| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/uuid.h> | 
 | #include <linux/semaphore.h> | 
 | #include <linux/error-injection.h> | 
 | #include <linux/crc32c.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <asm/unaligned.h> | 
 | #include <crypto/hash.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "volumes.h" | 
 | #include "print-tree.h" | 
 | #include "locking.h" | 
 | #include "tree-log.h" | 
 | #include "free-space-cache.h" | 
 | #include "free-space-tree.h" | 
 | #include "inode-map.h" | 
 | #include "check-integrity.h" | 
 | #include "rcu-string.h" | 
 | #include "dev-replace.h" | 
 | #include "raid56.h" | 
 | #include "sysfs.h" | 
 | #include "qgroup.h" | 
 | #include "compression.h" | 
 | #include "tree-checker.h" | 
 | #include "ref-verify.h" | 
 | #include "block-group.h" | 
 |  | 
 | #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\ | 
 | 				 BTRFS_HEADER_FLAG_RELOC |\ | 
 | 				 BTRFS_SUPER_FLAG_ERROR |\ | 
 | 				 BTRFS_SUPER_FLAG_SEEDING |\ | 
 | 				 BTRFS_SUPER_FLAG_METADUMP |\ | 
 | 				 BTRFS_SUPER_FLAG_METADUMP_V2) | 
 |  | 
 | static const struct extent_io_ops btree_extent_io_ops; | 
 | static void end_workqueue_fn(struct btrfs_work *work); | 
 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root); | 
 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
 | 				      struct btrfs_fs_info *fs_info); | 
 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); | 
 | static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, | 
 | 					struct extent_io_tree *dirty_pages, | 
 | 					int mark); | 
 | static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, | 
 | 				       struct extent_io_tree *pinned_extents); | 
 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); | 
 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); | 
 |  | 
 | /* | 
 |  * btrfs_end_io_wq structs are used to do processing in task context when an IO | 
 |  * is complete.  This is used during reads to verify checksums, and it is used | 
 |  * by writes to insert metadata for new file extents after IO is complete. | 
 |  */ | 
 | struct btrfs_end_io_wq { | 
 | 	struct bio *bio; | 
 | 	bio_end_io_t *end_io; | 
 | 	void *private; | 
 | 	struct btrfs_fs_info *info; | 
 | 	blk_status_t status; | 
 | 	enum btrfs_wq_endio_type metadata; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | static struct kmem_cache *btrfs_end_io_wq_cache; | 
 |  | 
 | int __init btrfs_end_io_wq_init(void) | 
 | { | 
 | 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", | 
 | 					sizeof(struct btrfs_end_io_wq), | 
 | 					0, | 
 | 					SLAB_MEM_SPREAD, | 
 | 					NULL); | 
 | 	if (!btrfs_end_io_wq_cache) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cold btrfs_end_io_wq_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(btrfs_end_io_wq_cache); | 
 | } | 
 |  | 
 | /* | 
 |  * async submit bios are used to offload expensive checksumming | 
 |  * onto the worker threads.  They checksum file and metadata bios | 
 |  * just before they are sent down the IO stack. | 
 |  */ | 
 | struct async_submit_bio { | 
 | 	void *private_data; | 
 | 	struct bio *bio; | 
 | 	extent_submit_bio_start_t *submit_bio_start; | 
 | 	int mirror_num; | 
 | 	/* | 
 | 	 * bio_offset is optional, can be used if the pages in the bio | 
 | 	 * can't tell us where in the file the bio should go | 
 | 	 */ | 
 | 	u64 bio_offset; | 
 | 	struct btrfs_work work; | 
 | 	blk_status_t status; | 
 | }; | 
 |  | 
 | /* | 
 |  * Lockdep class keys for extent_buffer->lock's in this root.  For a given | 
 |  * eb, the lockdep key is determined by the btrfs_root it belongs to and | 
 |  * the level the eb occupies in the tree. | 
 |  * | 
 |  * Different roots are used for different purposes and may nest inside each | 
 |  * other and they require separate keysets.  As lockdep keys should be | 
 |  * static, assign keysets according to the purpose of the root as indicated | 
 |  * by btrfs_root->root_key.objectid.  This ensures that all special purpose | 
 |  * roots have separate keysets. | 
 |  * | 
 |  * Lock-nesting across peer nodes is always done with the immediate parent | 
 |  * node locked thus preventing deadlock.  As lockdep doesn't know this, use | 
 |  * subclass to avoid triggering lockdep warning in such cases. | 
 |  * | 
 |  * The key is set by the readpage_end_io_hook after the buffer has passed | 
 |  * csum validation but before the pages are unlocked.  It is also set by | 
 |  * btrfs_init_new_buffer on freshly allocated blocks. | 
 |  * | 
 |  * We also add a check to make sure the highest level of the tree is the | 
 |  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code | 
 |  * needs update as well. | 
 |  */ | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | # if BTRFS_MAX_LEVEL != 8 | 
 | #  error | 
 | # endif | 
 |  | 
 | static struct btrfs_lockdep_keyset { | 
 | 	u64			id;		/* root objectid */ | 
 | 	const char		*name_stem;	/* lock name stem */ | 
 | 	char			names[BTRFS_MAX_LEVEL + 1][20]; | 
 | 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1]; | 
 | } btrfs_lockdep_keysets[] = { | 
 | 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	}, | 
 | 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	}, | 
 | 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	}, | 
 | 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	}, | 
 | 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	}, | 
 | 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	}, | 
 | 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	}, | 
 | 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	}, | 
 | 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	}, | 
 | 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	}, | 
 | 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	}, | 
 | 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" }, | 
 | 	{ .id = 0,				.name_stem = "tree"	}, | 
 | }; | 
 |  | 
 | void __init btrfs_init_lockdep(void) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	/* initialize lockdep class names */ | 
 | 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { | 
 | 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; | 
 |  | 
 | 		for (j = 0; j < ARRAY_SIZE(ks->names); j++) | 
 | 			snprintf(ks->names[j], sizeof(ks->names[j]), | 
 | 				 "btrfs-%s-%02d", ks->name_stem, j); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, | 
 | 				    int level) | 
 | { | 
 | 	struct btrfs_lockdep_keyset *ks; | 
 |  | 
 | 	BUG_ON(level >= ARRAY_SIZE(ks->keys)); | 
 |  | 
 | 	/* find the matching keyset, id 0 is the default entry */ | 
 | 	for (ks = btrfs_lockdep_keysets; ks->id; ks++) | 
 | 		if (ks->id == objectid) | 
 | 			break; | 
 |  | 
 | 	lockdep_set_class_and_name(&eb->lock, | 
 | 				   &ks->keys[level], ks->names[level]); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * extents on the btree inode are pretty simple, there's one extent | 
 |  * that covers the entire device | 
 |  */ | 
 | struct extent_map *btree_get_extent(struct btrfs_inode *inode, | 
 | 		struct page *page, size_t pg_offset, u64 start, u64 len, | 
 | 		int create) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct extent_map_tree *em_tree = &inode->extent_tree; | 
 | 	struct extent_map *em; | 
 | 	int ret; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, start, len); | 
 | 	if (em) { | 
 | 		em->bdev = fs_info->fs_devices->latest_bdev; | 
 | 		read_unlock(&em_tree->lock); | 
 | 		goto out; | 
 | 	} | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) { | 
 | 		em = ERR_PTR(-ENOMEM); | 
 | 		goto out; | 
 | 	} | 
 | 	em->start = 0; | 
 | 	em->len = (u64)-1; | 
 | 	em->block_len = (u64)-1; | 
 | 	em->block_start = 0; | 
 | 	em->bdev = fs_info->fs_devices->latest_bdev; | 
 |  | 
 | 	write_lock(&em_tree->lock); | 
 | 	ret = add_extent_mapping(em_tree, em, 0); | 
 | 	if (ret == -EEXIST) { | 
 | 		free_extent_map(em); | 
 | 		em = lookup_extent_mapping(em_tree, start, len); | 
 | 		if (!em) | 
 | 			em = ERR_PTR(-EIO); | 
 | 	} else if (ret) { | 
 | 		free_extent_map(em); | 
 | 		em = ERR_PTR(ret); | 
 | 	} | 
 | 	write_unlock(&em_tree->lock); | 
 |  | 
 | out: | 
 | 	return em; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the csum of a btree block and store the result to provided buffer. | 
 |  * | 
 |  * Returns error if the extent buffer cannot be mapped. | 
 |  */ | 
 | static int csum_tree_block(struct extent_buffer *buf, u8 *result) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = buf->fs_info; | 
 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
 | 	unsigned long len; | 
 | 	unsigned long cur_len; | 
 | 	unsigned long offset = BTRFS_CSUM_SIZE; | 
 | 	char *kaddr; | 
 | 	unsigned long map_start; | 
 | 	unsigned long map_len; | 
 | 	int err; | 
 |  | 
 | 	shash->tfm = fs_info->csum_shash; | 
 | 	crypto_shash_init(shash); | 
 |  | 
 | 	len = buf->len - offset; | 
 |  | 
 | 	while (len > 0) { | 
 | 		/* | 
 | 		 * Note: we don't need to check for the err == 1 case here, as | 
 | 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' | 
 | 		 * and 'min_len = 32' and the currently implemented mapping | 
 | 		 * algorithm we cannot cross a page boundary. | 
 | 		 */ | 
 | 		err = map_private_extent_buffer(buf, offset, 32, | 
 | 					&kaddr, &map_start, &map_len); | 
 | 		if (WARN_ON(err)) | 
 | 			return err; | 
 | 		cur_len = min(len, map_len - (offset - map_start)); | 
 | 		crypto_shash_update(shash, kaddr + offset - map_start, cur_len); | 
 | 		len -= cur_len; | 
 | 		offset += cur_len; | 
 | 	} | 
 | 	memset(result, 0, BTRFS_CSUM_SIZE); | 
 |  | 
 | 	crypto_shash_final(shash, result); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * we can't consider a given block up to date unless the transid of the | 
 |  * block matches the transid in the parent node's pointer.  This is how we | 
 |  * detect blocks that either didn't get written at all or got written | 
 |  * in the wrong place. | 
 |  */ | 
 | static int verify_parent_transid(struct extent_io_tree *io_tree, | 
 | 				 struct extent_buffer *eb, u64 parent_transid, | 
 | 				 int atomic) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret; | 
 | 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); | 
 |  | 
 | 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | 
 | 		return 0; | 
 |  | 
 | 	if (atomic) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (need_lock) { | 
 | 		btrfs_tree_read_lock(eb); | 
 | 		btrfs_set_lock_blocking_read(eb); | 
 | 	} | 
 |  | 
 | 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, | 
 | 			 &cached_state); | 
 | 	if (extent_buffer_uptodate(eb) && | 
 | 	    btrfs_header_generation(eb) == parent_transid) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_err_rl(eb->fs_info, | 
 | 		"parent transid verify failed on %llu wanted %llu found %llu", | 
 | 			eb->start, | 
 | 			parent_transid, btrfs_header_generation(eb)); | 
 | 	ret = 1; | 
 |  | 
 | 	/* | 
 | 	 * Things reading via commit roots that don't have normal protection, | 
 | 	 * like send, can have a really old block in cache that may point at a | 
 | 	 * block that has been freed and re-allocated.  So don't clear uptodate | 
 | 	 * if we find an eb that is under IO (dirty/writeback) because we could | 
 | 	 * end up reading in the stale data and then writing it back out and | 
 | 	 * making everybody very sad. | 
 | 	 */ | 
 | 	if (!extent_buffer_under_io(eb)) | 
 | 		clear_extent_buffer_uptodate(eb); | 
 | out: | 
 | 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, | 
 | 			     &cached_state); | 
 | 	if (need_lock) | 
 | 		btrfs_tree_read_unlock_blocking(eb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool btrfs_supported_super_csum(u16 csum_type) | 
 | { | 
 | 	switch (csum_type) { | 
 | 	case BTRFS_CSUM_TYPE_CRC32: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return 0 if the superblock checksum type matches the checksum value of that | 
 |  * algorithm. Pass the raw disk superblock data. | 
 |  */ | 
 | static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, | 
 | 				  char *raw_disk_sb) | 
 | { | 
 | 	struct btrfs_super_block *disk_sb = | 
 | 		(struct btrfs_super_block *)raw_disk_sb; | 
 | 	char result[BTRFS_CSUM_SIZE]; | 
 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
 |  | 
 | 	shash->tfm = fs_info->csum_shash; | 
 | 	crypto_shash_init(shash); | 
 |  | 
 | 	/* | 
 | 	 * The super_block structure does not span the whole | 
 | 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is | 
 | 	 * filled with zeros and is included in the checksum. | 
 | 	 */ | 
 | 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, | 
 | 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); | 
 | 	crypto_shash_final(shash, result); | 
 |  | 
 | 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_verify_level_key(struct extent_buffer *eb, int level, | 
 | 			   struct btrfs_key *first_key, u64 parent_transid) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	int found_level; | 
 | 	struct btrfs_key found_key; | 
 | 	int ret; | 
 |  | 
 | 	found_level = btrfs_header_level(eb); | 
 | 	if (found_level != level) { | 
 | 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), | 
 | 		     KERN_ERR "BTRFS: tree level check failed\n"); | 
 | 		btrfs_err(fs_info, | 
 | "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", | 
 | 			  eb->start, level, found_level); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (!first_key) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * For live tree block (new tree blocks in current transaction), | 
 | 	 * we need proper lock context to avoid race, which is impossible here. | 
 | 	 * So we only checks tree blocks which is read from disk, whose | 
 | 	 * generation <= fs_info->last_trans_committed. | 
