|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/raid/pq.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <linux/uuid.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/namei.h> | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "extent_map.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "print-tree.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "async-thread.h" | 
|  | #include "check-integrity.h" | 
|  | #include "rcu-string.h" | 
|  | #include "dev-replace.h" | 
|  | #include "sysfs.h" | 
|  | #include "tree-checker.h" | 
|  | #include "space-info.h" | 
|  | #include "block-group.h" | 
|  | #include "discard.h" | 
|  |  | 
|  | const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { | 
|  | [BTRFS_RAID_RAID10] = { | 
|  | .sub_stripes	= 2, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0,	/* 0 == as many as possible */ | 
|  | .devs_min	= 4, | 
|  | .tolerated_failures = 1, | 
|  | .devs_increment	= 2, | 
|  | .ncopies	= 2, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid10", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID10, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID1] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 2, | 
|  | .devs_min	= 2, | 
|  | .tolerated_failures = 1, | 
|  | .devs_increment	= 2, | 
|  | .ncopies	= 2, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid1", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID1, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID1C3] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 3, | 
|  | .devs_min	= 3, | 
|  | .tolerated_failures = 2, | 
|  | .devs_increment	= 3, | 
|  | .ncopies	= 3, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid1c3", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID1C4] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 4, | 
|  | .devs_min	= 4, | 
|  | .tolerated_failures = 3, | 
|  | .devs_increment	= 4, | 
|  | .ncopies	= 4, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid1c4", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_DUP] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 2, | 
|  | .devs_max	= 1, | 
|  | .devs_min	= 1, | 
|  | .tolerated_failures = 0, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 2, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "dup", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_DUP, | 
|  | .mindev_error	= 0, | 
|  | }, | 
|  | [BTRFS_RAID_RAID0] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0, | 
|  | .devs_min	= 2, | 
|  | .tolerated_failures = 0, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid0", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID0, | 
|  | .mindev_error	= 0, | 
|  | }, | 
|  | [BTRFS_RAID_SINGLE] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 1, | 
|  | .devs_min	= 1, | 
|  | .tolerated_failures = 0, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "single", | 
|  | .bg_flag	= 0, | 
|  | .mindev_error	= 0, | 
|  | }, | 
|  | [BTRFS_RAID_RAID5] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0, | 
|  | .devs_min	= 2, | 
|  | .tolerated_failures = 1, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 1, | 
|  | .raid_name	= "raid5", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID5, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID6] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0, | 
|  | .devs_min	= 3, | 
|  | .tolerated_failures = 2, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 2, | 
|  | .raid_name	= "raid6", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID6, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | const char *btrfs_bg_type_to_raid_name(u64 flags) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(flags); | 
|  |  | 
|  | if (index >= BTRFS_NR_RAID_TYPES) | 
|  | return NULL; | 
|  |  | 
|  | return btrfs_raid_array[index].raid_name; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill @buf with textual description of @bg_flags, no more than @size_buf | 
|  | * bytes including terminating null byte. | 
|  | */ | 
|  | void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  | char *bp = buf; | 
|  | u64 flags = bg_flags; | 
|  | u32 size_bp = size_buf; | 
|  |  | 
|  | if (!flags) { | 
|  | strcpy(bp, "NONE"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define DESCRIBE_FLAG(flag, desc)						\ | 
|  | do {								\ | 
|  | if (flags & (flag)) {					\ | 
|  | ret = snprintf(bp, size_bp, "%s|", (desc));	\ | 
|  | if (ret < 0 || ret >= size_bp)			\ | 
|  | goto out_overflow;			\ | 
|  | size_bp -= ret;					\ | 
|  | bp += ret;					\ | 
|  | flags &= ~(flag);				\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); | 
|  | DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); | 
|  | DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); | 
|  |  | 
|  | DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, | 
|  | btrfs_raid_array[i].raid_name); | 
|  | #undef DESCRIBE_FLAG | 
|  |  | 
|  | if (flags) { | 
|  | ret = snprintf(bp, size_bp, "0x%llx|", flags); | 
|  | size_bp -= ret; | 
|  | } | 
|  |  | 
|  | if (size_bp < size_buf) | 
|  | buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ | 
|  |  | 
|  | /* | 
|  | * The text is trimmed, it's up to the caller to provide sufficiently | 
|  | * large buffer | 
|  | */ | 
|  | out_overflow:; | 
|  | } | 
|  |  | 
|  | static int init_first_rw_device(struct btrfs_trans_handle *trans); | 
|  | static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); | 
|  | static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); | 
|  | static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); | 
|  | static int __btrfs_map_block(struct btrfs_fs_info *fs_info, | 
|  | enum btrfs_map_op op, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_bio **bbio_ret, | 
|  | int mirror_num, int need_raid_map); | 
|  |  | 
|  | /* | 
|  | * Device locking | 
|  | * ============== | 
|  | * | 
|  | * There are several mutexes that protect manipulation of devices and low-level | 
|  | * structures like chunks but not block groups, extents or files | 
|  | * | 
|  | * uuid_mutex (global lock) | 
|  | * ------------------------ | 
|  | * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from | 
|  | * the SCAN_DEV ioctl registration or from mount either implicitly (the first | 
|  | * device) or requested by the device= mount option | 
|  | * | 
|  | * the mutex can be very coarse and can cover long-running operations | 
|  | * | 
|  | * protects: updates to fs_devices counters like missing devices, rw devices, | 
|  | * seeding, structure cloning, opening/closing devices at mount/umount time | 
|  | * | 
|  | * global::fs_devs - add, remove, updates to the global list | 
|  | * | 
|  | * does not protect: manipulation of the fs_devices::devices list in general | 
|  | * but in mount context it could be used to exclude list modifications by eg. | 
|  | * scan ioctl | 
|  | * | 
|  | * btrfs_device::name - renames (write side), read is RCU | 
|  | * | 
|  | * fs_devices::device_list_mutex (per-fs, with RCU) | 
|  | * ------------------------------------------------ | 
|  | * protects updates to fs_devices::devices, ie. adding and deleting | 
|  | * | 
|  | * simple list traversal with read-only actions can be done with RCU protection | 
|  | * | 
|  | * may be used to exclude some operations from running concurrently without any | 
|  | * modifications to the list (see write_all_supers) | 
|  | * | 
|  | * Is not required at mount and close times, because our device list is | 
|  | * protected by the uuid_mutex at that point. | 
|  | * | 
|  | * balance_mutex | 
|  | * ------------- | 
|  | * protects balance structures (status, state) and context accessed from | 
|  | * several places (internally, ioctl) | 
|  | * | 
|  | * chunk_mutex | 
|  | * ----------- | 
|  | * protects chunks, adding or removing during allocation, trim or when a new | 
|  | * device is added/removed. Additionally it also protects post_commit_list of | 
|  | * individual devices, since they can be added to the transaction's | 
|  | * post_commit_list only with chunk_mutex held. | 
|  | * | 
|  | * cleaner_mutex | 
|  | * ------------- | 
|  | * a big lock that is held by the cleaner thread and prevents running subvolume | 
|  | * cleaning together with relocation or delayed iputs | 
|  | * | 
|  | * | 
|  | * Lock nesting | 
|  | * ============ | 
|  | * | 
|  | * uuid_mutex | 
|  | *   device_list_mutex | 
|  | *     chunk_mutex | 
|  | *   balance_mutex | 
|  | * | 
|  | * | 
|  | * Exclusive operations | 
|  | * ==================== | 
|  | * | 
|  | * Maintains the exclusivity of the following operations that apply to the | 
|  | * whole filesystem and cannot run in parallel. | 
|  | * | 
|  | * - Balance (*) | 
|  | * - Device add | 
|  | * - Device remove | 
|  | * - Device replace (*) | 
|  | * - Resize | 
|  | * | 
|  | * The device operations (as above) can be in one of the following states: | 
|  | * | 
|  | * - Running state | 
|  | * - Paused state | 
|  | * - Completed state | 
|  | * | 
|  | * Only device operations marked with (*) can go into the Paused state for the | 
|  | * following reasons: | 
|  | * | 
|  | * - ioctl (only Balance can be Paused through ioctl) | 
|  | * - filesystem remounted as read-only | 
|  | * - filesystem unmounted and mounted as read-only | 
|  | * - system power-cycle and filesystem mounted as read-only | 
|  | * - filesystem or device errors leading to forced read-only | 
|  | * | 
|  | * The status of exclusive operation is set and cleared atomically. | 
|  | * During the course of Paused state, fs_info::exclusive_operation remains set. | 
|  | * A device operation in Paused or Running state can be canceled or resumed | 
|  | * either by ioctl (Balance only) or when remounted as read-write. | 
|  | * The exclusive status is cleared when the device operation is canceled or | 
|  | * completed. | 
|  | */ | 
|  |  | 
|  | DEFINE_MUTEX(uuid_mutex); | 
|  | static LIST_HEAD(fs_uuids); | 
|  | struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) | 
|  | { | 
|  | return &fs_uuids; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_fs_devices - allocate struct btrfs_fs_devices | 
|  | * @fsid:		if not NULL, copy the UUID to fs_devices::fsid | 
|  | * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid | 
|  | * | 
|  | * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). | 
|  | * The returned struct is not linked onto any lists and can be destroyed with | 
|  | * kfree() right away. | 
|  | */ | 
|  | static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, | 
|  | const u8 *metadata_fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devs; | 
|  |  | 
|  | fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); | 
|  | if (!fs_devs) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | mutex_init(&fs_devs->device_list_mutex); | 
|  |  | 
|  | INIT_LIST_HEAD(&fs_devs->devices); | 
|  | INIT_LIST_HEAD(&fs_devs->alloc_list); | 
|  | INIT_LIST_HEAD(&fs_devs->fs_list); | 
|  | INIT_LIST_HEAD(&fs_devs->seed_list); | 
|  | if (fsid) | 
|  | memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | if (metadata_fsid) | 
|  | memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); | 
|  | else if (fsid) | 
|  | memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | return fs_devs; | 
|  | } | 
|  |  | 
|  | void btrfs_free_device(struct btrfs_device *device) | 
|  | { | 
|  | WARN_ON(!list_empty(&device->post_commit_list)); | 
|  | rcu_string_free(device->name); | 
|  | extent_io_tree_release(&device->alloc_state); | 
|  | bio_put(device->flush_bio); | 
|  | kfree(device); | 
|  | } | 
|  |  | 
|  | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | WARN_ON(fs_devices->opened); | 
|  | while (!list_empty(&fs_devices->devices)) { | 
|  | device = list_entry(fs_devices->devices.next, | 
|  | struct btrfs_device, dev_list); | 
|  | list_del(&device->dev_list); | 
|  | btrfs_free_device(device); | 
|  | } | 
|  | kfree(fs_devices); | 
|  | } | 
|  |  | 
|  | void __exit btrfs_cleanup_fs_uuids(void) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | while (!list_empty(&fs_uuids)) { | 
|  | fs_devices = list_entry(fs_uuids.next, | 
|  | struct btrfs_fs_devices, fs_list); | 
|  | list_del(&fs_devices->fs_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. | 
|  | * Returned struct is not linked onto any lists and must be destroyed using | 
|  | * btrfs_free_device. | 
|  | */ | 
|  | static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
|  | if (!dev) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Preallocate a bio that's always going to be used for flushing device | 
|  | * barriers and matches the device lifespan | 
|  | */ | 
|  | dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); | 
|  | if (!dev->flush_bio) { | 
|  | kfree(dev); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&dev->dev_list); | 
|  | INIT_LIST_HEAD(&dev->dev_alloc_list); | 
|  | INIT_LIST_HEAD(&dev->post_commit_list); | 
|  |  | 
|  | atomic_set(&dev->reada_in_flight, 0); | 
|  | atomic_set(&dev->dev_stats_ccnt, 0); | 
|  | btrfs_device_data_ordered_init(dev); | 
|  | INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); | 
|  | INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); | 
|  | extent_io_tree_init(fs_info, &dev->alloc_state, | 
|  | IO_TREE_DEVICE_ALLOC_STATE, NULL); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_fs_devices *find_fsid( | 
|  | const u8 *fsid, const u8 *metadata_fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | ASSERT(fsid); | 
|  |  | 
|  | /* Handle non-split brain cases */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | if (metadata_fsid) { | 
|  | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 | 
|  | && memcmp(metadata_fsid, fs_devices->metadata_uuid, | 
|  | BTRFS_FSID_SIZE) == 0) | 
|  | return fs_devices; | 
|  | } else { | 
|  | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | 
|  | return fs_devices; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( | 
|  | struct btrfs_super_block *disk_super) | 
|  | { | 
|  |  | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | /* | 
|  | * Handle scanned device having completed its fsid change but | 
|  | * belonging to a fs_devices that was created by first scanning | 
|  | * a device which didn't have its fsid/metadata_uuid changed | 
|  | * at all and the CHANGING_FSID_V2 flag set. | 
|  | */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | if (fs_devices->fsid_change && | 
|  | memcmp(disk_super->metadata_uuid, fs_devices->fsid, | 
|  | BTRFS_FSID_SIZE) == 0 && | 
|  | memcmp(fs_devices->fsid, fs_devices->metadata_uuid, | 
|  | BTRFS_FSID_SIZE) == 0) { | 
|  | return fs_devices; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Handle scanned device having completed its fsid change but | 
|  | * belonging to a fs_devices that was created by a device that | 
|  | * has an outdated pair of fsid/metadata_uuid and | 
|  | * CHANGING_FSID_V2 flag set. | 
|  | */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | if (fs_devices->fsid_change && | 
|  | memcmp(fs_devices->metadata_uuid, | 
|  | fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && | 
|  | memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, | 
|  | BTRFS_FSID_SIZE) == 0) { | 
|  | return fs_devices; | 
|  | } | 
|  | } | 
|  |  | 
|  | return find_fsid(disk_super->fsid, disk_super->metadata_uuid); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, | 
|  | int flush, struct block_device **bdev, | 
|  | struct btrfs_super_block **disk_super) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | *bdev = blkdev_get_by_path(device_path, flags, holder); | 
|  |  | 
|  | if (IS_ERR(*bdev)) { | 
|  | ret = PTR_ERR(*bdev); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (flush) | 
|  | filemap_write_and_wait((*bdev)->bd_inode->i_mapping); | 
|  | ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); | 
|  | if (ret) { | 
|  | blkdev_put(*bdev, flags); | 
|  | goto error; | 
|  | } | 
|  | invalidate_bdev(*bdev); | 
|  | *disk_super = btrfs_read_dev_super(*bdev); | 
|  | if (IS_ERR(*disk_super)) { | 
|  | ret = PTR_ERR(*disk_super); | 
|  | blkdev_put(*bdev, flags); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | *bdev = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the device in the path matches the device in the given struct device. | 
|  | * | 
|  | * Returns: | 
|  | *   true  If it is the same device. | 
|  | *   false If it is not the same device or on error. | 
|  | */ | 
|  | static bool device_matched(const struct btrfs_device *device, const char *path) | 
|  | { | 
|  | char *device_name; | 
|  | struct block_device *bdev_old; | 
|  | struct block_device *bdev_new; | 
|  |  | 
|  | /* | 
|  | * If we are looking for a device with the matching dev_t, then skip | 
|  | * device without a name (a missing device). | 
|  | */ | 
|  | if (!device->name) | 
|  | return false; | 
|  |  | 
|  | device_name = kzalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); | 
|  | if (!device_name) | 
|  | return false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | scnprintf(device_name, BTRFS_PATH_NAME_MAX, "%s", rcu_str_deref(device->name)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | bdev_old = lookup_bdev(device_name); | 
|  | kfree(device_name); | 
|  | if (IS_ERR(bdev_old)) | 
|  | return false; | 
|  |  | 
|  | bdev_new = lookup_bdev(path); | 
|  | if (IS_ERR(bdev_new)) | 
|  | return false; | 
|  |  | 
|  | if (bdev_old == bdev_new) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Search and remove all stale (devices which are not mounted) devices. | 
|  | *  When both inputs are NULL, it will search and release all stale devices. | 
|  | *  path:	Optional. When provided will it release all unmounted devices | 
|  | *		matching this path only. | 
|  | *  skip_dev:	Optional. Will skip this device when searching for the stale | 
|  | *		devices. | 
|  | *  Return:	0 for success or if @path is NULL. | 
|  | * 		-EBUSY if @path is a mounted device. | 
|  | * 		-ENOENT if @path does not match any device in the list. | 
|  | */ | 
|  | static int btrfs_free_stale_devices(const char *path, | 
|  | struct btrfs_device *skip_device) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; | 
|  | struct btrfs_device *device, *tmp_device; | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | if (path) | 
|  | ret = -ENOENT; | 
|  |  | 
|  | list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry_safe(device, tmp_device, | 
|  | &fs_devices->devices, dev_list) { | 
|  | if (skip_device && skip_device == device) | 
|  | continue; | 
|  | if (path && !device_matched(device, path)) | 
|  | continue; | 
|  | if (fs_devices->opened) { | 
|  | /* for an already deleted device return 0 */ | 
|  | if (path && ret != 0) | 
|  | ret = -EBUSY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* delete the stale device */ | 
|  | fs_devices->num_devices--; | 
|  | list_del(&device->dev_list); | 
|  | btrfs_free_device(device); | 
|  |  | 
|  | ret = 0; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (fs_devices->num_devices == 0) { | 
|  | btrfs_sysfs_remove_fsid(fs_devices); | 
|  | list_del(&fs_devices->fs_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is only used on mount, and we are protected from competing things | 
|  | * messing with our fs_devices by the uuid_mutex, thus we do not need the | 
|  | * fs_devices->device_list_mutex here. | 
|  | */ | 
|  | static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, | 
|  | struct btrfs_device *device, fmode_t flags, | 
|  | void *holder) | 
|  | { | 
|  | struct request_queue *q; | 
|  | struct block_device *bdev; | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 devid; | 
|  | int ret; | 
|  |  | 
|  | if (device->bdev) | 
|  | return -EINVAL; | 
|  | if (!device->name) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, | 
|  | &bdev, &disk_super); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | if (devid != device->devid) | 
|  | goto error_free_page; | 
|  |  | 
|  | if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) | 
|  | goto error_free_page; | 
|  |  | 
|  | device->generation = btrfs_super_generation(disk_super); | 
|  |  | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | 
|  | if (btrfs_super_incompat_flags(disk_super) & | 
|  | BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { | 
|  | pr_err( | 
|  | "BTRFS: Invalid seeding and uuid-changed device detected\n"); | 
|  | goto error_free_page; | 
|  | } | 
|  |  | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | fs_devices->seeding = true; | 
|  | } else { | 
|  | if (bdev_read_only(bdev)) | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | else | 
|  | set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | } | 
|  |  | 
|  | q = bdev_get_queue(bdev); | 
|  | if (!blk_queue_nonrot(q)) | 
|  | fs_devices->rotating = true; | 
|  |  | 
|  | device->bdev = bdev; | 
|  | clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | device->mode = flags; | 
|  |  | 
|  | fs_devices->open_devices++; | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | device->devid != BTRFS_DEV_REPLACE_DEVID) { | 
|  | fs_devices->rw_devices++; | 
|  | list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); | 
|  | } | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_free_page: | 
|  | btrfs_release_disk_super(disk_super); | 
|  | blkdev_put(bdev, flags); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices | 
|  | * being created with a disk that has already completed its fsid change. Such | 
|  | * disk can belong to an fs which has its FSID changed or to one which doesn't. | 
|  | * Handle both cases here. | 
|  | */ | 
|  | static struct btrfs_fs_devices *find_fsid_inprogress( | 
|  | struct btrfs_super_block *disk_super) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, | 
|  | BTRFS_FSID_SIZE) != 0 && | 
|  | memcmp(fs_devices->metadata_uuid, disk_super->fsid, | 
|  | BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { | 
|  | return fs_devices; | 
|  | } | 
|  | } | 
|  |  | 
|  | return find_fsid(disk_super->fsid, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct btrfs_fs_devices *find_fsid_changed( | 
|  | struct btrfs_super_block *disk_super) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | /* | 
|  | * Handles the case where scanned device is part of an fs that had | 
|  | * multiple successful changes of FSID but curently device didn't | 
|  | * observe it. Meaning our fsid will be different than theirs. We need | 
|  | * to handle two subcases : | 
|  | *  1 - The fs still continues to have different METADATA/FSID uuids. | 
|  | *  2 - The fs is switched back to its original FSID (METADATA/FSID | 
|  | *  are equal). | 
|  | */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | /* Changed UUIDs */ | 
|  | if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, | 
|  | BTRFS_FSID_SIZE) != 0 && | 
|  | memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, | 
|  | BTRFS_FSID_SIZE) == 0 && | 
|  | memcmp(fs_devices->fsid, disk_super->fsid, | 
|  | BTRFS_FSID_SIZE) != 0) | 
|  | return fs_devices; | 
|  |  | 
|  | /* Unchanged UUIDs */ | 
|  | if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, | 
|  | BTRFS_FSID_SIZE) == 0 && | 
|  | memcmp(fs_devices->fsid, disk_super->metadata_uuid, | 
|  | BTRFS_FSID_SIZE) == 0) | 
|  | return fs_devices; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *find_fsid_reverted_metadata( | 
|  | struct btrfs_super_block *disk_super) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | /* | 
|  | * Handle the case where the scanned device is part of an fs whose last | 
|  | * metadata UUID change reverted it to the original FSID. At the same | 
|  | * time * fs_devices was first created by another constitutent device | 
|  | * which didn't fully observe the operation. This results in an | 
|  | * btrfs_fs_devices created with metadata/fsid different AND | 
|  | * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the | 
|  | * fs_devices equal to the FSID of the disk. | 
|  | */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, | 
|  | BTRFS_FSID_SIZE) != 0 && | 
|  | memcmp(fs_devices->metadata_uuid, disk_super->fsid, | 
|  | BTRFS_FSID_SIZE) == 0 && | 
|  | fs_devices->fsid_change) | 
|  | return fs_devices; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | /* | 
|  | * Add new device to list of registered devices | 
|  | * | 
|  | * Returns: | 
|  | * device pointer which was just added or updated when successful | 
|  | * error pointer when failed | 
|  | */ | 
|  | static noinline struct btrfs_device *device_list_add(const char *path, | 
|  | struct btrfs_super_block *disk_super, | 
|  | bool *new_device_added) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *fs_devices = NULL; | 
|  | struct rcu_string *name; | 
|  | u64 found_transid = btrfs_super_generation(disk_super); | 
|  | u64 devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & | 
|  | BTRFS_FEATURE_INCOMPAT_METADATA_UUID); | 
|  | bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & | 
|  | BTRFS_SUPER_FLAG_CHANGING_FSID_V2); | 
|  |  | 
|  | if (fsid_change_in_progress) { | 
|  | if (!has_metadata_uuid) | 
|  | fs_devices = find_fsid_inprogress(disk_super); | 
|  | else | 
|  | fs_devices = find_fsid_changed(disk_super); | 
|  | } else if (has_metadata_uuid) { | 
|  | fs_devices = find_fsid_with_metadata_uuid(disk_super); | 
|  | } else { | 
|  | fs_devices = find_fsid_reverted_metadata(disk_super); | 
|  | if (!fs_devices) | 
|  | fs_devices = find_fsid(disk_super->fsid, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!fs_devices) { | 
|  | if (has_metadata_uuid) | 
|  | fs_devices = alloc_fs_devices(disk_super->fsid, | 
|  | disk_super->metadata_uuid); | 
|  | else | 
|  | fs_devices = alloc_fs_devices(disk_super->fsid, NULL); | 
|  |  | 
|  | if (IS_ERR(fs_devices)) | 
|  | return ERR_CAST(fs_devices); | 
|  |  | 
|  | fs_devices->fsid_change = fsid_change_in_progress; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_add(&fs_devices->fs_list, &fs_uuids); | 
|  |  | 
|  | device = NULL; | 
|  | } else { | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | device = btrfs_find_device(fs_devices, devid, | 
|  | disk_super->dev_item.uuid, NULL, false); | 
|  |  | 
|  | /* | 
|  | * If this disk has been pulled into an fs devices created by | 
|  | * a device which had the CHANGING_FSID_V2 flag then replace the | 
|  | * metadata_uuid/fsid values of the fs_devices. | 
|  | */ | 
|  | if (fs_devices->fsid_change && | 
|  | found_transid > fs_devices->latest_generation) { | 
|  | memcpy(fs_devices->fsid, disk_super->fsid, | 
|  | BTRFS_FSID_SIZE); | 
|  |  | 
|  | if (has_metadata_uuid) | 
|  | memcpy(fs_devices->metadata_uuid, | 
|  | disk_super->metadata_uuid, | 
|  | BTRFS_FSID_SIZE); | 
|  | else | 
|  | memcpy(fs_devices->metadata_uuid, | 
|  | disk_super->fsid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | fs_devices->fsid_change = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!device) { | 
|  | if (fs_devices->opened) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  |  | 
