blob: cc4273f1198943867e6dc0388af18dcd3f0fff1e [file] [log] [blame]
* Copyright (c) 2011-2014, Intel Corporation.
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
#ifndef _NVME_H
#define _NVME_H
#include <linux/nvme.h>
#include <linux/cdev.h>
#include <linux/pci.h>
#include <linux/kref.h>
#include <linux/blk-mq.h>
#include <linux/lightnvm.h>
#include <linux/sed-opal.h>
#include <linux/fault-inject.h>
#include <linux/rcupdate.h>
extern unsigned int nvme_io_timeout;
#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
extern unsigned int admin_timeout;
#define ADMIN_TIMEOUT (admin_timeout * HZ)
#define NVME_KATO_GRACE 10
extern struct workqueue_struct *nvme_wq;
extern struct workqueue_struct *nvme_reset_wq;
extern struct workqueue_struct *nvme_delete_wq;
enum {
* List of workarounds for devices that required behavior not specified in
* the standard.
enum nvme_quirks {
* Prefers I/O aligned to a stripe size specified in a vendor
* specific Identify field.
* The controller doesn't handle Identify value others than 0 or 1
* correctly.
* The controller deterministically returns O's on reads to
* logical blocks that deallocate was called on.
* The controller needs a delay before starts checking the device
* readiness, which is done by reading the NVME_CSTS_RDY bit.
* APST should not be used.
NVME_QUIRK_NO_APST = (1 << 4),
* The deepest sleep state should not be used.
* Supports the LighNVM command set if indicated in vs[1].
* Set MEDIUM priority on SQ creation
* Common request structure for NVMe passthrough. All drivers must have
* this structure as the first member of their request-private data.
struct nvme_request {
struct nvme_command *cmd;
union nvme_result result;
u8 retries;
u8 flags;
u16 status;
struct nvme_ctrl *ctrl;
* Mark a bio as coming in through the mpath node.
enum {
NVME_REQ_USERCMD = (1 << 1),
static inline struct nvme_request *nvme_req(struct request *req)
return blk_mq_rq_to_pdu(req);
static inline u16 nvme_req_qid(struct request *req)
if (!req->rq_disk)
return 0;
return blk_mq_unique_tag_to_hwq(blk_mq_unique_tag(req)) + 1;
/* The below value is the specific amount of delay needed before checking
* readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
* NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
* found empirically.
enum nvme_ctrl_state {
NVME_CTRL_ADMIN_ONLY, /* Only admin queue live */
struct nvme_ctrl {
enum nvme_ctrl_state state;
bool identified;
spinlock_t lock;
struct mutex scan_lock;
const struct nvme_ctrl_ops *ops;
struct request_queue *admin_q;
struct request_queue *connect_q;
struct device *dev;
int instance;
struct blk_mq_tag_set *tagset;
struct blk_mq_tag_set *admin_tagset;
struct list_head namespaces;
struct rw_semaphore namespaces_rwsem;
struct device ctrl_device;
struct device *device; /* char device */
struct cdev cdev;
struct work_struct reset_work;
struct work_struct delete_work;
struct nvme_subsystem *subsys;
struct list_head subsys_entry;
struct opal_dev *opal_dev;
char name[12];
u16 cntlid;
u32 ctrl_config;
u16 mtfa;
u32 queue_count;
u64 cap;
u32 page_size;
u32 max_hw_sectors;
u32 max_segments;
u16 oncs;
u16 oacs;
u16 nssa;
u16 nr_streams;
u32 max_namespaces;
atomic_t abort_limit;
u8 vwc;
u32 vs;
u32 sgls;
u16 kas;
u8 npss;
u8 apsta;
u32 oaes;
u32 aen_result;
unsigned int shutdown_timeout;
unsigned int kato;
bool subsystem;
unsigned long quirks;
struct nvme_id_power_state psd[32];
struct nvme_effects_log *effects;
struct work_struct scan_work;
struct work_struct async_event_work;
struct delayed_work ka_work;
struct nvme_command ka_cmd;
struct work_struct fw_act_work;
unsigned long events;
/* asymmetric namespace access: */
u8 anacap;
u8 anatt;
u32 anagrpmax;
u32 nanagrpid;
struct mutex ana_lock;
struct nvme_ana_rsp_hdr *ana_log_buf;
size_t ana_log_size;
struct timer_list anatt_timer;
struct work_struct ana_work;
/* Power saving configuration */
u64 ps_max_latency_us;
bool apst_enabled;
/* PCIe only: */
u32 hmpre;
u32 hmmin;
u32 hmminds;
u16 hmmaxd;
/* Fabrics only */
u16 sqsize;
u32 ioccsz;
u32 iorcsz;
u16 icdoff;
u16 maxcmd;
int nr_reconnects;
struct nvmf_ctrl_options *opts;
struct page *discard_page;
unsigned long discard_page_busy;
struct nvme_subsystem {
int instance;
struct device dev;
* Because we unregister the device on the last put we need
* a separate refcount.
