| /* SPDX-License-Identifier: GPL-2.0-only */ | 
 | /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * This module enables machines with Intel VT-x extensions to run virtual | 
 |  * machines without emulation or binary translation. | 
 |  * | 
 |  * MMU support | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  */ | 
 |  | 
 | /* | 
 |  * We need the mmu code to access both 32-bit and 64-bit guest ptes, | 
 |  * so the code in this file is compiled twice, once per pte size. | 
 |  */ | 
 |  | 
 | #if PTTYPE == 64 | 
 | 	#define pt_element_t u64 | 
 | 	#define guest_walker guest_walker64 | 
 | 	#define FNAME(name) paging##64_##name | 
 | 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK | 
 | 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) | 
 | 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) | 
 | 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
 | 	#define PT_LEVEL_BITS PT64_LEVEL_BITS | 
 | 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT | 
 | 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT | 
 | 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true | 
 | 	#ifdef CONFIG_X86_64 | 
 | 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL | 
 | 	#define CMPXCHG "cmpxchgq" | 
 | 	#else | 
 | 	#define PT_MAX_FULL_LEVELS 2 | 
 | 	#endif | 
 | #elif PTTYPE == 32 | 
 | 	#define pt_element_t u32 | 
 | 	#define guest_walker guest_walker32 | 
 | 	#define FNAME(name) paging##32_##name | 
 | 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK | 
 | 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) | 
 | 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) | 
 | 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level) | 
 | 	#define PT_LEVEL_BITS PT32_LEVEL_BITS | 
 | 	#define PT_MAX_FULL_LEVELS 2 | 
 | 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT | 
 | 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT | 
 | 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true | 
 | 	#define CMPXCHG "cmpxchgl" | 
 | #elif PTTYPE == PTTYPE_EPT | 
 | 	#define pt_element_t u64 | 
 | 	#define guest_walker guest_walkerEPT | 
 | 	#define FNAME(name) ept_##name | 
 | 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK | 
 | 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) | 
 | 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) | 
 | 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
 | 	#define PT_LEVEL_BITS PT64_LEVEL_BITS | 
 | 	#define PT_GUEST_DIRTY_SHIFT 9 | 
 | 	#define PT_GUEST_ACCESSED_SHIFT 8 | 
 | 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) | 
 | 	#define PT_MAX_FULL_LEVELS 4 | 
 | 	#ifdef CONFIG_X86_64 | 
 | 	#define CMPXCHG "cmpxchgq" | 
 | 	#endif | 
 | #else | 
 | 	#error Invalid PTTYPE value | 
 | #endif | 
 |  | 
 | #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT) | 
 | #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) | 
 |  | 
 | #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) | 
 | #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) | 
 |  | 
 | /* | 
 |  * The guest_walker structure emulates the behavior of the hardware page | 
 |  * table walker. | 
 |  */ | 
 | struct guest_walker { | 
 | 	int level; | 
 | 	unsigned max_level; | 
 | 	gfn_t table_gfn[PT_MAX_FULL_LEVELS]; | 
 | 	pt_element_t ptes[PT_MAX_FULL_LEVELS]; | 
 | 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; | 
 | 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; | 
 | 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; | 
 | 	bool pte_writable[PT_MAX_FULL_LEVELS]; | 
 | 	unsigned int pt_access[PT_MAX_FULL_LEVELS]; | 
 | 	unsigned int pte_access; | 
 | 	gfn_t gfn; | 
 | 	struct x86_exception fault; | 
 | }; | 
 |  | 
 | static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) | 
 | { | 
 | 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, | 
 | 					     unsigned gpte) | 
 | { | 
 | 	unsigned mask; | 
 |  | 
 | 	/* dirty bit is not supported, so no need to track it */ | 
 | 	if (!PT_HAVE_ACCESSED_DIRTY(mmu)) | 
 | 		return; | 
 |  | 
 | 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); | 
 |  | 
 | 	mask = (unsigned)~ACC_WRITE_MASK; | 
 | 	/* Allow write access to dirty gptes */ | 
 | 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & | 
 | 		PT_WRITABLE_MASK; | 
 | 	*access &= mask; | 
 | } | 
 |  | 
 | static inline int FNAME(is_present_gpte)(unsigned long pte) | 
 | { | 
 | #if PTTYPE != PTTYPE_EPT | 
 | 	return pte & PT_PRESENT_MASK; | 
 | #else | 
 | 	return pte & 7; | 
 | #endif | 
 | } | 
 |  | 
 | static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