 | 	 */ | 
 | 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed) | 
 | 		return 0; | 
 |  | 
 | 	/* We have @first_key, so this @eb must have at least one item */ | 
 | 	if (btrfs_header_nritems(eb) == 0) { | 
 | 		btrfs_err(fs_info, | 
 | 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0", | 
 | 			  eb->start); | 
 | 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
 | 		return -EUCLEAN; | 
 | 	} | 
 |  | 
 | 	if (found_level) | 
 | 		btrfs_node_key_to_cpu(eb, &found_key, 0); | 
 | 	else | 
 | 		btrfs_item_key_to_cpu(eb, &found_key, 0); | 
 | 	ret = btrfs_comp_cpu_keys(first_key, &found_key); | 
 |  | 
 | 	if (ret) { | 
 | 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), | 
 | 		     KERN_ERR "BTRFS: tree first key check failed\n"); | 
 | 		btrfs_err(fs_info, | 
 | "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", | 
 | 			  eb->start, parent_transid, first_key->objectid, | 
 | 			  first_key->type, first_key->offset, | 
 | 			  found_key.objectid, found_key.type, | 
 | 			  found_key.offset); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to read a given tree block, doing retries as required when | 
 |  * the checksums don't match and we have alternate mirrors to try. | 
 |  * | 
 |  * @parent_transid:	expected transid, skip check if 0 | 
 |  * @level:		expected level, mandatory check | 
 |  * @first_key:		expected key of first slot, skip check if NULL | 
 |  */ | 
 | static int btree_read_extent_buffer_pages(struct extent_buffer *eb, | 
 | 					  u64 parent_transid, int level, | 
 | 					  struct btrfs_key *first_key) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct extent_io_tree *io_tree; | 
 | 	int failed = 0; | 
 | 	int ret; | 
 | 	int num_copies = 0; | 
 | 	int mirror_num = 0; | 
 | 	int failed_mirror = 0; | 
 |  | 
 | 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; | 
 | 	while (1) { | 
 | 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
 | 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); | 
 | 		if (!ret) { | 
 | 			if (verify_parent_transid(io_tree, eb, | 
 | 						   parent_transid, 0)) | 
 | 				ret = -EIO; | 
 | 			else if (btrfs_verify_level_key(eb, level, | 
 | 						first_key, parent_transid)) | 
 | 				ret = -EUCLEAN; | 
 | 			else | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		num_copies = btrfs_num_copies(fs_info, | 
 | 					      eb->start, eb->len); | 
 | 		if (num_copies == 1) | 
 | 			break; | 
 |  | 
 | 		if (!failed_mirror) { | 
 | 			failed = 1; | 
 | 			failed_mirror = eb->read_mirror; | 
 | 		} | 
 |  | 
 | 		mirror_num++; | 
 | 		if (mirror_num == failed_mirror) | 
 | 			mirror_num++; | 
 |  | 
 | 		if (mirror_num > num_copies) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (failed && !ret && failed_mirror) | 
 | 		btrfs_repair_eb_io_failure(eb, failed_mirror); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * checksum a dirty tree block before IO.  This has extra checks to make sure | 
 |  * we only fill in the checksum field in the first page of a multi-page block | 
 |  */ | 
 |  | 
 | static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) | 
 | { | 
 | 	u64 start = page_offset(page); | 
 | 	u64 found_start; | 
 | 	u8 result[BTRFS_CSUM_SIZE]; | 
 | 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 | 	struct extent_buffer *eb; | 
 | 	int ret; | 
 |  | 
 | 	eb = (struct extent_buffer *)page->private; | 
 | 	if (page != eb->pages[0]) | 
 | 		return 0; | 
 |  | 
 | 	found_start = btrfs_header_bytenr(eb); | 
 | 	/* | 
 | 	 * Please do not consolidate these warnings into a single if. | 
 | 	 * It is useful to know what went wrong. | 
 | 	 */ | 
 | 	if (WARN_ON(found_start != start)) | 
 | 		return -EUCLEAN; | 
 | 	if (WARN_ON(!PageUptodate(page))) | 
 | 		return -EUCLEAN; | 
 |  | 
 | 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, | 
 | 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); | 
 |  | 
 | 	if (csum_tree_block(eb, result)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (btrfs_header_level(eb)) | 
 | 		ret = btrfs_check_node(eb); | 
 | 	else | 
 | 		ret = btrfs_check_leaf_full(eb); | 
 |  | 
 | 	if (ret < 0) { | 
 | 		btrfs_err(fs_info, | 
 | 		"block=%llu write time tree block corruption detected", | 
 | 			  eb->start); | 
 | 		return ret; | 
 | 	} | 
 | 	write_extent_buffer(eb, result, 0, csum_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_tree_block_fsid(struct extent_buffer *eb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
 | 	u8 fsid[BTRFS_FSID_SIZE]; | 
 | 	int ret = 1; | 
 |  | 
 | 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); | 
 | 	while (fs_devices) { | 
 | 		u8 *metadata_uuid; | 
 |  | 
 | 		/* | 
 | 		 * Checking the incompat flag is only valid for the current | 
 | 		 * fs. For seed devices it's forbidden to have their uuid | 
 | 		 * changed so reading ->fsid in this case is fine | 
 | 		 */ | 
 | 		if (fs_devices == fs_info->fs_devices && | 
 | 		    btrfs_fs_incompat(fs_info, METADATA_UUID)) | 
 | 			metadata_uuid = fs_devices->metadata_uuid; | 
 | 		else | 
 | 			metadata_uuid = fs_devices->fsid; | 
 |  | 
 | 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		fs_devices = fs_devices->seed; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, | 
 | 				      u64 phy_offset, struct page *page, | 
 | 				      u64 start, u64 end, int mirror) | 
 | { | 
 | 	u64 found_start; | 
 | 	int found_level; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 | 	int ret = 0; | 
 | 	u8 result[BTRFS_CSUM_SIZE]; | 
 | 	int reads_done; | 
 |  | 
 | 	if (!page->private) | 
 | 		goto out; | 
 |  | 
 | 	eb = (struct extent_buffer *)page->private; | 
 |  | 
 | 	/* the pending IO might have been the only thing that kept this buffer | 
 | 	 * in memory.  Make sure we have a ref for all this other checks | 
 | 	 */ | 
 | 	extent_buffer_get(eb); | 
 |  | 
 | 	reads_done = atomic_dec_and_test(&eb->io_pages); | 
 | 	if (!reads_done) | 
 | 		goto err; | 
 |  | 
 | 	eb->read_mirror = mirror; | 
 | 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	found_start = btrfs_header_bytenr(eb); | 
 | 	if (found_start != eb->start) { | 
 | 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", | 
 | 			     eb->start, found_start); | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 | 	if (check_tree_block_fsid(eb)) { | 
 | 		btrfs_err_rl(fs_info, "bad fsid on block %llu", | 
 | 			     eb->start); | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 | 	found_level = btrfs_header_level(eb); | 
 | 	if (found_level >= BTRFS_MAX_LEVEL) { | 
 | 		btrfs_err(fs_info, "bad tree block level %d on %llu", | 
 | 			  (int)btrfs_header_level(eb), eb->start); | 
 | 		ret = -EIO; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), | 
 | 				       eb, found_level); | 
 |  | 
 | 	ret = csum_tree_block(eb, result); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) { | 
 | 		u8 val[BTRFS_CSUM_SIZE] = { 0 }; | 
 |  | 
 | 		read_extent_buffer(eb, &val, 0, csum_size); | 
 | 		btrfs_warn_rl(fs_info, | 
 | 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", | 
 | 			      fs_info->sb->s_id, eb->start, | 
 | 			      CSUM_FMT_VALUE(csum_size, val), | 
 | 			      CSUM_FMT_VALUE(csum_size, result), | 
 | 			      btrfs_header_level(eb)); | 
 | 		ret = -EUCLEAN; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a leaf block and it is corrupt, set the corrupt bit so | 
 | 	 * that we don't try and read the other copies of this block, just | 
 | 	 * return -EIO. | 
 | 	 */ | 
 | 	if (found_level == 0 && btrfs_check_leaf_full(eb)) { | 
 | 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
 | 		ret = -EIO; | 
 | 	} | 
 |  | 
 | 	if (found_level > 0 && btrfs_check_node(eb)) | 
 | 		ret = -EIO; | 
 |  | 
 | 	if (!ret) | 
 | 		set_extent_buffer_uptodate(eb); | 
 | 	else | 
 | 		btrfs_err(fs_info, | 
 | 			  "block=%llu read time tree block corruption detected", | 
 | 			  eb->start); | 
 | err: | 
 | 	if (reads_done && | 
 | 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) | 
 | 		btree_readahead_hook(eb, ret); | 
 |  | 
 | 	if (ret) { | 
 | 		/* | 
 | 		 * our io error hook is going to dec the io pages | 
 | 		 * again, we have to make sure it has something | 
 | 		 * to decrement | 
 | 		 */ | 
 | 		atomic_inc(&eb->io_pages); | 
 | 		clear_extent_buffer_uptodate(eb); | 
 | 	} | 
 | 	free_extent_buffer(eb); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void end_workqueue_bio(struct bio *bio) | 
 | { | 
 | 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_workqueue *wq; | 
 |  | 
 | 	fs_info = end_io_wq->info; | 
 | 	end_io_wq->status = bio->bi_status; | 
 |  | 
 | 	if (bio_op(bio) == REQ_OP_WRITE) { | 
 | 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) | 
 | 			wq = fs_info->endio_meta_write_workers; | 
 | 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) | 
 | 			wq = fs_info->endio_freespace_worker; | 
 | 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) | 
 | 			wq = fs_info->endio_raid56_workers; | 
 | 		else | 
 | 			wq = fs_info->endio_write_workers; | 
 | 	} else { | 
 | 		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR)) | 
 | 			wq = fs_info->endio_repair_workers; | 
 | 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) | 
 | 			wq = fs_info->endio_raid56_workers; | 
 | 		else if (end_io_wq->metadata) | 
 | 			wq = fs_info->endio_meta_workers; | 
 | 		else | 
 | 			wq = fs_info->endio_workers; | 
 | 	} | 
 |  | 
 | 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); | 
 | 	btrfs_queue_work(wq, &end_io_wq->work); | 
 | } | 
 |  | 
 | blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, | 
 | 			enum btrfs_wq_endio_type metadata) | 
 | { | 
 | 	struct btrfs_end_io_wq *end_io_wq; | 
 |  | 
 | 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); | 
 | 	if (!end_io_wq) | 
 | 		return BLK_STS_RESOURCE; | 
 |  | 
 | 	end_io_wq->private = bio->bi_private; | 
 | 	end_io_wq->end_io = bio->bi_end_io; | 
 | 	end_io_wq->info = info; | 
 | 	end_io_wq->status = 0; | 
 | 	end_io_wq->bio = bio; | 
 | 	end_io_wq->metadata = metadata; | 
 |  | 
 | 	bio->bi_private = end_io_wq; | 
 | 	bio->bi_end_io = end_workqueue_bio; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void run_one_async_start(struct btrfs_work *work) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	async = container_of(work, struct  async_submit_bio, work); | 
 | 	ret = async->submit_bio_start(async->private_data, async->bio, | 
 | 				      async->bio_offset); | 
 | 	if (ret) | 
 | 		async->status = ret; | 
 | } | 
 |  | 
 | /* | 
 |  * In order to insert checksums into the metadata in large chunks, we wait | 
 |  * until bio submission time.   All the pages in the bio are checksummed and | 
 |  * sums are attached onto the ordered extent record. | 
 |  * | 
 |  * At IO completion time the csums attached on the ordered extent record are | 
 |  * inserted into the tree. | 
 |  */ | 
 | static void run_one_async_done(struct btrfs_work *work) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 | 	struct inode *inode; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	async = container_of(work, struct  async_submit_bio, work); | 
 | 	inode = async->private_data; | 
 |  | 
 | 	/* If an error occurred we just want to clean up the bio and move on */ | 
 | 	if (async->status) { | 
 | 		async->bio->bi_status = async->status; | 
 | 		bio_endio(async->bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, | 
 | 			async->mirror_num, 1); | 
 | 	if (ret) { | 
 | 		async->bio->bi_status = ret; | 
 | 		bio_endio(async->bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void run_one_async_free(struct btrfs_work *work) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 |  | 
 | 	async = container_of(work, struct  async_submit_bio, work); | 
 | 	kfree(async); | 
 | } | 
 |  | 
 | blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, | 
 | 				 int mirror_num, unsigned long bio_flags, | 
 | 				 u64 bio_offset, void *private_data, | 
 | 				 extent_submit_bio_start_t *submit_bio_start) | 
 | { | 
 | 	struct async_submit_bio *async; | 
 |  | 
 | 	async = kmalloc(sizeof(*async), GFP_NOFS); | 
 | 	if (!async) | 
 | 		return BLK_STS_RESOURCE; | 
 |  | 
 | 	async->private_data = private_data; | 
 | 	async->bio = bio; | 
 | 	async->mirror_num = mirror_num; | 
 | 	async->submit_bio_start = submit_bio_start; | 
 |  | 
 | 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, | 
 | 			run_one_async_free); | 
 |  | 
 | 	async->bio_offset = bio_offset; | 
 |  | 
 | 	async->status = 0; | 
 |  | 
 | 	if (op_is_sync(bio->bi_opf)) | 
 | 		btrfs_set_work_high_priority(&async->work); | 
 |  | 
 | 	btrfs_queue_work(fs_info->workers, &async->work); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static blk_status_t btree_csum_one_bio(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	struct btrfs_root *root; | 
 | 	int ret = 0; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) { | 
 | 		root = BTRFS_I(bvec->bv_page->mapping->host)->root; | 
 | 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return errno_to_blk_status(ret); | 
 | } | 
 |  | 
 | static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, | 
 | 					     u64 bio_offset) | 
 | { | 
 | 	/* | 
 | 	 * when we're called for a write, we're already in the async | 
 | 	 * submission context.  Just jump into btrfs_map_bio | 
 | 	 */ | 
 | 	return btree_csum_one_bio(bio); | 
 | } | 
 |  | 
 | static int check_async_write(struct btrfs_fs_info *fs_info, | 
 | 			     struct btrfs_inode *bi) | 
 | { | 
 | 	if (atomic_read(&bi->sync_writers)) | 
 | 		return 0; | 
 | 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, | 
 | 					  int mirror_num, | 
 | 					  unsigned long bio_flags) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	int async = check_async_write(fs_info, BTRFS_I(inode)); | 
