| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* bit search implementation | 
 |  * | 
 |  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. | 
 |  * Written by David Howells (dhowells@redhat.com) | 
 |  * | 
 |  * Copyright (C) 2008 IBM Corporation | 
 |  * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au> | 
 |  * (Inspired by David Howell's find_next_bit implementation) | 
 |  * | 
 |  * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease | 
 |  * size and improve performance, 2015. | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/export.h> | 
 | #include <linux/kernel.h> | 
 |  | 
 | #if !defined(find_next_bit) || !defined(find_next_zero_bit) || \ | 
 | 		!defined(find_next_and_bit) | 
 |  | 
 | /* | 
 |  * This is a common helper function for find_next_bit, find_next_zero_bit, and | 
 |  * find_next_and_bit. The differences are: | 
 |  *  - The "invert" argument, which is XORed with each fetched word before | 
 |  *    searching it for one bits. | 
 |  *  - The optional "addr2", which is anded with "addr1" if present. | 
 |  */ | 
 | static inline unsigned long _find_next_bit(const unsigned long *addr1, | 
 | 		const unsigned long *addr2, unsigned long nbits, | 
 | 		unsigned long start, unsigned long invert) | 
 | { | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (unlikely(start >= nbits)) | 
 | 		return nbits; | 
 |  | 
 | 	tmp = addr1[start / BITS_PER_LONG]; | 
 | 	if (addr2) | 
 | 		tmp &= addr2[start / BITS_PER_LONG]; | 
 | 	tmp ^= invert; | 
 |  | 
 | 	/* Handle 1st word. */ | 
 | 	tmp &= BITMAP_FIRST_WORD_MASK(start); | 
 | 	start = round_down(start, BITS_PER_LONG); | 
 |  | 
 | 	while (!tmp) { | 
 | 		start += BITS_PER_LONG; | 
 | 		if (start >= nbits) | 
 | 			return nbits; | 
 |  | 
 | 		tmp = addr1[start / BITS_PER_LONG]; | 
 | 		if (addr2) | 
 | 			tmp &= addr2[start / BITS_PER_LONG]; | 
 | 		tmp ^= invert; | 
 | 	} | 
 |  | 
 | 	return min(start + __ffs(tmp), nbits); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef find_next_bit | 
 | /* | 
 |  * Find the next set bit in a memory region. | 
 |  */ | 
 | unsigned long find_next_bit(const unsigned long *addr, unsigned long size, | 
 | 			    unsigned long offset) | 
 | { | 
 | 	return _find_next_bit(addr, NULL, size, offset, 0UL); | 
 | } | 
 | EXPORT_SYMBOL(find_next_bit); | 
 | #endif | 
 |  | 
 | #ifndef find_next_zero_bit | 
 | unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, | 
 | 				 unsigned long offset) | 
 | { | 
 | 	return _find_next_bit(addr, NULL, size, offset, ~0UL); | 
 | } | 
 | EXPORT_SYMBOL(find_next_zero_bit); | 
 | #endif | 
 |  | 
 | #if !defined(find_next_and_bit) | 
 | unsigned long find_next_and_bit(const unsigned long *addr1, | 
 | 		const unsigned long *addr2, unsigned long size, | 
 | 		unsigned long offset) | 
 | { | 
 | 	return _find_next_bit(addr1, addr2, size, offset, 0UL); | 
 | } | 
 | EXPORT_SYMBOL(find_next_and_bit); | 
 | #endif | 
 |  | 
 | #ifndef find_first_bit | 
 | /* | 
 |  * Find the first set bit in a memory region. | 
 |  */ | 
 | unsigned long find_first_bit(const unsigned long *addr, unsigned long size) | 
 | { | 
 | 	unsigned long idx; | 
 |  | 
 | 	for (idx = 0; idx * BITS_PER_LONG < size; idx++) { | 
 | 		if (addr[idx]) | 
 | 			return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size); | 
 | 	} | 
 |  | 
 | 	return size; | 
 | } | 
 | EXPORT_SYMBOL(find_first_bit); | 
 | #endif | 
 |  | 
 | #ifndef find_first_zero_bit | 
 | /* | 
 |  * Find the first cleared bit in a memory region. | 
 |  */ | 
 | unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size) | 
 | { | 
 | 	unsigned long idx; | 
 |  | 
 | 	for (idx = 0; idx * BITS_PER_LONG < size; idx++) { | 
 | 		if (addr[idx] != ~0UL) | 
 | 			return min(idx * BITS_PER_LONG + ffz(addr[idx]), size); | 
 | 	} | 
 |  | 
 | 	return size; | 
 | } | 
 | EXPORT_SYMBOL(find_first_zero_bit); | 
 | #endif | 
 |  | 
 | #ifndef find_last_bit | 
 | unsigned long find_last_bit(const unsigned long *addr, unsigned long size) | 
 | { | 
 | 	if (size) { | 
 | 		unsigned long val = BITMAP_LAST_WORD_MASK(size); | 
 | 		unsigned long idx = (size-1) / BITS_PER_LONG; | 
 |  | 
 | 		do { | 
 | 			val &= addr[idx]; | 
 | 			if (val) | 
 | 				return idx * BITS_PER_LONG + __fls(val); | 
 |  | 
 | 			val = ~0ul; | 
 | 		} while (idx--); | 
 | 	} | 
 | 	return size; | 
 | } | 
 | EXPORT_SYMBOL(find_last_bit); | 
 | #endif | 
 |  | 
 | #ifdef __BIG_ENDIAN | 
 |  | 
 | #if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le) | 
 | static inline unsigned long _find_next_bit_le(const unsigned long *addr1, | 
 | 		const unsigned long *addr2, unsigned long nbits, | 
 | 		unsigned long start, unsigned long invert) | 
 | { | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (unlikely(start >= nbits)) | 
 | 		return nbits; | 
 |  | 
 | 	tmp = addr1[start / BITS_PER_LONG]; | 
 | 	if (addr2) | 
 | 		tmp &= addr2[start / BITS_PER_LONG]; | 
 | 	tmp ^= invert; | 
 |  | 
 | 	/* Handle 1st word. */ | 
 | 	tmp &= swab(BITMAP_FIRST_WORD_MASK(start)); | 
 | 	start = round_down(start, BITS_PER_LONG); | 
 |  | 
 | 	while (!tmp) { | 
 | 		start += BITS_PER_LONG; | 
 | 		if (start >= nbits) | 
 | 			return nbits; | 
 |  | 
 | 		tmp = addr1[start / BITS_PER_LONG]; | 
 | 		if (addr2) | 
 | 			tmp &= addr2[start / BITS_PER_LONG]; | 
 | 		tmp ^= invert; | 
 | 	} | 
 |  | 
 | 	return min(start + __ffs(swab(tmp)), nbits); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef find_next_zero_bit_le | 
 | unsigned long find_next_zero_bit_le(const void *addr, unsigned | 
 | 		long size, unsigned long offset) | 
 | { | 
 | 	return _find_next_bit_le(addr, NULL, size, offset, ~0UL); | 
 | } | 
 | EXPORT_SYMBOL(find_next_zero_bit_le); | 
 | #endif | 
 |  | 
 | #ifndef find_next_bit_le | 
 | unsigned long find_next_bit_le(const void *addr, unsigned | 
 | 		long size, unsigned long offset) | 
 | { | 
 | 	return _find_next_bit_le(addr, NULL, size, offset, 0UL); | 
 | } | 
 | EXPORT_SYMBOL(find_next_bit_le); | 
 | #endif | 
 |  | 
 | #endif /* __BIG_ENDIAN */ |