|  | device = btrfs_alloc_device(NULL, &devid, | 
|  | disk_super->dev_item.uuid); | 
|  | if (IS_ERR(device)) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | /* we can safely leave the fs_devices entry around */ | 
|  | return device; | 
|  | } | 
|  |  | 
|  | name = rcu_string_strdup(path, GFP_NOFS); | 
|  | if (!name) { | 
|  | btrfs_free_device(device); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | rcu_assign_pointer(device->name, name); | 
|  |  | 
|  | list_add_rcu(&device->dev_list, &fs_devices->devices); | 
|  | fs_devices->num_devices++; | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  | *new_device_added = true; | 
|  |  | 
|  | if (disk_super->label[0]) | 
|  | pr_info( | 
|  | "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", | 
|  | disk_super->label, devid, found_transid, path, | 
|  | current->comm, task_pid_nr(current)); | 
|  | else | 
|  | pr_info( | 
|  | "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", | 
|  | disk_super->fsid, devid, found_transid, path, | 
|  | current->comm, task_pid_nr(current)); | 
|  |  | 
|  | } else if (!device->name || strcmp(device->name->str, path)) { | 
|  | /* | 
|  | * When FS is already mounted. | 
|  | * 1. If you are here and if the device->name is NULL that | 
|  | *    means this device was missing at time of FS mount. | 
|  | * 2. If you are here and if the device->name is different | 
|  | *    from 'path' that means either | 
|  | *      a. The same device disappeared and reappeared with | 
|  | *         different name. or | 
|  | *      b. The missing-disk-which-was-replaced, has | 
|  | *         reappeared now. | 
|  | * | 
|  | * We must allow 1 and 2a above. But 2b would be a spurious | 
|  | * and unintentional. | 
|  | * | 
|  | * Further in case of 1 and 2a above, the disk at 'path' | 
|  | * would have missed some transaction when it was away and | 
|  | * in case of 2a the stale bdev has to be updated as well. | 
|  | * 2b must not be allowed at all time. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * For now, we do allow update to btrfs_fs_device through the | 
|  | * btrfs dev scan cli after FS has been mounted.  We're still | 
|  | * tracking a problem where systems fail mount by subvolume id | 
|  | * when we reject replacement on a mounted FS. | 
|  | */ | 
|  | if (!fs_devices->opened && found_transid < device->generation) { | 
|  | /* | 
|  | * That is if the FS is _not_ mounted and if you | 
|  | * are here, that means there is more than one | 
|  | * disk with same uuid and devid.We keep the one | 
|  | * with larger generation number or the last-in if | 
|  | * generation are equal. | 
|  | */ | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_PTR(-EEXIST); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are going to replace the device path for a given devid, | 
|  | * make sure it's the same device if the device is mounted | 
|  | */ | 
|  | if (device->bdev) { | 
|  | struct block_device *path_bdev; | 
|  |  | 
|  | path_bdev = lookup_bdev(path); | 
|  | if (IS_ERR(path_bdev)) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_CAST(path_bdev); | 
|  | } | 
|  |  | 
|  | if (device->bdev != path_bdev) { | 
|  | bdput(path_bdev); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | /* | 
|  | * device->fs_info may not be reliable here, so | 
|  | * pass in a NULL instead. This avoids a | 
|  | * possible use-after-free when the fs_info and | 
|  | * fs_info->sb are already torn down. | 
|  | */ | 
|  | btrfs_warn_in_rcu(NULL, | 
|  | "duplicate device %s devid %llu generation %llu scanned by %s (%d)", | 
|  | path, devid, found_transid, | 
|  | current->comm, | 
|  | task_pid_nr(current)); | 
|  | return ERR_PTR(-EEXIST); | 
|  | } | 
|  | bdput(path_bdev); | 
|  | btrfs_info_in_rcu(device->fs_info, | 
|  | "devid %llu device path %s changed to %s scanned by %s (%d)", | 
|  | devid, rcu_str_deref(device->name), | 
|  | path, current->comm, | 
|  | task_pid_nr(current)); | 
|  | } | 
|  |  | 
|  | name = rcu_string_strdup(path, GFP_NOFS); | 
|  | if (!name) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | rcu_string_free(device->name); | 
|  | rcu_assign_pointer(device->name, name); | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { | 
|  | fs_devices->missing_devices--; | 
|  | clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmount does not free the btrfs_device struct but would zero | 
|  | * generation along with most of the other members. So just update | 
|  | * it back. We need it to pick the disk with largest generation | 
|  | * (as above). | 
|  | */ | 
|  | if (!fs_devices->opened) { | 
|  | device->generation = found_transid; | 
|  | fs_devices->latest_generation = max_t(u64, found_transid, | 
|  | fs_devices->latest_generation); | 
|  | } | 
|  |  | 
|  | fs_devices->total_devices = btrfs_super_num_devices(disk_super); | 
|  |  | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_device *orig_dev; | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | fs_devices = alloc_fs_devices(orig->fsid, NULL); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return fs_devices; | 
|  |  | 
|  | fs_devices->total_devices = orig->total_devices; | 
|  |  | 
|  | list_for_each_entry(orig_dev, &orig->devices, dev_list) { | 
|  | struct rcu_string *name; | 
|  |  | 
|  | device = btrfs_alloc_device(NULL, &orig_dev->devid, | 
|  | orig_dev->uuid); | 
|  | if (IS_ERR(device)) { | 
|  | ret = PTR_ERR(device); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is ok to do without rcu read locked because we hold the | 
|  | * uuid mutex so nothing we touch in here is going to disappear. | 
|  | */ | 
|  | if (orig_dev->name) { | 
|  | name = rcu_string_strdup(orig_dev->name->str, | 
|  | GFP_KERNEL); | 
|  | if (!name) { | 
|  | btrfs_free_device(device); | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  | rcu_assign_pointer(device->name, name); | 
|  | } | 
|  |  | 
|  | list_add(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices = fs_devices; | 
|  | fs_devices->num_devices++; | 
|  | } | 
|  | return fs_devices; | 
|  | error: | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, | 
|  | int step, struct btrfs_device **latest_dev) | 
|  | { | 
|  | struct btrfs_device *device, *next; | 
|  |  | 
|  | /* This is the initialized path, it is safe to release the devices. */ | 
|  | list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { | 
|  | if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { | 
|  | if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, | 
|  | &device->dev_state) && | 
|  | !test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &device->dev_state) && | 
|  | (!*latest_dev || | 
|  | device->generation > (*latest_dev)->generation)) { | 
|  | *latest_dev = device; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, | 
|  | * in btrfs_init_dev_replace() so just continue. | 
|  | */ | 
|  | if (device->devid == BTRFS_DEV_REPLACE_DEVID) | 
|  | continue; | 
|  |  | 
|  | if (device->bdev) { | 
|  | blkdev_put(device->bdev, device->mode); | 
|  | device->bdev = NULL; | 
|  | fs_devices->open_devices--; | 
|  | } | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | fs_devices->rw_devices--; | 
|  | } | 
|  | list_del_init(&device->dev_list); | 
|  | fs_devices->num_devices--; | 
|  | btrfs_free_device(device); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After we have read the system tree and know devids belonging to this | 
|  | * filesystem, remove the device which does not belong there. | 
|  | */ | 
|  | void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) | 
|  | { | 
|  | struct btrfs_device *latest_dev = NULL; | 
|  | struct btrfs_fs_devices *seed_dev; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | __btrfs_free_extra_devids(fs_devices, step, &latest_dev); | 
|  |  | 
|  | list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) | 
|  | __btrfs_free_extra_devids(seed_dev, step, &latest_dev); | 
|  |  | 
|  | fs_devices->latest_bdev = latest_dev->bdev; | 
|  |  | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | static void btrfs_close_bdev(struct btrfs_device *device) | 
|  | { | 
|  | if (!device->bdev) | 
|  | return; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | sync_blockdev(device->bdev); | 
|  | invalidate_bdev(device->bdev); | 
|  | } | 
|  |  | 
|  | blkdev_put(device->bdev, device->mode); | 
|  | } | 
|  |  | 
|  | static void btrfs_close_one_device(struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = device->fs_devices; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | device->devid != BTRFS_DEV_REPLACE_DEVID) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | fs_devices->rw_devices--; | 
|  | } | 
|  |  | 
|  | if (device->devid == BTRFS_DEV_REPLACE_DEVID) | 
|  | clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { | 
|  | clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | fs_devices->missing_devices--; | 
|  | } | 
|  |  | 
|  | btrfs_close_bdev(device); | 
|  | if (device->bdev) { | 
|  | fs_devices->open_devices--; | 
|  | device->bdev = NULL; | 
|  | } | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  |  | 
|  | device->fs_info = NULL; | 
|  | atomic_set(&device->dev_stats_ccnt, 0); | 
|  | extent_io_tree_release(&device->alloc_state); | 
|  |  | 
|  | /* | 
|  | * Reset the flush error record. We might have a transient flush error | 
|  | * in this mount, and if so we aborted the current transaction and set | 
|  | * the fs to an error state, guaranteeing no super blocks can be further | 
|  | * committed. However that error might be transient and if we unmount the | 
|  | * filesystem and mount it again, we should allow the mount to succeed | 
|  | * (btrfs_check_rw_degradable() should not fail) - if after mounting the | 
|  | * filesystem again we still get flush errors, then we will again abort | 
|  | * any transaction and set the error state, guaranteeing no commits of | 
|  | * unsafe super blocks. | 
|  | */ | 
|  | device->last_flush_error = 0; | 
|  |  | 
|  | /* Verify the device is back in a pristine state  */ | 
|  | ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); | 
|  | ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); | 
|  | ASSERT(list_empty(&device->dev_alloc_list)); | 
|  | ASSERT(list_empty(&device->post_commit_list)); | 
|  | ASSERT(atomic_read(&device->reada_in_flight) == 0); | 
|  | } | 
|  |  | 
|  | static void close_fs_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device, *tmp; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | if (--fs_devices->opened > 0) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) | 
|  | btrfs_close_one_device(device); | 
|  |  | 
|  | WARN_ON(fs_devices->open_devices); | 
|  | WARN_ON(fs_devices->rw_devices); | 
|  | fs_devices->opened = 0; | 
|  | fs_devices->seeding = false; | 
|  | fs_devices->fs_info = NULL; | 
|  | } | 
|  |  | 
|  | void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | LIST_HEAD(list); | 
|  | struct btrfs_fs_devices *tmp; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | close_fs_devices(fs_devices); | 
|  | if (!fs_devices->opened) | 
|  | list_splice_init(&fs_devices->seed_list, &list); | 
|  |  | 
|  | list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { | 
|  | close_fs_devices(fs_devices); | 
|  | list_del(&fs_devices->seed_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | static int open_fs_devices(struct btrfs_fs_devices *fs_devices, | 
|  | fmode_t flags, void *holder) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_device *latest_dev = NULL; | 
|  | struct btrfs_device *tmp_device; | 
|  |  | 
|  | flags |= FMODE_EXCL; | 
|  |  | 
|  | list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, | 
|  | dev_list) { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_open_one_device(fs_devices, device, flags, holder); | 
|  | if (ret == 0 && | 
|  | (!latest_dev || device->generation > latest_dev->generation)) { | 
|  | latest_dev = device; | 
|  | } else if (ret == -ENODATA) { | 
|  | fs_devices->num_devices--; | 
|  | list_del(&device->dev_list); | 
|  | btrfs_free_device(device); | 
|  | } | 
|  | } | 
|  | if (fs_devices->open_devices == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | fs_devices->opened = 1; | 
|  | fs_devices->latest_bdev = latest_dev->bdev; | 
|  | fs_devices->total_rw_bytes = 0; | 
|  | fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int devid_cmp(void *priv, const struct list_head *a, | 
|  | const struct list_head *b) | 
|  | { | 
|  | struct btrfs_device *dev1, *dev2; | 
|  |  | 
|  | dev1 = list_entry(a, struct btrfs_device, dev_list); | 
|  | dev2 = list_entry(b, struct btrfs_device, dev_list); | 
|  |  | 
|  | if (dev1->devid < dev2->devid) | 
|  | return -1; | 
|  | else if (dev1->devid > dev2->devid) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
|  | fmode_t flags, void *holder) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  | /* | 
|  | * The device_list_mutex cannot be taken here in case opening the | 
|  | * underlying device takes further locks like bd_mutex. | 
|  | * | 
|  | * We also don't need the lock here as this is called during mount and | 
|  | * exclusion is provided by uuid_mutex | 
|  | */ | 
|  |  | 
|  | if (fs_devices->opened) { | 
|  | fs_devices->opened++; | 
|  | ret = 0; | 
|  | } else { | 
|  | list_sort(NULL, &fs_devices->devices, devid_cmp); | 
|  | ret = open_fs_devices(fs_devices, flags, holder); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_release_disk_super(struct btrfs_super_block *super) | 
|  | { | 
|  | struct page *page = virt_to_page(super); | 
|  |  | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | struct page *page; | 
|  | void *p; | 
|  | pgoff_t index; | 
|  |  | 
|  | /* make sure our super fits in the device */ | 
|  | if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* make sure our super fits in the page */ | 
|  | if (sizeof(*disk_super) > PAGE_SIZE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* make sure our super doesn't straddle pages on disk */ | 
|  | index = bytenr >> PAGE_SHIFT; | 
|  | if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* pull in the page with our super */ | 
|  | page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); | 
|  |  | 
|  | if (IS_ERR(page)) | 
|  | return ERR_CAST(page); | 
|  |  | 
|  | p = page_address(page); | 
|  |  | 
|  | /* align our pointer to the offset of the super block */ | 
|  | disk_super = p + offset_in_page(bytenr); | 
|  |  | 
|  | if (btrfs_super_bytenr(disk_super) != bytenr || | 
|  | btrfs_super_magic(disk_super) != BTRFS_MAGIC) { | 
|  | btrfs_release_disk_super(p); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) | 
|  | disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; | 
|  |  | 
|  | return disk_super; | 
|  | } | 
|  |  | 
|  | int btrfs_forget_devices(const char *path) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); | 
|  | mutex_unlock(&uuid_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for a btrfs signature on a device. This may be called out of the mount path | 
|  | * and we are not allowed to call set_blocksize during the scan. The superblock | 
|  | * is read via pagecache | 
|  | */ | 
|  | struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, | 
|  | void *holder) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | bool new_device_added = false; | 
|  | struct btrfs_device *device = NULL; | 
|  | struct block_device *bdev; | 
|  | u64 bytenr; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | /* | 
|  | * we would like to check all the supers, but that would make | 
|  | * a btrfs mount succeed after a mkfs from a different FS. | 
|  | * So, we need to add a special mount option to scan for | 
|  | * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
|  | */ | 
|  | bytenr = btrfs_sb_offset(0); | 
|  | flags |= FMODE_EXCL; | 
|  |  | 
|  | bdev = blkdev_get_by_path(path, flags, holder); | 
|  | if (IS_ERR(bdev)) | 
|  | return ERR_CAST(bdev); | 
|  |  | 
|  | disk_super = btrfs_read_disk_super(bdev, bytenr); | 
|  | if (IS_ERR(disk_super)) { | 
|  | device = ERR_CAST(disk_super); | 
|  | goto error_bdev_put; | 
|  | } | 
|  |  | 
|  | device = device_list_add(path, disk_super, &new_device_added); | 
|  | if (!IS_ERR(device)) { | 
|  | if (new_device_added) | 
|  | btrfs_free_stale_devices(path, device); | 
|  | } | 
|  |  | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | error_bdev_put: | 
|  | blkdev_put(bdev, flags); | 
|  |  | 
|  | return device; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to find a chunk that intersects [start, start + len] range and when one | 
|  | * such is found, record the end of it in *start | 
|  | */ | 
|  | static bool contains_pending_extent(struct btrfs_device *device, u64 *start, | 
|  | u64 len) | 
|  | { | 
|  | u64 physical_start, physical_end; | 
|  |  | 
|  | lockdep_assert_held(&device->fs_info->chunk_mutex); | 
|  |  | 
|  | if (!find_first_extent_bit(&device->alloc_state, *start, | 
|  | &physical_start, &physical_end, | 
|  | CHUNK_ALLOCATED, NULL)) { | 
|  |  | 
|  | if (in_range(physical_start, *start, len) || | 
|  | in_range(*start, physical_start, | 
|  | physical_end - physical_start)) { | 
|  | *start = physical_end + 1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) | 
|  | { | 
|  | switch (device->fs_devices->chunk_alloc_policy) { | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | /* | 
|  | * We don't want to overwrite the superblock on the drive nor | 
|  | * any area used by the boot loader (grub for example), so we | 
|  | * make sure to start at an offset of at least 1MB. | 
|  | */ | 
|  | return max_t(u64, start, SZ_1M); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dev_extent_hole_check - check if specified hole is suitable for allocation | 
|  | * @device:	the device which we have the hole | 
|  | * @hole_start: starting position of the hole | 
|  | * @hole_size:	the size of the hole | 
|  | * @num_bytes:	the size of the free space that we need | 
|  | * | 
|  | * This function may modify @hole_start and @hole_end to reflect the suitable | 
|  | * position for allocation. Returns 1 if hole position is updated, 0 otherwise. | 
|  | */ | 
|  | static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, | 
|  | u64 *hole_size, u64 num_bytes) | 
|  | { | 
|  | bool changed = false; | 
|  | u64 hole_end = *hole_start + *hole_size; | 
|  |  | 
|  | /* | 
|  | * Check before we set max_hole_start, otherwise we could end up | 
|  | * sending back this offset anyway. | 
|  | */ | 
|  | if (contains_pending_extent(device, hole_start, *hole_size)) { | 
|  | if (hole_end >= *hole_start) | 
|  | *hole_size = hole_end - *hole_start; | 
|  | else | 
|  | *hole_size = 0; | 
|  | changed = true; | 
|  | } | 
|  |  | 
|  | switch (device->fs_devices->chunk_alloc_policy) { | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | /* No extra check */ | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_free_dev_extent_start - find free space in the specified device | 
|  | * @device:	  the device which we search the free space in | 
|  | * @num_bytes:	  the size of the free space that we need | 
|  | * @search_start: the position from which to begin the search | 
|  | * @start:	  store the start of the free space. | 
|  | * @len:	  the size of the free space. that we find, or the size | 
|  | *		  of the max free space if we don't find suitable free space | 
|  | * | 
|  | * this uses a pretty simple search, the expectation is that it is | 
|  | * called very infrequently and that a given device has a small number | 
|  | * of extents | 
|  | * | 
|  | * @start is used to store the start of the free space if we find. But if we | 
|  | * don't find suitable free space, it will be used to store the start position | 
|  | * of the max free space. | 
|  | * | 
|  | * @len is used to store the size of the free space that we find. | 
|  | * But if we don't find suitable free space, it is used to store the size of | 
|  | * the max free space. | 
|  | * | 
|  | * NOTE: This function will search *commit* root of device tree, and does extra | 
|  | * check to ensure dev extents are not double allocated. | 
|  | * This makes the function safe to allocate dev extents but may not report | 
|  | * correct usable device space, as device extent freed in current transaction | 
|  | * is not reported as avaiable. | 
|  | */ | 
|  | static int find_free_dev_extent_start(struct btrfs_device *device, | 
|  | u64 num_bytes, u64 search_start, u64 *start, | 
|  | u64 *len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dev_extent *dev_extent; | 
|  | struct btrfs_path *path; | 
|  | u64 hole_size; | 
|  | u64 max_hole_start; | 
|  | u64 max_hole_size; | 
|  | u64 extent_end; | 
|  | u64 search_end = device->total_bytes; | 
|  | int ret; | 
|  | int slot; | 
|  | struct extent_buffer *l; | 
|  |  | 
|  | search_start = dev_extent_search_start(device, search_start); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | max_hole_start = search_start; | 
|  | max_hole_size = 0; | 
|  |  | 
|  | again: | 
|  | if (search_start >= search_end || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.offset = search_start; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, key.objectid, key.type); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(l)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(l, &key, slot); | 
|  |  | 
|  | if (key.objectid < device->devid) | 
|  | goto next; | 
|  |  | 
|  | if (key.objectid > device->devid) | 
|  | break; | 
|  |  | 
|  | if (key.type != BTRFS_DEV_EXTENT_KEY) | 
|  | goto next; | 
|  |  | 
|  | if (key.offset > search_start) { | 
|  | hole_size = key.offset - search_start; | 
|  | dev_extent_hole_check(device, &search_start, &hole_size, | 
|  | num_bytes); | 
|  |  | 
|  | if (hole_size > max_hole_size) { | 
|  | max_hole_start = search_start; | 
|  | max_hole_size = hole_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this free space is greater than which we need, | 
|  | * it must be the max free space that we have found | 
|  | * until now, so max_hole_start must point to the start | 
|  | * of this free space and the length of this free space | 
|  | * is stored in max_hole_size. Thus, we return | 
|  | * max_hole_start and max_hole_size and go back to the | 
|  | * caller. | 
|  | */ | 
|  | if (hole_size >= num_bytes) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | extent_end = key.offset + btrfs_dev_extent_length(l, | 
|  | dev_extent); | 
|  | if (extent_end > search_start) | 
|  | search_start = extent_end; | 
|  | next: | 
|  | path->slots[0]++; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point, search_start should be the end of | 
|  | * allocated dev extents, and when shrinking the device, | 
|  | * search_end may be smaller than search_start. | 
|  | */ | 
|  | if (search_end > search_start) { | 
|  | hole_size = search_end - search_start; | 
|  | if (dev_extent_hole_check(device, &search_start, &hole_size, | 
|  | num_bytes)) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (hole_size > max_hole_size) { | 
|  | max_hole_start = search_start; | 
|  | max_hole_size = hole_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See above. */ | 
|  | if (max_hole_size < num_bytes) | 
|  | ret = -ENOSPC; | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | *start = max_hole_start; | 
|  | if (len) | 
|  | *len = max_hole_size; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, | 
|  | u64 *start, u64 *len) | 
|  | { | 
|  | /* FIXME use last free of some kind */ | 
|  | return find_free_dev_extent_start(device, num_bytes, 0, start, len); | 
|  | } | 
|  |  | 
|  | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, | 
|  | u64 start, u64 *dev_extent_len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf = NULL; | 
|  | struct btrfs_dev_extent *extent = NULL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.offset = start; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, key.objectid, | 
|  | BTRFS_DEV_EXTENT_KEY); | 
|  | if (ret) | 
|  | goto out; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | BUG_ON(found_key.offset > start || found_key.offset + | 
|  | btrfs_dev_extent_length(leaf, extent) < start); | 
|  | key = found_key; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } else if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | } else { | 
|  | btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *dev_extent_len = btrfs_dev_extent_length(leaf, extent); | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret) { | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Failed to remove dev extent item"); | 
|  | } else { | 
|  | set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, | 
|  | u64 chunk_offset, u64 start, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_dev_extent *extent; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); | 
|  | WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.offset = start; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(*extent)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | btrfs_set_dev_extent_chunk_tree(leaf, extent, | 
|  | BTRFS_CHUNK_TREE_OBJECTID); | 
|  | btrfs_set_dev_extent_chunk_objectid(leaf, extent, | 
|  | BTRFS_FIRST_CHUNK_TREE_OBJECTID); | 
|  | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | 
|  |  | 
|  | btrfs_set_dev_extent_length(leaf, extent, num_bytes); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 find_next_chunk(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  | struct rb_node *n; | 
|  | u64 ret = 0; | 
|  |  | 
|  | em_tree = &fs_info->mapping_tree; | 
|  | read_lock(&em_tree->lock); | 
|  | n = rb_last(&em_tree->map.rb_root); | 
|  | if (n) { | 
|  | em = rb_entry(n, struct extent_map, rb_node); | 
|  | ret = em->start + em->len; | 
|  | } | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int find_next_devid(struct btrfs_fs_info *fs_info, | 
|  | u64 *devid_ret) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* Corruption */ | 
|  | btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); | 
|  | ret = -EUCLEAN; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = btrfs_previous_item(fs_info->chunk_root, path, | 
|  | BTRFS_DEV_ITEMS_OBJECTID, | 
|  | BTRFS_DEV_ITEM_KEY); | 
|  | if (ret) { | 
|  | *devid_ret = 1; | 
|  | } else { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | *devid_ret = found_key.offset + 1; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the device information is stored in the chunk root | 
|  | * the btrfs_device struct should be fully filled in | 
|  | */ | 
|  | static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | unsigned long ptr; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, | 
|  | &key, sizeof(*dev_item)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
|  |  | 
|  | btrfs_set_device_id(leaf, dev_item, device->devid); | 
|  | btrfs_set_device_generation(leaf, dev_item, 0); | 
|  | btrfs_set_device_type(leaf, dev_item, device->type); | 
|  | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
|  | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