 | 			       pt_element_t __user *ptep_user, unsigned index, | 
 | 			       pt_element_t orig_pte, pt_element_t new_pte) | 
 | { | 
 | 	int r = -EFAULT; | 
 |  | 
 | 	if (!user_access_begin(ptep_user, sizeof(pt_element_t))) | 
 | 		return -EFAULT; | 
 |  | 
 | #ifdef CMPXCHG | 
 | 	asm volatile("1:" LOCK_PREFIX CMPXCHG " %[new], %[ptr]\n" | 
 | 		     "mov $0, %[r]\n" | 
 | 		     "setnz %b[r]\n" | 
 | 		     "2:" | 
 | 		     _ASM_EXTABLE_UA(1b, 2b) | 
 | 		     : [ptr] "+m" (*ptep_user), | 
 | 		       [old] "+a" (orig_pte), | 
 | 		       [r] "+q" (r) | 
 | 		     : [new] "r" (new_pte) | 
 | 		     : "memory"); | 
 | #else | 
 | 	asm volatile("1:" LOCK_PREFIX "cmpxchg8b %[ptr]\n" | 
 | 		     "movl $0, %[r]\n" | 
 | 		     "jz 2f\n" | 
 | 		     "incl %[r]\n" | 
 | 		     "2:" | 
 | 		     _ASM_EXTABLE_UA(1b, 2b) | 
 | 		     : [ptr] "+m" (*ptep_user), | 
 | 		       [old] "+A" (orig_pte), | 
 | 		       [r] "+rm" (r) | 
 | 		     : [new_lo] "b" ((u32)new_pte), | 
 | 		       [new_hi] "c" ((u32)(new_pte >> 32)) | 
 | 		     : "memory"); | 
 | #endif | 
 |  | 
 | 	user_access_end(); | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu_page *sp, u64 *spte, | 
 | 				  u64 gpte) | 
 | { | 
 | 	if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) | 
 | 		goto no_present; | 
 |  | 
 | 	if (!FNAME(is_present_gpte)(gpte)) | 
 | 		goto no_present; | 
 |  | 
 | 	/* if accessed bit is not supported prefetch non accessed gpte */ | 
 | 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && | 
 | 	    !(gpte & PT_GUEST_ACCESSED_MASK)) | 
 | 		goto no_present; | 
 |  | 
 | 	return false; | 
 |  | 
 | no_present: | 
 | 	drop_spte(vcpu->kvm, spte); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * For PTTYPE_EPT, a page table can be executable but not readable | 
 |  * on supported processors. Therefore, set_spte does not automatically | 
 |  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK | 
 |  * to signify readability since it isn't used in the EPT case | 
 |  */ | 
 | static inline unsigned FNAME(gpte_access)(u64 gpte) | 
 | { | 
 | 	unsigned access; | 
 | #if PTTYPE == PTTYPE_EPT | 
 | 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | | 
 | 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | | 
 | 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); | 
 | #else | 
 | 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); | 
 | 	BUILD_BUG_ON(ACC_EXEC_MASK != 1); | 
 | 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); | 
 | 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */ | 
 | 	access ^= (gpte >> PT64_NX_SHIFT); | 
 | #endif | 
 |  | 
 | 	return access; | 
 | } | 
 |  | 
 | static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, | 
 | 					     struct kvm_mmu *mmu, | 
 | 					     struct guest_walker *walker, | 
 | 					     gpa_t addr, int write_fault) | 
 | { | 
 | 	unsigned level, index; | 
 | 	pt_element_t pte, orig_pte; | 
 | 	pt_element_t __user *ptep_user; | 
 | 	gfn_t table_gfn; | 
 | 	int ret; | 
 |  | 
 | 	/* dirty/accessed bits are not supported, so no need to update them */ | 
 | 	if (!PT_HAVE_ACCESSED_DIRTY(mmu)) | 
 | 		return 0; | 
 |  | 
 | 	for (level = walker->max_level; level >= walker->level; --level) { | 
 | 		pte = orig_pte = walker->ptes[level - 1]; | 
 | 		table_gfn = walker->table_gfn[level - 1]; | 
 | 		ptep_user = walker->ptep_user[level - 1]; | 
 | 		index = offset_in_page(ptep_user) / sizeof(pt_element_t); | 
 | 		if (!(pte & PT_GUEST_ACCESSED_MASK)) { | 
 | 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); | 
 | 			pte |= PT_GUEST_ACCESSED_MASK; | 
 | 		} | 
 | 		if (level == walker->level && write_fault && | 
 | 				!(pte & PT_GUEST_DIRTY_MASK)) { | 
 | 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); | 
 | #if PTTYPE == PTTYPE_EPT | 
 | 			if (kvm_arch_write_log_dirty(vcpu, addr)) | 
 | 				return -EINVAL; | 
 | #endif | 
 | 			pte |= PT_GUEST_DIRTY_MASK; | 
 | 		} | 
 | 		if (pte == orig_pte) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If the slot is read-only, simply do not process the accessed | 
 | 		 * and dirty bits.  This is the correct thing to do if the slot | 
 | 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots | 
 | 		 * are only supported if the accessed and dirty bits are already | 
 | 		 * set in the ROM (so that MMIO writes are never needed). | 
 | 		 * | 
 | 		 * Note that NPT does not allow this at all and faults, since | 
 | 		 * it always wants nested page table entries for the guest | 
 | 		 * page tables to be writable.  And EPT works but will simply | 