 | 	blk_status_t ret; | 
 |  | 
 | 	if (bio_op(bio) != REQ_OP_WRITE) { | 
 | 		/* | 
 | 		 * called for a read, do the setup so that checksum validation | 
 | 		 * can happen in the async kernel threads | 
 | 		 */ | 
 | 		ret = btrfs_bio_wq_end_io(fs_info, bio, | 
 | 					  BTRFS_WQ_ENDIO_METADATA); | 
 | 		if (ret) | 
 | 			goto out_w_error; | 
 | 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); | 
 | 	} else if (!async) { | 
 | 		ret = btree_csum_one_bio(bio); | 
 | 		if (ret) | 
 | 			goto out_w_error; | 
 | 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); | 
 | 	} else { | 
 | 		/* | 
 | 		 * kthread helpers are used to submit writes so that | 
 | 		 * checksumming can happen in parallel across all CPUs | 
 | 		 */ | 
 | 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, | 
 | 					  0, inode, btree_submit_bio_start); | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		goto out_w_error; | 
 | 	return 0; | 
 |  | 
 | out_w_error: | 
 | 	bio->bi_status = ret; | 
 | 	bio_endio(bio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | static int btree_migratepage(struct address_space *mapping, | 
 | 			struct page *newpage, struct page *page, | 
 | 			enum migrate_mode mode) | 
 | { | 
 | 	/* | 
 | 	 * we can't safely write a btree page from here, | 
 | 	 * we haven't done the locking hook | 
 | 	 */ | 
 | 	if (PageDirty(page)) | 
 | 		return -EAGAIN; | 
 | 	/* | 
 | 	 * Buffers may be managed in a filesystem specific way. | 
 | 	 * We must have no buffers or drop them. | 
 | 	 */ | 
 | 	if (page_has_private(page) && | 
 | 	    !try_to_release_page(page, GFP_KERNEL)) | 
 | 		return -EAGAIN; | 
 | 	return migrate_page(mapping, newpage, page, mode); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | static int btree_writepages(struct address_space *mapping, | 
 | 			    struct writeback_control *wbc) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	int ret; | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_NONE) { | 
 |  | 
 | 		if (wbc->for_kupdate) | 
 | 			return 0; | 
 |  | 
 | 		fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
 | 		/* this is a bit racy, but that's ok */ | 
 | 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
 | 					     BTRFS_DIRTY_METADATA_THRESH, | 
 | 					     fs_info->dirty_metadata_batch); | 
 | 		if (ret < 0) | 
 | 			return 0; | 
 | 	} | 
 | 	return btree_write_cache_pages(mapping, wbc); | 
 | } | 
 |  | 
 | static int btree_readpage(struct file *file, struct page *page) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	return extent_read_full_page(tree, page, btree_get_extent, 0); | 
 | } | 
 |  | 
 | static int btree_releasepage(struct page *page, gfp_t gfp_flags) | 
 | { | 
 | 	if (PageWriteback(page) || PageDirty(page)) | 
 | 		return 0; | 
 |  | 
 | 	return try_release_extent_buffer(page); | 
 | } | 
 |  | 
 | static void btree_invalidatepage(struct page *page, unsigned int offset, | 
 | 				 unsigned int length) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	extent_invalidatepage(tree, page, offset); | 
 | 	btree_releasepage(page, GFP_NOFS); | 
 | 	if (PagePrivate(page)) { | 
 | 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, | 
 | 			   "page private not zero on page %llu", | 
 | 			   (unsigned long long)page_offset(page)); | 
 | 		ClearPagePrivate(page); | 
 | 		set_page_private(page, 0); | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | static int btree_set_page_dirty(struct page *page) | 
 | { | 
 | #ifdef DEBUG | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	BUG_ON(!PagePrivate(page)); | 
 | 	eb = (struct extent_buffer *)page->private; | 
 | 	BUG_ON(!eb); | 
 | 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
 | 	BUG_ON(!atomic_read(&eb->refs)); | 
 | 	btrfs_assert_tree_locked(eb); | 
 | #endif | 
 | 	return __set_page_dirty_nobuffers(page); | 
 | } | 
 |  | 
 | static const struct address_space_operations btree_aops = { | 
 | 	.readpage	= btree_readpage, | 
 | 	.writepages	= btree_writepages, | 
 | 	.releasepage	= btree_releasepage, | 
 | 	.invalidatepage = btree_invalidatepage, | 
 | #ifdef CONFIG_MIGRATION | 
 | 	.migratepage	= btree_migratepage, | 
 | #endif | 
 | 	.set_page_dirty = btree_set_page_dirty, | 
 | }; | 
 |  | 
 | void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) | 
 | { | 
 | 	struct extent_buffer *buf = NULL; | 
 | 	int ret; | 
 |  | 
 | 	buf = btrfs_find_create_tree_block(fs_info, bytenr); | 
 | 	if (IS_ERR(buf)) | 
 | 		return; | 
 |  | 
 | 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); | 
 | 	if (ret < 0) | 
 | 		free_extent_buffer_stale(buf); | 
 | 	else | 
 | 		free_extent_buffer(buf); | 
 | } | 
 |  | 
 | struct extent_buffer *btrfs_find_create_tree_block( | 
 | 						struct btrfs_fs_info *fs_info, | 
 | 						u64 bytenr) | 
 | { | 
 | 	if (btrfs_is_testing(fs_info)) | 
 | 		return alloc_test_extent_buffer(fs_info, bytenr); | 
 | 	return alloc_extent_buffer(fs_info, bytenr); | 
 | } | 
 |  | 
 | /* | 
 |  * Read tree block at logical address @bytenr and do variant basic but critical | 
 |  * verification. | 
 |  * | 
 |  * @parent_transid:	expected transid of this tree block, skip check if 0 | 
 |  * @level:		expected level, mandatory check | 
 |  * @first_key:		expected key in slot 0, skip check if NULL | 
 |  */ | 
 | struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, | 
 | 				      u64 parent_transid, int level, | 
 | 				      struct btrfs_key *first_key) | 
 | { | 
 | 	struct extent_buffer *buf = NULL; | 
 | 	int ret; | 
 |  | 
 | 	buf = btrfs_find_create_tree_block(fs_info, bytenr); | 
 | 	if (IS_ERR(buf)) | 
 | 		return buf; | 
 |  | 
 | 	ret = btree_read_extent_buffer_pages(buf, parent_transid, | 
 | 					     level, first_key); | 
 | 	if (ret) { | 
 | 		free_extent_buffer_stale(buf); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 | 	return buf; | 
 |  | 
 | } | 
 |  | 
 | void btrfs_clean_tree_block(struct extent_buffer *buf) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = buf->fs_info; | 
 | 	if (btrfs_header_generation(buf) == | 
 | 	    fs_info->running_transaction->transid) { | 
 | 		btrfs_assert_tree_locked(buf); | 
 |  | 
 | 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { | 
 | 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
 | 						 -buf->len, | 
 | 						 fs_info->dirty_metadata_batch); | 
 | 			/* ugh, clear_extent_buffer_dirty needs to lock the page */ | 
 | 			btrfs_set_lock_blocking_write(buf); | 
 | 			clear_extent_buffer_dirty(buf); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) | 
 | { | 
 | 	struct btrfs_subvolume_writers *writers; | 
 | 	int ret; | 
 |  | 
 | 	writers = kmalloc(sizeof(*writers), GFP_NOFS); | 
 | 	if (!writers) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); | 
 | 	if (ret < 0) { | 
 | 		kfree(writers); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	init_waitqueue_head(&writers->wait); | 
 | 	return writers; | 
 | } | 
 |  | 
 | static void | 
 | btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) | 
 | { | 
 | 	percpu_counter_destroy(&writers->counter); | 
 | 	kfree(writers); | 
 | } | 
 |  | 
 | static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, | 
 | 			 u64 objectid) | 
 | { | 
 | 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); | 
 | 	root->node = NULL; | 
 | 	root->commit_root = NULL; | 
 | 	root->state = 0; | 
 | 	root->orphan_cleanup_state = 0; | 
 |  | 
 | 	root->last_trans = 0; | 
 | 	root->highest_objectid = 0; | 
 | 	root->nr_delalloc_inodes = 0; | 
 | 	root->nr_ordered_extents = 0; | 
 | 	root->inode_tree = RB_ROOT; | 
 | 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); | 
 | 	root->block_rsv = NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&root->dirty_list); | 
 | 	INIT_LIST_HEAD(&root->root_list); | 
 | 	INIT_LIST_HEAD(&root->delalloc_inodes); | 
 | 	INIT_LIST_HEAD(&root->delalloc_root); | 
 | 	INIT_LIST_HEAD(&root->ordered_extents); | 
 | 	INIT_LIST_HEAD(&root->ordered_root); | 
 | 	INIT_LIST_HEAD(&root->reloc_dirty_list); | 
 | 	INIT_LIST_HEAD(&root->logged_list[0]); | 
 | 	INIT_LIST_HEAD(&root->logged_list[1]); | 
 | 	spin_lock_init(&root->inode_lock); | 
 | 	spin_lock_init(&root->delalloc_lock); | 
 | 	spin_lock_init(&root->ordered_extent_lock); | 
 | 	spin_lock_init(&root->accounting_lock); | 
 | 	spin_lock_init(&root->log_extents_lock[0]); | 
 | 	spin_lock_init(&root->log_extents_lock[1]); | 
 | 	spin_lock_init(&root->qgroup_meta_rsv_lock); | 
 | 	mutex_init(&root->objectid_mutex); | 
 | 	mutex_init(&root->log_mutex); | 
 | 	mutex_init(&root->ordered_extent_mutex); | 
 | 	mutex_init(&root->delalloc_mutex); | 
 | 	init_waitqueue_head(&root->log_writer_wait); | 
 | 	init_waitqueue_head(&root->log_commit_wait[0]); | 
 | 	init_waitqueue_head(&root->log_commit_wait[1]); | 
 | 	INIT_LIST_HEAD(&root->log_ctxs[0]); | 
 | 	INIT_LIST_HEAD(&root->log_ctxs[1]); | 
 | 	atomic_set(&root->log_commit[0], 0); | 
 | 	atomic_set(&root->log_commit[1], 0); | 
 | 	atomic_set(&root->log_writers, 0); | 
 | 	atomic_set(&root->log_batch, 0); | 
 | 	refcount_set(&root->refs, 1); | 
 | 	atomic_set(&root->will_be_snapshotted, 0); | 
 | 	atomic_set(&root->snapshot_force_cow, 0); | 
 | 	atomic_set(&root->nr_swapfiles, 0); | 
 | 	root->log_transid = 0; | 
 | 	root->log_transid_committed = -1; | 
 | 	root->last_log_commit = 0; | 
 | 	if (!dummy) | 
 | 		extent_io_tree_init(fs_info, &root->dirty_log_pages, | 
 | 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); | 
 |  | 
 | 	memset(&root->root_key, 0, sizeof(root->root_key)); | 
 | 	memset(&root->root_item, 0, sizeof(root->root_item)); | 
 | 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | 
 | 	if (!dummy) | 
 | 		root->defrag_trans_start = fs_info->generation; | 
 | 	else | 
 | 		root->defrag_trans_start = 0; | 
 | 	root->root_key.objectid = objectid; | 
 | 	root->anon_dev = 0; | 
 |  | 
 | 	spin_lock_init(&root->root_item_lock); | 
 | 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); | 
 | } | 
 |  | 
 | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, | 
 | 		gfp_t flags) | 
 | { | 
 | 	struct btrfs_root *root = kzalloc(sizeof(*root), flags); | 
 | 	if (root) | 
 | 		root->fs_info = fs_info; | 
 | 	return root; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | /* Should only be used by the testing infrastructure */ | 
 | struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *root; | 
 |  | 
 | 	if (!fs_info) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
 | 	if (!root) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* We don't use the stripesize in selftest, set it as sectorsize */ | 
 | 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); | 
 | 	root->alloc_bytenr = 0; | 
 |  | 
 | 	return root; | 
 | } | 
 | #endif | 
 |  | 
 | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, | 
 | 				     u64 objectid) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_key key; | 
 | 	unsigned int nofs_flag; | 
 | 	int ret = 0; | 
 | 	uuid_le uuid = NULL_UUID_LE; | 
 |  | 
 | 	/* | 
 | 	 * We're holding a transaction handle, so use a NOFS memory allocation | 
 | 	 * context to avoid deadlock if reclaim happens. | 
 | 	 */ | 
 | 	nofs_flag = memalloc_nofs_save(); | 
 | 	root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
 | 	memalloc_nofs_restore(nofs_flag); | 
 | 	if (!root) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	__setup_root(root, fs_info, objectid); | 
 | 	root->root_key.objectid = objectid; | 
 | 	root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	root->root_key.offset = 0; | 
 |  | 
 | 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); | 
 | 	if (IS_ERR(leaf)) { | 
 | 		ret = PTR_ERR(leaf); | 
 | 		leaf = NULL; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	root->node = leaf; | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	root->commit_root = btrfs_root_node(root); | 
 | 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 |  | 
 | 	root->root_item.flags = 0; | 
 | 	root->root_item.byte_limit = 0; | 
 | 	btrfs_set_root_bytenr(&root->root_item, leaf->start); | 
 | 	btrfs_set_root_generation(&root->root_item, trans->transid); | 
 | 	btrfs_set_root_level(&root->root_item, 0); | 
 | 	btrfs_set_root_refs(&root->root_item, 1); | 
 | 	btrfs_set_root_used(&root->root_item, leaf->len); | 
 | 	btrfs_set_root_last_snapshot(&root->root_item, 0); | 
 | 	btrfs_set_root_dirid(&root->root_item, 0); | 
 | 	if (is_fstree(objectid)) | 
 | 		uuid_le_gen(&uuid); | 
 | 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); | 
 | 	root->root_item.drop_level = 0; | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	btrfs_tree_unlock(leaf); | 
 |  | 
 | 	return root; | 
 |  | 
 | fail: | 
 | 	if (leaf) { | 
 | 		btrfs_tree_unlock(leaf); | 
 | 		free_extent_buffer(root->commit_root); | 
 | 		free_extent_buffer(leaf); | 
 | 	} | 
 | 	kfree(root); | 
 |  | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, | 
 | 					 struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct extent_buffer *leaf; | 
 |  | 
 | 	root = btrfs_alloc_root(fs_info, GFP_NOFS); | 
 | 	if (!root) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
 | 	root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | 
 |  | 
 | 	/* | 
 | 	 * DON'T set REF_COWS for log trees | 
 | 	 * | 
 | 	 * log trees do not get reference counted because they go away | 
 | 	 * before a real commit is actually done.  They do store pointers | 
 | 	 * to file data extents, and those reference counts still get | 
 | 	 * updated (along with back refs to the log tree). | 
 | 	 */ | 
 |  | 
 | 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, | 
 | 			NULL, 0, 0, 0); | 
 | 	if (IS_ERR(leaf)) { | 
 | 		kfree(root); | 
 | 		return ERR_CAST(leaf); | 
 | 	} | 