|  | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
|  | btrfs_set_device_total_bytes(leaf, dev_item, | 
|  | btrfs_device_get_disk_total_bytes(device)); | 
|  | btrfs_set_device_bytes_used(leaf, dev_item, | 
|  | btrfs_device_get_bytes_used(device)); | 
|  | btrfs_set_device_group(leaf, dev_item, 0); | 
|  | btrfs_set_device_seek_speed(leaf, dev_item, 0); | 
|  | btrfs_set_device_bandwidth(leaf, dev_item, 0); | 
|  | btrfs_set_device_start_offset(leaf, dev_item, 0); | 
|  |  | 
|  | ptr = btrfs_device_uuid(dev_item); | 
|  | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
|  | ptr = btrfs_device_fsid(dev_item); | 
|  | write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, | 
|  | ptr, BTRFS_FSID_SIZE); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to update ctime/mtime for a given device path. | 
|  | * Mainly used for ctime/mtime based probe like libblkid. | 
|  | * | 
|  | * We don't care about errors here, this is just to be kind to userspace. | 
|  | */ | 
|  | static void update_dev_time(const char *device_path) | 
|  | { | 
|  | struct path path; | 
|  | struct timespec64 now; | 
|  | int ret; | 
|  |  | 
|  | ret = kern_path(device_path, LOOKUP_FOLLOW, &path); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | now = current_time(d_inode(path.dentry)); | 
|  | inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); | 
|  | path_put(&path); | 
|  | } | 
|  |  | 
|  | static int btrfs_rm_dev_item(struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_root *root = device->fs_info->chunk_root; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (!ret) | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that @num_devices satisfies the RAID profile constraints in the whole | 
|  | * filesystem. It's up to the caller to adjust that number regarding eg. device | 
|  | * replace. | 
|  | */ | 
|  | static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, | 
|  | u64 num_devices) | 
|  | { | 
|  | u64 all_avail; | 
|  | unsigned seq; | 
|  | int i; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&fs_info->profiles_lock); | 
|  |  | 
|  | all_avail = fs_info->avail_data_alloc_bits | | 
|  | fs_info->avail_system_alloc_bits | | 
|  | fs_info->avail_metadata_alloc_bits; | 
|  | } while (read_seqretry(&fs_info->profiles_lock, seq)); | 
|  |  | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { | 
|  | if (!(all_avail & btrfs_raid_array[i].bg_flag)) | 
|  | continue; | 
|  |  | 
|  | if (num_devices < btrfs_raid_array[i].devs_min) { | 
|  | int ret = btrfs_raid_array[i].mindev_error; | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_device * btrfs_find_next_active_device( | 
|  | struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_device *next_device; | 
|  |  | 
|  | list_for_each_entry(next_device, &fs_devs->devices, dev_list) { | 
|  | if (next_device != device && | 
|  | !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) | 
|  | && next_device->bdev) | 
|  | return next_device; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to check if the given device is part of s_bdev / latest_bdev | 
|  | * and replace it with the provided or the next active device, in the context | 
|  | * where this function called, there should be always be another device (or | 
|  | * this_dev) which is active. | 
|  | */ | 
|  | void __cold btrfs_assign_next_active_device(struct btrfs_device *device, | 
|  | struct btrfs_device *next_device) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  |  | 
|  | if (!next_device) | 
|  | next_device = btrfs_find_next_active_device(fs_info->fs_devices, | 
|  | device); | 
|  | ASSERT(next_device); | 
|  |  | 
|  | if (fs_info->sb->s_bdev && | 
|  | (fs_info->sb->s_bdev == device->bdev)) | 
|  | fs_info->sb->s_bdev = next_device->bdev; | 
|  |  | 
|  | if (fs_info->fs_devices->latest_bdev == device->bdev) | 
|  | fs_info->fs_devices->latest_bdev = next_device->bdev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return btrfs_fs_devices::num_devices excluding the device that's being | 
|  | * currently replaced. | 
|  | */ | 
|  | static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u64 num_devices = fs_info->fs_devices->num_devices; | 
|  |  | 
|  | down_read(&fs_info->dev_replace.rwsem); | 
|  | if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { | 
|  | ASSERT(num_devices > 1); | 
|  | num_devices--; | 
|  | } | 
|  | up_read(&fs_info->dev_replace.rwsem); | 
|  |  | 
|  | return num_devices; | 
|  | } | 
|  |  | 
|  | void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, | 
|  | struct block_device *bdev, | 
|  | const char *device_path) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | int copy_num; | 
|  |  | 
|  | if (!bdev) | 
|  | return; | 
|  |  | 
|  | for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | disk_super = btrfs_read_dev_one_super(bdev, copy_num); | 
|  | if (IS_ERR(disk_super)) | 
|  | continue; | 
|  |  | 
|  | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | 
|  |  | 
|  | page = virt_to_page(disk_super); | 
|  | set_page_dirty(page); | 
|  | lock_page(page); | 
|  | /* write_on_page() unlocks the page */ | 
|  | ret = write_one_page(page); | 
|  | if (ret) | 
|  | btrfs_warn(fs_info, | 
|  | "error clearing superblock number %d (%d)", | 
|  | copy_num, ret); | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Notify udev that device has changed */ | 
|  | btrfs_kobject_uevent(bdev, KOBJ_CHANGE); | 
|  |  | 
|  | /* Update ctime/mtime for device path for libblkid */ | 
|  | update_dev_time(device_path); | 
|  | } | 
|  |  | 
|  | int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, | 
|  | u64 devid) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *cur_devices; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | u64 num_devices; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * The device list in fs_devices is accessed without locks (neither | 
|  | * uuid_mutex nor device_list_mutex) as it won't change on a mounted | 
|  | * filesystem and another device rm cannot run. | 
|  | */ | 
|  | num_devices = btrfs_num_devices(fs_info); | 
|  |  | 
|  | ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | device = btrfs_find_device_by_devspec(fs_info, devid, device_path); | 
|  |  | 
|  | if (IS_ERR(device)) { | 
|  | if (PTR_ERR(device) == -ENOENT && | 
|  | device_path && strcmp(device_path, "missing") == 0) | 
|  | ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; | 
|  | else | 
|  | ret = PTR_ERR(device); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (btrfs_pinned_by_swapfile(fs_info, device)) { | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "cannot remove device %s (devid %llu) due to active swapfile", | 
|  | rcu_str_deref(device->name), device->devid); | 
|  | ret = -ETXTBSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | ret = BTRFS_ERROR_DEV_TGT_REPLACE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | fs_info->fs_devices->rw_devices == 1) { | 
|  | ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | device->fs_devices->rw_devices--; | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | ret = btrfs_shrink_device(device, 0); | 
|  | if (!ret) | 
|  | btrfs_reada_remove_dev(device); | 
|  | if (ret) | 
|  | goto error_undo; | 
|  |  | 
|  | /* | 
|  | * TODO: the superblock still includes this device in its num_devices | 
|  | * counter although write_all_supers() is not locked out. This | 
|  | * could give a filesystem state which requires a degraded mount. | 
|  | */ | 
|  | ret = btrfs_rm_dev_item(device); | 
|  | if (ret) | 
|  | goto error_undo; | 
|  |  | 
|  | clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | btrfs_scrub_cancel_dev(device); | 
|  |  | 
|  | /* | 
|  | * the device list mutex makes sure that we don't change | 
|  | * the device list while someone else is writing out all | 
|  | * the device supers. Whoever is writing all supers, should | 
|  | * lock the device list mutex before getting the number of | 
|  | * devices in the super block (super_copy). Conversely, | 
|  | * whoever updates the number of devices in the super block | 
|  | * (super_copy) should hold the device list mutex. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * In normal cases the cur_devices == fs_devices. But in case | 
|  | * of deleting a seed device, the cur_devices should point to | 
|  | * its own fs_devices listed under the fs_devices->seed. | 
|  | */ | 
|  | cur_devices = device->fs_devices; | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_del_rcu(&device->dev_list); | 
|  |  | 
|  | cur_devices->num_devices--; | 
|  | cur_devices->total_devices--; | 
|  | /* Update total_devices of the parent fs_devices if it's seed */ | 
|  | if (cur_devices != fs_devices) | 
|  | fs_devices->total_devices--; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) | 
|  | cur_devices->missing_devices--; | 
|  |  | 
|  | btrfs_assign_next_active_device(device, NULL); | 
|  |  | 
|  | if (device->bdev) { | 
|  | cur_devices->open_devices--; | 
|  | /* remove sysfs entry */ | 
|  | btrfs_sysfs_remove_device(device); | 
|  | } | 
|  |  | 
|  | num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, num_devices); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * at this point, the device is zero sized and detached from | 
|  | * the devices list.  All that's left is to zero out the old | 
|  | * supers and free the device. | 
|  | */ | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) | 
|  | btrfs_scratch_superblocks(fs_info, device->bdev, | 
|  | device->name->str); | 
|  |  | 
|  | btrfs_close_bdev(device); | 
|  | synchronize_rcu(); | 
|  | btrfs_free_device(device); | 
|  |  | 
|  | if (cur_devices->open_devices == 0) { | 
|  | list_del_init(&cur_devices->seed_list); | 
|  | close_fs_devices(cur_devices); | 
|  | free_fs_devices(cur_devices); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | error_undo: | 
|  | btrfs_reada_undo_remove_dev(device); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_add(&device->dev_alloc_list, | 
|  | &fs_devices->alloc_list); | 
|  | device->fs_devices->rw_devices++; | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * in case of fs with no seed, srcdev->fs_devices will point | 
|  | * to fs_devices of fs_info. However when the dev being replaced is | 
|  | * a seed dev it will point to the seed's local fs_devices. In short | 
|  | * srcdev will have its correct fs_devices in both the cases. | 
|  | */ | 
|  | fs_devices = srcdev->fs_devices; | 
|  |  | 
|  | list_del_rcu(&srcdev->dev_list); | 
|  | list_del(&srcdev->dev_alloc_list); | 
|  | fs_devices->num_devices--; | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) | 
|  | fs_devices->missing_devices--; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) | 
|  | fs_devices->rw_devices--; | 
|  |  | 
|  | if (srcdev->bdev) | 
|  | fs_devices->open_devices--; | 
|  | } | 
|  |  | 
|  | void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  |  | 
|  | btrfs_close_bdev(srcdev); | 
|  | synchronize_rcu(); | 
|  | btrfs_free_device(srcdev); | 
|  |  | 
|  | /* if this is no devs we rather delete the fs_devices */ | 
|  | if (!fs_devices->num_devices) { | 
|  | /* | 
|  | * On a mounted FS, num_devices can't be zero unless it's a | 
|  | * seed. In case of a seed device being replaced, the replace | 
|  | * target added to the sprout FS, so there will be no more | 
|  | * device left under the seed FS. | 
|  | */ | 
|  | ASSERT(fs_devices->seeding); | 
|  |  | 
|  | list_del_init(&fs_devices->seed_list); | 
|  | close_fs_devices(fs_devices); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | btrfs_sysfs_remove_device(tgtdev); | 
|  |  | 
|  | if (tgtdev->bdev) | 
|  | fs_devices->open_devices--; | 
|  |  | 
|  | fs_devices->num_devices--; | 
|  |  | 
|  | btrfs_assign_next_active_device(tgtdev, NULL); | 
|  |  | 
|  | list_del_rcu(&tgtdev->dev_list); | 
|  |  | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * The update_dev_time() with in btrfs_scratch_superblocks() | 
|  | * may lead to a call to btrfs_show_devname() which will try | 
|  | * to hold device_list_mutex. And here this device | 
|  | * is already out of device list, so we don't have to hold | 
|  | * the device_list_mutex lock. | 
|  | */ | 
|  | btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, | 
|  | tgtdev->name->str); | 
|  |  | 
|  | btrfs_close_bdev(tgtdev); | 
|  | synchronize_rcu(); | 
|  | btrfs_free_device(tgtdev); | 
|  | } | 
|  |  | 
|  | static struct btrfs_device *btrfs_find_device_by_path( | 
|  | struct btrfs_fs_info *fs_info, const char *device_path) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 devid; | 
|  | u8 *dev_uuid; | 
|  | struct block_device *bdev; | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, | 
|  | fs_info->bdev_holder, 0, &bdev, &disk_super); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | dev_uuid = disk_super->dev_item.uuid; | 
|  | if (btrfs_fs_incompat(fs_info, METADATA_UUID)) | 
|  | device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, | 
|  | disk_super->metadata_uuid, true); | 
|  | else | 
|  | device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, | 
|  | disk_super->fsid, true); | 
|  |  | 
|  | btrfs_release_disk_super(disk_super); | 
|  | if (!device) | 
|  | device = ERR_PTR(-ENOENT); | 
|  | blkdev_put(bdev, FMODE_READ); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup a device given by device id, or the path if the id is 0. | 
|  | */ | 
|  | struct btrfs_device *btrfs_find_device_by_devspec( | 
|  | struct btrfs_fs_info *fs_info, u64 devid, | 
|  | const char *device_path) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | if (devid) { | 
|  | device = btrfs_find_device(fs_info->fs_devices, devid, NULL, | 
|  | NULL, true); | 
|  | if (!device) | 
|  | return ERR_PTR(-ENOENT); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | if (!device_path || !device_path[0]) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (strcmp(device_path, "missing") == 0) { | 
|  | /* Find first missing device */ | 
|  | list_for_each_entry(device, &fs_info->fs_devices->devices, | 
|  | dev_list) { | 
|  | if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, | 
|  | &device->dev_state) && !device->bdev) | 
|  | return device; | 
|  | } | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | return btrfs_find_device_by_path(fs_info, device_path); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * does all the dirty work required for changing file system's UUID. | 
|  | */ | 
|  | static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_fs_devices *old_devices; | 
|  | struct btrfs_fs_devices *seed_devices; | 
|  | struct btrfs_super_block *disk_super = fs_info->super_copy; | 
|  | struct btrfs_device *device; | 
|  | u64 super_flags; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  | if (!fs_devices->seeding) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Private copy of the seed devices, anchored at | 
|  | * fs_info->fs_devices->seed_list | 
|  | */ | 
|  | seed_devices = alloc_fs_devices(NULL, NULL); | 
|  | if (IS_ERR(seed_devices)) | 
|  | return PTR_ERR(seed_devices); | 
|  |  | 
|  | /* | 
|  | * It's necessary to retain a copy of the original seed fs_devices in | 
|  | * fs_uuids so that filesystems which have been seeded can successfully | 
|  | * reference the seed device from open_seed_devices. This also supports | 
|  | * multiple fs seed. | 
|  | */ | 
|  | old_devices = clone_fs_devices(fs_devices); | 
|  | if (IS_ERR(old_devices)) { | 
|  | kfree(seed_devices); | 
|  | return PTR_ERR(old_devices); | 
|  | } | 
|  |  | 
|  | list_add(&old_devices->fs_list, &fs_uuids); | 
|  |  | 
|  | memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | 
|  | seed_devices->opened = 1; | 
|  | INIT_LIST_HEAD(&seed_devices->devices); | 
|  | INIT_LIST_HEAD(&seed_devices->alloc_list); | 
|  | mutex_init(&seed_devices->device_list_mutex); | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, | 
|  | synchronize_rcu); | 
|  | list_for_each_entry(device, &seed_devices->devices, dev_list) | 
|  | device->fs_devices = seed_devices; | 
|  |  | 
|  | fs_devices->seeding = false; | 
|  | fs_devices->num_devices = 0; | 
|  | fs_devices->open_devices = 0; | 
|  | fs_devices->missing_devices = 0; | 
|  | fs_devices->rotating = false; | 
|  | list_add(&seed_devices->seed_list, &fs_devices->seed_list); | 
|  |  | 
|  | generate_random_uuid(fs_devices->fsid); | 
|  | memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | super_flags = btrfs_super_flags(disk_super) & | 
|  | ~BTRFS_SUPER_FLAG_SEEDING; | 
|  | btrfs_set_super_flags(disk_super, super_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the expected generation for seed devices in device items. | 
|  | */ | 
|  | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_key key; | 
|  | u8 fs_uuid[BTRFS_FSID_SIZE]; | 
|  | u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  | u64 devid; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | next_slot: | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret > 0) | 
|  | break; | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | 
|  | key.type != BTRFS_DEV_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_item); | 
|  | devid = btrfs_device_id(leaf, dev_item); | 
|  | read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), | 
|  | BTRFS_FSID_SIZE); | 
|  | device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, | 
|  | fs_uuid, true); | 
|  | BUG_ON(!device); /* Logic error */ | 
|  |  | 
|  | if (device->fs_devices->seeding) { | 
|  | btrfs_set_device_generation(leaf, dev_item, | 
|  | device->generation); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  |  | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct request_queue *q; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_device *device; | 
|  | struct block_device *bdev; | 
|  | struct super_block *sb = fs_info->sb; | 
|  | struct rcu_string *name; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | u64 orig_super_total_bytes; | 
|  | u64 orig_super_num_devices; | 
|  | int seeding_dev = 0; | 
|  | int ret = 0; | 
|  | bool locked = false; | 
|  |  | 
|  | if (sb_rdonly(sb) && !fs_devices->seeding) | 
|  | return -EROFS; | 
|  |  | 
|  | bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, | 
|  | fs_info->bdev_holder); | 
|  | if (IS_ERR(bdev)) | 
|  | return PTR_ERR(bdev); | 
|  |  | 
|  | if (fs_devices->seeding) { | 
|  | seeding_dev = 1; | 
|  | down_write(&sb->s_umount); | 
|  | mutex_lock(&uuid_mutex); | 
|  | locked = true; | 
|  | } | 
|  |  | 
|  | sync_blockdev(bdev); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { | 
|  | if (device->bdev == bdev) { | 
|  | ret = -EEXIST; | 
|  | rcu_read_unlock(); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | device = btrfs_alloc_device(fs_info, NULL, NULL); | 
|  | if (IS_ERR(device)) { | 
|  | /* we can safely leave the fs_devices entry around */ | 
|  | ret = PTR_ERR(device); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | name = rcu_string_strdup(device_path, GFP_KERNEL); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto error_free_device; | 
|  | } | 
|  | rcu_assign_pointer(device->name, name); | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto error_free_device; | 
|  | } | 
|  |  | 
|  | q = bdev_get_queue(bdev); | 
|  | set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | device->generation = trans->transid; | 
|  | device->io_width = fs_info->sectorsize; | 
|  | device->io_align = fs_info->sectorsize; | 
|  | device->sector_size = fs_info->sectorsize; | 
|  | device->total_bytes = round_down(i_size_read(bdev->bd_inode), | 
|  | fs_info->sectorsize); | 
|  | device->disk_total_bytes = device->total_bytes; | 
|  | device->commit_total_bytes = device->total_bytes; | 
|  | device->fs_info = fs_info; | 
|  | device->bdev = bdev; | 
|  | set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); | 
|  | device->mode = FMODE_EXCL; | 
|  | device->dev_stats_valid = 1; | 
|  | set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | sb->s_flags &= ~SB_RDONLY; | 
|  | ret = btrfs_prepare_sprout(fs_info); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_add_rcu(&device->dev_list, &fs_devices->devices); | 
|  | list_add(&device->dev_alloc_list, &fs_devices->alloc_list); | 
|  | fs_devices->num_devices++; | 
|  | fs_devices->open_devices++; | 
|  | fs_devices->rw_devices++; | 
|  | fs_devices->total_devices++; | 
|  | fs_devices->total_rw_bytes += device->total_bytes; | 
|  |  | 
|  | atomic64_add(device->total_bytes, &fs_info->free_chunk_space); | 
|  |  | 
|  | if (!blk_queue_nonrot(q)) | 
|  | fs_devices->rotating = true; | 
|  |  | 
|  | orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); | 
|  | btrfs_set_super_total_bytes(fs_info->super_copy, | 
|  | round_down(orig_super_total_bytes + device->total_bytes, | 
|  | fs_info->sectorsize)); | 
|  |  | 
|  | orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, | 
|  | orig_super_num_devices + 1); | 
|  |  | 
|  | /* | 
|  | * we've got more storage, clear any full flags on the space | 
|  | * infos | 
|  | */ | 
|  | btrfs_clear_space_info_full(fs_info); | 
|  |  | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | /* Add sysfs device entry */ | 
|  | btrfs_sysfs_add_device(device); | 
|  |  | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | ret = init_first_rw_device(trans); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_sysfs; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_dev_item(trans, device); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_sysfs; | 
|  | } | 
|  |  | 
|  | if (seeding_dev) { | 
|  | ret = btrfs_finish_sprout(trans); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_sysfs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fs_devices now represents the newly sprouted filesystem and | 
|  | * its fsid has been changed by btrfs_prepare_sprout | 
|  | */ | 
|  | btrfs_sysfs_update_sprout_fsid(fs_devices); | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | up_write(&sb->s_umount); | 
|  | locked = false; | 
|  |  | 
|  | if (ret) /* transaction commit */ | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_relocate_sys_chunks(fs_info); | 
|  | if (ret < 0) | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); | 
|  | trans = btrfs_attach_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) == -ENOENT) | 
|  | return 0; | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto error_sysfs; | 
|  | } | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we have written a new super block to this device, check all | 
|  | * other fs_devices list if device_path alienates any other scanned | 
|  | * device. | 
|  | * We can ignore the return value as it typically returns -EINVAL and | 
|  | * only succeeds if the device was an alien. | 
|  | */ | 
|  | btrfs_forget_devices(device_path); | 
|  |  | 
|  | /* Update ctime/mtime for blkid or udev */ | 
|  | update_dev_time(device_path); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | error_sysfs: | 
|  | btrfs_sysfs_remove_device(device); | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_del_rcu(&device->dev_list); | 
|  | list_del(&device->dev_alloc_list); | 
|  | fs_info->fs_devices->num_devices--; | 
|  | fs_info->fs_devices->open_devices--; | 
|  | fs_info->fs_devices->rw_devices--; | 
|  | fs_info->fs_devices->total_devices--; | 
|  | fs_info->fs_devices->total_rw_bytes -= device->total_bytes; | 
|  | atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); | 
|  | btrfs_set_super_total_bytes(fs_info->super_copy, | 
|  | orig_super_total_bytes); | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, | 
|  | orig_super_num_devices); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | error_trans: | 
|  | if (seeding_dev) | 
|  | sb->s_flags |= SB_RDONLY; | 
|  | if (trans) | 
|  | btrfs_end_transaction(trans); | 
|  | error_free_device: | 
|  | btrfs_free_device(device); | 
|  | error: | 
|  | blkdev_put(bdev, FMODE_EXCL); | 
|  | if (locked) { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | up_write(&sb->s_umount); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = device->fs_info->chunk_root; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
|  |  | 
|  | btrfs_set_device_id(leaf, dev_item, device->devid); | 
|  | btrfs_set_device_type(leaf, dev_item, device->type); | 
|  | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
|  | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
|  | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
|  | btrfs_set_device_total_bytes(leaf, dev_item, | 
|  | btrfs_device_get_disk_total_bytes(device)); | 
|  | btrfs_set_device_bytes_used(leaf, dev_item, | 
|  | btrfs_device_get_bytes_used(device)); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_grow_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | u64 old_total; | 
|  | u64 diff; | 
|  |  | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) | 
|  | return -EACCES; | 
|  |  | 
|  | new_size = round_down(new_size, fs_info->sectorsize); | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | old_total = btrfs_super_total_bytes(super_copy); | 
|  | diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); | 
|  |  | 
|  | if (new_size <= device->total_bytes || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btrfs_set_super_total_bytes(super_copy, | 
|  | round_down(old_total + diff, fs_info->sectorsize)); | 
|  | device->fs_devices->total_rw_bytes += diff; | 
|  |  | 
|  | btrfs_device_set_total_bytes(device, new_size); | 
|  | btrfs_device_set_disk_total_bytes(device, new_size); | 
|  | btrfs_clear_space_info_full(device->fs_info); | 
|  | if (list_empty(&device->post_commit_list)) | 
|  | list_add_tail(&device->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | return btrfs_update_device(trans, device); | 
|  | } | 
|  |  | 
|  | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.offset = chunk_offset; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) { /* Logic error or corruption */ | 
|  | btrfs_handle_fs_error(fs_info, -ENOENT, | 
|  | "Failed lookup while freeing chunk."); | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret < 0) | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Failed to delete chunk item."); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | struct btrfs_disk_key *disk_key; | 
|  | struct btrfs_chunk *chunk; | 
|  | u8 *ptr; | 
|  | int ret = 0; | 
|  | u32 num_stripes; | 
|  | u32 array_size; | 
|  | u32 len = 0; | 
|  | u32 cur; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array; | 
|  | cur = 0; | 
|  |  | 
|  | while (cur < array_size) { | 
|  | disk_key = (struct btrfs_disk_key *)ptr; | 
|  | btrfs_disk_key_to_cpu(&key, disk_key); | 
|  |  | 
|  | len = sizeof(*disk_key); | 
|  |  | 
|  | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | chunk = (struct btrfs_chunk *)(ptr + len); | 
|  | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | 
|  | len += btrfs_chunk_item_size(num_stripes); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && | 
|  | key.offset == chunk_offset) { | 
|  | memmove(ptr, ptr + len, array_size - (cur + len)); | 
|  | array_size -= len; | 
