiler does not fold, spindle, or otherwise | 
|  | * mutilate accesses that either do not require ordering or that interact | 
|  | * with an explicit memory barrier or atomic instruction that provides the | 
|  | * required ordering. | 
|  | */ | 
|  | #ifndef __ASM_GENERIC_RWONCE_H | 
|  | #define __ASM_GENERIC_RWONCE_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | #include <linux/compiler_types.h> | 
|  | #include <linux/kasan-checks.h> | 
|  | #include <linux/kcsan-checks.h> | 
|  |  | 
|  | /* | 
|  | * Yes, this permits 64-bit accesses on 32-bit architectures. These will | 
|  | * actually be atomic in some cases (namely Armv7 + LPAE), but for others we | 
|  | * rely on the access being split into 2x32-bit accesses for a 32-bit quantity | 
|  | * (e.g. a virtual address) and a strong prevailing wind. | 
|  | */ | 
|  | #define compiletime_assert_rwonce_type(t)					\ | 
|  | compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long),	\ | 
|  | "Unsupported access size for {READ,WRITE}_ONCE().") | 
|  |  | 
|  | /* | 
|  | * Use __READ_ONCE() instead of READ_ONCE() if you do not require any | 
|  | * atomicity. Note that this may result in tears! | 
|  | */ | 
|  | #ifndef __READ_ONCE | 
|  | #define __READ_ONCE(x)	(*(const volatile __unqual_scalar_typeof(x) *)&(x)) | 
|  | #endif | 
|  |  | 
|  | #define READ_ONCE(x)							\ | 
|  | ({									\ | 
|  | compiletime_assert_rwonce_type(x);				\ | 
|  | __READ_ONCE(x);							\ | 
|  | }) | 
|  |  | 
|  | #define __WRITE_ONCE(x, val)						\ | 
|  | do {									\ | 
|  | *(volatile typeof(x) *)&(x) = (val);				\ | 
|  | } while (0) | 
|  |  | 
|  | #define WRITE_ONCE(x, val)						\ | 
|  | do {									\ | 
|  | compiletime_assert_rwonce_type(x);				\ | 
|  | __WRITE_ONCE(x, val);						\ | 
|  | } while (0) | 
|  |  | 
|  | static __no_sanitize_or_inline | 
|  | unsigned long __read_once_word_nocheck(const void *addr) | 
|  | { | 
|  | return __READ_ONCE(*(unsigned long *)addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a | 
|  | * word from memory atomically but without telling KASAN/KCSAN. This is | 
|  | * usually used by unwinding code when walking the stack of a running process. | 
|  | */ | 
|  | #define READ_ONCE_NOCHECK(x)						\ | 
|  | ({									\ | 
|  | compiletime_assert(sizeof(x) == sizeof(unsigned long),		\ | 
|  | "Unsupported access size for READ_ONCE_NOCHECK().");	\ | 
|  | (typeof(x))__read_once_word_nocheck(&(x));			\ | 
|  | }) | 
|  |  | 
|  | static __no_kasan_or_inline | 
|  | unsigned long read_word_at_a_time(const void *addr) | 
|  | { | 
|  | kasan_check_read(addr, 1); | 
|  | return *(unsigned long *)addr; | 
|  | } | 
|  |  | 
|  | #endif /* __ASSEMBLY__ */ | 
|  | #endif	/* __ASM_GENERIC_RWONCE_H */ |