 |  | 
 | 	root->node = leaf; | 
 |  | 
 | 	btrfs_mark_buffer_dirty(root->node); | 
 | 	btrfs_tree_unlock(root->node); | 
 | 	return root; | 
 | } | 
 |  | 
 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *log_root; | 
 |  | 
 | 	log_root = alloc_log_tree(trans, fs_info); | 
 | 	if (IS_ERR(log_root)) | 
 | 		return PTR_ERR(log_root); | 
 | 	WARN_ON(fs_info->log_root_tree); | 
 | 	fs_info->log_root_tree = log_root; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
 | 		       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_root *log_root; | 
 | 	struct btrfs_inode_item *inode_item; | 
 |  | 
 | 	log_root = alloc_log_tree(trans, fs_info); | 
 | 	if (IS_ERR(log_root)) | 
 | 		return PTR_ERR(log_root); | 
 |  | 
 | 	log_root->last_trans = trans->transid; | 
 | 	log_root->root_key.offset = root->root_key.objectid; | 
 |  | 
 | 	inode_item = &log_root->root_item.inode; | 
 | 	btrfs_set_stack_inode_generation(inode_item, 1); | 
 | 	btrfs_set_stack_inode_size(inode_item, 3); | 
 | 	btrfs_set_stack_inode_nlink(inode_item, 1); | 
 | 	btrfs_set_stack_inode_nbytes(inode_item, | 
 | 				     fs_info->nodesize); | 
 | 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); | 
 |  | 
 | 	btrfs_set_root_node(&log_root->root_item, log_root->node); | 
 |  | 
 | 	WARN_ON(root->log_root); | 
 | 	root->log_root = log_root; | 
 | 	root->log_transid = 0; | 
 | 	root->log_transid_committed = -1; | 
 | 	root->last_log_commit = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, | 
 | 					       struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	u64 generation; | 
 | 	int ret; | 
 | 	int level; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	root = btrfs_alloc_root(fs_info, GFP_NOFS); | 
 | 	if (!root) { | 
 | 		ret = -ENOMEM; | 
 | 		goto alloc_fail; | 
 | 	} | 
 |  | 
 | 	__setup_root(root, fs_info, key->objectid); | 
 |  | 
 | 	ret = btrfs_find_root(tree_root, key, path, | 
 | 			      &root->root_item, &root->root_key); | 
 | 	if (ret) { | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		goto find_fail; | 
 | 	} | 
 |  | 
 | 	generation = btrfs_root_generation(&root->root_item); | 
 | 	level = btrfs_root_level(&root->root_item); | 
 | 	root->node = read_tree_block(fs_info, | 
 | 				     btrfs_root_bytenr(&root->root_item), | 
 | 				     generation, level, NULL); | 
 | 	if (IS_ERR(root->node)) { | 
 | 		ret = PTR_ERR(root->node); | 
 | 		goto find_fail; | 
 | 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { | 
 | 		ret = -EIO; | 
 | 		free_extent_buffer(root->node); | 
 | 		goto find_fail; | 
 | 	} | 
 | 	root->commit_root = btrfs_root_node(root); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return root; | 
 |  | 
 | find_fail: | 
 | 	kfree(root); | 
 | alloc_fail: | 
 | 	root = ERR_PTR(ret); | 
 | 	goto out; | 
 | } | 
 |  | 
 | struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, | 
 | 				      struct btrfs_key *location) | 
 | { | 
 | 	struct btrfs_root *root; | 
 |  | 
 | 	root = btrfs_read_tree_root(tree_root, location); | 
 | 	if (IS_ERR(root)) | 
 | 		return root; | 
 |  | 
 | 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
 | 		set_bit(BTRFS_ROOT_REF_COWS, &root->state); | 
 | 		btrfs_check_and_init_root_item(&root->root_item); | 
 | 	} | 
 |  | 
 | 	return root; | 
 | } | 
 |  | 
 | int btrfs_init_fs_root(struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_subvolume_writers *writers; | 
 |  | 
 | 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); | 
 | 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), | 
 | 					GFP_NOFS); | 
 | 	if (!root->free_ino_pinned || !root->free_ino_ctl) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	writers = btrfs_alloc_subvolume_writers(); | 
 | 	if (IS_ERR(writers)) { | 
 | 		ret = PTR_ERR(writers); | 
 | 		goto fail; | 
 | 	} | 
 | 	root->subv_writers = writers; | 
 |  | 
 | 	btrfs_init_free_ino_ctl(root); | 
 | 	spin_lock_init(&root->ino_cache_lock); | 
 | 	init_waitqueue_head(&root->ino_cache_wait); | 
 |  | 
 | 	/* | 
 | 	 * Don't assign anonymous block device to roots that are not exposed to | 
 | 	 * userspace, the id pool is limited to 1M | 
 | 	 */ | 
 | 	if (is_fstree(root->root_key.objectid) && | 
 | 	    btrfs_root_refs(&root->root_item) > 0) { | 
 | 		ret = get_anon_bdev(&root->anon_dev); | 
 | 		if (ret) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&root->objectid_mutex); | 
 | 	ret = btrfs_find_highest_objectid(root, | 
 | 					&root->highest_objectid); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&root->objectid_mutex); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
 |  | 
 | 	mutex_unlock(&root->objectid_mutex); | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	/* The caller is responsible to call btrfs_free_fs_root */ | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | 
 | 					u64 root_id) | 
 | { | 
 | 	struct btrfs_root *root; | 
 |  | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
 | 				 (unsigned long)root_id); | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 	return root; | 
 | } | 
 |  | 
 | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, | 
 | 			 struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = radix_tree_preload(GFP_NOFS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	ret = radix_tree_insert(&fs_info->fs_roots_radix, | 
 | 				(unsigned long)root->root_key.objectid, | 
 | 				root); | 
 | 	if (ret == 0) | 
 | 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state); | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, | 
 | 				     struct btrfs_key *location, | 
 | 				     bool check_ref) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) | 
 | 		return fs_info->tree_root; | 
 | 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
 | 		return fs_info->extent_root; | 
 | 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) | 
 | 		return fs_info->chunk_root; | 
 | 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID) | 
 | 		return fs_info->dev_root; | 
 | 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) | 
 | 		return fs_info->csum_root; | 
 | 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) | 
 | 		return fs_info->quota_root ? fs_info->quota_root : | 
 | 					     ERR_PTR(-ENOENT); | 
 | 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID) | 
 | 		return fs_info->uuid_root ? fs_info->uuid_root : | 
 | 					    ERR_PTR(-ENOENT); | 
 | 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) | 
 | 		return fs_info->free_space_root ? fs_info->free_space_root : | 
 | 						  ERR_PTR(-ENOENT); | 
 | again: | 
 | 	root = btrfs_lookup_fs_root(fs_info, location->objectid); | 
 | 	if (root) { | 
 | 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) | 
 | 			return ERR_PTR(-ENOENT); | 
 | 		return root; | 
 | 	} | 
 |  | 
 | 	root = btrfs_read_fs_root(fs_info->tree_root, location); | 
 | 	if (IS_ERR(root)) | 
 | 		return root; | 
 |  | 
 | 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_init_fs_root(root); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 | 	key.objectid = BTRFS_ORPHAN_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = location->objectid; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
 | 	btrfs_free_path(path); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 | 	if (ret == 0) | 
 | 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); | 
 |  | 
 | 	ret = btrfs_insert_fs_root(fs_info, root); | 
 | 	if (ret) { | 
 | 		if (ret == -EEXIST) { | 
 | 			btrfs_free_fs_root(root); | 
 | 			goto again; | 
 | 		} | 
 | 		goto fail; | 
 | 	} | 
 | 	return root; | 
 | fail: | 
 | 	btrfs_free_fs_root(root); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int btrfs_congested_fn(void *congested_data, int bdi_bits) | 
 | { | 
 | 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; | 
 | 	int ret = 0; | 
 | 	struct btrfs_device *device; | 
 | 	struct backing_dev_info *bdi; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { | 
 | 		if (!device->bdev) | 
 | 			continue; | 
 | 		bdi = device->bdev->bd_bdi; | 
 | 		if (bdi_congested(bdi, bdi_bits)) { | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * called by the kthread helper functions to finally call the bio end_io | 
 |  * functions.  This is where read checksum verification actually happens | 
 |  */ | 
 | static void end_workqueue_fn(struct btrfs_work *work) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct btrfs_end_io_wq *end_io_wq; | 
 |  | 
 | 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work); | 
 | 	bio = end_io_wq->bio; | 
 |  | 
 | 	bio->bi_status = end_io_wq->status; | 
 | 	bio->bi_private = end_io_wq->private; | 
 | 	bio->bi_end_io = end_io_wq->end_io; | 
 | 	bio_endio(bio); | 
 | 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); | 
 | } | 
 |  | 
 | static int cleaner_kthread(void *arg) | 
 | { | 
 | 	struct btrfs_root *root = arg; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int again; | 
 |  | 
 | 	while (1) { | 
 | 		again = 0; | 
 |  | 
 | 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); | 
 |  | 
 | 		/* Make the cleaner go to sleep early. */ | 
 | 		if (btrfs_need_cleaner_sleep(fs_info)) | 
 | 			goto sleep; | 
 |  | 
 | 		/* | 
 | 		 * Do not do anything if we might cause open_ctree() to block | 
 | 		 * before we have finished mounting the filesystem. | 
 | 		 */ | 
 | 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) | 
 | 			goto sleep; | 
 |  | 
 | 		if (!mutex_trylock(&fs_info->cleaner_mutex)) | 
 | 			goto sleep; | 
 |  | 
 | 		/* | 
 | 		 * Avoid the problem that we change the status of the fs | 
 | 		 * during the above check and trylock. | 
 | 		 */ | 
 | 		if (btrfs_need_cleaner_sleep(fs_info)) { | 
 | 			mutex_unlock(&fs_info->cleaner_mutex); | 
 | 			goto sleep; | 
 | 		} | 
 |  | 
 | 		btrfs_run_delayed_iputs(fs_info); | 
 |  | 
 | 		again = btrfs_clean_one_deleted_snapshot(root); | 
 | 		mutex_unlock(&fs_info->cleaner_mutex); | 
 |  | 
 | 		/* | 
 | 		 * The defragger has dealt with the R/O remount and umount, | 
 | 		 * needn't do anything special here. | 
 | 		 */ | 
 | 		btrfs_run_defrag_inodes(fs_info); | 
 |  | 
 | 		/* | 
 | 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing | 
 | 		 * with relocation (btrfs_relocate_chunk) and relocation | 
 | 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) | 
 | 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we | 
 | 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting | 
 | 		 * unused block groups. | 
 | 		 */ | 
 | 		btrfs_delete_unused_bgs(fs_info); | 
 | sleep: | 
 | 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); | 
 | 		if (kthread_should_park()) | 
 | 			kthread_parkme(); | 
 | 		if (kthread_should_stop()) | 
 | 			return 0; | 
 | 		if (!again) { | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			schedule(); | 
 | 			__set_current_state(TASK_RUNNING); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int transaction_kthread(void *arg) | 
 | { | 
 | 	struct btrfs_root *root = arg; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_transaction *cur; | 
 | 	u64 transid; | 
 | 	time64_t now; | 
 | 	unsigned long delay; | 
 | 	bool cannot_commit; | 
 |  | 
 | 	do { | 
 | 		cannot_commit = false; | 
 | 		delay = HZ * fs_info->commit_interval; | 
 | 		mutex_lock(&fs_info->transaction_kthread_mutex); | 
 |  | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 		cur = fs_info->running_transaction; | 
 | 		if (!cur) { | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			goto sleep; | 
 | 		} | 
 |  | 
 | 		now = ktime_get_seconds(); | 
 | 		if (cur->state < TRANS_STATE_BLOCKED && | 
 | 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && | 
 | 		    (now < cur->start_time || | 
 | 		     now - cur->start_time < fs_info->commit_interval)) { | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			delay = HZ * 5; | 
 | 			goto sleep; | 
 | 		} | 
 | 		transid = cur->transid; | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 		/* If the file system is aborted, this will always fail. */ | 
 | 		trans = btrfs_attach_transaction(root); | 
 | 		if (IS_ERR(trans)) { | 
 | 			if (PTR_ERR(trans) != -ENOENT) | 
 | 				cannot_commit = true; | 
 | 			goto sleep; | 
 | 		} | 
 | 		if (transid == trans->transid) { | 
 | 			btrfs_commit_transaction(trans); | 
 | 		} else { | 
 | 			btrfs_end_transaction(trans); | 
 | 		} | 
 | sleep: | 
 | 		wake_up_process(fs_info->cleaner_kthread); | 
 | 		mutex_unlock(&fs_info->transaction_kthread_mutex); | 
 |  | 
 | 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, | 
 | 				      &fs_info->fs_state))) | 
 | 			btrfs_cleanup_transaction(fs_info); | 
 | 		if (!kthread_should_stop() && | 
 | 				(!btrfs_transaction_blocked(fs_info) || | 
 | 				 cannot_commit)) | 
 | 			schedule_timeout_interruptible(delay); | 
 | 	} while (!kthread_should_stop()); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this will find the highest generation in the array of | 
 |  * root backups.  The index of the highest array is returned, | 
 |  * or -1 if we can't find anything. | 
 |  * | 
 |  * We check to make sure the array is valid by comparing the | 
 |  * generation of the latest  root in the array with the generation | 
 |  * in the super block.  If they don't match we pitch it. | 
 |  */ | 
 | static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) | 
 | { | 
 | 	u64 cur; | 
 | 	int newest_index = -1; | 
 | 	struct btrfs_root_backup *root_backup; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
 | 		root_backup = info->super_copy->super_roots + i; | 
 | 		cur = btrfs_backup_tree_root_gen(root_backup); | 
 | 		if (cur == newest_gen) | 
 | 			newest_index = i; | 
 | 	} | 
 |  | 
 | 	/* check to see if we actually wrapped around */ | 