 | 		 * overwrite the read-only memory to set the accessed and dirty | 
 | 		 * bits. | 
 | 		 */ | 
 | 		if (unlikely(!walker->pte_writable[level - 1])) | 
 | 			continue; | 
 |  | 
 | 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn); | 
 | 		walker->ptes[level - 1] = pte; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) | 
 | { | 
 | 	unsigned pkeys = 0; | 
 | #if PTTYPE == 64 | 
 | 	pte_t pte = {.pte = gpte}; | 
 |  | 
 | 	pkeys = pte_flags_pkey(pte_flags(pte)); | 
 | #endif | 
 | 	return pkeys; | 
 | } | 
 |  | 
 | /* | 
 |  * Fetch a guest pte for a guest virtual address, or for an L2's GPA. | 
 |  */ | 
 | static int FNAME(walk_addr_generic)(struct guest_walker *walker, | 
 | 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
 | 				    gpa_t addr, u32 access) | 
 | { | 
 | 	int ret; | 
 | 	pt_element_t pte; | 
 | 	pt_element_t __user *uninitialized_var(ptep_user); | 
 | 	gfn_t table_gfn; | 
 | 	u64 pt_access, pte_access; | 
 | 	unsigned index, accessed_dirty, pte_pkey; | 
 | 	unsigned nested_access; | 
 | 	gpa_t pte_gpa; | 
 | 	bool have_ad; | 
 | 	int offset; | 
 | 	u64 walk_nx_mask = 0; | 
 | 	const int write_fault = access & PFERR_WRITE_MASK; | 
 | 	const int user_fault  = access & PFERR_USER_MASK; | 
 | 	const int fetch_fault = access & PFERR_FETCH_MASK; | 
 | 	u16 errcode = 0; | 
 | 	gpa_t real_gpa; | 
 | 	gfn_t gfn; | 
 |  | 
 | 	trace_kvm_mmu_pagetable_walk(addr, access); | 
 | retry_walk: | 
 | 	walker->level = mmu->root_level; | 
 | 	pte           = mmu->get_cr3(vcpu); | 
 | 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu); | 
 |  | 
 | #if PTTYPE == 64 | 
 | 	walk_nx_mask = 1ULL << PT64_NX_SHIFT; | 
 | 	if (walker->level == PT32E_ROOT_LEVEL) { | 
 | 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); | 
 | 		trace_kvm_mmu_paging_element(pte, walker->level); | 
 | 		if (!FNAME(is_present_gpte)(pte)) | 
 | 			goto error; | 
 | 		--walker->level; | 
 | 	} | 
 | #endif | 
 | 	walker->max_level = walker->level; | 
 | 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); | 
 |  | 
 | 	/* | 
 | 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging | 
 | 	 * by the MOV to CR instruction are treated as reads and do not cause the | 
 | 	 * processor to set the dirty flag in any EPT paging-structure entry. | 
 | 	 */ | 
 | 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; | 
 |  | 
 | 	pte_access = ~0; | 
 | 	++walker->level; | 
 |  | 
 | 	do { | 
 | 		gfn_t real_gfn; | 
 | 		unsigned long host_addr; | 
 |  | 
 | 		pt_access = pte_access; | 
 | 		--walker->level; | 
 |  | 
 | 		index = PT_INDEX(addr, walker->level); | 
 | 		table_gfn = gpte_to_gfn(pte); | 
 | 		offset    = index * sizeof(pt_element_t); | 
 | 		pte_gpa   = gfn_to_gpa(table_gfn) + offset; | 
 |  | 
 | 		BUG_ON(walker->level < 1); | 
 | 		walker->table_gfn[walker->level - 1] = table_gfn; | 
 | 		walker->pte_gpa[walker->level - 1] = pte_gpa; | 
 |  | 
 | 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), | 
 | 					      nested_access, | 
 | 					      &walker->fault); | 
 |  | 
 | 		/* | 
 | 		 * FIXME: This can happen if emulation (for of an INS/OUTS | 
 | 		 * instruction) triggers a nested page fault.  The exit | 
 | 		 * qualification / exit info field will incorrectly have | 
 | 		 * "guest page access" as the nested page fault's cause, | 
 | 		 * instead of "guest page structure access".  To fix this, | 
 | 		 * the x86_exception struct should be augmented with enough | 
 | 		 * information to fix the exit_qualification or exit_info_1 | 
 | 		 * fields. | 
 | 		 */ | 
 | 		if (unlikely(real_gfn == UNMAPPED_GVA)) | 
 | 			return 0; | 
 |  | 
 | 		real_gfn = gpa_to_gfn(real_gfn); | 
 |  | 
 | 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, | 
 | 					    &walker->pte_writable[walker->level - 1]); | 
 | 		if (unlikely(kvm_is_error_hva(host_addr))) | 
 | 			goto error; | 
 |  | 
 | 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset); | 
 | 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) | 
 | 			goto error; | 
 | 		walker->ptep_user[walker->level - 1] = ptep_user; | 
 |  | 
 | 		trace_kvm_mmu_paging_element(pte, walker->level); | 
 |  | 
 | 		/* | 
 | 		 * Inverting the NX it lets us AND it like other | 
 | 		 * permission bits. | 
 | 		 */ | 
 | 		pte_access = pt_access & (pte ^ walk_nx_mask); | 
 |  | 
 | 		if (unlikely(!FNAME(is_present_gpte)(pte))) | 
 | 			goto error; | 
 |  | 
 | 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) { | 
 | 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		walker->ptes[walker->level - 1] = pte; | 
