| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * devfreq_cooling: Thermal cooling device implementation for devices using |
| * devfreq |
| * |
| * Copyright (C) 2014-2015 ARM Limited |
| * |
| * TODO: |
| * - If OPPs are added or removed after devfreq cooling has |
| * registered, the devfreq cooling won't react to it. |
| */ |
| |
| #include <linux/devfreq.h> |
| #include <linux/devfreq_cooling.h> |
| #include <linux/energy_model.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/pm_opp.h> |
| #include <linux/pm_qos.h> |
| #include <linux/thermal.h> |
| #include <linux/units.h> |
| |
| #include <trace/events/thermal.h> |
| |
| #define SCALE_ERROR_MITIGATION 100 |
| |
| /** |
| * struct devfreq_cooling_device - Devfreq cooling device |
| * devfreq_cooling_device registered. |
| * @cdev: Pointer to associated thermal cooling device. |
| * @cooling_ops: devfreq callbacks to thermal cooling device ops |
| * @devfreq: Pointer to associated devfreq device. |
| * @cooling_state: Current cooling state. |
| * @freq_table: Pointer to a table with the frequencies sorted in descending |
| * order. You can index the table by cooling device state |
| * @max_state: It is the last index, that is, one less than the number of the |
| * OPPs |
| * @power_ops: Pointer to devfreq_cooling_power, a more precised model. |
| * @res_util: Resource utilization scaling factor for the power. |
| * It is multiplied by 100 to minimize the error. It is used |
| * for estimation of the power budget instead of using |
| * 'utilization' (which is 'busy_time' / 'total_time'). |
| * The 'res_util' range is from 100 to power * 100 for the |
| * corresponding 'state'. |
| * @capped_state: index to cooling state with in dynamic power budget |
| * @req_max_freq: PM QoS request for limiting the maximum frequency |
| * of the devfreq device. |
| * @em_pd: Energy Model for the associated Devfreq device |
| */ |
| struct devfreq_cooling_device { |
| struct thermal_cooling_device *cdev; |
| struct thermal_cooling_device_ops cooling_ops; |
| struct devfreq *devfreq; |
| unsigned long cooling_state; |
| u32 *freq_table; |
| size_t max_state; |
| struct devfreq_cooling_power *power_ops; |
| u32 res_util; |
| int capped_state; |
| struct dev_pm_qos_request req_max_freq; |
| struct em_perf_domain *em_pd; |
| }; |
| |
| static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev, |
| unsigned long *state) |
| { |
| struct devfreq_cooling_device *dfc = cdev->devdata; |
| |
| *state = dfc->max_state; |
| |
| return 0; |
| } |
| |
| static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev, |
| unsigned long *state) |
| { |
| struct devfreq_cooling_device *dfc = cdev->devdata; |
| |
| *state = dfc->cooling_state; |
| |
| return 0; |
| } |
| |
| static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev, |
| unsigned long state) |
| { |
| struct devfreq_cooling_device *dfc = cdev->devdata; |
| struct devfreq *df = dfc->devfreq; |
| struct device *dev = df->dev.parent; |
| unsigned long freq; |
| int perf_idx; |
| |
| if (state == dfc->cooling_state) |
| return 0; |
| |
| dev_dbg(dev, "Setting cooling state %lu\n", state); |
| |
| if (state > dfc->max_state) |
| return -EINVAL; |
| |
| if (dfc->em_pd) { |
| perf_idx = dfc->max_state - state; |
| freq = dfc->em_pd->table[perf_idx].frequency * 1000; |
| } else { |
| freq = dfc->freq_table[state]; |
| } |
| |
| dev_pm_qos_update_request(&dfc->req_max_freq, |
| DIV_ROUND_UP(freq, HZ_PER_KHZ)); |
| |
| dfc->cooling_state = state; |
| |
| return 0; |
| } |
| |
| /** |
| * get_perf_idx() - get the performance index corresponding to a frequency |
| * @em_pd: Pointer to device's Energy Model |
| * @freq: frequency in kHz |
| * |
| * Return: the performance index associated with the @freq, or |
| * -EINVAL if it wasn't found. |
| */ |
| static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq) |
| { |
| int i; |