struct kref ref;
struct list_head entry;
struct mutex lock;
struct list_head ctrls;
struct list_head nsheads;
char subnqn[NVMF_NQN_SIZE];
char serial[20];
char model[40];
char firmware_rev[8];
u8 cmic;
u16 vendor_id;
struct ida ns_ida;
* Container structure for uniqueue namespace identifiers.
struct nvme_ns_ids {
u8 eui64[8];
u8 nguid[16];
uuid_t uuid;
* Anchor structure for namespaces. There is one for each namespace in a
* NVMe subsystem that any of our controllers can see, and the namespace
* structure for each controller is chained of it. For private namespaces
* there is a 1:1 relation to our namespace structures, that is ->list
* only ever has a single entry for private namespaces.
struct nvme_ns_head {
struct gendisk *disk;
struct nvme_ns __rcu *current_path;
struct bio_list requeue_list;
spinlock_t requeue_lock;
struct work_struct requeue_work;
struct mutex lock;
struct list_head list;
struct srcu_struct srcu;
struct nvme_subsystem *subsys;
unsigned ns_id;
struct nvme_ns_ids ids;
struct list_head entry;
struct kref ref;
int instance;
struct nvme_fault_inject {
struct fault_attr attr;
struct dentry *parent;
bool dont_retry; /* DNR, do not retry */
u16 status; /* status code */
struct nvme_ns {
struct list_head list;
struct nvme_ctrl *ctrl;
struct request_queue *queue;
struct gendisk *disk;
enum nvme_ana_state ana_state;
u32 ana_grpid;
struct list_head siblings;
struct nvm_dev *ndev;
struct kref kref;
struct nvme_ns_head *head;
int lba_shift;
u16 ms;
u16 sgs;
u32 sws;
bool ext;
u8 pi_type;
unsigned long flags;
#define NVME_NS_DEAD 1
u16 noiob;
struct nvme_fault_inject fault_inject;
struct nvme_ctrl_ops {
const char *name;
struct module *module;
unsigned int flags;
#define NVME_F_FABRICS (1 << 0)
int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
void (*free_ctrl)(struct nvme_ctrl *ctrl);
void (*submit_async_event)(struct nvme_ctrl *ctrl);
void (*delete_ctrl)(struct nvme_ctrl *ctrl);
int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
void (*stop_ctrl)(struct nvme_ctrl *ctrl);
void nvme_fault_inject_init(struct nvme_ns *ns);
void nvme_fault_inject_fini(struct nvme_ns *ns);
void nvme_should_fail(struct request *req);
static inline void nvme_fault_inject_init(struct nvme_ns *ns) {}
static inline void nvme_fault_inject_fini(struct nvme_ns *ns) {}
static inline void nvme_should_fail(struct request *req) {}
static inline bool nvme_ctrl_ready(struct nvme_ctrl *ctrl)
u32 val = 0;
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &val))
return false;
return val & NVME_CSTS_RDY;
static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
if (!ctrl->subsystem)
return -ENOTTY;
return ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
static inline u64 nvme_block_nr(struct nvme_ns *ns, sector_t sector)
return (sector >> (ns->lba_shift - 9));
static inline void nvme_end_request(struct request *req, __le16 status,
union nvme_result result)
struct nvme_request *rq = nvme_req(req);
rq->status = le16_to_cpu(status) >> 1;
rq->result = result;
/* inject error when permitted by fault injection framework */
static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
void nvme_complete_rq(struct request *req);
void nvme_cancel_request(struct request *req, void *data, bool reserved);
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
enum nvme_ctrl_state new_state);
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap);
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks);
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
void nvme_start_ctrl(struct nvme_ctrl *ctrl);
void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
void nvme_put_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_identify(struct nvme_ctrl *ctrl);
void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
bool send);
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
volatile union nvme_result *res);
void nvme_stop_queues(struct nvme_ctrl *ctrl);
void nvme_start_queues(struct nvme_ctrl *ctrl);