 |  | 
 | 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */ | 
 | 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); | 
 | 	} while (!is_last_gpte(mmu, walker->level, pte)); | 
 |  | 
 | 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); | 
 | 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; | 
 |  | 
 | 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */ | 
 | 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); | 
 | 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); | 
 | 	if (unlikely(errcode)) | 
 | 		goto error; | 
 |  | 
 | 	gfn = gpte_to_gfn_lvl(pte, walker->level); | 
 | 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; | 
 |  | 
 | 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) | 
 | 		gfn += pse36_gfn_delta(pte); | 
 |  | 
 | 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); | 
 | 	if (real_gpa == UNMAPPED_GVA) | 
 | 		return 0; | 
 |  | 
 | 	walker->gfn = real_gpa >> PAGE_SHIFT; | 
 |  | 
 | 	if (!write_fault) | 
 | 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); | 
 | 	else | 
 | 		/* | 
 | 		 * On a write fault, fold the dirty bit into accessed_dirty. | 
 | 		 * For modes without A/D bits support accessed_dirty will be | 
 | 		 * always clear. | 
 | 		 */ | 
 | 		accessed_dirty &= pte >> | 
 | 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); | 
 |  | 
 | 	if (unlikely(!accessed_dirty)) { | 
 | 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, | 
 | 							addr, write_fault); | 
 | 		if (unlikely(ret < 0)) | 
 | 			goto error; | 
 | 		else if (ret) | 
 | 			goto retry_walk; | 
 | 	} | 
 |  | 
 | 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n", | 
 | 		 __func__, (u64)pte, walker->pte_access, | 
 | 		 walker->pt_access[walker->level - 1]); | 
 | 	return 1; | 
 |  | 
 | error: | 
 | 	errcode |= write_fault | user_fault; | 
 | 	if (fetch_fault && (mmu->nx || | 
 | 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) | 
 | 		errcode |= PFERR_FETCH_MASK; | 
 |  | 
 | 	walker->fault.vector = PF_VECTOR; | 
 | 	walker->fault.error_code_valid = true; | 
 | 	walker->fault.error_code = errcode; | 
 |  | 
 | #if PTTYPE == PTTYPE_EPT | 
 | 	/* | 
 | 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT | 
 | 	 * misconfiguration requires to be injected. The detection is | 
 | 	 * done by is_rsvd_bits_set() above. | 
 | 	 * | 
 | 	 * We set up the value of exit_qualification to inject: | 
 | 	 * [2:0] - Derive from the access bits. The exit_qualification might be | 
 | 	 *         out of date if it is serving an EPT misconfiguration. | 
 | 	 * [5:3] - Calculated by the page walk of the guest EPT page tables | 
 | 	 * [7:8] - Derived from [7:8] of real exit_qualification | 
 | 	 * | 
 | 	 * The other bits are set to 0. | 
 | 	 */ | 
 | 	if (!(errcode & PFERR_RSVD_MASK)) { | 
 | 		vcpu->arch.exit_qualification &= 0x180; | 
 | 		if (write_fault) | 
 | 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; | 
 | 		if (user_fault) | 
 | 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; | 
 | 		if (fetch_fault) | 
 | 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; | 
 | 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; | 
 | 	} | 
 | #endif | 
 | 	walker->fault.address = addr; | 
 | 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; | 
 |  | 
 | 	trace_kvm_mmu_walker_error(walker->fault.error_code); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int FNAME(walk_addr)(struct guest_walker *walker, | 
 | 			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access) | 
 | { | 
 | 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, | 
 | 					access); | 
 | } | 
 |  | 
 | #if PTTYPE != PTTYPE_EPT | 
 | static int FNAME(walk_addr_nested)(struct guest_walker *walker, | 
 | 				   struct kvm_vcpu *vcpu, gva_t addr, | 
 | 				   u32 access) | 
 | { | 
 | 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, | 
 | 					addr, access); | 
 | } | 
 | #endif | 
 |  | 
 | static bool | 
 | FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
 | 		     u64 *spte, pt_element_t gpte, bool no_dirty_log) | 
 | { | 
 | 	unsigned pte_access; | 
 | 	gfn_t gfn; | 
 | 	kvm_pfn_t pfn; | 
 |  | 
 | 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) | 
 | 		return false; | 
 |  | 
 | 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); | 
 |  | 
 | 	gfn = gpte_to_gfn(gpte); | 
 | 	pte_access = sp->role.access & FNAME(gpte_access)(gpte); | 
 | 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); | 
 | 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, | 