|  | btrfs_set_super_sys_array_size(super_copy, array_size); | 
|  | } else { | 
|  | ptr += len; | 
|  | cur += len; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. | 
|  | * @logical: Logical block offset in bytes. | 
|  | * @length: Length of extent in bytes. | 
|  | * | 
|  | * Return: Chunk mapping or ERR_PTR. | 
|  | */ | 
|  | struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length) | 
|  | { | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  |  | 
|  | em_tree = &fs_info->mapping_tree; | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, logical, length); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | if (!em) { | 
|  | btrfs_crit(fs_info, "unable to find logical %llu length %llu", | 
|  | logical, length); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (em->start > logical || em->start + em->len < logical) { | 
|  | btrfs_crit(fs_info, | 
|  | "found a bad mapping, wanted %llu-%llu, found %llu-%llu", | 
|  | logical, length, em->start, em->start + em->len); | 
|  | free_extent_map(em); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* callers are responsible for dropping em's ref. */ | 
|  | return em; | 
|  | } | 
|  |  | 
|  | int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | u64 dev_extent_len = 0; | 
|  | int i, ret = 0; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); | 
|  | if (IS_ERR(em)) { | 
|  | /* | 
|  | * This is a logic error, but we don't want to just rely on the | 
|  | * user having built with ASSERT enabled, so if ASSERT doesn't | 
|  | * do anything we still error out. | 
|  | */ | 
|  | ASSERT(0); | 
|  | return PTR_ERR(em); | 
|  | } | 
|  | map = em->map_lookup; | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | check_system_chunk(trans, map->type); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | /* | 
|  | * Take the device list mutex to prevent races with the final phase of | 
|  | * a device replace operation that replaces the device object associated | 
|  | * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). | 
|  | */ | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *device = map->stripes[i].dev; | 
|  | ret = btrfs_free_dev_extent(trans, device, | 
|  | map->stripes[i].physical, | 
|  | &dev_extent_len); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (device->bytes_used > 0) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | btrfs_device_set_bytes_used(device, | 
|  | device->bytes_used - dev_extent_len); | 
|  | atomic64_add(dev_extent_len, &fs_info->free_chunk_space); | 
|  | btrfs_clear_space_info_full(fs_info); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | ret = btrfs_update_device(trans, device); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | ret = btrfs_free_chunk(trans, chunk_offset); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_del_sys_chunk(fs_info, chunk_offset); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_remove_block_group(trans, chunk_offset, em); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_block_group *block_group; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Prevent races with automatic removal of unused block groups. | 
|  | * After we relocate and before we remove the chunk with offset | 
|  | * chunk_offset, automatic removal of the block group can kick in, | 
|  | * resulting in a failure when calling btrfs_remove_chunk() below. | 
|  | * | 
|  | * Make sure to acquire this mutex before doing a tree search (dev | 
|  | * or chunk trees) to find chunks. Otherwise the cleaner kthread might | 
|  | * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after | 
|  | * we release the path used to search the chunk/dev tree and before | 
|  | * the current task acquires this mutex and calls us. | 
|  | */ | 
|  | lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); | 
|  |  | 
|  | /* step one, relocate all the extents inside this chunk */ | 
|  | btrfs_scrub_pause(fs_info); | 
|  | ret = btrfs_relocate_block_group(fs_info, chunk_offset); | 
|  | btrfs_scrub_continue(fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | if (!block_group) | 
|  | return -ENOENT; | 
|  | btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | trans = btrfs_start_trans_remove_block_group(root->fs_info, | 
|  | chunk_offset); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | btrfs_handle_fs_error(root->fs_info, ret, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step two, delete the device extents and the | 
|  | * chunk tree entries | 
|  | */ | 
|  | ret = btrfs_remove_chunk(trans, chunk_offset); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *chunk_root = fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u64 chunk_type; | 
|  | bool retried = false; | 
|  | int failed = 0; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | again: | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | mutex_lock(&fs_info->delete_unused_bgs_mutex); | 
|  | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto error; | 
|  | } | 
|  | BUG_ON(ret == 0); /* Corruption */ | 
|  |  | 
|  | ret = btrfs_previous_item(chunk_root, path, key.objectid, | 
|  | key.type); | 
|  | if (ret) | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | chunk = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_chunk); | 
|  | chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_relocate_chunk(fs_info, found_key.offset); | 
|  | if (ret == -ENOSPC) | 
|  | failed++; | 
|  | else | 
|  | BUG_ON(ret); | 
|  | } | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  |  | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  | ret = 0; | 
|  | if (failed && !retried) { | 
|  | failed = 0; | 
|  | retried = true; | 
|  | goto again; | 
|  | } else if (WARN_ON(failed && retried)) { | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return 1 : allocate a data chunk successfully, | 
|  | * return <0: errors during allocating a data chunk, | 
|  | * return 0 : no need to allocate a data chunk. | 
|  | */ | 
|  | static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, | 
|  | u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | u64 bytes_used; | 
|  | u64 chunk_type; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | ASSERT(cache); | 
|  | chunk_type = cache->flags; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&fs_info->data_sinfo->lock); | 
|  | bytes_used = fs_info->data_sinfo->bytes_used; | 
|  | spin_unlock(&fs_info->data_sinfo->lock); | 
|  |  | 
|  | if (!bytes_used) { | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret; | 
|  |  | 
|  | trans =	btrfs_join_transaction(fs_info->tree_root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int insert_balance_item(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_balance_control *bctl) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_balance_item *item; | 
|  | struct btrfs_disk_balance_args disk_bargs; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | int ret, err; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_BALANCE_OBJECTID; | 
|  | key.type = BTRFS_TEMPORARY_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(*item)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); | 
|  |  | 
|  | memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); | 
|  |  | 
|  | btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); | 
|  | btrfs_set_balance_data(leaf, item, &disk_bargs); | 
|  | btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); | 
|  | btrfs_set_balance_meta(leaf, item, &disk_bargs); | 
|  | btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); | 
|  | btrfs_set_balance_sys(leaf, item, &disk_bargs); | 
|  |  | 
|  | btrfs_set_balance_flags(leaf, item, bctl->flags); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | err = btrfs_commit_transaction(trans); | 
|  | if (err && !ret) | 
|  | ret = err; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int del_balance_item(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | int ret, err; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_start_transaction_fallback_global_rsv(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_BALANCE_OBJECTID; | 
|  | key.type = BTRFS_TEMPORARY_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | err = btrfs_commit_transaction(trans); | 
|  | if (err && !ret) | 
|  | ret = err; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a heuristic used to reduce the number of chunks balanced on | 
|  | * resume after balance was interrupted. | 
|  | */ | 
|  | static void update_balance_args(struct btrfs_balance_control *bctl) | 
|  | { | 
|  | /* | 
|  | * Turn on soft mode for chunk types that were being converted. | 
|  | */ | 
|  | if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
|  | if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
|  | if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
|  |  | 
|  | /* | 
|  | * Turn on usage filter if is not already used.  The idea is | 
|  | * that chunks that we have already balanced should be | 
|  | * reasonably full.  Don't do it for chunks that are being | 
|  | * converted - that will keep us from relocating unconverted | 
|  | * (albeit full) chunks. | 
|  | */ | 
|  | if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
|  | bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
|  | bctl->data.usage = 90; | 
|  | } | 
|  | if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
|  | bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
|  | bctl->sys.usage = 90; | 
|  | } | 
|  | if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
|  | bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
|  | bctl->meta.usage = 90; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the balance status in fs_info and delete the balance item from disk. | 
|  | */ | 
|  | static void reset_balance_state(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!fs_info->balance_ctl); | 
|  |  | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl = NULL; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | kfree(bctl); | 
|  | ret = del_balance_item(fs_info); | 
|  | if (ret) | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Balance filters.  Return 1 if chunk should be filtered out | 
|  | * (should not be balanced). | 
|  | */ | 
|  | static int chunk_profiles_filter(u64 chunk_type, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | chunk_type = chunk_to_extended(chunk_type) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | if (bargs->profiles & chunk_type) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | u64 chunk_used; | 
|  | u64 user_thresh_min; | 
|  | u64 user_thresh_max; | 
|  | int ret = 1; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | chunk_used = cache->used; | 
|  |  | 
|  | if (bargs->usage_min == 0) | 
|  | user_thresh_min = 0; | 
|  | else | 
|  | user_thresh_min = div_factor_fine(cache->length, | 
|  | bargs->usage_min); | 
|  |  | 
|  | if (bargs->usage_max == 0) | 
|  | user_thresh_max = 1; | 
|  | else if (bargs->usage_max > 100) | 
|  | user_thresh_max = cache->length; | 
|  | else | 
|  | user_thresh_max = div_factor_fine(cache->length, | 
|  | bargs->usage_max); | 
|  |  | 
|  | if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) | 
|  | ret = 0; | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int chunk_usage_filter(struct btrfs_fs_info *fs_info, | 
|  | u64 chunk_offset, struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | u64 chunk_used, user_thresh; | 
|  | int ret = 1; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | chunk_used = cache->used; | 
|  |  | 
|  | if (bargs->usage_min == 0) | 
|  | user_thresh = 1; | 
|  | else if (bargs->usage > 100) | 
|  | user_thresh = cache->length; | 
|  | else | 
|  | user_thresh = div_factor_fine(cache->length, bargs->usage); | 
|  |  | 
|  | if (chunk_used < user_thresh) | 
|  | ret = 0; | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int chunk_devid_filter(struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_stripe *stripe; | 
|  | int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | stripe = btrfs_stripe_nr(chunk, i); | 
|  | if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u64 calc_data_stripes(u64 type, int num_stripes) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(type); | 
|  | const int ncopies = btrfs_raid_array[index].ncopies; | 
|  | const int nparity = btrfs_raid_array[index].nparity; | 
|  |  | 
|  | if (nparity) | 
|  | return num_stripes - nparity; | 
|  | else | 
|  | return num_stripes / ncopies; | 
|  | } | 
|  |  | 
|  | /* [pstart, pend) */ | 
|  | static int chunk_drange_filter(struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_stripe *stripe; | 
|  | int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  | u64 stripe_offset; | 
|  | u64 stripe_length; | 
|  | u64 type; | 
|  | int factor; | 
|  | int i; | 
|  |  | 
|  | if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) | 
|  | return 0; | 
|  |  | 
|  | type = btrfs_chunk_type(leaf, chunk); | 
|  | factor = calc_data_stripes(type, num_stripes); | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | stripe = btrfs_stripe_nr(chunk, i); | 
|  | if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) | 
|  | continue; | 
|  |  | 
|  | stripe_offset = btrfs_stripe_offset(leaf, stripe); | 
|  | stripe_length = btrfs_chunk_length(leaf, chunk); | 
|  | stripe_length = div_u64(stripe_length, factor); | 
|  |  | 
|  | if (stripe_offset < bargs->pend && | 
|  | stripe_offset + stripe_length > bargs->pstart) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* [vstart, vend) */ | 
|  | static int chunk_vrange_filter(struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk, | 
|  | u64 chunk_offset, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | if (chunk_offset < bargs->vend && | 
|  | chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) | 
|  | /* at least part of the chunk is inside this vrange */ | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int chunk_stripes_range_filter(struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  |  | 
|  | if (bargs->stripes_min <= num_stripes | 
|  | && num_stripes <= bargs->stripes_max) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int chunk_soft_convert_filter(u64 chunk_type, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) | 
|  | return 0; | 
|  |  | 
|  | chunk_type = chunk_to_extended(chunk_type) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | if (bargs->target == chunk_type) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int should_balance_chunk(struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | struct btrfs_balance_args *bargs = NULL; | 
|  | u64 chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  |  | 
|  | /* type filter */ | 
|  | if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & | 
|  | (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_DATA) | 
|  | bargs = &bctl->data; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | bargs = &bctl->sys; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) | 
|  | bargs = &bctl->meta; | 
|  |  | 
|  | /* profiles filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && | 
|  | chunk_profiles_filter(chunk_type, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* usage filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | chunk_usage_filter(fs_info, chunk_offset, bargs)) { | 
|  | return 0; | 
|  | } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* devid filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && | 
|  | chunk_devid_filter(leaf, chunk, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* drange filter, makes sense only with devid filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && | 
|  | chunk_drange_filter(leaf, chunk, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* vrange filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && | 
|  | chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* stripes filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && | 
|  | chunk_stripes_range_filter(leaf, chunk, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* soft profile changing mode */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && | 
|  | chunk_soft_convert_filter(chunk_type, bargs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * limited by count, must be the last filter | 
|  | */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { | 
|  | if (bargs->limit == 0) | 
|  | return 0; | 
|  | else | 
|  | bargs->limit--; | 
|  | } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { | 
|  | /* | 
|  | * Same logic as the 'limit' filter; the minimum cannot be | 
|  | * determined here because we do not have the global information | 
|  | * about the count of all chunks that satisfy the filters. | 
|  | */ | 
|  | if (bargs->limit_max == 0) | 
|  | return 0; | 
|  | else | 
|  | bargs->limit_max--; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __btrfs_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | struct btrfs_root *chunk_root = fs_info->chunk_root; | 
|  | u64 chunk_type; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_path *path = NULL; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  | int ret; | 
|  | int enospc_errors = 0; | 
|  | bool counting = true; | 
|  | /* The single value limit and min/max limits use the same bytes in the */ | 
|  | u64 limit_data = bctl->data.limit; | 
|  | u64 limit_meta = bctl->meta.limit; | 
|  | u64 limit_sys = bctl->sys.limit; | 
|  | u32 count_data = 0; | 
|  | u32 count_meta = 0; | 
|  | u32 count_sys = 0; | 
|  | int chunk_reserved = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* zero out stat counters */ | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | memset(&bctl->stat, 0, sizeof(bctl->stat)); | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | again: | 
|  | if (!counting) { | 
|  | /* | 
|  | * The single value limit and min/max limits use the same bytes | 
|  | * in the | 
|  | */ | 
|  | bctl->data.limit = limit_data; | 
|  | bctl->meta.limit = limit_meta; | 
|  | bctl->sys.limit = limit_sys; | 
|  | } | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | if ((!counting && atomic_read(&fs_info->balance_pause_req)) || | 
|  | atomic_read(&fs_info->balance_cancel_req)) { | 
|  | ret = -ECANCELED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->delete_unused_bgs_mutex); | 
|  | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this shouldn't happen, it means the last relocate | 
|  | * failed | 
|  | */ | 
|  | if (ret == 0) | 
|  | BUG(); /* FIXME break ? */ | 
|  |  | 
|  | ret = btrfs_previous_item(chunk_root, path, 0, | 
|  | BTRFS_CHUNK_ITEM_KEY); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid != key.objectid) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
|  | chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  |  | 
|  | if (!counting) { | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | bctl->stat.considered++; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } | 
|  |  | 
|  | ret = should_balance_chunk(leaf, chunk, found_key.offset); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | if (!ret) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (counting) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | bctl->stat.expected++; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_DATA) | 
|  | count_data++; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | count_sys++; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) | 
|  | count_meta++; | 
|  |  | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply limit_min filter, no need to check if the LIMITS | 
|  | * filter is used, limit_min is 0 by default | 
|  | */ | 
|  | if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && | 
|  | count_data < bctl->data.limit_min) | 
|  | || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && | 
|  | count_meta < bctl->meta.limit_min) | 
|  | || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && | 
|  | count_sys < bctl->sys.limit_min)) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (!chunk_reserved) { | 
|  | /* | 
|  | * We may be relocating the only data chunk we have, | 
|  | * which could potentially end up with losing data's | 
|  | * raid profile, so lets allocate an empty one in | 
|  | * advance. | 
|  | */ | 
|  | ret = btrfs_may_alloc_data_chunk(fs_info, | 
|  | found_key.offset); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto error; | 
|  | } else if (ret == 1) { | 
|  | chunk_reserved = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_relocate_chunk(fs_info, found_key.offset); | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | if (ret == -ENOSPC) { | 
|  | enospc_errors++; | 
|  | } else if (ret == -ETXTBSY) { | 
|  | btrfs_info(fs_info, | 
|  | "skipping relocation of block group %llu due to active swapfile", | 
|  | found_key.offset); | 
|  | ret = 0; | 
|  | } else if (ret) { | 
|  | goto error; | 
|  | } else { | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | bctl->stat.completed++; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } | 
|  | loop: | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  |  | 
|  | if (counting) { | 
|  | btrfs_release_path(path); | 
|  | counting = false; | 
|  | goto again; | 
|  | } | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | if (enospc_errors) { | 
|  | btrfs_info(fs_info, "%d enospc errors during balance", | 
|  | enospc_errors); | 
|  | if (!ret) | 
|  | ret = -ENOSPC; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_profile_is_valid - see if a given profile is valid and reduced | 
|  | * @flags: profile to validate | 
|  | * @extended: if true @flags is treated as an extended profile | 
|  | */ | 
|  | static int alloc_profile_is_valid(u64 flags, int extended) | 
|  | { | 
|  | u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : | 
|  | BTRFS_BLOCK_GROUP_PROFILE_MASK); | 
|  |  | 
|  | flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  |  | 
|  | /* 1) check that all other bits are zeroed */ | 
|  | if (flags & ~mask) | 
|  | return 0; | 
|  |  | 
|  | /* 2) see if profile is reduced */ | 
|  | if (flags == 0) | 
|  | return !extended; /* "0" is valid for usual profiles */ | 
|  |  | 
|  | return has_single_bit_set(flags); | 
|  | } | 
|  |  | 
|  | static inline int balance_need_close(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | /* cancel requested || normal exit path */ | 
|  | return atomic_read(&fs_info->balance_cancel_req) || | 
|  | (atomic_read(&fs_info->balance_pause_req) == 0 && | 
|  | atomic_read(&fs_info->balance_cancel_req) == 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate target profile against allowed profiles and return true if it's OK. | 
|  | * Otherwise print the error message and return false. | 
|  | */ | 
|  | static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, | 
|  | const struct btrfs_balance_args *bargs, | 
|  | u64 allowed, const char *type) | 
|  | { | 
|  | if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) | 
|  | return true; | 
|  |  | 
|  | /* Profile is valid and does not have bits outside of the allowed set */ | 
|  | if (alloc_profile_is_valid(bargs->target, 1) && | 
|  | (bargs->target & ~allowed) == 0) | 
|  | return true; | 
|  |  | 
|  | btrfs_err(fs_info, "balance: invalid convert %s profile %s", | 
|  | type, btrfs_bg_type_to_raid_name(bargs->target)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill @buf with textual description of balance filter flags @bargs, up to | 
|  | * @size_buf including the terminating null. The output may be trimmed if it | 
|  | * does not fit into the provided buffer. | 
|  | */ | 
|  | static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, | 
|  | u32 size_buf) | 
|  | { | 
|  | int ret; | 
|  | u32 size_bp = size_buf; | 
|  | char *bp = buf; | 
|  | u64 flags = bargs->flags; | 
|  | char tmp_buf[128] = {'\0'}; | 
|  |  | 
|  | if (!flags) | 
|  | return; | 
|  |  | 
|  | #define CHECK_APPEND_NOARG(a)						\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a));			\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | #define CHECK_APPEND_1ARG(a, v1)					\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a), (v1));			\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | #define CHECK_APPEND_2ARG(a, v1, v2)					\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a), (v1), (v2));		\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | CHECK_APPEND_1ARG("convert=%s,", | 
|  | btrfs_bg_type_to_raid_name(bargs->target)); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_SOFT) | 
|  | CHECK_APPEND_NOARG("soft,"); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_PROFILES) { | 
|  | btrfs_describe_block_groups(bargs->profiles, tmp_buf, | 
|  | sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); | 
|  | } | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_USAGE) | 
|  | CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) | 
|  | CHECK_APPEND_2ARG("usage=%u..%u,", | 
|  | bargs->usage_min, bargs->usage_max); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_DEVID) | 
|  | CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_DRANGE) | 
|  | CHECK_APPEND_2ARG("drange=%llu..%llu,", | 
|  | bargs->pstart, bargs->pend); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_VRANGE) | 
|  | CHECK_APPEND_2ARG("vrange=%llu..%llu,", | 
|  | bargs->vstart, bargs->vend); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_LIMIT) | 
|  | CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) | 
|  | CHECK_APPEND_2ARG("limit=%u..%u,", | 
|  | bargs->limit_min, bargs->limit_max); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) | 
|  | CHECK_APPEND_2ARG("stripes=%u..%u,", | 
|  | bargs->stripes_min, bargs->stripes_max); | 
|  |  | 
|  | #undef CHECK_APPEND_2ARG | 
|  | #undef CHECK_APPEND_1ARG | 
|  | #undef CHECK_APPEND_NOARG | 
|  |  | 
|  | out_overflow: | 
|  |  | 
|  | if (size_bp < size_buf) | 
|  | buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ | 
|  | else | 
|  | buf[0] = '\0'; | 
|  | } | 
|  |  | 
|  | static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u32 size_buf = 1024; | 
|  | char tmp_buf[192] = {'\0'}; | 
|  | char *buf; | 
|  | char *bp; | 
|  | u32 size_bp = size_buf; | 
|  | int ret; | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  |  | 
|  | buf = kzalloc(size_buf, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  |  | 
|  | bp = buf; | 
|  |  | 
|  | #define CHECK_APPEND_1ARG(a, v1)					\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a), (v1));			\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_FORCE) | 
|  | CHECK_APPEND_1ARG("%s", "-f "); | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_DATA) { | 
|  | describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("-d%s ", tmp_buf); | 
|  | } | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_METADATA) { | 
|  | describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("-m%s ", tmp_buf); | 
|  | } | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_SYSTEM) { | 
|  | describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("-s%s ", tmp_buf); | 
|  | } | 
|  |  | 
|  | #undef CHECK_APPEND_1ARG | 
|  |  | 
|  | out_overflow: | 
