|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | *  PowerPC version | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) | 
|  | *  and Cort Dougan (PReP) (cort@cs.nmt.edu) | 
|  | *    Copyright (C) 1996 Paul Mackerras | 
|  | * | 
|  | *  Derived from "arch/i386/mm/init.c" | 
|  | *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Dave Engebretsen <engebret@us.ibm.com> | 
|  | *      Rework for PPC64 port. | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/of_fdt.h> | 
|  | #include <linux/libfdt.h> | 
|  | #include <linux/memremap.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/rtas.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/eeh.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mmzone.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/vdso.h> | 
|  |  | 
|  | #include <mm/mmu_decl.h> | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | /* | 
|  | * Given an address within the vmemmap, determine the page that | 
|  | * represents the start of the subsection it is within.  Note that we have to | 
|  | * do this by hand as the proffered address may not be correctly aligned. | 
|  | * Subtraction of non-aligned pointers produces undefined results. | 
|  | */ | 
|  | static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr) | 
|  | { | 
|  | unsigned long start_pfn; | 
|  | unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap)); | 
|  |  | 
|  | /* Return the pfn of the start of the section. */ | 
|  | start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK; | 
|  | return pfn_to_page(start_pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since memory is added in sub-section chunks, before creating a new vmemmap | 
|  | * mapping, the kernel should check whether there is an existing memmap mapping | 
|  | * covering the new subsection added. This is needed because kernel can map | 
|  | * vmemmap area using 16MB pages which will cover a memory range of 16G. Such | 
|  | * a range covers multiple subsections (2M) | 
|  | * | 
|  | * If any subsection in the 16G range mapped by vmemmap is valid we consider the | 
|  | * vmemmap populated (There is a page table entry already present). We can't do | 
|  | * a page table lookup here because with the hash translation we don't keep | 
|  | * vmemmap details in linux page table. | 
|  | */ | 
|  | static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size) | 
|  | { | 
|  | struct page *start; | 
|  | unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size; | 
|  | start = vmemmap_subsection_start(vmemmap_addr); | 
|  |  | 
|  | for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION) | 
|  | /* | 
|  | * pfn valid check here is intended to really check | 
|  | * whether we have any subsection already initialized | 
|  | * in this range. | 
|  | */ | 
|  | if (pfn_valid(page_to_pfn(start))) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmemmap virtual address space management does not have a traditonal page | 
|  | * table to track which virtual struct pages are backed by physical mapping. | 
|  | * The virtual to physical mappings are tracked in a simple linked list | 
|  | * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at | 
|  | * all times where as the 'next' list maintains the available | 
|  | * vmemmap_backing structures which have been deleted from the | 
|  | * 'vmemmap_global' list during system runtime (memory hotplug remove | 
|  | * operation). The freed 'vmemmap_backing' structures are reused later when | 
|  | * new requests come in without allocating fresh memory. This pointer also | 
|  | * tracks the allocated 'vmemmap_backing' structures as we allocate one | 
|  | * full page memory at a time when we dont have any. | 
|  | */ | 
|  | struct vmemmap_backing *vmemmap_list; | 
|  | static struct vmemmap_backing *next; | 
|  |  | 
|  | /* | 
|  | * The same pointer 'next' tracks individual chunks inside the allocated | 
|  | * full page during the boot time and again tracks the freeed nodes during | 
|  | * runtime. It is racy but it does not happen as they are separated by the | 
|  | * boot process. Will create problem if some how we have memory hotplug | 
|  | * operation during boot !! | 
|  | */ | 
|  | static int num_left; | 
|  | static int num_freed; | 
|  |  | 
|  | static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) | 
|  | { | 
|  | struct vmemmap_backing *vmem_back; | 
|  | /* get from freed entries first */ | 
|  | if (num_freed) { | 
|  | num_freed--; | 
|  | vmem_back = next; | 
|  | next = next->list; | 
|  |  | 
|  | return vmem_back; | 
|  | } | 
|  |  | 
|  | /* allocate a page when required and hand out chunks */ | 
|  | if (!num_left) { | 
|  | next = vmemmap_alloc_block(PAGE_SIZE, node); | 