 | 			no_dirty_log && (pte_access & ACC_WRITE_MASK)); | 
 | 	if (is_error_pfn(pfn)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * we call mmu_set_spte() with host_writable = true because | 
 | 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn. | 
 | 	 */ | 
 | 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, | 
 | 		     true, true); | 
 |  | 
 | 	kvm_release_pfn_clean(pfn); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
 | 			      u64 *spte, const void *pte) | 
 | { | 
 | 	pt_element_t gpte = *(const pt_element_t *)pte; | 
 |  | 
 | 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); | 
 | } | 
 |  | 
 | static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, | 
 | 				struct guest_walker *gw, int level) | 
 | { | 
 | 	pt_element_t curr_pte; | 
 | 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; | 
 | 	u64 mask; | 
 | 	int r, index; | 
 |  | 
 | 	if (level == PT_PAGE_TABLE_LEVEL) { | 
 | 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; | 
 | 		base_gpa = pte_gpa & ~mask; | 
 | 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t); | 
 |  | 
 | 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, | 
 | 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); | 
 | 		curr_pte = gw->prefetch_ptes[index]; | 
 | 	} else | 
 | 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, | 
 | 				  &curr_pte, sizeof(curr_pte)); | 
 |  | 
 | 	return r || curr_pte != gw->ptes[level - 1]; | 
 | } | 
 |  | 
 | static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, | 
 | 				u64 *sptep) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	pt_element_t *gptep = gw->prefetch_ptes; | 
 | 	u64 *spte; | 
 | 	int i; | 
 |  | 
 | 	sp = page_header(__pa(sptep)); | 
 |  | 
 | 	if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
 | 		return; | 
 |  | 
 | 	if (sp->role.direct) | 
 | 		return __direct_pte_prefetch(vcpu, sp, sptep); | 
 |  | 
 | 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | 
 | 	spte = sp->spt + i; | 
 |  | 
 | 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | 
 | 		if (spte == sptep) | 
 | 			continue; | 
 |  | 
 | 		if (is_shadow_present_pte(*spte)) | 
 | 			continue; | 
 |  | 
 | 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Fetch a shadow pte for a specific level in the paging hierarchy. | 
 |  * If the guest tries to write a write-protected page, we need to | 
 |  * emulate this operation, return 1 to indicate this case. | 
 |  */ | 
 | static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr, | 
 | 			 struct guest_walker *gw, | 
 | 			 int write_fault, int hlevel, | 
 | 			 kvm_pfn_t pfn, bool map_writable, bool prefault, | 
 | 			 bool lpage_disallowed) | 
 | { | 
 | 	struct kvm_mmu_page *sp = NULL; | 
 | 	struct kvm_shadow_walk_iterator it; | 
 | 	unsigned int direct_access, access; | 
 | 	int top_level, ret; | 
 | 	gfn_t gfn, base_gfn; | 
 |  | 
 | 	direct_access = gw->pte_access; | 
 |  | 
 | 	top_level = vcpu->arch.mmu->root_level; | 
 | 	if (top_level == PT32E_ROOT_LEVEL) | 
 | 		top_level = PT32_ROOT_LEVEL; | 
 | 	/* | 
 | 	 * Verify that the top-level gpte is still there.  Since the page | 
 | 	 * is a root page, it is either write protected (and cannot be | 
 | 	 * changed from now on) or it is invalid (in which case, we don't | 
 | 	 * really care if it changes underneath us after this point). | 
 | 	 */ | 
 | 	if (FNAME(gpte_changed)(vcpu, gw, top_level)) | 
 | 		goto out_gpte_changed; | 
 |  | 
 | 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) | 
 | 		goto out_gpte_changed; | 
 |  | 
 | 	for (shadow_walk_init(&it, vcpu, addr); | 
 | 	     shadow_walk_okay(&it) && it.level > gw->level; | 
 | 	     shadow_walk_next(&it)) { | 
 | 		gfn_t table_gfn; | 
 |  | 
 | 		clear_sp_write_flooding_count(it.sptep); | 
 | 		drop_large_spte(vcpu, it.sptep); | 
 |  | 
 | 		sp = NULL; | 
 | 		if (!is_shadow_present_pte(*it.sptep)) { | 
 | 			table_gfn = gw->table_gfn[it.level - 2]; | 
 | 			access = gw->pt_access[it.level - 2]; | 
 | 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, | 
 | 					      false, access); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Verify that the gpte in the page we've just write | 
 | 		 * protected is still there. | 
 | 		 */ | 
 | 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) | 
 | 			goto out_gpte_changed; | 
 |  | 
 | 		if (sp) | 
 | 			link_shadow_page(vcpu, it.sptep, sp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * FNAME(page_fault) might have clobbered the bottom bits of | 