 | 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { | 
 | 		root_backup = info->super_copy->super_roots; | 
 | 		cur = btrfs_backup_tree_root_gen(root_backup); | 
 | 		if (cur == newest_gen) | 
 | 			newest_index = 0; | 
 | 	} | 
 | 	return newest_index; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * find the oldest backup so we know where to store new entries | 
 |  * in the backup array.  This will set the backup_root_index | 
 |  * field in the fs_info struct | 
 |  */ | 
 | static void find_oldest_super_backup(struct btrfs_fs_info *info, | 
 | 				     u64 newest_gen) | 
 | { | 
 | 	int newest_index = -1; | 
 |  | 
 | 	newest_index = find_newest_super_backup(info, newest_gen); | 
 | 	/* if there was garbage in there, just move along */ | 
 | 	if (newest_index == -1) { | 
 | 		info->backup_root_index = 0; | 
 | 	} else { | 
 | 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * copy all the root pointers into the super backup array. | 
 |  * this will bump the backup pointer by one when it is | 
 |  * done | 
 |  */ | 
 | static void backup_super_roots(struct btrfs_fs_info *info) | 
 | { | 
 | 	int next_backup; | 
 | 	struct btrfs_root_backup *root_backup; | 
 | 	int last_backup; | 
 |  | 
 | 	next_backup = info->backup_root_index; | 
 | 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % | 
 | 		BTRFS_NUM_BACKUP_ROOTS; | 
 |  | 
 | 	/* | 
 | 	 * just overwrite the last backup if we're at the same generation | 
 | 	 * this happens only at umount | 
 | 	 */ | 
 | 	root_backup = info->super_for_commit->super_roots + last_backup; | 
 | 	if (btrfs_backup_tree_root_gen(root_backup) == | 
 | 	    btrfs_header_generation(info->tree_root->node)) | 
 | 		next_backup = last_backup; | 
 |  | 
 | 	root_backup = info->super_for_commit->super_roots + next_backup; | 
 |  | 
 | 	/* | 
 | 	 * make sure all of our padding and empty slots get zero filled | 
 | 	 * regardless of which ones we use today | 
 | 	 */ | 
 | 	memset(root_backup, 0, sizeof(*root_backup)); | 
 |  | 
 | 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
 |  | 
 | 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); | 
 | 	btrfs_set_backup_tree_root_gen(root_backup, | 
 | 			       btrfs_header_generation(info->tree_root->node)); | 
 |  | 
 | 	btrfs_set_backup_tree_root_level(root_backup, | 
 | 			       btrfs_header_level(info->tree_root->node)); | 
 |  | 
 | 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); | 
 | 	btrfs_set_backup_chunk_root_gen(root_backup, | 
 | 			       btrfs_header_generation(info->chunk_root->node)); | 
 | 	btrfs_set_backup_chunk_root_level(root_backup, | 
 | 			       btrfs_header_level(info->chunk_root->node)); | 
 |  | 
 | 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); | 
 | 	btrfs_set_backup_extent_root_gen(root_backup, | 
 | 			       btrfs_header_generation(info->extent_root->node)); | 
 | 	btrfs_set_backup_extent_root_level(root_backup, | 
 | 			       btrfs_header_level(info->extent_root->node)); | 
 |  | 
 | 	/* | 
 | 	 * we might commit during log recovery, which happens before we set | 
 | 	 * the fs_root.  Make sure it is valid before we fill it in. | 
 | 	 */ | 
 | 	if (info->fs_root && info->fs_root->node) { | 
 | 		btrfs_set_backup_fs_root(root_backup, | 
 | 					 info->fs_root->node->start); | 
 | 		btrfs_set_backup_fs_root_gen(root_backup, | 
 | 			       btrfs_header_generation(info->fs_root->node)); | 
 | 		btrfs_set_backup_fs_root_level(root_backup, | 
 | 			       btrfs_header_level(info->fs_root->node)); | 
 | 	} | 
 |  | 
 | 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); | 
 | 	btrfs_set_backup_dev_root_gen(root_backup, | 
 | 			       btrfs_header_generation(info->dev_root->node)); | 
 | 	btrfs_set_backup_dev_root_level(root_backup, | 
 | 				       btrfs_header_level(info->dev_root->node)); | 
 |  | 
 | 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); | 
 | 	btrfs_set_backup_csum_root_gen(root_backup, | 
 | 			       btrfs_header_generation(info->csum_root->node)); | 
 | 	btrfs_set_backup_csum_root_level(root_backup, | 
 | 			       btrfs_header_level(info->csum_root->node)); | 
 |  | 
 | 	btrfs_set_backup_total_bytes(root_backup, | 
 | 			     btrfs_super_total_bytes(info->super_copy)); | 
 | 	btrfs_set_backup_bytes_used(root_backup, | 
 | 			     btrfs_super_bytes_used(info->super_copy)); | 
 | 	btrfs_set_backup_num_devices(root_backup, | 
 | 			     btrfs_super_num_devices(info->super_copy)); | 
 |  | 
 | 	/* | 
 | 	 * if we don't copy this out to the super_copy, it won't get remembered | 
 | 	 * for the next commit | 
 | 	 */ | 
 | 	memcpy(&info->super_copy->super_roots, | 
 | 	       &info->super_for_commit->super_roots, | 
 | 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); | 
 | } | 
 |  | 
 | /* | 
 |  * this copies info out of the root backup array and back into | 
 |  * the in-memory super block.  It is meant to help iterate through | 
 |  * the array, so you send it the number of backups you've already | 
 |  * tried and the last backup index you used. | 
 |  * | 
 |  * this returns -1 when it has tried all the backups | 
 |  */ | 
 | static noinline int next_root_backup(struct btrfs_fs_info *info, | 
 | 				     struct btrfs_super_block *super, | 
 | 				     int *num_backups_tried, int *backup_index) | 
 | { | 
 | 	struct btrfs_root_backup *root_backup; | 
 | 	int newest = *backup_index; | 
 |  | 
 | 	if (*num_backups_tried == 0) { | 
 | 		u64 gen = btrfs_super_generation(super); | 
 |  | 
 | 		newest = find_newest_super_backup(info, gen); | 
 | 		if (newest == -1) | 
 | 			return -1; | 
 |  | 
 | 		*backup_index = newest; | 
 | 		*num_backups_tried = 1; | 
 | 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { | 
 | 		/* we've tried all the backups, all done */ | 
 | 		return -1; | 
 | 	} else { | 
 | 		/* jump to the next oldest backup */ | 
 | 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % | 
 | 			BTRFS_NUM_BACKUP_ROOTS; | 
 | 		*backup_index = newest; | 
 | 		*num_backups_tried += 1; | 
 | 	} | 
 | 	root_backup = super->super_roots + newest; | 
 |  | 
 | 	btrfs_set_super_generation(super, | 
 | 				   btrfs_backup_tree_root_gen(root_backup)); | 
 | 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); | 
 | 	btrfs_set_super_root_level(super, | 
 | 				   btrfs_backup_tree_root_level(root_backup)); | 
 | 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); | 
 |  | 
 | 	/* | 
 | 	 * fixme: the total bytes and num_devices need to match or we should | 
 | 	 * need a fsck | 
 | 	 */ | 
 | 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); | 
 | 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* helper to cleanup workers */ | 
 | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	btrfs_destroy_workqueue(fs_info->fixup_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->delalloc_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->workers); | 
 | 	btrfs_destroy_workqueue(fs_info->endio_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->endio_repair_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->rmw_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->endio_write_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker); | 
 | 	btrfs_destroy_workqueue(fs_info->submit_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->delayed_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->caching_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->readahead_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->flush_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); | 
 | 	/* | 
 | 	 * Now that all other work queues are destroyed, we can safely destroy | 
 | 	 * the queues used for metadata I/O, since tasks from those other work | 
 | 	 * queues can do metadata I/O operations. | 
 | 	 */ | 
 | 	btrfs_destroy_workqueue(fs_info->endio_meta_workers); | 
 | 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); | 
 | } | 
 |  | 
 | static void free_root_extent_buffers(struct btrfs_root *root) | 
 | { | 
 | 	if (root) { | 
 | 		free_extent_buffer(root->node); | 
 | 		free_extent_buffer(root->commit_root); | 
 | 		root->node = NULL; | 
 | 		root->commit_root = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* helper to cleanup tree roots */ | 
 | static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) | 
 | { | 
 | 	free_root_extent_buffers(info->tree_root); | 
 |  | 
 | 	free_root_extent_buffers(info->dev_root); | 
 | 	free_root_extent_buffers(info->extent_root); | 
 | 	free_root_extent_buffers(info->csum_root); | 
 | 	free_root_extent_buffers(info->quota_root); | 
 | 	free_root_extent_buffers(info->uuid_root); | 
 | 	if (free_chunk_root) | 
 | 		free_root_extent_buffers(info->chunk_root); | 
 | 	free_root_extent_buffers(info->free_space_root); | 
 | } | 
 |  | 
 | void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *gang[8]; | 
 | 	int i; | 
 |  | 
 | 	while (!list_empty(&fs_info->dead_roots)) { | 
 | 		gang[0] = list_entry(fs_info->dead_roots.next, | 
 | 				     struct btrfs_root, root_list); | 
 | 		list_del(&gang[0]->root_list); | 
 |  | 
 | 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { | 
 | 			btrfs_drop_and_free_fs_root(fs_info, gang[0]); | 
 | 		} else { | 
 | 			free_extent_buffer(gang[0]->node); | 
 | 			free_extent_buffer(gang[0]->commit_root); | 
 | 			btrfs_put_fs_root(gang[0]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
 | 					     (void **)gang, 0, | 
 | 					     ARRAY_SIZE(gang)); | 
 | 		if (!ret) | 
 | 			break; | 
 | 		for (i = 0; i < ret; i++) | 
 | 			btrfs_drop_and_free_fs_root(fs_info, gang[i]); | 
 | 	} | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
 | 		btrfs_free_log_root_tree(NULL, fs_info); | 
 | 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	mutex_init(&fs_info->scrub_lock); | 
 | 	atomic_set(&fs_info->scrubs_running, 0); | 
 | 	atomic_set(&fs_info->scrub_pause_req, 0); | 
 | 	atomic_set(&fs_info->scrubs_paused, 0); | 
 | 	atomic_set(&fs_info->scrub_cancel_req, 0); | 
 | 	init_waitqueue_head(&fs_info->scrub_pause_wait); | 
 | 	refcount_set(&fs_info->scrub_workers_refcnt, 0); | 
 | } | 
 |  | 
 | static void btrfs_init_balance(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	spin_lock_init(&fs_info->balance_lock); | 
 | 	mutex_init(&fs_info->balance_mutex); | 
 | 	atomic_set(&fs_info->balance_pause_req, 0); | 
 | 	atomic_set(&fs_info->balance_cancel_req, 0); | 
 | 	fs_info->balance_ctl = NULL; | 
 | 	init_waitqueue_head(&fs_info->balance_wait_q); | 
 | } | 
 |  | 
 | static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct inode *inode = fs_info->btree_inode; | 
 |  | 
 | 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; | 
 | 	set_nlink(inode, 1); | 
 | 	/* | 
 | 	 * we set the i_size on the btree inode to the max possible int. | 
 | 	 * the real end of the address space is determined by all of | 
 | 	 * the devices in the system | 
 | 	 */ | 
 | 	inode->i_size = OFFSET_MAX; | 
 | 	inode->i_mapping->a_ops = &btree_aops; | 
 |  | 
 | 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); | 
 | 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, | 
 | 			    IO_TREE_INODE_IO, inode); | 
 | 	BTRFS_I(inode)->io_tree.track_uptodate = false; | 
 | 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree); | 
 |  | 
 | 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; | 
 |  | 
 | 	BTRFS_I(inode)->root = fs_info->tree_root; | 
 | 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); | 
 | 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); | 
 | 	btrfs_insert_inode_hash(inode); | 
 | } | 
 |  | 
 | static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); | 
 | 	init_rwsem(&fs_info->dev_replace.rwsem); | 
 | 	init_waitqueue_head(&fs_info->dev_replace.replace_wait); | 
 | } | 
 |  | 
 | static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	spin_lock_init(&fs_info->qgroup_lock); | 
 | 	mutex_init(&fs_info->qgroup_ioctl_lock); | 
 | 	fs_info->qgroup_tree = RB_ROOT; | 
 | 	INIT_LIST_HEAD(&fs_info->dirty_qgroups); | 
 | 	fs_info->qgroup_seq = 1; | 
 | 	fs_info->qgroup_ulist = NULL; | 
 | 	fs_info->qgroup_rescan_running = false; | 
 | 	mutex_init(&fs_info->qgroup_rescan_lock); | 
 | } | 
 |  | 
 | static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, | 
 | 		struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	u32 max_active = fs_info->thread_pool_size; | 
 | 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; | 
 |  | 
 | 	fs_info->workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "worker", | 
 | 				      flags | WQ_HIGHPRI, max_active, 16); | 
 |  | 
 | 	fs_info->delalloc_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "delalloc", | 
 | 				      flags, max_active, 2); | 
 |  | 
 | 	fs_info->flush_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "flush_delalloc", | 
 | 				      flags, max_active, 0); | 
 |  | 
 | 	fs_info->caching_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); | 
 |  | 
 | 	/* | 
 | 	 * a higher idle thresh on the submit workers makes it much more | 
 | 	 * likely that bios will be send down in a sane order to the | 
 | 	 * devices | 
 | 	 */ | 
 | 	fs_info->submit_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "submit", flags, | 
 | 				      min_t(u64, fs_devices->num_devices, | 
 | 					    max_active), 64); | 
 |  | 
 | 	fs_info->fixup_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); | 
 |  | 
 | 	/* | 
 | 	 * endios are largely parallel and should have a very | 
 | 	 * low idle thresh | 
 | 	 */ | 
 | 	fs_info->endio_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); | 
 | 	fs_info->endio_meta_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags, | 
 | 				      max_active, 4); | 
 | 	fs_info->endio_meta_write_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, | 