| |
| for (i = 0; i < em_pd->nr_perf_states; i++) { |
| if (em_pd->table[i].frequency == freq) |
| return i; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static unsigned long get_voltage(struct devfreq *df, unsigned long freq) |
| { |
| struct device *dev = df->dev.parent; |
| unsigned long voltage; |
| struct dev_pm_opp *opp; |
| |
| opp = dev_pm_opp_find_freq_exact(dev, freq, true); |
| if (PTR_ERR(opp) == -ERANGE) |
| opp = dev_pm_opp_find_freq_exact(dev, freq, false); |
| |
| if (IS_ERR(opp)) { |
| dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n", |
| freq, PTR_ERR(opp)); |
| return 0; |
| } |
| |
| voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */ |
| dev_pm_opp_put(opp); |
| |
| if (voltage == 0) { |
| dev_err_ratelimited(dev, |
| "Failed to get voltage for frequency %lu\n", |
| freq); |
| } |
| |
| return voltage; |
| } |
| |
| static void _normalize_load(struct devfreq_dev_status *status) |
| { |
| if (status->total_time > 0xfffff) { |
| status->total_time >>= 10; |
| status->busy_time >>= 10; |
| } |
| |
| status->busy_time <<= 10; |
| status->busy_time /= status->total_time ? : 1; |
| |
| status->busy_time = status->busy_time ? : 1; |
| status->total_time = 1024; |
| } |
| |
| static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev, |
| u32 *power) |
| { |
| struct devfreq_cooling_device *dfc = cdev->devdata; |
| struct devfreq *df = dfc->devfreq; |
| struct devfreq_dev_status status; |
| unsigned long state; |
| unsigned long freq; |
| unsigned long voltage; |
| int res, perf_idx; |
| |
| mutex_lock(&df->lock); |
| status = df->last_status; |
| mutex_unlock(&df->lock); |
| |
| freq = status.current_frequency; |
| |
| if (dfc->power_ops && dfc->power_ops->get_real_power) { |
| voltage = get_voltage(df, freq); |
| if (voltage == 0) { |
| res = -EINVAL; |
| goto fail; |
| } |
| |
| res = dfc->power_ops->get_real_power(df, power, freq, voltage); |
| if (!res) { |
| state = dfc->capped_state; |
| |
| /* Convert EM power into milli-Watts first */ |
| dfc->res_util = dfc->em_pd->table[state].power; |
| dfc->res_util /= MICROWATT_PER_MILLIWATT; |
| |
| dfc->res_util *= SCALE_ERROR_MITIGATION; |
| |
| if (*power > 1) |
| dfc->res_util /= *power; |
| } else { |
| goto fail; |
| } |
| } else { |
| /* Energy Model frequencies are in kHz */ |
| perf_idx = get_perf_idx(dfc->em_pd, freq / 1000); |
| if (perf_idx < 0) { |
| res = -EAGAIN; |
| goto fail; |
| } |
| |
| _normalize_load(&status); |
| |
| /* Convert EM power into milli-Watts first */ |
| *power = dfc->em_pd->table[perf_idx].power; |
| *power /= MICROWATT_PER_MILLIWATT; |
| /* Scale power for utilization */ |
| *power *= status.busy_time; |
| *power >>= 10; |
| } |
| |
| trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power); |
| |
| return 0; |
| fail: |
| /* It is safe to set max in this case */ |
| dfc->res_util = SCALE_ERROR_MITIGATION; |
| return res; |
| } |
| |
| static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev, |
| unsigned long state, u32 *power) |
| { |
| struct devfreq_cooling_device *dfc = cdev->devdata; |
| int perf_idx; |
| |
| if (state > dfc->max_state) |
| return -EINVAL; |
| |
| perf_idx = dfc->max_state - state; |
| *power = dfc->em_pd->table[perf_idx].power; |
| *power /= MICROWATT_PER_MILLIWATT; |
| |
| return 0; |
| } |
| |
| static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev, |
| u32 power, unsigned long *state) |
| { |
| struct devfreq_cooling_device *dfc = cdev->devdata; |
| struct devfreq *df = dfc->devfreq; |
| struct devfreq_dev_status status; |
| unsigned long freq, em_power_mw; |
| s32 est_power; |
| int i; |
| |
| mutex_lock(&df->lock); |
| status = df->last_status; |
| mutex_unlock(&df->lock); |
| |
| freq = status.current_frequency; |
| |
| if (dfc->power_ops && dfc->power_ops->get_real_power) { |
| /* Scale for resource utilization */ |
| est_power = power * dfc->res_util; |