 | 	 * gw->gfn, restore them from the virtual address. | 
 | 	 */ | 
 | 	gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT); | 
 | 	base_gfn = gfn; | 
 |  | 
 | 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn); | 
 |  | 
 | 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { | 
 | 		clear_sp_write_flooding_count(it.sptep); | 
 |  | 
 | 		/* | 
 | 		 * We cannot overwrite existing page tables with an NX | 
 | 		 * large page, as the leaf could be executable. | 
 | 		 */ | 
 | 		disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel); | 
 |  | 
 | 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); | 
 | 		if (it.level == hlevel) | 
 | 			break; | 
 |  | 
 | 		validate_direct_spte(vcpu, it.sptep, direct_access); | 
 |  | 
 | 		drop_large_spte(vcpu, it.sptep); | 
 |  | 
 | 		if (!is_shadow_present_pte(*it.sptep)) { | 
 | 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr, | 
 | 					      it.level - 1, true, direct_access); | 
 | 			link_shadow_page(vcpu, it.sptep, sp); | 
 | 			if (lpage_disallowed) | 
 | 				account_huge_nx_page(vcpu->kvm, sp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, | 
 | 			   it.level, base_gfn, pfn, prefault, map_writable); | 
 | 	FNAME(pte_prefetch)(vcpu, gw, it.sptep); | 
 | 	++vcpu->stat.pf_fixed; | 
 | 	return ret; | 
 |  | 
 | out_gpte_changed: | 
 | 	return RET_PF_RETRY; | 
 | } | 
 |  | 
 |  /* | 
 |  * To see whether the mapped gfn can write its page table in the current | 
 |  * mapping. | 
 |  * | 
 |  * It is the helper function of FNAME(page_fault). When guest uses large page | 
 |  * size to map the writable gfn which is used as current page table, we should | 
 |  * force kvm to use small page size to map it because new shadow page will be | 
 |  * created when kvm establishes shadow page table that stop kvm using large | 
 |  * page size. Do it early can avoid unnecessary #PF and emulation. | 
 |  * | 
 |  * @write_fault_to_shadow_pgtable will return true if the fault gfn is | 
 |  * currently used as its page table. | 
 |  * | 
 |  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok | 
 |  * since the PDPT is always shadowed, that means, we can not use large page | 
 |  * size to map the gfn which is used as PDPT. | 
 |  */ | 
 | static bool | 
 | FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, | 
 | 			      struct guest_walker *walker, int user_fault, | 
 | 			      bool *write_fault_to_shadow_pgtable) | 
 | { | 
 | 	int level; | 
 | 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); | 
 | 	bool self_changed = false; | 
 |  | 
 | 	if (!(walker->pte_access & ACC_WRITE_MASK || | 
 | 	      (!is_write_protection(vcpu) && !user_fault))) | 
 | 		return false; | 
 |  | 
 | 	for (level = walker->level; level <= walker->max_level; level++) { | 
 | 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; | 
 |  | 
 | 		self_changed |= !(gfn & mask); | 
 | 		*write_fault_to_shadow_pgtable |= !gfn; | 
 | 	} | 
 |  | 
 | 	return self_changed; | 
 | } | 
 |  | 
 | /* | 
 |  * Page fault handler.  There are several causes for a page fault: | 
 |  *   - there is no shadow pte for the guest pte | 
 |  *   - write access through a shadow pte marked read only so that we can set | 
 |  *     the dirty bit | 
 |  *   - write access to a shadow pte marked read only so we can update the page | 
 |  *     dirty bitmap, when userspace requests it | 
 |  *   - mmio access; in this case we will never install a present shadow pte | 
 |  *   - normal guest page fault due to the guest pte marked not present, not | 
 |  *     writable, or not executable | 
 |  * | 
 |  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or | 
 |  *           a negative value on error. | 
 |  */ | 
 | static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code, | 
 | 			     bool prefault) | 
 | { | 
 | 	int write_fault = error_code & PFERR_WRITE_MASK; | 
 | 	int user_fault = error_code & PFERR_USER_MASK; | 
 | 	struct guest_walker walker; | 
 | 	int r; | 
 | 	kvm_pfn_t pfn; | 
 | 	int level = PT_PAGE_TABLE_LEVEL; | 
 | 	unsigned long mmu_seq; | 
 | 	bool map_writable, is_self_change_mapping; | 
 | 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && | 
 | 				is_nx_huge_page_enabled(); | 
 | 	bool force_pt_level = lpage_disallowed; | 
 |  | 
 | 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); | 
 |  | 
 | 	r = mmu_topup_memory_caches(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* | 
 | 	 * If PFEC.RSVD is set, this is a shadow page fault. | 
 | 	 * The bit needs to be cleared before walking guest page tables. | 