 | 				      max_active, 2); | 
 | 	fs_info->endio_raid56_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, | 
 | 				      max_active, 4); | 
 | 	fs_info->endio_repair_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); | 
 | 	fs_info->rmw_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); | 
 | 	fs_info->endio_write_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "endio-write", flags, | 
 | 				      max_active, 2); | 
 | 	fs_info->endio_freespace_worker = | 
 | 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags, | 
 | 				      max_active, 0); | 
 | 	fs_info->delayed_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, | 
 | 				      max_active, 0); | 
 | 	fs_info->readahead_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "readahead", flags, | 
 | 				      max_active, 2); | 
 | 	fs_info->qgroup_rescan_workers = | 
 | 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); | 
 |  | 
 | 	if (!(fs_info->workers && fs_info->delalloc_workers && | 
 | 	      fs_info->submit_workers && fs_info->flush_workers && | 
 | 	      fs_info->endio_workers && fs_info->endio_meta_workers && | 
 | 	      fs_info->endio_meta_write_workers && | 
 | 	      fs_info->endio_repair_workers && | 
 | 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers && | 
 | 	      fs_info->endio_freespace_worker && fs_info->rmw_workers && | 
 | 	      fs_info->caching_workers && fs_info->readahead_workers && | 
 | 	      fs_info->fixup_workers && fs_info->delayed_workers && | 
 | 	      fs_info->qgroup_rescan_workers)) { | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) | 
 | { | 
 | 	struct crypto_shash *csum_shash; | 
 | 	const char *csum_name = btrfs_super_csum_name(csum_type); | 
 |  | 
 | 	csum_shash = crypto_alloc_shash(csum_name, 0, 0); | 
 |  | 
 | 	if (IS_ERR(csum_shash)) { | 
 | 		btrfs_err(fs_info, "error allocating %s hash for checksum", | 
 | 			  csum_name); | 
 | 		return PTR_ERR(csum_shash); | 
 | 	} | 
 |  | 
 | 	fs_info->csum_shash = csum_shash; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	crypto_free_shash(fs_info->csum_shash); | 
 | } | 
 |  | 
 | static int btrfs_replay_log(struct btrfs_fs_info *fs_info, | 
 | 			    struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *log_tree_root; | 
 | 	struct btrfs_super_block *disk_super = fs_info->super_copy; | 
 | 	u64 bytenr = btrfs_super_log_root(disk_super); | 
 | 	int level = btrfs_super_log_root_level(disk_super); | 
 |  | 
 | 	if (fs_devices->rw_devices == 0) { | 
 | 		btrfs_warn(fs_info, "log replay required on RO media"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
 | 	if (!log_tree_root) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	log_tree_root->node = read_tree_block(fs_info, bytenr, | 
 | 					      fs_info->generation + 1, | 
 | 					      level, NULL); | 
 | 	if (IS_ERR(log_tree_root->node)) { | 
 | 		btrfs_warn(fs_info, "failed to read log tree"); | 
 | 		ret = PTR_ERR(log_tree_root->node); | 
 | 		kfree(log_tree_root); | 
 | 		return ret; | 
 | 	} else if (!extent_buffer_uptodate(log_tree_root->node)) { | 
 | 		btrfs_err(fs_info, "failed to read log tree"); | 
 | 		free_extent_buffer(log_tree_root->node); | 
 | 		kfree(log_tree_root); | 
 | 		return -EIO; | 
 | 	} | 
 | 	/* returns with log_tree_root freed on success */ | 
 | 	ret = btrfs_recover_log_trees(log_tree_root); | 
 | 	if (ret) { | 
 | 		btrfs_handle_fs_error(fs_info, ret, | 
 | 				      "Failed to recover log tree"); | 
 | 		free_extent_buffer(log_tree_root->node); | 
 | 		kfree(log_tree_root); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (sb_rdonly(fs_info->sb)) { | 
 | 		ret = btrfs_commit_super(fs_info); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_read_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_key location; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(!fs_info->tree_root); | 
 |  | 
 | 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID; | 
 | 	location.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	location.offset = 0; | 
 |  | 
 | 	root = btrfs_read_tree_root(tree_root, &location); | 
 | 	if (IS_ERR(root)) { | 
 | 		ret = PTR_ERR(root); | 
 | 		goto out; | 
 | 	} | 
 | 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 | 	fs_info->extent_root = root; | 
 |  | 
 | 	location.objectid = BTRFS_DEV_TREE_OBJECTID; | 
 | 	root = btrfs_read_tree_root(tree_root, &location); | 
 | 	if (IS_ERR(root)) { | 
 | 		ret = PTR_ERR(root); | 
 | 		goto out; | 
 | 	} | 
 | 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 | 	fs_info->dev_root = root; | 
 | 	btrfs_init_devices_late(fs_info); | 
 |  | 
 | 	location.objectid = BTRFS_CSUM_TREE_OBJECTID; | 
 | 	root = btrfs_read_tree_root(tree_root, &location); | 
 | 	if (IS_ERR(root)) { | 
 | 		ret = PTR_ERR(root); | 
 | 		goto out; | 
 | 	} | 
 | 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 | 	fs_info->csum_root = root; | 
 |  | 
 | 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID; | 
 | 	root = btrfs_read_tree_root(tree_root, &location); | 
 | 	if (!IS_ERR(root)) { | 
 | 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 | 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); | 
 | 		fs_info->quota_root = root; | 
 | 	} | 
 |  | 
 | 	location.objectid = BTRFS_UUID_TREE_OBJECTID; | 
 | 	root = btrfs_read_tree_root(tree_root, &location); | 
 | 	if (IS_ERR(root)) { | 
 | 		ret = PTR_ERR(root); | 
 | 		if (ret != -ENOENT) | 
 | 			goto out; | 
 | 	} else { | 
 | 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 | 		fs_info->uuid_root = root; | 
 | 	} | 
 |  | 
 | 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
 | 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; | 
 | 		root = btrfs_read_tree_root(tree_root, &location); | 
 | 		if (IS_ERR(root)) { | 
 | 			ret = PTR_ERR(root); | 
 | 			goto out; | 
 | 		} | 
 | 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
 | 		fs_info->free_space_root = root; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | out: | 
 | 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", | 
 | 		   location.objectid, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Real super block validation | 
 |  * NOTE: super csum type and incompat features will not be checked here. | 
 |  * | 
 |  * @sb:		super block to check | 
 |  * @mirror_num:	the super block number to check its bytenr: | 
 |  * 		0	the primary (1st) sb | 
 |  * 		1, 2	2nd and 3rd backup copy | 
 |  * 	       -1	skip bytenr check | 
 |  */ | 
 | static int validate_super(struct btrfs_fs_info *fs_info, | 
 | 			    struct btrfs_super_block *sb, int mirror_num) | 
 | { | 
 | 	u64 nodesize = btrfs_super_nodesize(sb); | 
 | 	u64 sectorsize = btrfs_super_sectorsize(sb); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) { | 
 | 		btrfs_err(fs_info, "no valid FS found"); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { | 
 | 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", | 
 | 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
 | 		btrfs_err(fs_info, "tree_root level too big: %d >= %d", | 
 | 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
 | 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d", | 
 | 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
 | 		btrfs_err(fs_info, "log_root level too big: %d >= %d", | 
 | 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check sectorsize and nodesize first, other check will need it. | 
 | 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. | 
 | 	 */ | 
 | 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 || | 
 | 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
 | 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	/* Only PAGE SIZE is supported yet */ | 
 | 	if (sectorsize != PAGE_SIZE) { | 
 | 		btrfs_err(fs_info, | 
 | 			"sectorsize %llu not supported yet, only support %lu", | 
 | 			sectorsize, PAGE_SIZE); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (!is_power_of_2(nodesize) || nodesize < sectorsize || | 
 | 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
 | 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { | 
 | 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu", | 
 | 			  le32_to_cpu(sb->__unused_leafsize), nodesize); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Root alignment check */ | 
 | 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { | 
 | 		btrfs_warn(fs_info, "tree_root block unaligned: %llu", | 
 | 			   btrfs_super_root(sb)); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { | 
 | 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu", | 
 | 			   btrfs_super_chunk_root(sb)); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { | 
 | 		btrfs_warn(fs_info, "log_root block unaligned: %llu", | 
 | 			   btrfs_super_log_root(sb)); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, | 
 | 		   BTRFS_FSID_SIZE)) { | 
 | 		btrfs_err(fs_info, | 
 | 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU", | 
 | 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) && | 
 | 	    memcmp(fs_info->fs_devices->metadata_uuid, | 
 | 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { | 
 | 		btrfs_err(fs_info, | 
 | "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", | 
 | 			fs_info->super_copy->metadata_uuid, | 
 | 			fs_info->fs_devices->metadata_uuid); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, | 
 | 		   BTRFS_FSID_SIZE) != 0) { | 
 | 		btrfs_err(fs_info, | 
 | 			"dev_item UUID does not match metadata fsid: %pU != %pU", | 
 | 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are | 
 | 	 * done later | 
 | 	 */ | 
 | 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { | 
 | 		btrfs_err(fs_info, "bytes_used is too small %llu", | 
 | 			  btrfs_super_bytes_used(sb)); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (!is_power_of_2(btrfs_super_stripesize(sb))) { | 
 | 		btrfs_err(fs_info, "invalid stripesize %u", | 
 | 			  btrfs_super_stripesize(sb)); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (btrfs_super_num_devices(sb) > (1UL << 31)) | 
 | 		btrfs_warn(fs_info, "suspicious number of devices: %llu", | 
 | 			   btrfs_super_num_devices(sb)); | 
 | 	if (btrfs_super_num_devices(sb) == 0) { | 
 | 		btrfs_err(fs_info, "number of devices is 0"); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (mirror_num >= 0 && | 
 | 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { | 
 | 		btrfs_err(fs_info, "super offset mismatch %llu != %u", | 
 | 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Obvious sys_chunk_array corruptions, it must hold at least one key | 
 | 	 * and one chunk | 
 | 	 */ | 
 | 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { | 
 | 		btrfs_err(fs_info, "system chunk array too big %u > %u", | 
 | 			  btrfs_super_sys_array_size(sb), | 
 | 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) | 
 | 			+ sizeof(struct btrfs_chunk)) { | 
 | 		btrfs_err(fs_info, "system chunk array too small %u < %zu", | 
 | 			  btrfs_super_sys_array_size(sb), | 
 | 			  sizeof(struct btrfs_disk_key) | 
 | 			  + sizeof(struct btrfs_chunk)); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The generation is a global counter, we'll trust it more than the others | 
 | 	 * but it's still possible that it's the one that's wrong. | 
 | 	 */ | 
 | 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) | 
 | 		btrfs_warn(fs_info, | 
 | 			"suspicious: generation < chunk_root_generation: %llu < %llu", | 
 | 			btrfs_super_generation(sb), | 
 | 			btrfs_super_chunk_root_generation(sb)); | 
 | 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) | 
 | 	    && btrfs_super_cache_generation(sb) != (u64)-1) | 
 | 		btrfs_warn(fs_info, | 
 | 			"suspicious: generation < cache_generation: %llu < %llu", | 
 | 			btrfs_super_generation(sb), | 
 | 			btrfs_super_cache_generation(sb)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Validation of super block at mount time. | 
 |  * Some checks already done early at mount time, like csum type and incompat | 
 |  * flags will be skipped. | 
 |  */ | 
 | static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	return validate_super(fs_info, fs_info->super_copy, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Validation of super block at write time. | 
 |  * Some checks like bytenr check will be skipped as their values will be | 
 |  * overwritten soon. | 
 |  * Extra checks like csum type and incompat flags will be done here. | 
 |  */ | 
 | static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, | 
 | 				      struct btrfs_super_block *sb) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = validate_super(fs_info, sb, -1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { | 
 | 		ret = -EUCLEAN; | 
 | 		btrfs_err(fs_info, "invalid csum type, has %u want %u", | 
 | 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); | 
 | 		goto out; | 
 | 	} | 
 | 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { | 
 | 		ret = -EUCLEAN; | 
 | 		btrfs_err(fs_info, | 
 | 		"invalid incompat flags, has 0x%llx valid mask 0x%llx", | 
 | 			  btrfs_super_incompat_flags(sb), | 
 | 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); | 
 | 		goto out; | 
 | 	} | 
 | out: | 
 | 	if (ret < 0) | 
 | 		btrfs_err(fs_info, | 
 | 		"super block corruption detected before writing it to disk"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int open_ctree(struct super_block *sb, | 
 | 	       struct btrfs_fs_devices *fs_devices, | 
 | 	       char *options) | 
 | { | 
 | 	u32 sectorsize; | 
 | 	u32 nodesize; | 
 | 	u32 stripesize; | 
 | 	u64 generation; | 
 | 	u64 features; | 
 | 	u16 csum_type; | 
 | 	struct btrfs_key location; | 
 | 	struct buffer_head *bh; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	struct btrfs_root *tree_root; | 