|  | if (unlikely(!next)) { | 
|  | WARN_ON(1); | 
|  | return NULL; | 
|  | } | 
|  | num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); | 
|  | } | 
|  |  | 
|  | num_left--; | 
|  |  | 
|  | return next++; | 
|  | } | 
|  |  | 
|  | static __meminit int vmemmap_list_populate(unsigned long phys, | 
|  | unsigned long start, | 
|  | int node) | 
|  | { | 
|  | struct vmemmap_backing *vmem_back; | 
|  |  | 
|  | vmem_back = vmemmap_list_alloc(node); | 
|  | if (unlikely(!vmem_back)) { | 
|  | pr_debug("vmemap list allocation failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | vmem_back->phys = phys; | 
|  | vmem_back->virt_addr = start; | 
|  | vmem_back->list = vmemmap_list; | 
|  |  | 
|  | vmemmap_list = vmem_back; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start, | 
|  | unsigned long page_size) | 
|  | { | 
|  | unsigned long nr_pfn = page_size / sizeof(struct page); | 
|  | unsigned long start_pfn = page_to_pfn((struct page *)start); | 
|  |  | 
|  | if ((start_pfn + nr_pfn) > altmap->end_pfn) | 
|  | return true; | 
|  |  | 
|  | if (start_pfn < altmap->base_pfn) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | bool altmap_alloc; | 
|  | unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; | 
|  |  | 
|  | /* Align to the page size of the linear mapping. */ | 
|  | start = ALIGN_DOWN(start, page_size); | 
|  |  | 
|  | pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); | 
|  |  | 
|  | for (; start < end; start += page_size) { | 
|  | void *p = NULL; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * This vmemmap range is backing different subsections. If any | 
|  | * of that subsection is marked valid, that means we already | 
|  | * have initialized a page table covering this range and hence | 
|  | * the vmemmap range is populated. | 
|  | */ | 
|  | if (vmemmap_populated(start, page_size)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Allocate from the altmap first if we have one. This may | 
|  | * fail due to alignment issues when using 16MB hugepages, so | 
|  | * fall back to system memory if the altmap allocation fail. | 
|  | */ | 
|  | if (altmap && !altmap_cross_boundary(altmap, start, page_size)) { | 
|  | p = vmemmap_alloc_block_buf(page_size, node, altmap); | 
|  | if (!p) | 
|  | pr_debug("altmap block allocation failed, falling back to system memory"); | 
|  | else | 
|  | altmap_alloc = true; | 
|  | } | 
|  | if (!p) { | 
|  | p = vmemmap_alloc_block_buf(page_size, node, NULL); | 
|  | altmap_alloc = false; | 
|  | } | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (vmemmap_list_populate(__pa(p), start, node)) { | 
|  | /* | 
|  | * If we don't populate vmemap list, we don't have | 
|  | * the ability to free the allocated vmemmap | 
|  | * pages in section_deactivate. Hence free them | 
|  | * here. | 
|  | */ | 
|  | int nr_pfns = page_size >> PAGE_SHIFT; | 
|  | unsigned long page_order = get_order(page_size); | 
|  |  | 
|  | if (altmap_alloc) | 
|  | vmem_altmap_free(altmap, nr_pfns); | 
|  | else | 
|  | free_pages((unsigned long)p, page_order); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pr_debug("      * %016lx..%016lx allocated at %p\n", | 
|  | start, start + page_size, p); | 
|  |  | 
|  | rc = vmemmap_create_mapping(start, page_size, __pa(p)); | 
|  | if (rc < 0) { | 
|  | pr_warn("%s: Unable to create vmemmap mapping: %d\n", | 
|  | __func__, rc); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | static unsigned long vmemmap_list_free(unsigned long start) | 
|  | { | 
|  | struct vmemmap_backing *vmem_back, *vmem_back_prev; | 
|  |  | 
|  | vmem_back_prev = vmem_back = vmemmap_list; | 
|  |  | 
|  | /* look for it with prev pointer recorded */ | 
|  | for (; vmem_back; vmem_back = vmem_back->list) { | 
|  | if (vmem_back->virt_addr == start) | 
|  | break; | 
|  | vmem_back_prev = vmem_back; | 
|  | } | 
|  |  | 
|  | if (unlikely(!vmem_back)) | 
|  | return 0; | 
|  |  | 
|  | /* remove it from vmemmap_list */ | 
|  | if (vmem_back == vmemmap_list) /* remove head */ | 
|  | vmemmap_list = vmem_back->list; | 
|  | else | 
|  | vmem_back_prev->list = vmem_back->list; | 
|  |  | 
|  | /* next point to this freed entry */ | 
|  | vmem_back->list = next; | 
|  | next = vmem_back; | 
|  | num_freed++; | 
|  |  | 
|  | return vmem_back->phys; | 
|  | } | 
|  |  | 
|  | void __ref vmemmap_free(unsigned long start, unsigned long end, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; | 
|  | unsigned long page_order = get_order(page_size); | 
|  | unsigned long alt_start = ~0, alt_end = ~0; | 
|  | unsigned long base_pfn; | 
|  |  | 
|  | start = ALIGN_DOWN(start, page_size); | 
|  | if (altmap) { | 
|  | alt_start = altmap->base_pfn; | 
|  | alt_end = altmap->base_pfn + altmap->reserve + | 