|  |  | 
|  | if (size_bp < size_buf) | 
|  | buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ | 
|  | btrfs_info(fs_info, "balance: %s %s", | 
|  | (bctl->flags & BTRFS_BALANCE_RESUME) ? | 
|  | "resume" : "start", buf); | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should be called with balance mutexe held | 
|  | */ | 
|  | int btrfs_balance(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_balance_control *bctl, | 
|  | struct btrfs_ioctl_balance_args *bargs) | 
|  | { | 
|  | u64 meta_target, data_target; | 
|  | u64 allowed; | 
|  | int mixed = 0; | 
|  | int ret; | 
|  | u64 num_devices; | 
|  | unsigned seq; | 
|  | bool reducing_redundancy; | 
|  | int i; | 
|  |  | 
|  | if (btrfs_fs_closing(fs_info) || | 
|  | atomic_read(&fs_info->balance_pause_req) || | 
|  | btrfs_should_cancel_balance(fs_info)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | allowed = btrfs_super_incompat_flags(fs_info->super_copy); | 
|  | if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) | 
|  | mixed = 1; | 
|  |  | 
|  | /* | 
|  | * In case of mixed groups both data and meta should be picked, | 
|  | * and identical options should be given for both of them. | 
|  | */ | 
|  | allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; | 
|  | if (mixed && (bctl->flags & allowed)) { | 
|  | if (!(bctl->flags & BTRFS_BALANCE_DATA) || | 
|  | !(bctl->flags & BTRFS_BALANCE_METADATA) || | 
|  | memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { | 
|  | btrfs_err(fs_info, | 
|  | "balance: mixed groups data and metadata options must be the same"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rw_devices will not change at the moment, device add/delete/replace | 
|  | * are exclusive | 
|  | */ | 
|  | num_devices = fs_info->fs_devices->rw_devices; | 
|  |  | 
|  | /* | 
|  | * SINGLE profile on-disk has no profile bit, but in-memory we have a | 
|  | * special bit for it, to make it easier to distinguish.  Thus we need | 
|  | * to set it manually, or balance would refuse the profile. | 
|  | */ | 
|  | allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; | 
|  | for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) | 
|  | if (num_devices >= btrfs_raid_array[i].devs_min) | 
|  | allowed |= btrfs_raid_array[i].bg_flag; | 
|  |  | 
|  | if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || | 
|  | !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || | 
|  | !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow to reduce metadata or system integrity only if force set for | 
|  | * profiles with redundancy (copies, parity) | 
|  | */ | 
|  | allowed = 0; | 
|  | for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { | 
|  | if (btrfs_raid_array[i].ncopies >= 2 || | 
|  | btrfs_raid_array[i].tolerated_failures >= 1) | 
|  | allowed |= btrfs_raid_array[i].bg_flag; | 
|  | } | 
|  | do { | 
|  | seq = read_seqbegin(&fs_info->profiles_lock); | 
|  |  | 
|  | if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
|  | (fs_info->avail_system_alloc_bits & allowed) && | 
|  | !(bctl->sys.target & allowed)) || | 
|  | ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
|  | (fs_info->avail_metadata_alloc_bits & allowed) && | 
|  | !(bctl->meta.target & allowed))) | 
|  | reducing_redundancy = true; | 
|  | else | 
|  | reducing_redundancy = false; | 
|  |  | 
|  | /* if we're not converting, the target field is uninitialized */ | 
|  | meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? | 
|  | bctl->meta.target : fs_info->avail_metadata_alloc_bits; | 
|  | data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? | 
|  | bctl->data.target : fs_info->avail_data_alloc_bits; | 
|  | } while (read_seqretry(&fs_info->profiles_lock, seq)); | 
|  |  | 
|  | if (reducing_redundancy) { | 
|  | if (bctl->flags & BTRFS_BALANCE_FORCE) { | 
|  | btrfs_info(fs_info, | 
|  | "balance: force reducing metadata redundancy"); | 
|  | } else { | 
|  | btrfs_err(fs_info, | 
|  | "balance: reduces metadata redundancy, use --force if you want this"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < | 
|  | btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { | 
|  | btrfs_warn(fs_info, | 
|  | "balance: metadata profile %s has lower redundancy than data profile %s", | 
|  | btrfs_bg_type_to_raid_name(meta_target), | 
|  | btrfs_bg_type_to_raid_name(data_target)); | 
|  | } | 
|  |  | 
|  | if (fs_info->send_in_progress) { | 
|  | btrfs_warn_rl(fs_info, | 
|  | "cannot run balance while send operations are in progress (%d in progress)", | 
|  | fs_info->send_in_progress); | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = insert_balance_item(fs_info, bctl); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto out; | 
|  |  | 
|  | if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { | 
|  | BUG_ON(ret == -EEXIST); | 
|  | BUG_ON(fs_info->balance_ctl); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl = bctl; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } else { | 
|  | BUG_ON(ret != -EEXIST); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | update_balance_args(bctl); | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } | 
|  |  | 
|  | ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); | 
|  | describe_balance_start_or_resume(fs_info); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  |  | 
|  | ret = __btrfs_balance(fs_info); | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) | 
|  | btrfs_info(fs_info, "balance: paused"); | 
|  | /* | 
|  | * Balance can be canceled by: | 
|  | * | 
|  | * - Regular cancel request | 
|  | *   Then ret == -ECANCELED and balance_cancel_req > 0 | 
|  | * | 
|  | * - Fatal signal to "btrfs" process | 
|  | *   Either the signal caught by wait_reserve_ticket() and callers | 
|  | *   got -EINTR, or caught by btrfs_should_cancel_balance() and | 
|  | *   got -ECANCELED. | 
|  | *   Either way, in this case balance_cancel_req = 0, and | 
|  | *   ret == -EINTR or ret == -ECANCELED. | 
|  | * | 
|  | * So here we only check the return value to catch canceled balance. | 
|  | */ | 
|  | else if (ret == -ECANCELED || ret == -EINTR) | 
|  | btrfs_info(fs_info, "balance: canceled"); | 
|  | else | 
|  | btrfs_info(fs_info, "balance: ended with status: %d", ret); | 
|  |  | 
|  | clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); | 
|  |  | 
|  | if (bargs) { | 
|  | memset(bargs, 0, sizeof(*bargs)); | 
|  | btrfs_update_ioctl_balance_args(fs_info, bargs); | 
|  | } | 
|  |  | 
|  | if ((ret && ret != -ECANCELED && ret != -ENOSPC) || | 
|  | balance_need_close(fs_info)) { | 
|  | reset_balance_state(fs_info); | 
|  | btrfs_exclop_finish(fs_info); | 
|  | } | 
|  |  | 
|  | wake_up(&fs_info->balance_wait_q); | 
|  |  | 
|  | return ret; | 
|  | out: | 
|  | if (bctl->flags & BTRFS_BALANCE_RESUME) | 
|  | reset_balance_state(fs_info); | 
|  | else | 
|  | kfree(bctl); | 
|  | btrfs_exclop_finish(fs_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int balance_kthread(void *data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = data; | 
|  | int ret = 0; | 
|  |  | 
|  | sb_start_write(fs_info->sb); | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (fs_info->balance_ctl) | 
|  | ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | sb_end_write(fs_info->sb); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (!fs_info->balance_ctl) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { | 
|  | btrfs_info(fs_info, "balance: resume skipped"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A ro->rw remount sequence should continue with the paused balance | 
|  | * regardless of who pauses it, system or the user as of now, so set | 
|  | * the resume flag. | 
|  | */ | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); | 
|  | return PTR_ERR_OR_ZERO(tsk); | 
|  | } | 
|  |  | 
|  | int btrfs_recover_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_balance_control *bctl; | 
|  | struct btrfs_balance_item *item; | 
|  | struct btrfs_disk_balance_args disk_bargs; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_BALANCE_OBJECTID; | 
|  | key.type = BTRFS_TEMPORARY_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { /* ret = -ENOENT; */ | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bctl = kzalloc(sizeof(*bctl), GFP_NOFS); | 
|  | if (!bctl) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); | 
|  |  | 
|  | bctl->flags = btrfs_balance_flags(leaf, item); | 
|  | bctl->flags |= BTRFS_BALANCE_RESUME; | 
|  |  | 
|  | btrfs_balance_data(leaf, item, &disk_bargs); | 
|  | btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); | 
|  | btrfs_balance_meta(leaf, item, &disk_bargs); | 
|  | btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); | 
|  | btrfs_balance_sys(leaf, item, &disk_bargs); | 
|  | btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); | 
|  |  | 
|  | /* | 
|  | * This should never happen, as the paused balance state is recovered | 
|  | * during mount without any chance of other exclusive ops to collide. | 
|  | * | 
|  | * This gives the exclusive op status to balance and keeps in paused | 
|  | * state until user intervention (cancel or umount). If the ownership | 
|  | * cannot be assigned, show a message but do not fail. The balance | 
|  | * is in a paused state and must have fs_info::balance_ctl properly | 
|  | * set up. | 
|  | */ | 
|  | if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) | 
|  | btrfs_warn(fs_info, | 
|  | "balance: cannot set exclusive op status, resume manually"); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | BUG_ON(fs_info->balance_ctl); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl = bctl; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_pause_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (!fs_info->balance_ctl) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return -ENOTCONN; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { | 
|  | atomic_inc(&fs_info->balance_pause_req); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  |  | 
|  | wait_event(fs_info->balance_wait_q, | 
|  | !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | /* we are good with balance_ctl ripped off from under us */ | 
|  | BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | atomic_dec(&fs_info->balance_pause_req); | 
|  | } else { | 
|  | ret = -ENOTCONN; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (!fs_info->balance_ctl) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return -ENOTCONN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A paused balance with the item stored on disk can be resumed at | 
|  | * mount time if the mount is read-write. Otherwise it's still paused | 
|  | * and we must not allow cancelling as it deletes the item. | 
|  | */ | 
|  | if (sb_rdonly(fs_info->sb)) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | atomic_inc(&fs_info->balance_cancel_req); | 
|  | /* | 
|  | * if we are running just wait and return, balance item is | 
|  | * deleted in btrfs_balance in this case | 
|  | */ | 
|  | if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | wait_event(fs_info->balance_wait_q, | 
|  | !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | } else { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | /* | 
|  | * Lock released to allow other waiters to continue, we'll | 
|  | * reexamine the status again. | 
|  | */ | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  |  | 
|  | if (fs_info->balance_ctl) { | 
|  | reset_balance_state(fs_info); | 
|  | btrfs_exclop_finish(fs_info); | 
|  | btrfs_info(fs_info, "balance: canceled"); | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG_ON(fs_info->balance_ctl || | 
|  | test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | atomic_dec(&fs_info->balance_cancel_req); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_uuid_scan_kthread(void *data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = data; | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path = NULL; | 
|  | int ret = 0; | 
|  | struct extent_buffer *eb; | 
|  | int slot; | 
|  | struct btrfs_root_item root_item; | 
|  | u32 item_size; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | bool closing = false; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | key.objectid = 0; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | while (1) { | 
|  | if (btrfs_fs_closing(fs_info)) { | 
|  | closing = true; | 
|  | break; | 
|  | } | 
|  | ret = btrfs_search_forward(root, &key, path, | 
|  | BTRFS_OLDEST_GENERATION); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (key.type != BTRFS_ROOT_ITEM_KEY || | 
|  | (key.objectid < BTRFS_FIRST_FREE_OBJECTID && | 
|  | key.objectid != BTRFS_FS_TREE_OBJECTID) || | 
|  | key.objectid > BTRFS_LAST_FREE_OBJECTID) | 
|  | goto skip; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  | if (item_size < sizeof(root_item)) | 
|  | goto skip; | 
|  |  | 
|  | read_extent_buffer(eb, &root_item, | 
|  | btrfs_item_ptr_offset(eb, slot), | 
|  | (int)sizeof(root_item)); | 
|  | if (btrfs_root_refs(&root_item) == 0) | 
|  | goto skip; | 
|  |  | 
|  | if (!btrfs_is_empty_uuid(root_item.uuid) || | 
|  | !btrfs_is_empty_uuid(root_item.received_uuid)) { | 
|  | if (trans) | 
|  | goto update_tree; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | /* | 
|  | * 1 - subvol uuid item | 
|  | * 1 - received_subvol uuid item | 
|  | */ | 
|  | trans = btrfs_start_transaction(fs_info->uuid_root, 2); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } else { | 
|  | goto skip; | 
|  | } | 
|  | update_tree: | 
|  | btrfs_release_path(path); | 
|  | if (!btrfs_is_empty_uuid(root_item.uuid)) { | 
|  | ret = btrfs_uuid_tree_add(trans, root_item.uuid, | 
|  | BTRFS_UUID_KEY_SUBVOL, | 
|  | key.objectid); | 
|  | if (ret < 0) { | 
|  | btrfs_warn(fs_info, "uuid_tree_add failed %d", | 
|  | ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!btrfs_is_empty_uuid(root_item.received_uuid)) { | 
|  | ret = btrfs_uuid_tree_add(trans, | 
|  | root_item.received_uuid, | 
|  | BTRFS_UUID_KEY_RECEIVED_SUBVOL, | 
|  | key.objectid); | 
|  | if (ret < 0) { | 
|  | btrfs_warn(fs_info, "uuid_tree_add failed %d", | 
|  | ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | skip: | 
|  | btrfs_release_path(path); | 
|  | if (trans) { | 
|  | ret = btrfs_end_transaction(trans); | 
|  | trans = NULL; | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (key.offset < (u64)-1) { | 
|  | key.offset++; | 
|  | } else if (key.type < BTRFS_ROOT_ITEM_KEY) { | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | } else if (key.objectid < (u64)-1) { | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.objectid++; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (trans && !IS_ERR(trans)) | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret) | 
|  | btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); | 
|  | else if (!closing) | 
|  | set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root *uuid_root; | 
|  | struct task_struct *task; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * 1 - root node | 
|  | * 1 - root item | 
|  | */ | 
|  | trans = btrfs_start_transaction(tree_root, 2); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); | 
|  | if (IS_ERR(uuid_root)) { | 
|  | ret = PTR_ERR(uuid_root); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | fs_info->uuid_root = uuid_root; | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | down(&fs_info->uuid_tree_rescan_sem); | 
|  | task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); | 
|  | if (IS_ERR(task)) { | 
|  | /* fs_info->update_uuid_tree_gen remains 0 in all error case */ | 
|  | btrfs_warn(fs_info, "failed to start uuid_scan task"); | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  | return PTR_ERR(task); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrinking a device means finding all of the device extents past | 
|  | * the new size, and then following the back refs to the chunks. | 
|  | * The chunk relocation code actually frees the device extent | 
|  | */ | 
|  | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_dev_extent *dev_extent = NULL; | 
|  | struct btrfs_path *path; | 
|  | u64 length; | 
|  | u64 chunk_offset; | 
|  | int ret; | 
|  | int slot; | 
|  | int failed = 0; | 
|  | bool retried = false; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | u64 old_total = btrfs_super_total_bytes(super_copy); | 
|  | u64 old_size = btrfs_device_get_total_bytes(device); | 
|  | u64 diff; | 
|  | u64 start; | 
|  |  | 
|  | new_size = round_down(new_size, fs_info->sectorsize); | 
|  | start = new_size; | 
|  | diff = round_down(old_size - new_size, fs_info->sectorsize); | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) | 
|  | return -EINVAL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_BACK; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  |  | 
|  | btrfs_device_set_total_bytes(device, new_size); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | device->fs_devices->total_rw_bytes -= diff; | 
|  | atomic64_sub(diff, &fs_info->free_chunk_space); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Once the device's size has been set to the new size, ensure all | 
|  | * in-memory chunks are synced to disk so that the loop below sees them | 
|  | * and relocates them accordingly. | 
|  | */ | 
|  | if (contains_pending_extent(device, &start, diff)) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | goto done; | 
|  | } else { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | again: | 
|  | key.objectid = device->devid; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  |  | 
|  | do { | 
|  | mutex_lock(&fs_info->delete_unused_bgs_mutex); | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = btrfs_previous_item(root, path, 0, key.type); | 
|  | if (ret) | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | if (ret < 0) | 
|  | goto done; | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != device->devid) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | length = btrfs_dev_extent_length(l, dev_extent); | 
|  |  | 
|  | if (key.offset + length <= new_size) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We may be relocating the only data chunk we have, | 
|  | * which could potentially end up with losing data's | 
|  | * raid profile, so lets allocate an empty one in | 
|  | * advance. | 
|  | */ | 
|  | ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = btrfs_relocate_chunk(fs_info, chunk_offset); | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | if (ret == -ENOSPC) { | 
|  | failed++; | 
|  | } else if (ret) { | 
|  | if (ret == -ETXTBSY) { | 
|  | btrfs_warn(fs_info, | 
|  | "could not shrink block group %llu due to active swapfile", | 
|  | chunk_offset); | 
|  | } | 
|  | goto done; | 
|  | } | 
|  | } while (key.offset-- > 0); | 
|  |  | 
|  | if (failed && !retried) { | 
|  | failed = 0; | 
|  | retried = true; | 
|  | goto again; | 
|  | } else if (failed && retried) { | 
|  | ret = -ENOSPC; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Shrinking succeeded, else we would be at "done". */ | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | /* Clear all state bits beyond the shrunk device size */ | 
|  | clear_extent_bits(&device->alloc_state, new_size, (u64)-1, | 
|  | CHUNK_STATE_MASK); | 
|  |  | 
|  | btrfs_device_set_disk_total_bytes(device, new_size); | 
|  | if (list_empty(&device->post_commit_list)) | 
|  | list_add_tail(&device->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  |  | 
|  | WARN_ON(diff > old_total); | 
|  | btrfs_set_super_total_bytes(super_copy, | 
|  | round_down(old_total - diff, fs_info->sectorsize)); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | /* Now btrfs_update_device() will change the on-disk size. */ | 
|  | ret = btrfs_update_device(trans, device); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | } else { | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | } | 
|  | done: | 
|  | btrfs_free_path(path); | 
|  | if (ret) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | btrfs_device_set_total_bytes(device, old_size); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) | 
|  | device->fs_devices->total_rw_bytes += diff; | 
|  | atomic64_add(diff, &fs_info->free_chunk_space); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_chunk *chunk, int item_size) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | struct btrfs_disk_key disk_key; | 
|  | u32 array_size; | 
|  | u8 *ptr; | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  | if (array_size + item_size + sizeof(disk_key) | 
|  | > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | return -EFBIG; | 
|  | } | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array + array_size; | 
|  | btrfs_cpu_key_to_disk(&disk_key, key); | 
|  | memcpy(ptr, &disk_key, sizeof(disk_key)); | 
|  | ptr += sizeof(disk_key); | 
|  | memcpy(ptr, chunk, item_size); | 
|  | item_size += sizeof(disk_key); | 
|  | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sort the devices in descending order by max_avail, total_avail | 
|  | */ | 
|  | static int btrfs_cmp_device_info(const void *a, const void *b) | 
|  | { | 
|  | const struct btrfs_device_info *di_a = a; | 
|  | const struct btrfs_device_info *di_b = b; | 
|  |  | 
|  | if (di_a->max_avail > di_b->max_avail) | 
|  | return -1; | 
|  | if (di_a->max_avail < di_b->max_avail) | 
|  | return 1; | 
|  | if (di_a->total_avail > di_b->total_avail) | 
|  | return -1; | 
|  | if (di_a->total_avail < di_b->total_avail) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) | 
|  | { | 
|  | if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) | 
|  | return; | 
|  |  | 
|  | btrfs_set_fs_incompat(info, RAID56); | 
|  | } | 
|  |  | 
|  | static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) | 
|  | { | 
|  | if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) | 
|  | return; | 
|  |  | 
|  | btrfs_set_fs_incompat(info, RAID1C34); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Structure used internally for __btrfs_alloc_chunk() function. | 
|  | * Wraps needed parameters. | 
|  | */ | 
|  | struct alloc_chunk_ctl { | 
|  | u64 start; | 
|  | u64 type; | 
|  | /* Total number of stripes to allocate */ | 
|  | int num_stripes; | 
|  | /* sub_stripes info for map */ | 
|  | int sub_stripes; | 
|  | /* Stripes per device */ | 
|  | int dev_stripes; | 
|  | /* Maximum number of devices to use */ | 
|  | int devs_max; | 
|  | /* Minimum number of devices to use */ | 
|  | int devs_min; | 
|  | /* ndevs has to be a multiple of this */ | 
|  | int devs_increment; | 
|  | /* Number of copies */ | 
|  | int ncopies; | 
|  | /* Number of stripes worth of bytes to store parity information */ | 
|  | int nparity; | 
|  | u64 max_stripe_size; | 
|  | u64 max_chunk_size; | 
|  | u64 dev_extent_min; | 
|  | u64 stripe_size; | 
|  | u64 chunk_size; | 
|  | int ndevs; | 
|  | }; | 
|  |  | 
|  | static void init_alloc_chunk_ctl_policy_regular( | 
|  | struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl) | 
|  | { | 
|  | u64 type = ctl->type; | 
|  |  | 
|  | if (type & BTRFS_BLOCK_GROUP_DATA) { | 
|  | ctl->max_stripe_size = SZ_1G; | 
|  | ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | /* For larger filesystems, use larger metadata chunks */ | 
|  | if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) | 
|  | ctl->max_stripe_size = SZ_1G; | 
|  | else | 
|  | ctl->max_stripe_size = SZ_256M; | 
|  | ctl->max_chunk_size = ctl->max_stripe_size; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ctl->max_stripe_size = SZ_32M; | 
|  | ctl->max_chunk_size = 2 * ctl->max_stripe_size; | 
|  | ctl->devs_max = min_t(int, ctl->devs_max, | 
|  | BTRFS_MAX_DEVS_SYS_CHUNK); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* We don't want a chunk larger than 10% of writable space */ | 
|  | ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | 
|  | ctl->max_chunk_size); | 
|  | ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; | 
|  | } | 
|  |  | 
|  | static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl) | 
|  | { | 
|  | int index = btrfs_bg_flags_to_raid_index(ctl->type); | 
|  |  | 
|  | ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; | 
|  | ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; | 
|  | ctl->devs_max = btrfs_raid_array[index].devs_max; | 
|  | if (!ctl->devs_max) | 
|  | ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); | 
|  | ctl->devs_min = btrfs_raid_array[index].devs_min; | 
|  | ctl->devs_increment = btrfs_raid_array[index].devs_increment; | 
|  | ctl->ncopies = btrfs_raid_array[index].ncopies; | 
|  | ctl->nparity = btrfs_raid_array[index].nparity; | 
|  | ctl->ndevs = 0; | 
|  |  | 
|  | switch (fs_devices->chunk_alloc_policy) { | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int gather_device_info(struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | struct btrfs_fs_info *info = fs_devices->fs_info; | 
|  | struct btrfs_device *device; | 
|  | u64 total_avail; | 
|  | u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; | 
|  | int ret; | 
|  | int ndevs = 0; | 
|  | u64 max_avail; | 
|  | u64 dev_offset; | 
|  |  | 
|  | /* | 
|  | * in the first pass through the devices list, we gather information | 
|  | * about the available holes on each device. | 
|  | */ | 
|  | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | WARN(1, KERN_ERR | 
|  | "BTRFS: read-only device in alloc_list\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, | 
|  | &device->dev_state) || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) | 
|  | continue; | 
|  |  | 
|  | if (device->total_bytes > device->bytes_used) | 
|  | total_avail = device->total_bytes - device->bytes_used; | 
|  | else | 
|  | total_avail = 0; | 
|  |  | 
|  | /* If there is no space on this device, skip it. */ | 
|  | if (total_avail < ctl->dev_extent_min) | 
|  | continue; | 
|  |  | 
|  | ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, | 
|  | &max_avail); | 
|  | if (ret && ret != -ENOSPC) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) | 
|  | max_avail = dev_extent_want; | 
|  |  | 
|  | if (max_avail < ctl->dev_extent_min) { | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) | 
|  | btrfs_debug(info, | 
|  | "%s: devid %llu has no free space, have=%llu want=%llu", | 
|  | __func__, device->devid, max_avail, | 
|  | ctl->dev_extent_min); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ndevs == fs_devices->rw_devices) { | 
|  | WARN(1, "%s: found more than %llu devices\n", | 
|  | __func__, fs_devices->rw_devices); | 
|  | break; | 
|  | } | 
|  | devices_info[ndevs].dev_offset = dev_offset; | 
|  | devices_info[ndevs].max_avail = max_avail; | 
|  | devices_info[ndevs].total_avail = total_avail; | 
|  | devices_info[ndevs].dev = device; | 
|  | ++ndevs; | 
|  | } | 
|  | ctl->ndevs = ndevs; | 
|  |  | 
|  | /* | 
|  | * now sort the devices by hole size / available space | 
|  | */ | 
|  | sort(devices_info, ndevs, sizeof(struct btrfs_device_info), | 
|  | btrfs_cmp_device_info, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | /* Number of stripes that count for block group size */ | 