 | 	struct btrfs_root *chunk_root; | 
 | 	int ret; | 
 | 	int err = -EINVAL; | 
 | 	int num_backups_tried = 0; | 
 | 	int backup_index = 0; | 
 | 	int clear_free_space_tree = 0; | 
 | 	int level; | 
 |  | 
 | 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
 | 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
 | 	if (!tree_root || !chunk_root) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = init_srcu_struct(&fs_info->subvol_srcu); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_srcu; | 
 | 	} | 
 |  | 
 | 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_dio_bytes; | 
 | 	} | 
 | 	fs_info->dirty_metadata_batch = PAGE_SIZE * | 
 | 					(1 + ilog2(nr_cpu_ids)); | 
 |  | 
 | 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_dirty_metadata_bytes; | 
 | 	} | 
 |  | 
 | 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, | 
 | 			GFP_KERNEL); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_delalloc_bytes; | 
 | 	} | 
 |  | 
 | 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); | 
 | 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); | 
 | 	INIT_LIST_HEAD(&fs_info->trans_list); | 
 | 	INIT_LIST_HEAD(&fs_info->dead_roots); | 
 | 	INIT_LIST_HEAD(&fs_info->delayed_iputs); | 
 | 	INIT_LIST_HEAD(&fs_info->delalloc_roots); | 
 | 	INIT_LIST_HEAD(&fs_info->caching_block_groups); | 
 | 	spin_lock_init(&fs_info->delalloc_root_lock); | 
 | 	spin_lock_init(&fs_info->trans_lock); | 
 | 	spin_lock_init(&fs_info->fs_roots_radix_lock); | 
 | 	spin_lock_init(&fs_info->delayed_iput_lock); | 
 | 	spin_lock_init(&fs_info->defrag_inodes_lock); | 
 | 	spin_lock_init(&fs_info->super_lock); | 
 | 	spin_lock_init(&fs_info->buffer_lock); | 
 | 	spin_lock_init(&fs_info->unused_bgs_lock); | 
 | 	rwlock_init(&fs_info->tree_mod_log_lock); | 
 | 	mutex_init(&fs_info->unused_bg_unpin_mutex); | 
 | 	mutex_init(&fs_info->delete_unused_bgs_mutex); | 
 | 	mutex_init(&fs_info->reloc_mutex); | 
 | 	mutex_init(&fs_info->delalloc_root_mutex); | 
 | 	seqlock_init(&fs_info->profiles_lock); | 
 |  | 
 | 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); | 
 | 	INIT_LIST_HEAD(&fs_info->space_info); | 
 | 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); | 
 | 	INIT_LIST_HEAD(&fs_info->unused_bgs); | 
 | 	extent_map_tree_init(&fs_info->mapping_tree); | 
 | 	btrfs_init_block_rsv(&fs_info->global_block_rsv, | 
 | 			     BTRFS_BLOCK_RSV_GLOBAL); | 
 | 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); | 
 | 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); | 
 | 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); | 
 | 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv, | 
 | 			     BTRFS_BLOCK_RSV_DELOPS); | 
 | 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, | 
 | 			     BTRFS_BLOCK_RSV_DELREFS); | 
 |  | 
 | 	atomic_set(&fs_info->async_delalloc_pages, 0); | 
 | 	atomic_set(&fs_info->defrag_running, 0); | 
 | 	atomic_set(&fs_info->reada_works_cnt, 0); | 
 | 	atomic_set(&fs_info->nr_delayed_iputs, 0); | 
 | 	atomic64_set(&fs_info->tree_mod_seq, 0); | 
 | 	fs_info->sb = sb; | 
 | 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; | 
 | 	fs_info->metadata_ratio = 0; | 
 | 	fs_info->defrag_inodes = RB_ROOT; | 
 | 	atomic64_set(&fs_info->free_chunk_space, 0); | 
 | 	fs_info->tree_mod_log = RB_ROOT; | 
 | 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
 | 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ | 
 | 	/* readahead state */ | 
 | 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); | 
 | 	spin_lock_init(&fs_info->reada_lock); | 
 | 	btrfs_init_ref_verify(fs_info); | 
 |  | 
 | 	fs_info->thread_pool_size = min_t(unsigned long, | 
 | 					  num_online_cpus() + 2, 8); | 
 |  | 
 | 	INIT_LIST_HEAD(&fs_info->ordered_roots); | 
 | 	spin_lock_init(&fs_info->ordered_root_lock); | 
 |  | 
 | 	fs_info->btree_inode = new_inode(sb); | 
 | 	if (!fs_info->btree_inode) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail_bio_counter; | 
 | 	} | 
 | 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); | 
 |  | 
 | 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), | 
 | 					GFP_KERNEL); | 
 | 	if (!fs_info->delayed_root) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail_iput; | 
 | 	} | 
 | 	btrfs_init_delayed_root(fs_info->delayed_root); | 
 |  | 
 | 	btrfs_init_scrub(fs_info); | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 	fs_info->check_integrity_print_mask = 0; | 
 | #endif | 
 | 	btrfs_init_balance(fs_info); | 
 | 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); | 
 |  | 
 | 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; | 
 | 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); | 
 |  | 
 | 	btrfs_init_btree_inode(fs_info); | 
 |  | 
 | 	spin_lock_init(&fs_info->block_group_cache_lock); | 
 | 	fs_info->block_group_cache_tree = RB_ROOT; | 
 | 	fs_info->first_logical_byte = (u64)-1; | 
 |  | 
 | 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0], | 
 | 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); | 
 | 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1], | 
 | 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); | 
 | 	fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
 | 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags); | 
 |  | 
 | 	mutex_init(&fs_info->ordered_operations_mutex); | 
 | 	mutex_init(&fs_info->tree_log_mutex); | 
 | 	mutex_init(&fs_info->chunk_mutex); | 
 | 	mutex_init(&fs_info->transaction_kthread_mutex); | 
 | 	mutex_init(&fs_info->cleaner_mutex); | 
 | 	mutex_init(&fs_info->ro_block_group_mutex); | 
 | 	init_rwsem(&fs_info->commit_root_sem); | 
 | 	init_rwsem(&fs_info->cleanup_work_sem); | 
 | 	init_rwsem(&fs_info->subvol_sem); | 
 | 	sema_init(&fs_info->uuid_tree_rescan_sem, 1); | 
 |  | 
 | 	btrfs_init_dev_replace_locks(fs_info); | 
 | 	btrfs_init_qgroup(fs_info); | 
 |  | 
 | 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); | 
 | 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster); | 
 |  | 
 | 	init_waitqueue_head(&fs_info->transaction_throttle); | 
 | 	init_waitqueue_head(&fs_info->transaction_wait); | 
 | 	init_waitqueue_head(&fs_info->transaction_blocked_wait); | 
 | 	init_waitqueue_head(&fs_info->async_submit_wait); | 
 | 	init_waitqueue_head(&fs_info->delayed_iputs_wait); | 
 |  | 
 | 	/* Usable values until the real ones are cached from the superblock */ | 
 | 	fs_info->nodesize = 4096; | 
 | 	fs_info->sectorsize = 4096; | 
 | 	fs_info->stripesize = 4096; | 
 |  | 
 | 	spin_lock_init(&fs_info->swapfile_pins_lock); | 
 | 	fs_info->swapfile_pins = RB_ROOT; | 
 |  | 
 | 	fs_info->send_in_progress = 0; | 
 |  | 
 | 	ret = btrfs_alloc_stripe_hash_table(fs_info); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); | 
 |  | 
 | 	invalidate_bdev(fs_devices->latest_bdev); | 
 |  | 
 | 	/* | 
 | 	 * Read super block and check the signature bytes only | 
 | 	 */ | 
 | 	bh = btrfs_read_dev_super(fs_devices->latest_bdev); | 
 | 	if (IS_ERR(bh)) { | 
 | 		err = PTR_ERR(bh); | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Verify the type first, if that or the the checksum value are | 
 | 	 * corrupted, we'll find out | 
 | 	 */ | 
 | 	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data); | 
 | 	if (!btrfs_supported_super_csum(csum_type)) { | 
 | 		btrfs_err(fs_info, "unsupported checksum algorithm: %u", | 
 | 			  csum_type); | 
 | 		err = -EINVAL; | 
 | 		brelse(bh); | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_init_csum_hash(fs_info, csum_type); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_alloc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want to check superblock checksum, the type is stored inside. | 
 | 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). | 
 | 	 */ | 
 | 	if (btrfs_check_super_csum(fs_info, bh->b_data)) { | 
 | 		btrfs_err(fs_info, "superblock checksum mismatch"); | 
 | 		err = -EINVAL; | 
 | 		brelse(bh); | 
 | 		goto fail_csum; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * super_copy is zeroed at allocation time and we never touch the | 
 | 	 * following bytes up to INFO_SIZE, the checksum is calculated from | 
 | 	 * the whole block of INFO_SIZE | 
 | 	 */ | 
 | 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); | 
 | 	brelse(bh); | 
 |  | 
 | 	disk_super = fs_info->super_copy; | 
 |  | 
 |  | 
 | 	features = btrfs_super_flags(disk_super); | 
 | 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { | 
 | 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; | 
 | 		btrfs_set_super_flags(disk_super, features); | 
 | 		btrfs_info(fs_info, | 
 | 			"found metadata UUID change in progress flag, clearing"); | 
 | 	} | 
 |  | 
 | 	memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
 | 	       sizeof(*fs_info->super_for_commit)); | 
 |  | 
 | 	ret = btrfs_validate_mount_super(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "superblock contains fatal errors"); | 
 | 		err = -EINVAL; | 
 | 		goto fail_csum; | 
 | 	} | 
 |  | 
 | 	if (!btrfs_super_root(disk_super)) | 
 | 		goto fail_csum; | 
 |  | 
 | 	/* check FS state, whether FS is broken. */ | 
 | 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) | 
 | 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); | 
 |  | 
 | 	/* | 
 | 	 * run through our array of backup supers and setup | 
 | 	 * our ring pointer to the oldest one | 
 | 	 */ | 
 | 	generation = btrfs_super_generation(disk_super); | 
 | 	find_oldest_super_backup(fs_info, generation); | 
 |  | 
 | 	/* | 
 | 	 * In the long term, we'll store the compression type in the super | 
 | 	 * block, and it'll be used for per file compression control. | 
 | 	 */ | 
 | 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB; | 
 |  | 
 | 	ret = btrfs_parse_options(fs_info, options, sb->s_flags); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_csum; | 
 | 	} | 
 |  | 
 | 	features = btrfs_super_incompat_flags(disk_super) & | 
 | 		~BTRFS_FEATURE_INCOMPAT_SUPP; | 
 | 	if (features) { | 
 | 		btrfs_err(fs_info, | 
 | 		    "cannot mount because of unsupported optional features (%llx)", | 
 | 		    features); | 
 | 		err = -EINVAL; | 
 | 		goto fail_csum; | 
 | 	} | 
 |  | 
 | 	features = btrfs_super_incompat_flags(disk_super); | 
 | 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; | 
 | 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO) | 
 | 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; | 
 | 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) | 
 | 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; | 
 |  | 
 | 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) | 
 | 		btrfs_info(fs_info, "has skinny extents"); | 
 |  | 
 | 	/* | 
 | 	 * flag our filesystem as having big metadata blocks if | 
 | 	 * they are bigger than the page size | 
 | 	 */ | 
 | 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { | 
 | 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) | 
 | 			btrfs_info(fs_info, | 
 | 				"flagging fs with big metadata feature"); | 
 | 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; | 
 | 	} | 
 |  | 
 | 	nodesize = btrfs_super_nodesize(disk_super); | 
 | 	sectorsize = btrfs_super_sectorsize(disk_super); | 
 | 	stripesize = sectorsize; | 
 | 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); | 
 | 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); | 
 |  | 
 | 	/* Cache block sizes */ | 
 | 	fs_info->nodesize = nodesize; | 
 | 	fs_info->sectorsize = sectorsize; | 
 | 	fs_info->stripesize = stripesize; | 
 |  | 
 | 	/* | 
 | 	 * mixed block groups end up with duplicate but slightly offset | 
 | 	 * extent buffers for the same range.  It leads to corruptions | 
 | 	 */ | 
 | 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && | 
 | 	    (sectorsize != nodesize)) { | 
 | 		btrfs_err(fs_info, | 
 | "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", | 
 | 			nodesize, sectorsize); | 
 | 		goto fail_csum; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Needn't use the lock because there is no other task which will | 
 | 	 * update the flag. | 
 | 	 */ | 
 | 	btrfs_set_super_incompat_flags(disk_super, features); | 
 |  | 
 | 	features = btrfs_super_compat_ro_flags(disk_super) & | 
 | 		~BTRFS_FEATURE_COMPAT_RO_SUPP; | 
 | 	if (!sb_rdonly(sb) && features) { | 
 | 		btrfs_err(fs_info, | 
 | 	"cannot mount read-write because of unsupported optional features (%llx)", | 
 | 		       features); | 
 | 		err = -EINVAL; | 
 | 		goto fail_csum; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_init_workqueues(fs_info, fs_devices); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto fail_sb_buffer; | 
 | 	} | 
 |  | 
 | 	sb->s_bdi->congested_fn = btrfs_congested_fn; | 
 | 	sb->s_bdi->congested_data = fs_info; | 
 | 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; | 
 | 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; | 
 | 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); | 
 | 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); | 
 |  | 
 | 	sb->s_blocksize = sectorsize; | 
 | 	sb->s_blocksize_bits = blksize_bits(sectorsize); | 
 | 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); | 
 |  | 
 | 	mutex_lock(&fs_info->chunk_mutex); | 
 | 	ret = btrfs_read_sys_array(fs_info); | 
 | 	mutex_unlock(&fs_info->chunk_mutex); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to read the system array: %d", ret); | 
 | 		goto fail_sb_buffer; | 
 | 	} | 
 |  | 
 | 	generation = btrfs_super_chunk_root_generation(disk_super); | 
 | 	level = btrfs_super_chunk_root_level(disk_super); | 
 |  | 
 | 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); | 
 |  | 
 | 	chunk_root->node = read_tree_block(fs_info, | 
 | 					   btrfs_super_chunk_root(disk_super), | 
 | 					   generation, level, NULL); | 
 | 	if (IS_ERR(chunk_root->node) || | 