 | 	 */ | 
 | 	error_code &= ~PFERR_RSVD_MASK; | 
 |  | 
 | 	/* | 
 | 	 * Look up the guest pte for the faulting address. | 
 | 	 */ | 
 | 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); | 
 |  | 
 | 	/* | 
 | 	 * The page is not mapped by the guest.  Let the guest handle it. | 
 | 	 */ | 
 | 	if (!r) { | 
 | 		pgprintk("%s: guest page fault\n", __func__); | 
 | 		if (!prefault) | 
 | 			inject_page_fault(vcpu, &walker.fault); | 
 |  | 
 | 		return RET_PF_RETRY; | 
 | 	} | 
 |  | 
 | 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { | 
 | 		shadow_page_table_clear_flood(vcpu, addr); | 
 | 		return RET_PF_EMULATE; | 
 | 	} | 
 |  | 
 | 	vcpu->arch.write_fault_to_shadow_pgtable = false; | 
 |  | 
 | 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, | 
 | 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); | 
 |  | 
 | 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) { | 
 | 		level = mapping_level(vcpu, walker.gfn, &force_pt_level); | 
 | 		if (likely(!force_pt_level)) { | 
 | 			level = min(walker.level, level); | 
 | 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
 | 		} | 
 | 	} else | 
 | 		force_pt_level = true; | 
 |  | 
 | 	mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
 | 	smp_rmb(); | 
 |  | 
 | 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, | 
 | 			 &map_writable)) | 
 | 		return RET_PF_RETRY; | 
 |  | 
 | 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) | 
 | 		return r; | 
 |  | 
 | 	/* | 
 | 	 * Do not change pte_access if the pfn is a mmio page, otherwise | 
 | 	 * we will cache the incorrect access into mmio spte. | 
 | 	 */ | 
 | 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && | 
 | 	     !is_write_protection(vcpu) && !user_fault && | 
 | 	      !is_noslot_pfn(pfn)) { | 
 | 		walker.pte_access |= ACC_WRITE_MASK; | 
 | 		walker.pte_access &= ~ACC_USER_MASK; | 
 |  | 
 | 		/* | 
 | 		 * If we converted a user page to a kernel page, | 
 | 		 * so that the kernel can write to it when cr0.wp=0, | 
 | 		 * then we should prevent the kernel from executing it | 
 | 		 * if SMEP is enabled. | 
 | 		 */ | 
 | 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) | 
 | 			walker.pte_access &= ~ACC_EXEC_MASK; | 
 | 	} | 
 |  | 
 | 	r = RET_PF_RETRY; | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); | 
 | 	if (make_mmu_pages_available(vcpu) < 0) | 
 | 		goto out_unlock; | 
 | 	if (!force_pt_level) | 
 | 		transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level); | 
 | 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault, | 
 | 			 level, pfn, map_writable, prefault, lpage_disallowed); | 
 | 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 	kvm_release_pfn_clean(pfn); | 
 | 	return r; | 
 | } | 
 |  | 
 | static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) | 
 | { | 
 | 	int offset = 0; | 
 |  | 
 | 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); | 
 |  | 
 | 	if (PTTYPE == 32) | 
 | 		offset = sp->role.quadrant << PT64_LEVEL_BITS; | 
 |  | 
 | 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); | 
 | } | 
 |  | 
 | static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) | 
 | { | 
 | 	struct kvm_shadow_walk_iterator iterator; | 
 | 	struct kvm_mmu_page *sp; | 
 | 	int level; | 
 | 	u64 *sptep; | 
 |  | 
 | 	vcpu_clear_mmio_info(vcpu, gva); | 
 |  | 
 | 	/* | 
 | 	 * No need to check return value here, rmap_can_add() can | 
 | 	 * help us to skip pte prefetch later. | 
 | 	 */ | 
 | 	mmu_topup_memory_caches(vcpu); | 
 |  | 
 | 	if (!VALID_PAGE(root_hpa)) { | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { | 
 | 		level = iterator.level; | 
 | 		sptep = iterator.sptep; | 
 |  | 
 | 		sp = page_header(__pa(sptep)); | 
 | 		if (is_last_spte(*sptep, level)) { | 
 | 			pt_element_t gpte; | 
 | 			gpa_t pte_gpa; | 
 |  | 
 | 			if (!sp->unsync) | 
 | 				break; | 
 |  | 
 | 			pte_gpa = FNAME(get_level1_sp_gpa)(sp); | 
 | 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); | 
 |  | 
 | 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) | 
 | 				kvm_flush_remote_tlbs_with_address(vcpu->kvm, | 
 | 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); | 
 |  | 
 | 			if (!rmap_can_add(vcpu)) | 
 | 				break; | 
 |  | 
 | 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, | 
 | 						       sizeof(pt_element_t))) | 
 | 				break; | 
 |  | 
 | 			FNAME(update_pte)(vcpu, sp, sptep, &gpte); | 
 | 		} | 
 |  | 
 | 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | } | 
 |  | 
 | /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ | 