|  | int data_stripes; | 
|  |  | 
|  | /* | 
|  | * The primary goal is to maximize the number of stripes, so use as | 
|  | * many devices as possible, even if the stripes are not maximum sized. | 
|  | * | 
|  | * The DUP profile stores more than one stripe per device, the | 
|  | * max_avail is the total size so we have to adjust. | 
|  | */ | 
|  | ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, | 
|  | ctl->dev_stripes); | 
|  | ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; | 
|  |  | 
|  | /* This will have to be fixed for RAID1 and RAID10 over more drives */ | 
|  | data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; | 
|  |  | 
|  | /* | 
|  | * Use the number of data stripes to figure out how big this chunk is | 
|  | * really going to be in terms of logical address space, and compare | 
|  | * that answer with the max chunk size. If it's higher, we try to | 
|  | * reduce stripe_size. | 
|  | */ | 
|  | if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { | 
|  | /* | 
|  | * Reduce stripe_size, round it up to a 16MB boundary again and | 
|  | * then use it, unless it ends up being even bigger than the | 
|  | * previous value we had already. | 
|  | */ | 
|  | ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, | 
|  | data_stripes), SZ_16M), | 
|  | ctl->stripe_size); | 
|  | } | 
|  |  | 
|  | /* Align to BTRFS_STRIPE_LEN */ | 
|  | ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); | 
|  | ctl->chunk_size = ctl->stripe_size * data_stripes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | struct btrfs_fs_info *info = fs_devices->fs_info; | 
|  |  | 
|  | /* | 
|  | * Round down to number of usable stripes, devs_increment can be any | 
|  | * number so we can't use round_down() that requires power of 2, while | 
|  | * rounddown is safe. | 
|  | */ | 
|  | ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); | 
|  |  | 
|  | if (ctl->ndevs < ctl->devs_min) { | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) { | 
|  | btrfs_debug(info, | 
|  | "%s: not enough devices with free space: have=%d minimum required=%d", | 
|  | __func__, ctl->ndevs, ctl->devs_min); | 
|  | } | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | ctl->ndevs = min(ctl->ndevs, ctl->devs_max); | 
|  |  | 
|  | switch (fs_devices->chunk_alloc_policy) { | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | return decide_stripe_size_regular(ctl, devices_info); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int create_chunk(struct btrfs_trans_handle *trans, | 
|  | struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct map_lookup *map = NULL; | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  | u64 start = ctl->start; | 
|  | u64 type = ctl->type; | 
|  | int ret; | 
|  | int i; | 
|  | int j; | 
|  |  | 
|  | map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  | map->num_stripes = ctl->num_stripes; | 
|  |  | 
|  | for (i = 0; i < ctl->ndevs; ++i) { | 
|  | for (j = 0; j < ctl->dev_stripes; ++j) { | 
|  | int s = i * ctl->dev_stripes + j; | 
|  | map->stripes[s].dev = devices_info[i].dev; | 
|  | map->stripes[s].physical = devices_info[i].dev_offset + | 
|  | j * ctl->stripe_size; | 
|  | } | 
|  | } | 
|  | map->stripe_len = BTRFS_STRIPE_LEN; | 
|  | map->io_align = BTRFS_STRIPE_LEN; | 
|  | map->io_width = BTRFS_STRIPE_LEN; | 
|  | map->type = type; | 
|  | map->sub_stripes = ctl->sub_stripes; | 
|  |  | 
|  | trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); | 
|  |  | 
|  | em = alloc_extent_map(); | 
|  | if (!em) { | 
|  | kfree(map); | 
|  | return -ENOMEM; | 
|  | } | 
|  | set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); | 
|  | em->map_lookup = map; | 
|  | em->start = start; | 
|  | em->len = ctl->chunk_size; | 
|  | em->block_start = 0; | 
|  | em->block_len = em->len; | 
|  | em->orig_block_len = ctl->stripe_size; | 
|  |  | 
|  | em_tree = &info->mapping_tree; | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, em, 0); | 
|  | if (ret) { | 
|  | write_unlock(&em_tree->lock); | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  | write_unlock(&em_tree->lock); | 
|  |  | 
|  | ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); | 
|  | if (ret) | 
|  | goto error_del_extent; | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *dev = map->stripes[i].dev; | 
|  |  | 
|  | btrfs_device_set_bytes_used(dev, | 
|  | dev->bytes_used + ctl->stripe_size); | 
|  | if (list_empty(&dev->post_commit_list)) | 
|  | list_add_tail(&dev->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  | } | 
|  |  | 
|  | atomic64_sub(ctl->stripe_size * map->num_stripes, | 
|  | &info->free_chunk_space); | 
|  |  | 
|  | free_extent_map(em); | 
|  | check_raid56_incompat_flag(info, type); | 
|  | check_raid1c34_incompat_flag(info, type); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_del_extent: | 
|  | write_lock(&em_tree->lock); | 
|  | remove_extent_mapping(em_tree, em); | 
|  | write_unlock(&em_tree->lock); | 
|  |  | 
|  | /* One for our allocation */ | 
|  | free_extent_map(em); | 
|  | /* One for the tree reference */ | 
|  | free_extent_map(em); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = info->fs_devices; | 
|  | struct btrfs_device_info *devices_info = NULL; | 
|  | struct alloc_chunk_ctl ctl; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&info->chunk_mutex); | 
|  |  | 
|  | if (!alloc_profile_is_valid(type, 0)) { | 
|  | ASSERT(0); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (list_empty(&fs_devices->alloc_list)) { | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) | 
|  | btrfs_debug(info, "%s: no writable device", __func__); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { | 
|  | btrfs_err(info, "invalid chunk type 0x%llx requested", type); | 
|  | ASSERT(0); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctl.start = find_next_chunk(info); | 
|  | ctl.type = type; | 
|  | init_alloc_chunk_ctl(fs_devices, &ctl); | 
|  |  | 
|  | devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), | 
|  | GFP_NOFS); | 
|  | if (!devices_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = gather_device_info(fs_devices, &ctl, devices_info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = decide_stripe_size(fs_devices, &ctl, devices_info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = create_chunk(trans, &ctl, devices_info); | 
|  |  | 
|  | out: | 
|  | kfree(devices_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chunk allocation falls into two parts. The first part does work | 
|  | * that makes the new allocated chunk usable, but does not do any operation | 
|  | * that modifies the chunk tree. The second part does the work that | 
|  | * requires modifying the chunk tree. This division is important for the | 
|  | * bootstrap process of adding storage to a seed btrfs. | 
|  | */ | 
|  | int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | u64 chunk_offset, u64 chunk_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | struct btrfs_root *chunk_root = fs_info->chunk_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_stripe *stripe; | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | size_t item_size; | 
|  | u64 dev_offset; | 
|  | u64 stripe_size; | 
|  | int i = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  |  | 
|  | map = em->map_lookup; | 
|  | item_size = btrfs_chunk_item_size(map->num_stripes); | 
|  | stripe_size = em->orig_block_len; | 
|  |  | 
|  | chunk = kzalloc(item_size, GFP_NOFS); | 
|  | if (!chunk) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take the device list mutex to prevent races with the final phase of | 
|  | * a device replace operation that replaces the device object associated | 
|  | * with the map's stripes, because the device object's id can change | 
|  | * at any time during that final phase of the device replace operation | 
|  | * (dev-replace.c:btrfs_dev_replace_finishing()). | 
|  | */ | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | device = map->stripes[i].dev; | 
|  | dev_offset = map->stripes[i].physical; | 
|  |  | 
|  | ret = btrfs_update_device(trans, device); | 
|  | if (ret) | 
|  | break; | 
|  | ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, | 
|  | dev_offset, stripe_size); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | stripe = &chunk->stripe; | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | device = map->stripes[i].dev; | 
|  | dev_offset = map->stripes[i].physical; | 
|  |  | 
|  | btrfs_set_stack_stripe_devid(stripe, device->devid); | 
|  | btrfs_set_stack_stripe_offset(stripe, dev_offset); | 
|  | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | 
|  | stripe++; | 
|  | } | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | btrfs_set_stack_chunk_length(chunk, chunk_size); | 
|  | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | 
|  | btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | 
|  | btrfs_set_stack_chunk_type(chunk, map->type); | 
|  | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | 
|  | btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | 
|  | btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | 
|  | btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); | 
|  | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  | key.offset = chunk_offset; | 
|  |  | 
|  | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | 
|  | if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | /* | 
|  | * TODO: Cleanup of inserted chunk root in case of | 
|  | * failure. | 
|  | */ | 
|  | ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(chunk); | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | u64 alloc_profile; | 
|  | int ret; | 
|  |  | 
|  | alloc_profile = btrfs_metadata_alloc_profile(fs_info); | 
|  | ret = btrfs_alloc_chunk(trans, alloc_profile); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | alloc_profile = btrfs_system_alloc_profile(fs_info); | 
|  | ret = btrfs_alloc_chunk(trans, alloc_profile); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int btrfs_chunk_max_errors(struct map_lookup *map) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(map->type); | 
|  |  | 
|  | return btrfs_raid_array[index].tolerated_failures; | 
|  | } | 
|  |  | 
|  | int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | int readonly = 0; | 
|  | int miss_ndevs = 0; | 
|  | int i; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); | 
|  | if (IS_ERR(em)) | 
|  | return 1; | 
|  |  | 
|  | map = em->map_lookup; | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &map->stripes[i].dev->dev_state)) { | 
|  | miss_ndevs++; | 
|  | continue; | 
|  | } | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, | 
|  | &map->stripes[i].dev->dev_state)) { | 
|  | readonly = 1; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the number of missing devices is larger than max errors, | 
|  | * we can not write the data into that chunk successfully, so | 
|  | * set it readonly. | 
|  | */ | 
|  | if (miss_ndevs > btrfs_chunk_max_errors(map)) | 
|  | readonly = 1; | 
|  | end: | 
|  | free_extent_map(em); | 
|  | return readonly; | 
|  | } | 
|  |  | 
|  | void btrfs_mapping_tree_free(struct extent_map_tree *tree) | 
|  | { | 
|  | struct extent_map *em; | 
|  |  | 
|  | while (1) { | 
|  | write_lock(&tree->lock); | 
|  | em = lookup_extent_mapping(tree, 0, (u64)-1); | 
|  | if (em) | 
|  | remove_extent_mapping(tree, em); | 
|  | write_unlock(&tree->lock); | 
|  | if (!em) | 
|  | break; | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  | /* once for the tree */ | 
|  | free_extent_map(em); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | int ret; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, len); | 
|  | if (IS_ERR(em)) | 
|  | /* | 
|  | * We could return errors for these cases, but that could get | 
|  | * ugly and we'd probably do the same thing which is just not do | 
|  | * anything else and exit, so return 1 so the callers don't try | 
|  | * to use other copies. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | map = em->map_lookup; | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) | 
|  | ret = map->num_stripes; | 
|  | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
|  | ret = map->sub_stripes; | 
|  | else if (map->type & BTRFS_BLOCK_GROUP_RAID5) | 
|  | ret = 2; | 
|  | else if (map->type & BTRFS_BLOCK_GROUP_RAID6) | 
|  | /* | 
|  | * There could be two corrupted data stripes, we need | 
|  | * to loop retry in order to rebuild the correct data. | 
|  | * | 
|  | * Fail a stripe at a time on every retry except the | 
|  | * stripe under reconstruction. | 
|  | */ | 
|  | ret = map->num_stripes; | 
|  | else | 
|  | ret = 1; | 
|  | free_extent_map(em); | 
|  |  | 
|  | down_read(&fs_info->dev_replace.rwsem); | 
|  | if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && | 
|  | fs_info->dev_replace.tgtdev) | 
|  | ret++; | 
|  | up_read(&fs_info->dev_replace.rwsem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, | 
|  | u64 logical) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | unsigned long len = fs_info->sectorsize; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, len); | 
|  |  | 
|  | if (!WARN_ON(IS_ERR(em))) { | 
|  | map = em->map_lookup; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  | len = map->stripe_len * nr_data_stripes(map); | 
|  | free_extent_map(em); | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | int ret = 0; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, len); | 
|  |  | 
|  | if(!WARN_ON(IS_ERR(em))) { | 
|  | map = em->map_lookup; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  | ret = 1; | 
|  | free_extent_map(em); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_live_mirror(struct btrfs_fs_info *fs_info, | 
|  | struct map_lookup *map, int first, | 
|  | int dev_replace_is_ongoing) | 
|  | { | 
|  | int i; | 
|  | int num_stripes; | 
|  | int preferred_mirror; | 
|  | int tolerance; | 
|  | struct btrfs_device *srcdev; | 
|  |  | 
|  | ASSERT((map->type & | 
|  | (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
|  | num_stripes = map->sub_stripes; | 
|  | else | 
|  | num_stripes = map->num_stripes; | 
|  |  | 
|  | preferred_mirror = first + current->pid % num_stripes; | 
|  |  | 
|  | if (dev_replace_is_ongoing && | 
|  | fs_info->dev_replace.cont_reading_from_srcdev_mode == | 
|  | BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) | 
|  | srcdev = fs_info->dev_replace.srcdev; | 
|  | else | 
|  | srcdev = NULL; | 
|  |  | 
|  | /* | 
|  | * try to avoid the drive that is the source drive for a | 
|  | * dev-replace procedure, only choose it if no other non-missing | 
|  | * mirror is available | 
|  | */ | 
|  | for (tolerance = 0; tolerance < 2; tolerance++) { | 
|  | if (map->stripes[preferred_mirror].dev->bdev && | 
|  | (tolerance || map->stripes[preferred_mirror].dev != srcdev)) | 
|  | return preferred_mirror; | 
|  | for (i = first; i < first + num_stripes; i++) { | 
|  | if (map->stripes[i].dev->bdev && | 
|  | (tolerance || map->stripes[i].dev != srcdev)) | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* we couldn't find one that doesn't fail.  Just return something | 
|  | * and the io error handling code will clean up eventually | 
|  | */ | 
|  | return preferred_mirror; | 
|  | } | 
|  |  | 
|  | /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ | 
|  | static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) | 
|  | { | 
|  | int i; | 
|  | int again = 1; | 
|  |  | 
|  | while (again) { | 
|  | again = 0; | 
|  | for (i = 0; i < num_stripes - 1; i++) { | 
|  | /* Swap if parity is on a smaller index */ | 
|  | if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { | 
|  | swap(bbio->stripes[i], bbio->stripes[i + 1]); | 
|  | swap(bbio->raid_map[i], bbio->raid_map[i + 1]); | 
|  | again = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) | 
|  | { | 
|  | struct btrfs_bio *bbio = kzalloc( | 
|  | /* the size of the btrfs_bio */ | 
|  | sizeof(struct btrfs_bio) + | 
|  | /* plus the variable array for the stripes */ | 
|  | sizeof(struct btrfs_bio_stripe) * (total_stripes) + | 
|  | /* plus the variable array for the tgt dev */ | 
|  | sizeof(int) * (real_stripes) + | 
|  | /* | 
|  | * plus the raid_map, which includes both the tgt dev | 
|  | * and the stripes | 
|  | */ | 
|  | sizeof(u64) * (total_stripes), | 
|  | GFP_NOFS|__GFP_NOFAIL); | 
|  |  | 
|  | atomic_set(&bbio->error, 0); | 
|  | refcount_set(&bbio->refs, 1); | 
|  |  | 
|  | bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); | 
|  | bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); | 
|  |  | 
|  | return bbio; | 
|  | } | 
|  |  | 
|  | void btrfs_get_bbio(struct btrfs_bio *bbio) | 
|  | { | 
|  | WARN_ON(!refcount_read(&bbio->refs)); | 
|  | refcount_inc(&bbio->refs); | 
|  | } | 
|  |  | 
|  | void btrfs_put_bbio(struct btrfs_bio *bbio) | 
|  | { | 
|  | if (!bbio) | 
|  | return; | 
|  | if (refcount_dec_and_test(&bbio->refs)) | 
|  | kfree(bbio); | 
|  | } | 
|  |  | 
|  | /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ | 
|  | /* | 
|  | * Please note that, discard won't be sent to target device of device | 
|  | * replace. | 
|  | */ | 
|  | static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 *length_ret, | 
|  | struct btrfs_bio **bbio_ret) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | struct btrfs_bio *bbio; | 
|  | u64 length = *length_ret; | 
|  | u64 offset; | 
|  | u64 stripe_nr; | 
|  | u64 stripe_nr_end; | 
|  | u64 stripe_end_offset; | 
|  | u64 stripe_cnt; | 
|  | u64 stripe_len; | 
|  | u64 stripe_offset; | 
|  | u64 num_stripes; | 
|  | u32 stripe_index; | 
|  | u32 factor = 0; | 
|  | u32 sub_stripes = 0; | 
|  | u64 stripes_per_dev = 0; | 
|  | u32 remaining_stripes = 0; | 
|  | u32 last_stripe = 0; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | /* discard always return a bbio */ | 
|  | ASSERT(bbio_ret); | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, length); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  |  | 
|  | map = em->map_lookup; | 
|  | /* we don't discard raid56 yet */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | offset = logical - em->start; | 
|  | length = min_t(u64, em->start + em->len - logical, length); | 
|  | *length_ret = length; | 
|  |  | 
|  | stripe_len = map->stripe_len; | 
|  | /* | 
|  | * stripe_nr counts the total number of stripes we have to stride | 
|  | * to get to this block | 
|  | */ | 
|  | stripe_nr = div64_u64(offset, stripe_len); | 
|  |  | 
|  | /* stripe_offset is the offset of this block in its stripe */ | 
|  | stripe_offset = offset - stripe_nr * stripe_len; | 
|  |  | 
|  | stripe_nr_end = round_up(offset + length, map->stripe_len); | 
|  | stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); | 
|  | stripe_cnt = stripe_nr_end - stripe_nr; | 
|  | stripe_end_offset = stripe_nr_end * map->stripe_len - | 
|  | (offset + length); | 
|  | /* | 
|  | * after this, stripe_nr is the number of stripes on this | 
|  | * device we have to walk to find the data, and stripe_index is | 
|  | * the number of our device in the stripe array | 
|  | */ | 
|  | num_stripes = 1; | 
|  | stripe_index = 0; | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
|  | sub_stripes = 1; | 
|  | else | 
|  | sub_stripes = map->sub_stripes; | 
|  |  | 
|  | factor = map->num_stripes / sub_stripes; | 
|  | num_stripes = min_t(u64, map->num_stripes, | 
|  | sub_stripes * stripe_cnt); | 
|  | stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); | 
|  | stripe_index *= sub_stripes; | 
|  | stripes_per_dev = div_u64_rem(stripe_cnt, factor, | 
|  | &remaining_stripes); | 
|  | div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); | 
|  | last_stripe *= sub_stripes; | 
|  | } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | | 
|  | BTRFS_BLOCK_GROUP_DUP)) { | 
|  | num_stripes = map->num_stripes; | 
|  | } else { | 
|  | stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, | 
|  | &stripe_index); | 
|  | } | 
|  |  | 
|  | bbio = alloc_btrfs_bio(num_stripes, 0); | 
|  | if (!bbio) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | bbio->stripes[i].physical = | 
|  | map->stripes[stripe_index].physical + | 
|  | stripe_offset + stripe_nr * map->stripe_len; | 
|  | bbio->stripes[i].dev = map->stripes[stripe_index].dev; | 
|  |  | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | bbio->stripes[i].length = stripes_per_dev * | 
|  | map->stripe_len; | 
|  |  | 
|  | if (i / sub_stripes < remaining_stripes) | 
|  | bbio->stripes[i].length += | 
|  | map->stripe_len; | 
|  |  | 
|  | /* | 
|  | * Special for the first stripe and | 
|  | * the last stripe: | 
|  | * | 
|  | * |-------|...|-------| | 
|  | *     |----------| | 
|  | *    off     end_off | 
|  | */ | 
|  | if (i < sub_stripes) | 
|  | bbio->stripes[i].length -= | 
|  | stripe_offset; | 
|  |  | 
|  | if (stripe_index >= last_stripe && | 
|  | stripe_index <= (last_stripe + | 
|  | sub_stripes - 1)) | 
|  | bbio->stripes[i].length -= | 
|  | stripe_end_offset; | 
|  |  | 
|  | if (i == sub_stripes - 1) | 
|  | stripe_offset = 0; | 
|  | } else { | 
|  | bbio->stripes[i].length = length; | 
|  | } | 
|  |  | 
|  | stripe_index++; | 
|  | if (stripe_index == map->num_stripes) { | 
|  | stripe_index = 0; | 
|  | stripe_nr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | *bbio_ret = bbio; | 
|  | bbio->map_type = map->type; | 
|  | bbio->num_stripes = num_stripes; | 
|  | out: | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In dev-replace case, for repair case (that's the only case where the mirror | 
|  | * is selected explicitly when calling btrfs_map_block), blocks left of the | 
|  | * left cursor can also be read from the target drive. | 
|  | * | 
|  | * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the | 
|  | * array of stripes. | 
|  | * For READ, it also needs to be supported using the same mirror number. | 
|  | * | 
|  | * If the requested block is not left of the left cursor, EIO is returned. This | 
|  | * can happen because btrfs_num_copies() returns one more in the dev-replace | 
|  | * case. | 
|  | */ | 
|  | static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length, | 
|  | u64 srcdev_devid, int *mirror_num, | 
|  | u64 *physical) | 
|  | { | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | int num_stripes; | 
|  | int index_srcdev = 0; | 
|  | int found = 0; | 
|  | u64 physical_of_found = 0; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, | 
|  | logical, &length, &bbio, 0, 0); | 
|  | if (ret) { | 
|  | ASSERT(bbio == NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | num_stripes = bbio->num_stripes; | 
|  | if (*mirror_num > num_stripes) { | 
|  | /* | 
|  | * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, | 
|  | * that means that the requested area is not left of the left | 
|  | * cursor | 
|  | */ | 
|  | btrfs_put_bbio(bbio); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process the rest of the function using the mirror_num of the source | 
|  | * drive. Therefore look it up first.  At the end, patch the device | 
|  | * pointer to the one of the target drive. | 
|  | */ | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | if (bbio->stripes[i].dev->devid != srcdev_devid) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * In case of DUP, in order to keep it simple, only add the | 
|  | * mirror with the lowest physical address | 
|  | */ | 
|  | if (found && | 
|  | physical_of_found <= bbio->stripes[i].physical) | 
|  | continue; | 
|  |  | 
|  | index_srcdev = i; | 
|  | found = 1; | 
|  | physical_of_found = bbio->stripes[i].physical; | 
|  | } | 
|  |  | 
|  | btrfs_put_bbio(bbio); | 
|  |  | 
|  | ASSERT(found); | 
|  | if (!found) | 
|  | return -EIO; | 
|  |  | 
|  | *mirror_num = index_srcdev + 1; | 
|  | *physical = physical_of_found; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void handle_ops_on_dev_replace(enum btrfs_map_op op, | 
|  | struct btrfs_bio **bbio_ret, | 
|  | struct btrfs_dev_replace *dev_replace, | 
|  | int *num_stripes_ret, int *max_errors_ret) | 
|  | { | 
|  | struct btrfs_bio *bbio = *bbio_ret; | 
|  | u64 srcdev_devid = dev_replace->srcdev->devid; | 
|  | int tgtdev_indexes = 0; | 
|  | int num_stripes = *num_stripes_ret; | 
|  | int max_errors = *max_errors_ret; | 
|  | int i; | 
|  |  | 
|  | if (op == BTRFS_MAP_WRITE) { | 
|  | int index_where_to_add; | 
|  |  | 
|  | /* | 
|  | * duplicate the write operations while the dev replace | 
|  | * procedure is running. Since the copying of the old disk to | 
|  | * the new disk takes place at run time while the filesystem is | 
|  | * mounted writable, the regular write operations to the old | 
|  | * disk have to be duplicated to go to the new disk as well. | 
|  | * | 
|  | * Note that device->missing is handled by the caller, and that | 
|  | * the write to the old disk is already set up in the stripes | 
|  | * array. | 
|  | */ | 
|  | index_where_to_add = num_stripes; | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | if (bbio->stripes[i].dev->devid == srcdev_devid) { | 
|  | /* write to new disk, too */ | 
|  | struct btrfs_bio_stripe *new = | 
|  | bbio->stripes + index_where_to_add; | 
|  | struct btrfs_bio_stripe *old = | 
|  | bbio->stripes + i; | 
|  |  | 
|  | new->physical = old->physical; | 
|  | new->length = old->length; | 
|  | new->dev = dev_replace->tgtdev; | 
|  | bbio->tgtdev_map[i] = index_where_to_add; | 
|  | index_where_to_add++; | 
|  | max_errors++; | 
|  | tgtdev_indexes++; | 
|  | } | 
|  | } | 
|  | num_stripes = index_where_to_add; | 
|  | } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { | 
|  | int index_srcdev = 0; | 
|  | int found = 0; | 
|  | u64 physical_of_found = 0; | 
|  |  | 
|  | /* | 
|  | * During the dev-replace procedure, the target drive can also | 
|  | * be used to read data in case it is needed to repair a corrupt | 
|  | * block elsewhere. This is possible if the requested area is | 
|  | * left of the left cursor. In this area, the target drive is a | 
|  | * full copy of the source drive. | 
|  | */ | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | if (bbio->stripes[i].dev->devid == srcdev_devid) { | 
|  | /* | 
|  | * In case of DUP, in order to keep it simple, | 
|  | * only add the mirror with the lowest physical | 
|  | * address | 
|  | */ | 
|  | if (found && | 
|  | physical_of_found <= | 
|  | bbio->stripes[i].physical) | 
|  | continue; | 
|  | index_srcdev = i; | 
|  | found = 1; | 
|  | physical_of_found = bbio->stripes[i].physical; | 
|  | } | 
|  | } | 
|  | if (found) { | 
|  | struct btrfs_bio_stripe *tgtdev_stripe = | 
|  | bbio->stripes + num_stripes; | 
|  |  | 
|  | tgtdev_stripe->physical = physical_of_found; | 
|  | tgtdev_stripe->length = | 
|  | bbio->stripes[index_srcdev].length; | 
|  | tgtdev_stripe->dev = dev_replace->tgtdev; | 
|  | bbio->tgtdev_map[index_srcdev] = num_stripes; | 
|  |  | 
|  | tgtdev_indexes++; | 
|  | num_stripes++; | 
|  | } | 
|  | } | 
|  |  | 
|  | *num_stripes_ret = num_stripes; | 
|  | *max_errors_ret = max_errors; | 