| est_power /= SCALE_ERROR_MITIGATION; |
| } else { |
| /* Scale dynamic power for utilization */ |
| _normalize_load(&status); |
| est_power = power << 10; |
| est_power /= status.busy_time; |
| } |
| |
| /* |
| * Find the first cooling state that is within the power |
| * budget. The EM power table is sorted ascending. |
| */ |
| for (i = dfc->max_state; i > 0; i--) { |
| /* Convert EM power to milli-Watts to make safe comparison */ |
| em_power_mw = dfc->em_pd->table[i].power; |
| em_power_mw /= MICROWATT_PER_MILLIWATT; |
| if (est_power >= em_power_mw) |
| break; |
| } |
| |
| *state = dfc->max_state - i; |
| dfc->capped_state = *state; |
| |
| trace_thermal_power_devfreq_limit(cdev, freq, *state, power); |
| return 0; |
| } |
| |
| /** |
| * devfreq_cooling_gen_tables() - Generate frequency table. |
| * @dfc: Pointer to devfreq cooling device. |
| * @num_opps: Number of OPPs |
| * |
| * Generate frequency table which holds the frequencies in descending |
| * order. That way its indexed by cooling device state. This is for |
| * compatibility with drivers which do not register Energy Model. |
| * |
| * Return: 0 on success, negative error code on failure. |
| */ |
| static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc, |
| int num_opps) |
| { |
| struct devfreq *df = dfc->devfreq; |
| struct device *dev = df->dev.parent; |
| unsigned long freq; |
| int i; |
| |
| dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table), |
| GFP_KERNEL); |
| if (!dfc->freq_table) |
| return -ENOMEM; |
| |
| for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) { |
| struct dev_pm_opp *opp; |
| |
| opp = dev_pm_opp_find_freq_floor(dev, &freq); |
| if (IS_ERR(opp)) { |
| kfree(dfc->freq_table); |
| return PTR_ERR(opp); |
| } |
| |
| dev_pm_opp_put(opp); |
| dfc->freq_table[i] = freq; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * of_devfreq_cooling_register_power() - Register devfreq cooling device, |
| * with OF and power information. |
| * @np: Pointer to OF device_node. |
| * @df: Pointer to devfreq device. |
| * @dfc_power: Pointer to devfreq_cooling_power. |
| * |
| * Register a devfreq cooling device. The available OPPs must be |
| * registered on the device. |
| * |
| * If @dfc_power is provided, the cooling device is registered with the |
| * power extensions. For the power extensions to work correctly, |
| * devfreq should use the simple_ondemand governor, other governors |
| * are not currently supported. |
| */ |
| struct thermal_cooling_device * |
| of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df, |
| struct devfreq_cooling_power *dfc_power) |
| { |
| struct thermal_cooling_device *cdev; |
| struct device *dev = df->dev.parent; |
| struct devfreq_cooling_device *dfc; |
| struct em_perf_domain *em; |
| struct thermal_cooling_device_ops *ops; |
| char *name; |
| int err, num_opps; |
| |
| |
| dfc = kzalloc(sizeof(*dfc), GFP_KERNEL); |
| if (!dfc) |
| return ERR_PTR(-ENOMEM); |
| |
| dfc->devfreq = df; |
| |
| ops = &dfc->cooling_ops; |
| ops->get_max_state = devfreq_cooling_get_max_state; |
| ops->get_cur_state = devfreq_cooling_get_cur_state; |
| ops->set_cur_state = devfreq_cooling_set_cur_state; |
| |
| em = em_pd_get(dev); |
| if (em && !em_is_artificial(em)) { |
| dfc->em_pd = em; |
| ops->get_requested_power = |
| devfreq_cooling_get_requested_power; |
| ops->state2power = devfreq_cooling_state2power; |
| ops->power2state = devfreq_cooling_power2state; |
| |
| dfc->power_ops = dfc_power; |
| |
| num_opps = em_pd_nr_perf_states(dfc->em_pd); |
| } else { |
| /* Backward compatibility for drivers which do not use IPA */ |
| dev_dbg(dev, "missing proper EM for cooling device\n"); |
| |
| num_opps = dev_pm_opp_get_opp_count(dev); |
| |
| err = devfreq_cooling_gen_tables(dfc, num_opps); |
| if (err) |
| goto free_dfc; |
| } |
| |
| if (num_opps <= 0) { |
| err = -EINVAL; |
| goto free_dfc; |