 | static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access, | 
 | 			       struct x86_exception *exception) | 
 | { | 
 | 	struct guest_walker walker; | 
 | 	gpa_t gpa = UNMAPPED_GVA; | 
 | 	int r; | 
 |  | 
 | 	r = FNAME(walk_addr)(&walker, vcpu, addr, access); | 
 |  | 
 | 	if (r) { | 
 | 		gpa = gfn_to_gpa(walker.gfn); | 
 | 		gpa |= addr & ~PAGE_MASK; | 
 | 	} else if (exception) | 
 | 		*exception = walker.fault; | 
 |  | 
 | 	return gpa; | 
 | } | 
 |  | 
 | #if PTTYPE != PTTYPE_EPT | 
 | /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */ | 
 | static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, | 
 | 				      u32 access, | 
 | 				      struct x86_exception *exception) | 
 | { | 
 | 	struct guest_walker walker; | 
 | 	gpa_t gpa = UNMAPPED_GVA; | 
 | 	int r; | 
 |  | 
 | #ifndef CONFIG_X86_64 | 
 | 	/* A 64-bit GVA should be impossible on 32-bit KVM. */ | 
 | 	WARN_ON_ONCE(vaddr >> 32); | 
 | #endif | 
 |  | 
 | 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); | 
 |  | 
 | 	if (r) { | 
 | 		gpa = gfn_to_gpa(walker.gfn); | 
 | 		gpa |= vaddr & ~PAGE_MASK; | 
 | 	} else if (exception) | 
 | 		*exception = walker.fault; | 
 |  | 
 | 	return gpa; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Using the cached information from sp->gfns is safe because: | 
 |  * - The spte has a reference to the struct page, so the pfn for a given gfn | 
 |  *   can't change unless all sptes pointing to it are nuked first. | 
 |  * | 
 |  * Note: | 
 |  *   We should flush all tlbs if spte is dropped even though guest is | 
 |  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page | 
 |  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't | 
 |  *   used by guest then tlbs are not flushed, so guest is allowed to access the | 
 |  *   freed pages. | 
 |  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case. | 
 |  */ | 
 | static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
 | { | 
 | 	int i, nr_present = 0; | 
 | 	bool host_writable; | 
 | 	gpa_t first_pte_gpa; | 
 | 	int set_spte_ret = 0; | 
 |  | 
 | 	/* direct kvm_mmu_page can not be unsync. */ | 
 | 	BUG_ON(sp->role.direct); | 
 |  | 
 | 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); | 
 |  | 
 | 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) { | 
 | 		unsigned pte_access; | 
 | 		pt_element_t gpte; | 
 | 		gpa_t pte_gpa; | 
 | 		gfn_t gfn; | 
 |  | 
 | 		if (!sp->spt[i]) | 
 | 			continue; | 
 |  | 
 | 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); | 
 |  | 
 | 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, | 
 | 					       sizeof(pt_element_t))) | 
 | 			return 0; | 
 |  | 
 | 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { | 
 | 			/* | 
 | 			 * Update spte before increasing tlbs_dirty to make | 
 | 			 * sure no tlb flush is lost after spte is zapped; see | 
 | 			 * the comments in kvm_flush_remote_tlbs(). | 
 | 			 */ | 
 | 			smp_wmb(); | 
 | 			vcpu->kvm->tlbs_dirty++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		gfn = gpte_to_gfn(gpte); | 
 | 		pte_access = sp->role.access; | 
 | 		pte_access &= FNAME(gpte_access)(gpte); | 
 | 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); | 
 |  | 
 | 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, | 
 | 		      &nr_present)) | 
 | 			continue; | 
 |  | 
 | 		if (gfn != sp->gfns[i]) { | 
 | 			drop_spte(vcpu->kvm, &sp->spt[i]); | 
 | 			/* | 
 | 			 * The same as above where we are doing | 
 | 			 * prefetch_invalid_gpte(). | 
 | 			 */ | 
 | 			smp_wmb(); | 
 | 			vcpu->kvm->tlbs_dirty++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		nr_present++; | 
 |  | 
 | 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; | 
 |  | 
 | 		set_spte_ret |= set_spte(vcpu, &sp->spt[i], | 
 | 					 pte_access, PT_PAGE_TABLE_LEVEL, | 
 | 					 gfn, spte_to_pfn(sp->spt[i]), | 
 | 					 true, false, host_writable); | 
 | 	} | 
 |  | 
 | 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) | 
 | 		kvm_flush_remote_tlbs(vcpu->kvm); | 
 |  | 
 | 	return nr_present; | 
 | } | 
 |  | 
 | #undef pt_element_t | 
 | #undef guest_walker | 
 | #undef FNAME | 
 | #undef PT_BASE_ADDR_MASK | 
 | #undef PT_INDEX | 
 | #undef PT_LVL_ADDR_MASK | 
 | #undef PT_LVL_OFFSET_MASK | 
 | #undef PT_LEVEL_BITS | 
 | #undef PT_MAX_FULL_LEVELS | 
 | #undef gpte_to_gfn | 
 | #undef gpte_to_gfn_lvl | 
 | #undef CMPXCHG | 
 | #undef PT_GUEST_ACCESSED_MASK | 
 | #undef PT_GUEST_DIRTY_MASK | 
 | #undef PT_GUEST_DIRTY_SHIFT | 
 | #undef PT_GUEST_ACCESSED_SHIFT | 
 | #undef PT_HAVE_ACCESSED_DIRTY |