|  | altmap->free + altmap->alloc + altmap->align; | 
|  | } | 
|  |  | 
|  | pr_debug("vmemmap_free %lx...%lx\n", start, end); | 
|  |  | 
|  | for (; start < end; start += page_size) { | 
|  | unsigned long nr_pages, addr; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * We have already marked the subsection we are trying to remove | 
|  | * invalid. So if we want to remove the vmemmap range, we | 
|  | * need to make sure there is no subsection marked valid | 
|  | * in this range. | 
|  | */ | 
|  | if (vmemmap_populated(start, page_size)) | 
|  | continue; | 
|  |  | 
|  | addr = vmemmap_list_free(start); | 
|  | if (!addr) | 
|  | continue; | 
|  |  | 
|  | page = pfn_to_page(addr >> PAGE_SHIFT); | 
|  | nr_pages = 1 << page_order; | 
|  | base_pfn = PHYS_PFN(addr); | 
|  |  | 
|  | if (base_pfn >= alt_start && base_pfn < alt_end) { | 
|  | vmem_altmap_free(altmap, nr_pages); | 
|  | } else if (PageReserved(page)) { | 
|  | /* allocated from bootmem */ | 
|  | if (page_size < PAGE_SIZE) { | 
|  | /* | 
|  | * this shouldn't happen, but if it is | 
|  | * the case, leave the memory there | 
|  | */ | 
|  | WARN_ON_ONCE(1); | 
|  | } else { | 
|  | while (nr_pages--) | 
|  | free_reserved_page(page++); | 
|  | } | 
|  | } else { | 
|  | free_pages((unsigned long)(__va(addr)), page_order); | 
|  | } | 
|  |  | 
|  | vmemmap_remove_mapping(start, page_size); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | void register_page_bootmem_memmap(unsigned long section_nr, | 
|  | struct page *start_page, unsigned long size) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); | 
|  |  | 
|  | static int __init parse_disable_radix(char *p) | 
|  | { | 
|  | bool val; | 
|  |  | 
|  | if (!p) | 
|  | val = true; | 
|  | else if (kstrtobool(p, &val)) | 
|  | return -EINVAL; | 
|  |  | 
|  | disable_radix = val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("disable_radix", parse_disable_radix); | 
|  |  | 
|  | /* | 
|  | * If we're running under a hypervisor, we need to check the contents of | 
|  | * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do | 
|  | * radix.  If not, we clear the radix feature bit so we fall back to hash. | 
|  | */ | 
|  | static void __init early_check_vec5(void) | 
|  | { | 
|  | unsigned long root, chosen; | 
|  | int size; | 
|  | const u8 *vec5; | 
|  | u8 mmu_supported; | 
|  |  | 
|  | root = of_get_flat_dt_root(); | 
|  | chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); | 
|  | if (chosen == -FDT_ERR_NOTFOUND) { | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
|  | return; | 
|  | } | 
|  | vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); | 
|  | if (!vec5) { | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
|  | return; | 
|  | } | 
|  | if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check for supported configuration */ | 
|  | mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & | 
|  | OV5_FEAT(OV5_MMU_SUPPORT); | 
|  | if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { | 
|  | /* Hypervisor only supports radix - check enabled && GTSE */ | 
|  | if (!early_radix_enabled()) { | 
|  | pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); | 
|  | } | 
|  | if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & | 
|  | OV5_FEAT(OV5_RADIX_GTSE))) { | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; | 
|  | } else | 
|  | cur_cpu_spec->mmu_features |= MMU_FTR_GTSE; | 
|  | /* Do radix anyway - the hypervisor said we had to */ | 
|  | cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; | 
|  | } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { | 
|  | /* Hypervisor only supports hash - disable radix */ | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init mmu_early_init_devtree(void) | 
|  | { | 
|  | /* Disable radix mode based on kernel command line. */ | 
|  | if (disable_radix) | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
|  |  | 
|  | /* | 
|  | * Check /chosen/ibm,architecture-vec-5 if running as a guest. | 
|  | * When running bare-metal, we can use radix if we like | 
|  | * even though the ibm,architecture-vec-5 property created by | 
|  | * skiboot doesn't have the necessary bits set. | 
|  | */ | 
|  | if (!(mfmsr() & MSR_HV)) | 
|  | early_check_vec5(); | 
|  |  | 
|  | if (early_radix_enabled()) { | 
|  | radix__early_init_devtree(); | 
|  | /* | 
|  | * We have finalized the translation we are going to use by now. | 
|  | * Radix mode is not limited by RMA / VRMA addressing. | 
|  | * Hence don't limit memblock allocations. | 
|  | */ | 
|  | ppc64_rma_size = ULONG_MAX; | 
|  | memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); | 
|  | } else | 
|  | hash__early_init_devtree(); | 
|  | } | 
|  | #endif /* CONFIG_PPC_BOOK3S_64 */ |