|  | bbio->num_tgtdevs = tgtdev_indexes; | 
|  | *bbio_ret = bbio; | 
|  | } | 
|  |  | 
|  | static bool need_full_stripe(enum btrfs_map_op op) | 
|  | { | 
|  | return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) | 
|  | *		       tuple. This information is used to calculate how big a | 
|  | *		       particular bio can get before it straddles a stripe. | 
|  | * | 
|  | * @fs_info - the filesystem | 
|  | * @logical - address that we want to figure out the geometry of | 
|  | * @len	    - the length of IO we are going to perform, starting at @logical | 
|  | * @op      - type of operation - write or read | 
|  | * @io_geom - pointer used to return values | 
|  | * | 
|  | * Returns < 0 in case a chunk for the given logical address cannot be found, | 
|  | * usually shouldn't happen unless @logical is corrupted, 0 otherwise. | 
|  | */ | 
|  | int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, | 
|  | u64 logical, u64 len, struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | u64 offset; | 
|  | u64 stripe_offset; | 
|  | u64 stripe_nr; | 
|  | u64 stripe_len; | 
|  | u64 raid56_full_stripe_start = (u64)-1; | 
|  | int data_stripes; | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(op != BTRFS_MAP_DISCARD); | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, len); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  |  | 
|  | map = em->map_lookup; | 
|  | /* Offset of this logical address in the chunk */ | 
|  | offset = logical - em->start; | 
|  | /* Len of a stripe in a chunk */ | 
|  | stripe_len = map->stripe_len; | 
|  | /* Stripe wher this block falls in */ | 
|  | stripe_nr = div64_u64(offset, stripe_len); | 
|  | /* Offset of stripe in the chunk */ | 
|  | stripe_offset = stripe_nr * stripe_len; | 
|  | if (offset < stripe_offset) { | 
|  | btrfs_crit(fs_info, | 
|  | "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", | 
|  | stripe_offset, offset, em->start, logical, stripe_len); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* stripe_offset is the offset of this block in its stripe */ | 
|  | stripe_offset = offset - stripe_offset; | 
|  | data_stripes = nr_data_stripes(map); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { | 
|  | u64 max_len = stripe_len - stripe_offset; | 
|  |  | 
|  | /* | 
|  | * In case of raid56, we need to know the stripe aligned start | 
|  | */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | unsigned long full_stripe_len = stripe_len * data_stripes; | 
|  | raid56_full_stripe_start = offset; | 
|  |  | 
|  | /* | 
|  | * Allow a write of a full stripe, but make sure we | 
|  | * don't allow straddling of stripes | 
|  | */ | 
|  | raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, | 
|  | full_stripe_len); | 
|  | raid56_full_stripe_start *= full_stripe_len; | 
|  |  | 
|  | /* | 
|  | * For writes to RAID[56], allow a full stripeset across | 
|  | * all disks. For other RAID types and for RAID[56] | 
|  | * reads, just allow a single stripe (on a single disk). | 
|  | */ | 
|  | if (op == BTRFS_MAP_WRITE) { | 
|  | max_len = stripe_len * data_stripes - | 
|  | (offset - raid56_full_stripe_start); | 
|  | } | 
|  | } | 
|  | len = min_t(u64, em->len - offset, max_len); | 
|  | } else { | 
|  | len = em->len - offset; | 
|  | } | 
|  |  | 
|  | io_geom->len = len; | 
|  | io_geom->offset = offset; | 
|  | io_geom->stripe_len = stripe_len; | 
|  | io_geom->stripe_nr = stripe_nr; | 
|  | io_geom->stripe_offset = stripe_offset; | 
|  | io_geom->raid56_stripe_offset = raid56_full_stripe_start; | 
|  |  | 
|  | out: | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_map_block(struct btrfs_fs_info *fs_info, | 
|  | enum btrfs_map_op op, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_bio **bbio_ret, | 
|  | int mirror_num, int need_raid_map) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | u64 stripe_offset; | 
|  | u64 stripe_nr; | 
|  | u64 stripe_len; | 
|  | u32 stripe_index; | 
|  | int data_stripes; | 
|  | int i; | 
|  | int ret = 0; | 
|  | int num_stripes; | 
|  | int max_errors = 0; | 
|  | int tgtdev_indexes = 0; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
|  | int dev_replace_is_ongoing = 0; | 
|  | int num_alloc_stripes; | 
|  | int patch_the_first_stripe_for_dev_replace = 0; | 
|  | u64 physical_to_patch_in_first_stripe = 0; | 
|  | u64 raid56_full_stripe_start = (u64)-1; | 
|  | struct btrfs_io_geometry geom; | 
|  |  | 
|  | ASSERT(bbio_ret); | 
|  | ASSERT(op != BTRFS_MAP_DISCARD); | 
|  |  | 
|  | ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, *length); | 
|  | ASSERT(!IS_ERR(em)); | 
|  | map = em->map_lookup; | 
|  |  | 
|  | *length = geom.len; | 
|  | stripe_len = geom.stripe_len; | 
|  | stripe_nr = geom.stripe_nr; | 
|  | stripe_offset = geom.stripe_offset; | 
|  | raid56_full_stripe_start = geom.raid56_stripe_offset; | 
|  | data_stripes = nr_data_stripes(map); | 
|  |  | 
|  | down_read(&dev_replace->rwsem); | 
|  | dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); | 
|  | /* | 
|  | * Hold the semaphore for read during the whole operation, write is | 
|  | * requested at commit time but must wait. | 
|  | */ | 
|  | if (!dev_replace_is_ongoing) | 
|  | up_read(&dev_replace->rwsem); | 
|  |  | 
|  | if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && | 
|  | !need_full_stripe(op) && dev_replace->tgtdev != NULL) { | 
|  | ret = get_extra_mirror_from_replace(fs_info, logical, *length, | 
|  | dev_replace->srcdev->devid, | 
|  | &mirror_num, | 
|  | &physical_to_patch_in_first_stripe); | 
|  | if (ret) | 
|  | goto out; | 
|  | else | 
|  | patch_the_first_stripe_for_dev_replace = 1; | 
|  | } else if (mirror_num > map->num_stripes) { | 
|  | mirror_num = 0; | 
|  | } | 
|  |  | 
|  | num_stripes = 1; | 
|  | stripe_index = 0; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
|  | stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, | 
|  | &stripe_index); | 
|  | if (!need_full_stripe(op)) | 
|  | mirror_num = 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { | 
|  | if (need_full_stripe(op)) | 
|  | num_stripes = map->num_stripes; | 
|  | else if (mirror_num) | 
|  | stripe_index = mirror_num - 1; | 
|  | else { | 
|  | stripe_index = find_live_mirror(fs_info, map, 0, | 
|  | dev_replace_is_ongoing); | 
|  | mirror_num = stripe_index + 1; | 
|  | } | 
|  |  | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
|  | if (need_full_stripe(op)) { | 
|  | num_stripes = map->num_stripes; | 
|  | } else if (mirror_num) { | 
|  | stripe_index = mirror_num - 1; | 
|  | } else { | 
|  | mirror_num = 1; | 
|  | } | 
|  |  | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | u32 factor = map->num_stripes / map->sub_stripes; | 
|  |  | 
|  | stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); | 
|  | stripe_index *= map->sub_stripes; | 
|  |  | 
|  | if (need_full_stripe(op)) | 
|  | num_stripes = map->sub_stripes; | 
|  | else if (mirror_num) | 
|  | stripe_index += mirror_num - 1; | 
|  | else { | 
|  | int old_stripe_index = stripe_index; | 
|  | stripe_index = find_live_mirror(fs_info, map, | 
|  | stripe_index, | 
|  | dev_replace_is_ongoing); | 
|  | mirror_num = stripe_index - old_stripe_index + 1; | 
|  | } | 
|  |  | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { | 
|  | /* push stripe_nr back to the start of the full stripe */ | 
|  | stripe_nr = div64_u64(raid56_full_stripe_start, | 
|  | stripe_len * data_stripes); | 
|  |  | 
|  | /* RAID[56] write or recovery. Return all stripes */ | 
|  | num_stripes = map->num_stripes; | 
|  | max_errors = nr_parity_stripes(map); | 
|  |  | 
|  | *length = map->stripe_len; | 
|  | stripe_index = 0; | 
|  | stripe_offset = 0; | 
|  | } else { | 
|  | /* | 
|  | * Mirror #0 or #1 means the original data block. | 
|  | * Mirror #2 is RAID5 parity block. | 
|  | * Mirror #3 is RAID6 Q block. | 
|  | */ | 
|  | stripe_nr = div_u64_rem(stripe_nr, | 
|  | data_stripes, &stripe_index); | 
|  | if (mirror_num > 1) | 
|  | stripe_index = data_stripes + mirror_num - 2; | 
|  |  | 
|  | /* We distribute the parity blocks across stripes */ | 
|  | div_u64_rem(stripe_nr + stripe_index, map->num_stripes, | 
|  | &stripe_index); | 
|  | if (!need_full_stripe(op) && mirror_num <= 1) | 
|  | mirror_num = 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * after this, stripe_nr is the number of stripes on this | 
|  | * device we have to walk to find the data, and stripe_index is | 
|  | * the number of our device in the stripe array | 
|  | */ | 
|  | stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, | 
|  | &stripe_index); | 
|  | mirror_num = stripe_index + 1; | 
|  | } | 
|  | if (stripe_index >= map->num_stripes) { | 
|  | btrfs_crit(fs_info, | 
|  | "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", | 
|  | stripe_index, map->num_stripes); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | num_alloc_stripes = num_stripes; | 
|  | if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { | 
|  | if (op == BTRFS_MAP_WRITE) | 
|  | num_alloc_stripes <<= 1; | 
|  | if (op == BTRFS_MAP_GET_READ_MIRRORS) | 
|  | num_alloc_stripes++; | 
|  | tgtdev_indexes = num_stripes; | 
|  | } | 
|  |  | 
|  | bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); | 
|  | if (!bbio) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | bbio->stripes[i].physical = map->stripes[stripe_index].physical + | 
|  | stripe_offset + stripe_nr * map->stripe_len; | 
|  | bbio->stripes[i].dev = map->stripes[stripe_index].dev; | 
|  | stripe_index++; | 
|  | } | 
|  |  | 
|  | /* build raid_map */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && | 
|  | (need_full_stripe(op) || mirror_num > 1)) { | 
|  | u64 tmp; | 
|  | unsigned rot; | 
|  |  | 
|  | /* Work out the disk rotation on this stripe-set */ | 
|  | div_u64_rem(stripe_nr, num_stripes, &rot); | 
|  |  | 
|  | /* Fill in the logical address of each stripe */ | 
|  | tmp = stripe_nr * data_stripes; | 
|  | for (i = 0; i < data_stripes; i++) | 
|  | bbio->raid_map[(i+rot) % num_stripes] = | 
|  | em->start + (tmp + i) * map->stripe_len; | 
|  |  | 
|  | bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID6) | 
|  | bbio->raid_map[(i+rot+1) % num_stripes] = | 
|  | RAID6_Q_STRIPE; | 
|  |  | 
|  | sort_parity_stripes(bbio, num_stripes); | 
|  | } | 
|  |  | 
|  | if (need_full_stripe(op)) | 
|  | max_errors = btrfs_chunk_max_errors(map); | 
|  |  | 
|  | if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && | 
|  | need_full_stripe(op)) { | 
|  | handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, | 
|  | &max_errors); | 
|  | } | 
|  |  | 
|  | *bbio_ret = bbio; | 
|  | bbio->map_type = map->type; | 
|  | bbio->num_stripes = num_stripes; | 
|  | bbio->max_errors = max_errors; | 
|  | bbio->mirror_num = mirror_num; | 
|  |  | 
|  | /* | 
|  | * this is the case that REQ_READ && dev_replace_is_ongoing && | 
|  | * mirror_num == num_stripes + 1 && dev_replace target drive is | 
|  | * available as a mirror | 
|  | */ | 
|  | if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { | 
|  | WARN_ON(num_stripes > 1); | 
|  | bbio->stripes[0].dev = dev_replace->tgtdev; | 
|  | bbio->stripes[0].physical = physical_to_patch_in_first_stripe; | 
|  | bbio->mirror_num = map->num_stripes + 1; | 
|  | } | 
|  | out: | 
|  | if (dev_replace_is_ongoing) { | 
|  | lockdep_assert_held(&dev_replace->rwsem); | 
|  | /* Unlock and let waiting writers proceed */ | 
|  | up_read(&dev_replace->rwsem); | 
|  | } | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_bio **bbio_ret, int mirror_num) | 
|  | { | 
|  | if (op == BTRFS_MAP_DISCARD) | 
|  | return __btrfs_map_block_for_discard(fs_info, logical, | 
|  | length, bbio_ret); | 
|  |  | 
|  | return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, | 
|  | mirror_num, 0); | 
|  | } | 
|  |  | 
|  | /* For Scrub/replace */ | 
|  | int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_bio **bbio_ret) | 
|  | { | 
|  | return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) | 
|  | { | 
|  | bio->bi_private = bbio->private; | 
|  | bio->bi_end_io = bbio->end_io; | 
|  | bio_endio(bio); | 
|  |  | 
|  | btrfs_put_bbio(bbio); | 
|  | } | 
|  |  | 
|  | static void btrfs_end_bio(struct bio *bio) | 
|  | { | 
|  | struct btrfs_bio *bbio = bio->bi_private; | 
|  | int is_orig_bio = 0; | 
|  |  | 
|  | if (bio->bi_status) { | 
|  | atomic_inc(&bbio->error); | 
|  | if (bio->bi_status == BLK_STS_IOERR || | 
|  | bio->bi_status == BLK_STS_TARGET) { | 
|  | struct btrfs_device *dev = btrfs_io_bio(bio)->device; | 
|  |  | 
|  | ASSERT(dev->bdev); | 
|  | if (bio_op(bio) == REQ_OP_WRITE) | 
|  | btrfs_dev_stat_inc_and_print(dev, | 
|  | BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | else if (!(bio->bi_opf & REQ_RAHEAD)) | 
|  | btrfs_dev_stat_inc_and_print(dev, | 
|  | BTRFS_DEV_STAT_READ_ERRS); | 
|  | if (bio->bi_opf & REQ_PREFLUSH) | 
|  | btrfs_dev_stat_inc_and_print(dev, | 
|  | BTRFS_DEV_STAT_FLUSH_ERRS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bio == bbio->orig_bio) | 
|  | is_orig_bio = 1; | 
|  |  | 
|  | btrfs_bio_counter_dec(bbio->fs_info); | 
|  |  | 
|  | if (atomic_dec_and_test(&bbio->stripes_pending)) { | 
|  | if (!is_orig_bio) { | 
|  | bio_put(bio); | 
|  | bio = bbio->orig_bio; | 
|  | } | 
|  |  | 
|  | btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; | 
|  | /* only send an error to the higher layers if it is | 
|  | * beyond the tolerance of the btrfs bio | 
|  | */ | 
|  | if (atomic_read(&bbio->error) > bbio->max_errors) { | 
|  | bio->bi_status = BLK_STS_IOERR; | 
|  | } else { | 
|  | /* | 
|  | * this bio is actually up to date, we didn't | 
|  | * go over the max number of errors | 
|  | */ | 
|  | bio->bi_status = BLK_STS_OK; | 
|  | } | 
|  |  | 
|  | btrfs_end_bbio(bbio, bio); | 
|  | } else if (!is_orig_bio) { | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, | 
|  | u64 physical, struct btrfs_device *dev) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bbio->fs_info; | 
|  |  | 
|  | bio->bi_private = bbio; | 
|  | btrfs_io_bio(bio)->device = dev; | 
|  | bio->bi_end_io = btrfs_end_bio; | 
|  | bio->bi_iter.bi_sector = physical >> 9; | 
|  | btrfs_debug_in_rcu(fs_info, | 
|  | "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", | 
|  | bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, | 
|  | (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), | 
|  | dev->devid, bio->bi_iter.bi_size); | 
|  | bio_set_dev(bio, dev->bdev); | 
|  |  | 
|  | btrfs_bio_counter_inc_noblocked(fs_info); | 
|  |  | 
|  | btrfsic_submit_bio(bio); | 
|  | } | 
|  |  | 
|  | static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) | 
|  | { | 
|  | atomic_inc(&bbio->error); | 
|  | if (atomic_dec_and_test(&bbio->stripes_pending)) { | 
|  | /* Should be the original bio. */ | 
|  | WARN_ON(bio != bbio->orig_bio); | 
|  |  | 
|  | btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; | 
|  | bio->bi_iter.bi_sector = logical >> 9; | 
|  | if (atomic_read(&bbio->error) > bbio->max_errors) | 
|  | bio->bi_status = BLK_STS_IOERR; | 
|  | else | 
|  | bio->bi_status = BLK_STS_OK; | 
|  | btrfs_end_bbio(bbio, bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, | 
|  | int mirror_num) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | struct bio *first_bio = bio; | 
|  | u64 logical = (u64)bio->bi_iter.bi_sector << 9; | 
|  | u64 length = 0; | 
|  | u64 map_length; | 
|  | int ret; | 
|  | int dev_nr; | 
|  | int total_devs; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  |  | 
|  | length = bio->bi_iter.bi_size; | 
|  | map_length = length; | 
|  |  | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, | 
|  | &map_length, &bbio, mirror_num, 1); | 
|  | if (ret) { | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | return errno_to_blk_status(ret); | 
|  | } | 
|  |  | 
|  | total_devs = bbio->num_stripes; | 
|  | bbio->orig_bio = first_bio; | 
|  | bbio->private = first_bio->bi_private; | 
|  | bbio->end_io = first_bio->bi_end_io; | 
|  | bbio->fs_info = fs_info; | 
|  | atomic_set(&bbio->stripes_pending, bbio->num_stripes); | 
|  |  | 
|  | if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && | 
|  | ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { | 
|  | /* In this case, map_length has been set to the length of | 
|  | a single stripe; not the whole write */ | 
|  | if (bio_op(bio) == REQ_OP_WRITE) { | 
|  | ret = raid56_parity_write(fs_info, bio, bbio, | 
|  | map_length); | 
|  | } else { | 
|  | ret = raid56_parity_recover(fs_info, bio, bbio, | 
|  | map_length, mirror_num, 1); | 
|  | } | 
|  |  | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | return errno_to_blk_status(ret); | 
|  | } | 
|  |  | 
|  | if (map_length < length) { | 
|  | btrfs_crit(fs_info, | 
|  | "mapping failed logical %llu bio len %llu len %llu", | 
|  | logical, length, map_length); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { | 
|  | dev = bbio->stripes[dev_nr].dev; | 
|  | if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &dev->dev_state) || | 
|  | (bio_op(first_bio) == REQ_OP_WRITE && | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { | 
|  | bbio_error(bbio, first_bio, logical); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (dev_nr < total_devs - 1) | 
|  | bio = btrfs_bio_clone(first_bio); | 
|  | else | 
|  | bio = first_bio; | 
|  |  | 
|  | submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); | 
|  | } | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | return BLK_STS_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a device specified by @devid or @uuid in the list of @fs_devices, or | 
|  | * return NULL. | 
|  | * | 
|  | * If devid and uuid are both specified, the match must be exact, otherwise | 
|  | * only devid is used. | 
|  | * | 
|  | * If @seed is true, traverse through the seed devices. | 
|  | */ | 
|  | struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, | 
|  | u64 devid, u8 *uuid, u8 *fsid, | 
|  | bool seed) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *seed_devs; | 
|  |  | 
|  | if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (device->devid == devid && | 
|  | (!uuid || memcmp(device->uuid, uuid, | 
|  | BTRFS_UUID_SIZE) == 0)) | 
|  | return device; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { | 
|  | if (!fsid || | 
|  | !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { | 
|  | list_for_each_entry(device, &seed_devs->devices, | 
|  | dev_list) { | 
|  | if (device->devid == devid && | 
|  | (!uuid || memcmp(device->uuid, uuid, | 
|  | BTRFS_UUID_SIZE) == 0)) | 
|  | return device; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, | 
|  | u64 devid, u8 *dev_uuid) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | unsigned int nofs_flag; | 
|  |  | 
|  | /* | 
|  | * We call this under the chunk_mutex, so we want to use NOFS for this | 
|  | * allocation, however we don't want to change btrfs_alloc_device() to | 
|  | * always do NOFS because we use it in a lot of other GFP_KERNEL safe | 
|  | * places. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | device = btrfs_alloc_device(NULL, &devid, dev_uuid); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (IS_ERR(device)) | 
|  | return device; | 
|  |  | 
|  | list_add(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices = fs_devices; | 
|  | fs_devices->num_devices++; | 
|  |  | 
|  | set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | fs_devices->missing_devices++; | 
|  |  | 
|  | return device; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_alloc_device - allocate struct btrfs_device | 
|  | * @fs_info:	used only for generating a new devid, can be NULL if | 
|  | *		devid is provided (i.e. @devid != NULL). | 
|  | * @devid:	a pointer to devid for this device.  If NULL a new devid | 
|  | *		is generated. | 
|  | * @uuid:	a pointer to UUID for this device.  If NULL a new UUID | 
|  | *		is generated. | 
|  | * | 
|  | * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() | 
|  | * on error.  Returned struct is not linked onto any lists and must be | 
|  | * destroyed with btrfs_free_device. | 
|  | */ | 
|  | struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, | 
|  | const u64 *devid, | 
|  | const u8 *uuid) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | u64 tmp; | 
|  |  | 
|  | if (WARN_ON(!devid && !fs_info)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | dev = __alloc_device(fs_info); | 
|  | if (IS_ERR(dev)) | 
|  | return dev; | 
|  |  | 
|  | if (devid) | 
|  | tmp = *devid; | 
|  | else { | 
|  | int ret; | 
|  |  | 
|  | ret = find_next_devid(fs_info, &tmp); | 
|  | if (ret) { | 
|  | btrfs_free_device(dev); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  | dev->devid = tmp; | 
|  |  | 
|  | if (uuid) | 
|  | memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); | 
|  | else | 
|  | generate_random_uuid(dev->uuid); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, | 
|  | u64 devid, u8 *uuid, bool error) | 
|  | { | 
|  | if (error) | 
|  | btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", | 
|  | devid, uuid); | 
|  | else | 
|  | btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", | 
|  | devid, uuid); | 
|  | } | 
|  |  | 
|  | static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) | 
|  | { | 
|  | int index = btrfs_bg_flags_to_raid_index(type); | 
|  | int ncopies = btrfs_raid_array[index].ncopies; | 
|  | const int nparity = btrfs_raid_array[index].nparity; | 
|  | int data_stripes; | 
|  |  | 
|  | if (nparity) | 
|  | data_stripes = num_stripes - nparity; | 
|  | else | 
|  | data_stripes = num_stripes / ncopies; | 
|  |  | 
|  | return div_u64(chunk_len, data_stripes); | 
|  | } | 
|  |  | 
|  | static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct extent_map_tree *map_tree = &fs_info->mapping_tree; | 
|  | struct map_lookup *map; | 
|  | struct extent_map *em; | 
|  | u64 logical; | 
|  | u64 length; | 
|  | u64 devid; | 
|  | u8 uuid[BTRFS_UUID_SIZE]; | 
|  | int num_stripes; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | logical = key->offset; | 
|  | length = btrfs_chunk_length(leaf, chunk); | 
|  | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  |  | 
|  | /* | 
|  | * Only need to verify chunk item if we're reading from sys chunk array, | 
|  | * as chunk item in tree block is already verified by tree-checker. | 
|  | */ | 
|  | if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { | 
|  | ret = btrfs_check_chunk_valid(leaf, chunk, logical); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | read_lock(&map_tree->lock); | 
|  | em = lookup_extent_mapping(map_tree, logical, 1); | 
|  | read_unlock(&map_tree->lock); | 
|  |  | 
|  | /* already mapped? */ | 
|  | if (em && em->start <= logical && em->start + em->len > logical) { | 
|  | free_extent_map(em); | 
|  | return 0; | 
|  | } else if (em) { | 
|  | free_extent_map(em); | 
|  | } | 
|  |  | 
|  | em = alloc_extent_map(); | 
|  | if (!em) | 
|  | return -ENOMEM; | 
|  | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
|  | if (!map) { | 
|  | free_extent_map(em); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); | 
|  | em->map_lookup = map; | 
|  | em->start = logical; | 
|  | em->len = length; | 
|  | em->orig_start = 0; | 
|  | em->block_start = 0; | 
|  | em->block_len = em->len; | 
|  |  | 
|  | map->num_stripes = num_stripes; | 
|  | map->io_width = btrfs_chunk_io_width(leaf, chunk); | 
|  | map->io_align = btrfs_chunk_io_align(leaf, chunk); | 
|  | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | 
|  | map->type = btrfs_chunk_type(leaf, chunk); | 
|  | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | 
|  | map->verified_stripes = 0; | 
|  | em->orig_block_len = calc_stripe_length(map->type, em->len, | 
|  | map->num_stripes); | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | map->stripes[i].physical = | 
|  | btrfs_stripe_offset_nr(leaf, chunk, i); | 
|  | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | 
|  | read_extent_buffer(leaf, uuid, (unsigned long) | 
|  | btrfs_stripe_dev_uuid_nr(chunk, i), | 
|  | BTRFS_UUID_SIZE); | 
|  | map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, | 
|  | devid, uuid, NULL, true); | 
|  | if (!map->stripes[i].dev && | 
|  | !btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | free_extent_map(em); | 
|  | btrfs_report_missing_device(fs_info, devid, uuid, true); | 
|  | return -ENOENT; | 
|  | } | 
|  | if (!map->stripes[i].dev) { | 
|  | map->stripes[i].dev = | 
|  | add_missing_dev(fs_info->fs_devices, devid, | 
|  | uuid); | 
|  | if (IS_ERR(map->stripes[i].dev)) { | 
|  | free_extent_map(em); | 
|  | btrfs_err(fs_info, | 
|  | "failed to init missing dev %llu: %ld", | 
|  | devid, PTR_ERR(map->stripes[i].dev)); | 
|  | return PTR_ERR(map->stripes[i].dev); | 
|  | } | 
|  | btrfs_report_missing_device(fs_info, devid, uuid, false); | 
|  | } | 
|  | set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, | 
|  | &(map->stripes[i].dev->dev_state)); | 
|  |  | 
|  | } | 
|  |  | 
|  | write_lock(&map_tree->lock); | 
|  | ret = add_extent_mapping(map_tree, em, 0); | 
|  | write_unlock(&map_tree->lock); | 
|  | if (ret < 0) { | 
|  | btrfs_err(fs_info, | 
|  | "failed to add chunk map, start=%llu len=%llu: %d", | 
|  | em->start, em->len, ret); | 
|  | } | 
|  | free_extent_map(em); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void fill_device_from_item(struct extent_buffer *leaf, | 
|  | struct btrfs_dev_item *dev_item, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | unsigned long ptr; | 
|  |  | 
|  | device->devid = btrfs_device_id(leaf, dev_item); | 
|  | device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); | 
|  | device->total_bytes = device->disk_total_bytes; | 
|  | device->commit_total_bytes = device->disk_total_bytes; | 
|  | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | 
|  | device->commit_bytes_used = device->bytes_used; | 
|  | device->type = btrfs_device_type(leaf, dev_item); | 
|  | device->io_align = btrfs_device_io_align(leaf, dev_item); | 
|  | device->io_width = btrfs_device_io_width(leaf, dev_item); | 
|  | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | 
|  | WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); | 
|  | clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); | 
|  |  | 
|  | ptr = btrfs_device_uuid(dev_item); | 
|  | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, | 
|  | u8 *fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  | ASSERT(fsid); | 
|  |  | 
|  | /* This will match only for multi-device seed fs */ | 
|  | list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) | 
|  | if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) | 
|  | return fs_devices; | 
|  |  | 
|  |  | 
|  | fs_devices = find_fsid(fsid, NULL); | 
|  | if (!fs_devices) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | fs_devices = alloc_fs_devices(fsid, NULL); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return fs_devices; | 
|  |  | 
|  | fs_devices->seeding = true; | 
|  | fs_devices->opened = 1; | 
|  | return fs_devices; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Upon first call for a seed fs fsid, just create a private copy of the | 