void nvme_kill_queues(struct nvme_ctrl *ctrl);
void nvme_unfreeze(struct nvme_ctrl *ctrl);
void nvme_wait_freeze(struct nvme_ctrl *ctrl);
void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
void nvme_start_freeze(struct nvme_ctrl *ctrl);
#define NVME_QID_ANY -1
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid);
void nvme_cleanup_cmd(struct request *req);
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmd);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buf, unsigned bufflen);
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
union nvme_result *result, void *buffer, unsigned bufflen,
unsigned timeout, int qid, int at_head,
blk_mq_req_flags_t flags);
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
void *log, size_t size, u64 offset);
extern const struct attribute_group nvme_ns_id_attr_group;
extern const struct block_device_operations nvme_ns_head_ops;
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
return ctrl->ana_log_buf != NULL;
void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
struct nvme_ctrl *ctrl, int *flags);
void nvme_failover_req(struct request *req);
void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id);
void nvme_mpath_remove_disk(struct nvme_ns_head *head);
int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
void nvme_mpath_stop(struct nvme_ctrl *ctrl);
static inline void nvme_mpath_clear_current_path(struct nvme_ns *ns)
struct nvme_ns_head *head = ns->head;
if (head && ns == rcu_access_pointer(head->current_path))
rcu_assign_pointer(head->current_path, NULL);
struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
static inline void nvme_mpath_check_last_path(struct nvme_ns *ns)
struct nvme_ns_head *head = ns->head;
if (head->disk && list_empty(&head->list))
extern struct device_attribute dev_attr_ana_grpid;
extern struct device_attribute dev_attr_ana_state;
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
return false;
* Without the multipath code enabled, multiple controller per subsystems are
* visible as devices and thus we cannot use the subsystem instance.
static inline void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
struct nvme_ctrl *ctrl, int *flags)
sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
static inline void nvme_failover_req(struct request *req)
static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
struct nvme_ns_head *head)
return 0;
static inline void nvme_mpath_add_disk(struct nvme_ns *ns,
struct nvme_id_ns *id)
static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
static inline void nvme_mpath_clear_current_path(struct nvme_ns *ns)
static inline void nvme_mpath_check_last_path(struct nvme_ns *ns)
static inline int nvme_mpath_init(struct nvme_ctrl *ctrl,
struct nvme_id_ctrl *id)
if (ctrl->subsys->cmic & (1 << 3))
"Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
return 0;
static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
void nvme_nvm_update_nvm_info(struct nvme_ns *ns);
int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node);
void nvme_nvm_unregister(struct nvme_ns *ns);
int nvme_nvm_register_sysfs(struct nvme_ns *ns);
void nvme_nvm_unregister_sysfs(struct nvme_ns *ns);
int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg);
static inline void nvme_nvm_update_nvm_info(struct nvme_ns *ns) {};
static inline int nvme_nvm_register(struct nvme_ns *ns, char *disk_name,
int node)
return 0;
static inline void nvme_nvm_unregister(struct nvme_ns *ns) {};
static inline int nvme_nvm_register_sysfs(struct nvme_ns *ns)
return 0;
static inline void nvme_nvm_unregister_sysfs(struct nvme_ns *ns) {};
static inline int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd,
unsigned long arg)
return -ENOTTY;
#endif /* CONFIG_NVM */
static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
return dev_to_disk(dev)->private_data;
int __init nvme_core_init(void);
void nvme_core_exit(void);
#endif /* _NVME_H */