| } |
| |
| /* max_state is an index, not a counter */ |
| dfc->max_state = num_opps - 1; |
| |
| err = dev_pm_qos_add_request(dev, &dfc->req_max_freq, |
| DEV_PM_QOS_MAX_FREQUENCY, |
| PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE); |
| if (err < 0) |
| goto free_table; |
| |
| err = -ENOMEM; |
| name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev)); |
| if (!name) |
| goto remove_qos_req; |
| |
| cdev = thermal_of_cooling_device_register(np, name, dfc, ops); |
| kfree(name); |
| |
| if (IS_ERR(cdev)) { |
| err = PTR_ERR(cdev); |
| dev_err(dev, |
| "Failed to register devfreq cooling device (%d)\n", |
| err); |
| goto remove_qos_req; |
| } |
| |
| dfc->cdev = cdev; |
| |
| return cdev; |
| |
| remove_qos_req: |
| dev_pm_qos_remove_request(&dfc->req_max_freq); |
| free_table: |
| kfree(dfc->freq_table); |
| free_dfc: |
| kfree(dfc); |
| |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power); |
| |
| /** |
| * of_devfreq_cooling_register() - Register devfreq cooling device, |
| * with OF information. |
| * @np: Pointer to OF device_node. |
| * @df: Pointer to devfreq device. |
| */ |
| struct thermal_cooling_device * |
| of_devfreq_cooling_register(struct device_node *np, struct devfreq *df) |
| { |
| return of_devfreq_cooling_register_power(np, df, NULL); |
| } |
| EXPORT_SYMBOL_GPL(of_devfreq_cooling_register); |
| |
| /** |
| * devfreq_cooling_register() - Register devfreq cooling device. |
| * @df: Pointer to devfreq device. |
| */ |
| struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df) |
| { |
| return of_devfreq_cooling_register(NULL, df); |
| } |
| EXPORT_SYMBOL_GPL(devfreq_cooling_register); |
| |
| /** |
| * devfreq_cooling_em_register() - Register devfreq cooling device with |
| * power information and automatically register Energy Model (EM) |
| * @df: Pointer to devfreq device. |
| * @dfc_power: Pointer to devfreq_cooling_power. |
| * |
| * Register a devfreq cooling device and automatically register EM. The |
| * available OPPs must be registered for the device. |
| * |
| * If @dfc_power is provided, the cooling device is registered with the |
| * power extensions. It is using the simple Energy Model which requires |
| * "dynamic-power-coefficient" a devicetree property. To not break drivers |
| * which miss that DT property, the function won't bail out when the EM |
| * registration failed. The cooling device will be registered if everything |
| * else is OK. |
| */ |
| struct thermal_cooling_device * |
| devfreq_cooling_em_register(struct devfreq *df, |
| struct devfreq_cooling_power *dfc_power) |
| { |
| struct thermal_cooling_device *cdev; |
| struct device *dev; |
| int ret; |
| |
| if (IS_ERR_OR_NULL(df)) |
| return ERR_PTR(-EINVAL); |
| |
| dev = df->dev.parent; |
| |
| ret = dev_pm_opp_of_register_em(dev, NULL); |
| if (ret) |
| dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n", |
| ret); |
| |
| cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power); |
| |
| if (IS_ERR_OR_NULL(cdev)) |
| em_dev_unregister_perf_domain(dev); |
| |
| return cdev; |
| } |
| EXPORT_SYMBOL_GPL(devfreq_cooling_em_register); |
| |
| /** |
| * devfreq_cooling_unregister() - Unregister devfreq cooling device. |
| * @cdev: Pointer to devfreq cooling device to unregister. |
| * |
| * Unregisters devfreq cooling device and related Energy Model if it was |
| * present. |
| */ |
| void devfreq_cooling_unregister(struct thermal_cooling_device *cdev) |
| { |
| struct devfreq_cooling_device *dfc; |
| struct device *dev; |
| |
| if (IS_ERR_OR_NULL(cdev)) |
| return; |
| |
| dfc = cdev->devdata; |
| dev = dfc->devfreq->dev.parent; |
| |
| thermal_cooling_device_unregister(dfc->cdev); |
| dev_pm_qos_remove_request(&dfc->req_max_freq); |
| |
| em_dev_unregister_perf_domain(dev); |
| |
| kfree(dfc->freq_table); |
| kfree(dfc); |
| } |
| EXPORT_SYMBOL_GPL(devfreq_cooling_unregister); |