|  | * respective fs_devices and anchor it at fs_info->fs_devices->seed_list | 
|  | */ | 
|  | fs_devices = clone_fs_devices(fs_devices); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return fs_devices; | 
|  |  | 
|  | ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); | 
|  | if (ret) { | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | if (!fs_devices->seeding) { | 
|  | close_fs_devices(fs_devices); | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); | 
|  |  | 
|  | return fs_devices; | 
|  | } | 
|  |  | 
|  | static int read_one_dev(struct extent_buffer *leaf, | 
|  | struct btrfs_dev_item *dev_item) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | u64 devid; | 
|  | int ret; | 
|  | u8 fs_uuid[BTRFS_FSID_SIZE]; | 
|  | u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  |  | 
|  | devid = btrfs_device_id(leaf, dev_item); | 
|  | read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), | 
|  | BTRFS_FSID_SIZE); | 
|  |  | 
|  | if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { | 
|  | fs_devices = open_seed_devices(fs_info, fs_uuid); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return PTR_ERR(fs_devices); | 
|  | } | 
|  |  | 
|  | device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, | 
|  | fs_uuid, true); | 
|  | if (!device) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_report_missing_device(fs_info, devid, | 
|  | dev_uuid, true); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | device = add_missing_dev(fs_devices, devid, dev_uuid); | 
|  | if (IS_ERR(device)) { | 
|  | btrfs_err(fs_info, | 
|  | "failed to add missing dev %llu: %ld", | 
|  | devid, PTR_ERR(device)); | 
|  | return PTR_ERR(device); | 
|  | } | 
|  | btrfs_report_missing_device(fs_info, devid, dev_uuid, false); | 
|  | } else { | 
|  | if (!device->bdev) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_report_missing_device(fs_info, | 
|  | devid, dev_uuid, true); | 
|  | return -ENOENT; | 
|  | } | 
|  | btrfs_report_missing_device(fs_info, devid, | 
|  | dev_uuid, false); | 
|  | } | 
|  |  | 
|  | if (!device->bdev && | 
|  | !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { | 
|  | /* | 
|  | * this happens when a device that was properly setup | 
|  | * in the device info lists suddenly goes bad. | 
|  | * device->bdev is NULL, and so we have to set | 
|  | * device->missing to one here | 
|  | */ | 
|  | device->fs_devices->missing_devices++; | 
|  | set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | } | 
|  |  | 
|  | /* Move the device to its own fs_devices */ | 
|  | if (device->fs_devices != fs_devices) { | 
|  | ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &device->dev_state)); | 
|  |  | 
|  | list_move(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices->num_devices--; | 
|  | fs_devices->num_devices++; | 
|  |  | 
|  | device->fs_devices->missing_devices--; | 
|  | fs_devices->missing_devices++; | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (device->fs_devices != fs_info->fs_devices) { | 
|  | BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); | 
|  | if (device->generation != | 
|  | btrfs_device_generation(leaf, dev_item)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fill_device_from_item(leaf, dev_item, device); | 
|  | set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | device->fs_devices->total_rw_bytes += device->total_bytes; | 
|  | atomic64_add(device->total_bytes - device->bytes_used, | 
|  | &fs_info->free_chunk_space); | 
|  | } | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | struct extent_buffer *sb; | 
|  | struct btrfs_disk_key *disk_key; | 
|  | struct btrfs_chunk *chunk; | 
|  | u8 *array_ptr; | 
|  | unsigned long sb_array_offset; | 
|  | int ret = 0; | 
|  | u32 num_stripes; | 
|  | u32 array_size; | 
|  | u32 len = 0; | 
|  | u32 cur_offset; | 
|  | u64 type; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); | 
|  | /* | 
|  | * This will create extent buffer of nodesize, superblock size is | 
|  | * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will | 
|  | * overallocate but we can keep it as-is, only the first page is used. | 
|  | */ | 
|  | sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); | 
|  | if (IS_ERR(sb)) | 
|  | return PTR_ERR(sb); | 
|  | set_extent_buffer_uptodate(sb); | 
|  | btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); | 
|  | /* | 
|  | * The sb extent buffer is artificial and just used to read the system array. | 
|  | * set_extent_buffer_uptodate() call does not properly mark all it's | 
|  | * pages up-to-date when the page is larger: extent does not cover the | 
|  | * whole page and consequently check_page_uptodate does not find all | 
|  | * the page's extents up-to-date (the hole beyond sb), | 
|  | * write_extent_buffer then triggers a WARN_ON. | 
|  | * | 
|  | * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, | 
|  | * but sb spans only this function. Add an explicit SetPageUptodate call | 
|  | * to silence the warning eg. on PowerPC 64. | 
|  | */ | 
|  | if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) | 
|  | SetPageUptodate(sb->pages[0]); | 
|  |  | 
|  | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  |  | 
|  | array_ptr = super_copy->sys_chunk_array; | 
|  | sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); | 
|  | cur_offset = 0; | 
|  |  | 
|  | while (cur_offset < array_size) { | 
|  | disk_key = (struct btrfs_disk_key *)array_ptr; | 
|  | len = sizeof(*disk_key); | 
|  | if (cur_offset + len > array_size) | 
|  | goto out_short_read; | 
|  |  | 
|  | btrfs_disk_key_to_cpu(&key, disk_key); | 
|  |  | 
|  | array_ptr += len; | 
|  | sb_array_offset += len; | 
|  | cur_offset += len; | 
|  |  | 
|  | if (key.type != BTRFS_CHUNK_ITEM_KEY) { | 
|  | btrfs_err(fs_info, | 
|  | "unexpected item type %u in sys_array at offset %u", | 
|  | (u32)key.type, cur_offset); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk = (struct btrfs_chunk *)sb_array_offset; | 
|  | /* | 
|  | * At least one btrfs_chunk with one stripe must be present, | 
|  | * exact stripe count check comes afterwards | 
|  | */ | 
|  | len = btrfs_chunk_item_size(1); | 
|  | if (cur_offset + len > array_size) | 
|  | goto out_short_read; | 
|  |  | 
|  | num_stripes = btrfs_chunk_num_stripes(sb, chunk); | 
|  | if (!num_stripes) { | 
|  | btrfs_err(fs_info, | 
|  | "invalid number of stripes %u in sys_array at offset %u", | 
|  | num_stripes, cur_offset); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | type = btrfs_chunk_type(sb, chunk); | 
|  | if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { | 
|  | btrfs_err(fs_info, | 
|  | "invalid chunk type %llu in sys_array at offset %u", | 
|  | type, cur_offset); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | len = btrfs_chunk_item_size(num_stripes); | 
|  | if (cur_offset + len > array_size) | 
|  | goto out_short_read; | 
|  |  | 
|  | ret = read_one_chunk(&key, sb, chunk); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | array_ptr += len; | 
|  | sb_array_offset += len; | 
|  | cur_offset += len; | 
|  | } | 
|  | clear_extent_buffer_uptodate(sb); | 
|  | free_extent_buffer_stale(sb); | 
|  | return ret; | 
|  |  | 
|  | out_short_read: | 
|  | btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", | 
|  | len, cur_offset); | 
|  | clear_extent_buffer_uptodate(sb); | 
|  | free_extent_buffer_stale(sb); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if all chunks in the fs are OK for read-write degraded mount | 
|  | * | 
|  | * If the @failing_dev is specified, it's accounted as missing. | 
|  | * | 
|  | * Return true if all chunks meet the minimal RW mount requirements. | 
|  | * Return false if any chunk doesn't meet the minimal RW mount requirements. | 
|  | */ | 
|  | bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_device *failing_dev) | 
|  | { | 
|  | struct extent_map_tree *map_tree = &fs_info->mapping_tree; | 
|  | struct extent_map *em; | 
|  | u64 next_start = 0; | 
|  | bool ret = true; | 
|  |  | 
|  | read_lock(&map_tree->lock); | 
|  | em = lookup_extent_mapping(map_tree, 0, (u64)-1); | 
|  | read_unlock(&map_tree->lock); | 
|  | /* No chunk at all? Return false anyway */ | 
|  | if (!em) { | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  | while (em) { | 
|  | struct map_lookup *map; | 
|  | int missing = 0; | 
|  | int max_tolerated; | 
|  | int i; | 
|  |  | 
|  | map = em->map_lookup; | 
|  | max_tolerated = | 
|  | btrfs_get_num_tolerated_disk_barrier_failures( | 
|  | map->type); | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *dev = map->stripes[i].dev; | 
|  |  | 
|  | if (!dev || !dev->bdev || | 
|  | test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || | 
|  | dev->last_flush_error) | 
|  | missing++; | 
|  | else if (failing_dev && failing_dev == dev) | 
|  | missing++; | 
|  | } | 
|  | if (missing > max_tolerated) { | 
|  | if (!failing_dev) | 
|  | btrfs_warn(fs_info, | 
|  | "chunk %llu missing %d devices, max tolerance is %d for writable mount", | 
|  | em->start, missing, max_tolerated); | 
|  | free_extent_map(em); | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  | next_start = extent_map_end(em); | 
|  | free_extent_map(em); | 
|  |  | 
|  | read_lock(&map_tree->lock); | 
|  | em = lookup_extent_mapping(map_tree, next_start, | 
|  | (u64)(-1) - next_start); | 
|  | read_unlock(&map_tree->lock); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void readahead_tree_node_children(struct extent_buffer *node) | 
|  | { | 
|  | int i; | 
|  | const int nr_items = btrfs_header_nritems(node); | 
|  |  | 
|  | for (i = 0; i < nr_items; i++) { | 
|  | u64 start; | 
|  |  | 
|  | start = btrfs_node_blockptr(node, i); | 
|  | readahead_tree_block(node->fs_info, start); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | int ret; | 
|  | int slot; | 
|  | u64 total_dev = 0; | 
|  | u64 last_ra_node = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * uuid_mutex is needed only if we are mounting a sprout FS | 
|  | * otherwise we don't need it. | 
|  | */ | 
|  | mutex_lock(&uuid_mutex); | 
|  |  | 
|  | /* | 
|  | * It is possible for mount and umount to race in such a way that | 
|  | * we execute this code path, but open_fs_devices failed to clear | 
|  | * total_rw_bytes. We certainly want it cleared before reading the | 
|  | * device items, so clear it here. | 
|  | */ | 
|  | fs_info->fs_devices->total_rw_bytes = 0; | 
|  |  | 
|  | /* | 
|  | * Read all device items, and then all the chunk items. All | 
|  | * device items are found before any chunk item (their object id | 
|  | * is smaller than the lowest possible object id for a chunk | 
|  | * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). | 
|  | */ | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.offset = 0; | 
|  | key.type = 0; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | while (1) { | 
|  | struct extent_buffer *node; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * The nodes on level 1 are not locked but we don't need to do | 
|  | * that during mount time as nothing else can access the tree | 
|  | */ | 
|  | node = path->nodes[1]; | 
|  | if (node) { | 
|  | if (last_ra_node != node->start) { | 
|  | readahead_tree_node_children(node); | 
|  | last_ra_node = node->start; | 
|  | } | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | 
|  | struct btrfs_dev_item *dev_item; | 
|  | dev_item = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_dev_item); | 
|  | ret = read_one_dev(leaf, dev_item); | 
|  | if (ret) | 
|  | goto error; | 
|  | total_dev++; | 
|  | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | struct btrfs_chunk *chunk; | 
|  | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | ret = read_one_chunk(&found_key, leaf, chunk); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After loading chunk tree, we've got all device information, | 
|  | * do another round of validation checks. | 
|  | */ | 
|  | if (total_dev != fs_info->fs_devices->total_devices) { | 
|  | btrfs_warn(fs_info, | 
|  | "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", | 
|  | btrfs_super_num_devices(fs_info->super_copy), | 
|  | total_dev); | 
|  | fs_info->fs_devices->total_devices = total_dev; | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, total_dev); | 
|  | } | 
|  | if (btrfs_super_total_bytes(fs_info->super_copy) < | 
|  | fs_info->fs_devices->total_rw_bytes) { | 
|  | btrfs_err(fs_info, | 
|  | "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", | 
|  | btrfs_super_total_bytes(fs_info->super_copy), | 
|  | fs_info->fs_devices->total_rw_bytes); | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | mutex_unlock(&uuid_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | fs_devices->fs_info = fs_info; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) | 
|  | device->fs_info = fs_info; | 
|  |  | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { | 
|  | list_for_each_entry(device, &seed_devs->devices, dev_list) | 
|  | device->fs_info = fs_info; | 
|  |  | 
|  | seed_devs->fs_info = fs_info; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | } | 
|  |  | 
|  | static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, | 
|  | const struct btrfs_dev_stats_item *ptr, | 
|  | int index) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | read_extent_buffer(eb, &val, | 
|  | offsetof(struct btrfs_dev_stats_item, values) + | 
|  | ((unsigned long)ptr) + (index * sizeof(u64)), | 
|  | sizeof(val)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void btrfs_set_dev_stats_value(struct extent_buffer *eb, | 
|  | struct btrfs_dev_stats_item *ptr, | 
|  | int index, u64 val) | 
|  | { | 
|  | write_extent_buffer(eb, &val, | 
|  | offsetof(struct btrfs_dev_stats_item, values) + | 
|  | ((unsigned long)ptr) + (index * sizeof(u64)), | 
|  | sizeof(val)); | 
|  | } | 
|  |  | 
|  | static int btrfs_device_init_dev_stats(struct btrfs_device *device, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_dev_stats_item *ptr; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key key; | 
|  | int item_size; | 
|  | int i, ret, slot; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_STATS_OBJECTID; | 
|  | key.type = BTRFS_PERSISTENT_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  | ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); | 
|  | if (ret) { | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | btrfs_dev_stat_set(device, i, 0); | 
|  | device->dev_stats_valid = 1; | 
|  | btrfs_release_path(path); | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  | slot = path->slots[0]; | 
|  | eb = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  |  | 
|  | ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); | 
|  |  | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { | 
|  | if (item_size >= (1 + i) * sizeof(__le64)) | 
|  | btrfs_dev_stat_set(device, i, | 
|  | btrfs_dev_stats_value(eb, ptr, i)); | 
|  | else | 
|  | btrfs_dev_stat_set(device, i, 0); | 
|  | } | 
|  |  | 
|  | device->dev_stats_valid = 1; | 
|  | btrfs_dev_stat_print_on_load(device); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_path *path = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | ret = btrfs_device_init_dev_stats(device, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { | 
|  | list_for_each_entry(device, &seed_devs->devices, dev_list) { | 
|  | ret = btrfs_device_init_dev_stats(device, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int update_dev_stat_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *dev_root = fs_info->dev_root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_dev_stats_item *ptr; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_STATS_OBJECTID; | 
|  | key.type = BTRFS_PERSISTENT_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "error %d while searching for dev_stats item for device %s", | 
|  | ret, rcu_str_deref(device->name)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret == 0 && | 
|  | btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { | 
|  | /* need to delete old one and insert a new one */ | 
|  | ret = btrfs_del_item(trans, dev_root, path); | 
|  | if (ret != 0) { | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "delete too small dev_stats item for device %s failed %d", | 
|  | rcu_str_deref(device->name), ret); | 
|  | goto out; | 
|  | } | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret == 1) { | 
|  | /* need to insert a new item */ | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_insert_empty_item(trans, dev_root, path, | 
|  | &key, sizeof(*ptr)); | 
|  | if (ret < 0) { | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "insert dev_stats item for device %s failed %d", | 
|  | rcu_str_deref(device->name), ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | btrfs_set_dev_stats_value(eb, ptr, i, | 
|  | btrfs_dev_stat_read(device, i)); | 
|  | btrfs_mark_buffer_dirty(eb); | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from commit_transaction. Writes all changed device stats to disk. | 
|  | */ | 
|  | int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | int stats_cnt; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | stats_cnt = atomic_read(&device->dev_stats_ccnt); | 
|  | if (!device->dev_stats_valid || stats_cnt == 0) | 
|  | continue; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * There is a LOAD-LOAD control dependency between the value of | 
|  | * dev_stats_ccnt and updating the on-disk values which requires | 
|  | * reading the in-memory counters. Such control dependencies | 
|  | * require explicit read memory barriers. | 
|  | * | 
|  | * This memory barriers pairs with smp_mb__before_atomic in | 
|  | * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full | 
|  | * barrier implied by atomic_xchg in | 
|  | * btrfs_dev_stats_read_and_reset | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | ret = update_dev_stat_item(trans, device); | 
|  | if (!ret) | 
|  | atomic_sub(stats_cnt, &device->dev_stats_ccnt); | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) | 
|  | { | 
|  | btrfs_dev_stat_inc(dev, index); | 
|  | btrfs_dev_stat_print_on_error(dev); | 
|  | } | 
|  |  | 
|  | static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) | 
|  | { | 
|  | if (!dev->dev_stats_valid) | 
|  | return; | 
|  | btrfs_err_rl_in_rcu(dev->fs_info, | 
|  | "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", | 
|  | rcu_str_deref(dev->name), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); | 
|  | } | 
|  |  | 
|  | static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | if (btrfs_dev_stat_read(dev, i) != 0) | 
|  | break; | 
|  | if (i == BTRFS_DEV_STAT_VALUES_MAX) | 
|  | return; /* all values == 0, suppress message */ | 
|  |  | 
|  | btrfs_info_in_rcu(dev->fs_info, | 
|  | "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", | 
|  | rcu_str_deref(dev->name), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); | 
|  | } | 
|  |  | 
|  | int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_ioctl_get_dev_stats *stats) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, | 
|  | true); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (!dev) { | 
|  | btrfs_warn(fs_info, "get dev_stats failed, device not found"); | 
|  | return -ENODEV; | 
|  | } else if (!dev->dev_stats_valid) { | 
|  | btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); | 
|  | return -ENODEV; | 
|  | } else if (stats->flags & BTRFS_DEV_STATS_RESET) { | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { | 
|  | if (stats->nr_items > i) | 
|  | stats->values[i] = | 
|  | btrfs_dev_stat_read_and_reset(dev, i); | 
|  | else | 
|  | btrfs_dev_stat_set(dev, i, 0); | 
|  | } | 
|  | btrfs_info(fs_info, "device stats zeroed by %s (%d)", | 
|  | current->comm, task_pid_nr(current)); | 
|  | } else { | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | if (stats->nr_items > i) | 
|  | stats->values[i] = btrfs_dev_stat_read(dev, i); | 
|  | } | 
|  | if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) | 
|  | stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the size and bytes used for each device where it changed.  This is | 
|  | * delayed since we would otherwise get errors while writing out the | 
|  | * superblocks. | 
|  | * | 
|  | * Must be invoked during transaction commit. | 
|  | */ | 
|  | void btrfs_commit_device_sizes(struct btrfs_transaction *trans) | 
|  | { | 
|  | struct btrfs_device *curr, *next; | 
|  |  | 
|  | ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); | 
|  |  | 
|  | if (list_empty(&trans->dev_update_list)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We don't need the device_list_mutex here.  This list is owned by the | 
|  | * transaction and the transaction must complete before the device is | 
|  | * released. | 
|  | */ | 
|  | mutex_lock(&trans->fs_info->chunk_mutex); | 
|  | list_for_each_entry_safe(curr, next, &trans->dev_update_list, | 
|  | post_commit_list) { | 
|  | list_del_init(&curr->post_commit_list); | 
|  | curr->commit_total_bytes = curr->disk_total_bytes; | 
|  | curr->commit_bytes_used = curr->bytes_used; | 
|  | } | 
|  | mutex_unlock(&trans->fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. | 
|  | */ | 
|  | int btrfs_bg_type_to_factor(u64 flags) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(flags); | 
|  |  | 
|  | return btrfs_raid_array[index].ncopies; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 chunk_offset, u64 devid, | 
|  | u64 physical_offset, u64 physical_len) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &fs_info->mapping_tree; | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | struct btrfs_device *dev; | 
|  | u64 stripe_len; | 
|  | bool found = false; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | if (!em) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", | 
|  | physical_offset, devid); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | map = em->map_lookup; | 
|  | stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); | 
|  | if (physical_len != stripe_len) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", | 
|  | physical_offset, devid, em->start, physical_len, | 
|  | stripe_len); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (map->stripes[i].dev->devid == devid && | 
|  | map->stripes[i].physical == physical_offset) { | 
|  | found = true; | 
|  | if (map->verified_stripes >= map->num_stripes) { | 
|  | btrfs_err(fs_info, | 
|  | "too many dev extents for chunk %llu found", | 
|  | em->start); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | map->verified_stripes++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent physical offset %llu devid %llu has no corresponding chunk", | 
|  | physical_offset, devid); | 
|  | ret = -EUCLEAN; | 
|  | } | 
|  |  | 
|  | /* Make sure no dev extent is beyond device bondary */ | 
|  | dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); | 
|  | if (!dev) { | 
|  | btrfs_err(fs_info, "failed to find devid %llu", devid); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* It's possible this device is a dummy for seed device */ | 
|  | if (dev->disk_total_bytes == 0) { | 
|  | struct btrfs_fs_devices *devs; | 
|  |  | 
|  | devs = list_first_entry(&fs_info->fs_devices->seed_list, | 
|  | struct btrfs_fs_devices, seed_list); | 
|  | dev = btrfs_find_device(devs, devid, NULL, NULL, false); | 
|  | if (!dev) { | 
|  | btrfs_err(fs_info, "failed to find seed devid %llu", | 
|  | devid); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (physical_offset + physical_len > dev->disk_total_bytes) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", | 
|  | devid, physical_offset, physical_len, | 
|  | dev->disk_total_bytes); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &fs_info->mapping_tree; | 
|  | struct extent_map *em; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { | 
|  | em = rb_entry(node, struct extent_map, rb_node); | 
|  | if (em->map_lookup->num_stripes != | 
|  | em->map_lookup->verified_stripes) { | 
|  | btrfs_err(fs_info, | 
|  | "chunk %llu has missing dev extent, have %d expect %d", | 
|  | em->start, em->map_lookup->verified_stripes, | 
|  | em->map_lookup->num_stripes); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | read_unlock(&em_tree->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that all dev extents are mapped to correct chunk, otherwise | 
|  | * later chunk allocation/free would cause unexpected behavior. | 
|  | * | 
|  | * NOTE: This will iterate through the whole device tree, which should be of | 
|  | * the same size level as the chunk tree.  This slightly increases mount time. | 
|  | */ | 
|  | int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_key key; | 
|  | u64 prev_devid = 0; | 
|  | u64 prev_dev_ext_end = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | key.objectid = 1; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_item(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* No dev extents at all? Not good */ | 
|  | if (ret > 0) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | while (1) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_dev_extent *dext; | 
|  | int slot = path->slots[0]; | 
|  | u64 chunk_offset; | 
|  | u64 physical_offset; | 
|  | u64 physical_len; | 
|  | u64 devid; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.type != BTRFS_DEV_EXTENT_KEY) | 
|  | break; | 
|  | devid = key.objectid; | 
|  | physical_offset = key.offset; | 
|  |  | 
|  | dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); | 
|  | physical_len = btrfs_dev_extent_length(leaf, dext); | 
|  |  | 
|  | /* Check if this dev extent overlaps with the previous one */ | 
|  | if (devid == prev_devid && physical_offset < prev_dev_ext_end) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", | 
|  | devid, physical_offset, prev_dev_ext_end); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = verify_one_dev_extent(fs_info, chunk_offset, devid, | 
|  | physical_offset, physical_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | prev_devid = devid; | 
|  | prev_dev_ext_end = physical_offset + physical_len; | 
|  |  | 
|  | ret = btrfs_next_item(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure all chunks have corresponding dev extents */ | 
|  | ret = verify_chunk_dev_extent_mapping(fs_info); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the given block group or device is pinned by any inode being | 
|  | * used as a swapfile. | 
|  | */ | 
|  | bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) | 
|  | { | 
|  | struct btrfs_swapfile_pin *sp; | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&fs_info->swapfile_pins_lock); | 
|  | node = fs_info->swapfile_pins.rb_node; | 
|  | while (node) { | 
|  | sp = rb_entry(node, struct btrfs_swapfile_pin, node); | 
|  | if (ptr < sp->ptr) | 
|  | node = node->rb_left; | 
|  | else if (ptr > sp->ptr) | 
|  | node = node->rb_right; | 
|  | else | 
|  | break; | 
|  | } | 
|  | spin_unlock(&fs_info->swapfile_pins_lock); | 
|  | return node != NULL; | 
|  | } |