 | 	    !extent_buffer_uptodate(chunk_root->node)) { | 
 | 		btrfs_err(fs_info, "failed to read chunk root"); | 
 | 		if (!IS_ERR(chunk_root->node)) | 
 | 			free_extent_buffer(chunk_root->node); | 
 | 		chunk_root->node = NULL; | 
 | 		goto fail_tree_roots; | 
 | 	} | 
 | 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); | 
 | 	chunk_root->commit_root = btrfs_root_node(chunk_root); | 
 |  | 
 | 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, | 
 | 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); | 
 |  | 
 | 	ret = btrfs_read_chunk_tree(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret); | 
 | 		goto fail_tree_roots; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Keep the devid that is marked to be the target device for the | 
 | 	 * device replace procedure | 
 | 	 */ | 
 | 	btrfs_free_extra_devids(fs_devices, 0); | 
 |  | 
 | 	if (!fs_devices->latest_bdev) { | 
 | 		btrfs_err(fs_info, "failed to read devices"); | 
 | 		goto fail_tree_roots; | 
 | 	} | 
 |  | 
 | retry_root_backup: | 
 | 	generation = btrfs_super_generation(disk_super); | 
 | 	level = btrfs_super_root_level(disk_super); | 
 |  | 
 | 	tree_root->node = read_tree_block(fs_info, | 
 | 					  btrfs_super_root(disk_super), | 
 | 					  generation, level, NULL); | 
 | 	if (IS_ERR(tree_root->node) || | 
 | 	    !extent_buffer_uptodate(tree_root->node)) { | 
 | 		btrfs_warn(fs_info, "failed to read tree root"); | 
 | 		if (!IS_ERR(tree_root->node)) | 
 | 			free_extent_buffer(tree_root->node); | 
 | 		tree_root->node = NULL; | 
 | 		goto recovery_tree_root; | 
 | 	} | 
 |  | 
 | 	btrfs_set_root_node(&tree_root->root_item, tree_root->node); | 
 | 	tree_root->commit_root = btrfs_root_node(tree_root); | 
 | 	btrfs_set_root_refs(&tree_root->root_item, 1); | 
 |  | 
 | 	mutex_lock(&tree_root->objectid_mutex); | 
 | 	ret = btrfs_find_highest_objectid(tree_root, | 
 | 					&tree_root->highest_objectid); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&tree_root->objectid_mutex); | 
 | 		goto recovery_tree_root; | 
 | 	} | 
 |  | 
 | 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
 |  | 
 | 	mutex_unlock(&tree_root->objectid_mutex); | 
 |  | 
 | 	ret = btrfs_read_roots(fs_info); | 
 | 	if (ret) | 
 | 		goto recovery_tree_root; | 
 |  | 
 | 	fs_info->generation = generation; | 
 | 	fs_info->last_trans_committed = generation; | 
 |  | 
 | 	/* | 
 | 	 * If we have a uuid root and we're not being told to rescan we need to | 
 | 	 * check the generation here so we can set the | 
 | 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the | 
 | 	 * transaction during a balance or the log replay without updating the | 
 | 	 * uuid generation, and then if we crash we would rescan the uuid tree, | 
 | 	 * even though it was perfectly fine. | 
 | 	 */ | 
 | 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && | 
 | 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) | 
 | 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); | 
 |  | 
 | 	ret = btrfs_verify_dev_extents(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, | 
 | 			  "failed to verify dev extents against chunks: %d", | 
 | 			  ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 | 	ret = btrfs_recover_balance(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to recover balance: %d", ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_init_dev_stats(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_init_dev_replace(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 |  | 
 | 	btrfs_free_extra_devids(fs_devices, 1); | 
 |  | 
 | 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", | 
 | 				ret); | 
 | 		goto fail_block_groups; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_sysfs_add_device(fs_devices); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to init sysfs device interface: %d", | 
 | 				ret); | 
 | 		goto fail_fsdev_sysfs; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_sysfs_add_mounted(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); | 
 | 		goto fail_fsdev_sysfs; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_init_space_info(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to initialize space info: %d", ret); | 
 | 		goto fail_sysfs; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_read_block_groups(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_err(fs_info, "failed to read block groups: %d", ret); | 
 | 		goto fail_sysfs; | 
 | 	} | 
 |  | 
 | 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { | 
 | 		btrfs_warn(fs_info, | 
 | 		"writable mount is not allowed due to too many missing devices"); | 
 | 		goto fail_sysfs; | 
 | 	} | 
 |  | 
 | 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, | 
 | 					       "btrfs-cleaner"); | 
 | 	if (IS_ERR(fs_info->cleaner_kthread)) | 
 | 		goto fail_sysfs; | 
 |  | 
 | 	fs_info->transaction_kthread = kthread_run(transaction_kthread, | 
 | 						   tree_root, | 
 | 						   "btrfs-transaction"); | 
 | 	if (IS_ERR(fs_info->transaction_kthread)) | 
 | 		goto fail_cleaner; | 
 |  | 
 | 	if (!btrfs_test_opt(fs_info, NOSSD) && | 
 | 	    !fs_info->fs_devices->rotating) { | 
 | 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mount does not set all options immediately, we can do it now and do | 
 | 	 * not have to wait for transaction commit | 
 | 	 */ | 
 | 	btrfs_apply_pending_changes(fs_info); | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { | 
 | 		ret = btrfsic_mount(fs_info, fs_devices, | 
 | 				    btrfs_test_opt(fs_info, | 
 | 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? | 
 | 				    1 : 0, | 
 | 				    fs_info->check_integrity_print_mask); | 
 | 		if (ret) | 
 | 			btrfs_warn(fs_info, | 
 | 				"failed to initialize integrity check module: %d", | 
 | 				ret); | 
 | 	} | 
 | #endif | 
 | 	ret = btrfs_read_qgroup_config(fs_info); | 
 | 	if (ret) | 
 | 		goto fail_trans_kthread; | 
 |  | 
 | 	if (btrfs_build_ref_tree(fs_info)) | 
 | 		btrfs_err(fs_info, "couldn't build ref tree"); | 
 |  | 
 | 	/* do not make disk changes in broken FS or nologreplay is given */ | 
 | 	if (btrfs_super_log_root(disk_super) != 0 && | 
 | 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) { | 
 | 		btrfs_info(fs_info, "start tree-log replay"); | 
 | 		ret = btrfs_replay_log(fs_info, fs_devices); | 
 | 		if (ret) { | 
 | 			err = ret; | 
 | 			goto fail_qgroup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_find_orphan_roots(fs_info); | 
 | 	if (ret) | 
 | 		goto fail_qgroup; | 
 |  | 
 | 	if (!sb_rdonly(sb)) { | 
 | 		ret = btrfs_cleanup_fs_roots(fs_info); | 
 | 		if (ret) | 
 | 			goto fail_qgroup; | 
 |  | 
 | 		mutex_lock(&fs_info->cleaner_mutex); | 
 | 		ret = btrfs_recover_relocation(tree_root); | 
 | 		mutex_unlock(&fs_info->cleaner_mutex); | 
 | 		if (ret < 0) { | 
 | 			btrfs_warn(fs_info, "failed to recover relocation: %d", | 
 | 					ret); | 
 | 			err = -EINVAL; | 
 | 			goto fail_qgroup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	location.objectid = BTRFS_FS_TREE_OBJECTID; | 
 | 	location.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	location.offset = 0; | 
 |  | 
 | 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); | 
 | 	if (IS_ERR(fs_info->fs_root)) { | 
 | 		err = PTR_ERR(fs_info->fs_root); | 
 | 		btrfs_warn(fs_info, "failed to read fs tree: %d", err); | 
 | 		fs_info->fs_root = NULL; | 
 | 		goto fail_qgroup; | 
 | 	} | 
 |  | 
 | 	if (sb_rdonly(sb)) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) && | 
 | 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
 | 		clear_free_space_tree = 1; | 
 | 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && | 
 | 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { | 
 | 		btrfs_warn(fs_info, "free space tree is invalid"); | 
 | 		clear_free_space_tree = 1; | 
 | 	} | 
 |  | 
 | 	if (clear_free_space_tree) { | 
 | 		btrfs_info(fs_info, "clearing free space tree"); | 
 | 		ret = btrfs_clear_free_space_tree(fs_info); | 
 | 		if (ret) { | 
 | 			btrfs_warn(fs_info, | 
 | 				   "failed to clear free space tree: %d", ret); | 
 | 			close_ctree(fs_info); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && | 
 | 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
 | 		btrfs_info(fs_info, "creating free space tree"); | 
 | 		ret = btrfs_create_free_space_tree(fs_info); | 
 | 		if (ret) { | 
 | 			btrfs_warn(fs_info, | 
 | 				"failed to create free space tree: %d", ret); | 
 | 			close_ctree(fs_info); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	down_read(&fs_info->cleanup_work_sem); | 
 | 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || | 
 | 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { | 
 | 		up_read(&fs_info->cleanup_work_sem); | 
 | 		close_ctree(fs_info); | 
 | 		return ret; | 
 | 	} | 
 | 	up_read(&fs_info->cleanup_work_sem); | 
 |  | 
 | 	ret = btrfs_resume_balance_async(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_warn(fs_info, "failed to resume balance: %d", ret); | 
 | 		close_ctree(fs_info); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_resume_dev_replace_async(fs_info); | 
 | 	if (ret) { | 
 | 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret); | 
 | 		close_ctree(fs_info); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	btrfs_qgroup_rescan_resume(fs_info); | 
 |  | 
 | 	if (!fs_info->uuid_root) { | 
 | 		btrfs_info(fs_info, "creating UUID tree"); | 
 | 		ret = btrfs_create_uuid_tree(fs_info); | 
 | 		if (ret) { | 
 | 			btrfs_warn(fs_info, | 
 | 				"failed to create the UUID tree: %d", ret); | 
 | 			close_ctree(fs_info); | 
 | 			return ret; | 
 | 		} | 
 | 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || | 
 | 		   fs_info->generation != | 
 | 				btrfs_super_uuid_tree_generation(disk_super)) { | 
 | 		btrfs_info(fs_info, "checking UUID tree"); | 
 | 		ret = btrfs_check_uuid_tree(fs_info); | 
 | 		if (ret) { | 
 | 			btrfs_warn(fs_info, | 
 | 				"failed to check the UUID tree: %d", ret); | 
 | 			close_ctree(fs_info); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 | 	set_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
 |  | 
 | 	/* | 
 | 	 * backuproot only affect mount behavior, and if open_ctree succeeded, | 
 | 	 * no need to keep the flag | 
 | 	 */ | 
 | 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_qgroup: | 
 | 	btrfs_free_qgroup_config(fs_info); | 
 | fail_trans_kthread: | 
 | 	kthread_stop(fs_info->transaction_kthread); | 
 | 	btrfs_cleanup_transaction(fs_info); | 
 | 	btrfs_free_fs_roots(fs_info); | 
 | fail_cleaner: | 
 | 	kthread_stop(fs_info->cleaner_kthread); | 
 |  | 
 | 	/* | 
 | 	 * make sure we're done with the btree inode before we stop our | 
 | 	 * kthreads | 
 | 	 */ | 
 | 	filemap_write_and_wait(fs_info->btree_inode->i_mapping); | 
 |  | 
 | fail_sysfs: | 
 | 	btrfs_sysfs_remove_mounted(fs_info); | 
 |  | 
 | fail_fsdev_sysfs: | 
 | 	btrfs_sysfs_remove_fsid(fs_info->fs_devices); | 
 |  | 
 | fail_block_groups: | 
 | 	btrfs_put_block_group_cache(fs_info); | 
 |  | 
 | fail_tree_roots: | 
 | 	free_root_pointers(fs_info, true); | 
 | 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
 |  | 
 | fail_sb_buffer: | 
 | 	btrfs_stop_all_workers(fs_info); | 
 | 	btrfs_free_block_groups(fs_info); | 
 | fail_csum: | 
 | 	btrfs_free_csum_hash(fs_info); | 
 | fail_alloc: | 
 | fail_iput: | 
 | 	btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
 |  | 
 | 	iput(fs_info->btree_inode); | 
 | fail_bio_counter: | 
 | 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter); | 
 | fail_delalloc_bytes: | 
 | 	percpu_counter_destroy(&fs_info->delalloc_bytes); | 
 | fail_dirty_metadata_bytes: | 
 | 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
 | fail_dio_bytes: | 
 | 	percpu_counter_destroy(&fs_info->dio_bytes); | 
 | fail_srcu: | 
 | 	cleanup_srcu_struct(&fs_info->subvol_srcu); | 
 | fail: | 
 | 	btrfs_free_stripe_hash_table(fs_info); | 
 | 	btrfs_close_devices(fs_info->fs_devices); | 
 | 	return err; | 
 |  | 
 | recovery_tree_root: | 
 | 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) | 
 | 		goto fail_tree_roots; | 
 |  | 
 | 	free_root_pointers(fs_info, false); | 
 |  | 
 | 	/* don't use the log in recovery mode, it won't be valid */ | 
 | 	btrfs_set_super_log_root(disk_super, 0); | 
 |  | 
 | 	/* we can't trust the free space cache either */ | 
 | 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); | 
 |  | 
 | 	ret = next_root_backup(fs_info, fs_info->super_copy, | 
 | 			       &num_backups_tried, &backup_index); | 
 | 	if (ret == -1) | 
 | 		goto fail_block_groups; | 
 | 	goto retry_root_backup; | 
 | } | 
 | ALLOW_ERROR_INJECTION(open_ctree, ERRNO); | 
 |  | 
 | static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) | 
 | { | 
 | 	if (uptodate) { | 
 | 		set_buffer_uptodate(bh); | 
 | 	} else { | 
 | 		struct btrfs_device *device = (struct btrfs_device *) | 
 | 			bh->b_private; | 
 |  | 
 | 		btrfs_warn_rl_in_rcu(device->fs_info, | 
 | 				"lost page write due to IO error on %s", | 
 | 					  rcu_str_deref(device->name)); | 
 | 		/* note, we don't set_buffer_write_io_error because we have | 
 | 		 * our own ways of dealing with the IO errors | 
 | 		 */ | 
 | 		clear_buffer_uptodate(bh); | 
 | 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); | 
 | 	} | 
 | 	unlock_buffer(bh); | 
 | 	put_bh(bh); | 
 | } | 
 |  | 
 | int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, | 
 | 			struct buffer_head **bh_ret) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	struct btrfs_super_block *super; | 
 | 	u64 bytenr; | 
 |  | 
 | 	bytenr = btrfs_sb_offset(copy_num); | 
 | 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); | 
 | 	/* | 
 | 	 * If we fail to read from the underlying devices, as of now | 
 | 	 * the best option we have is to mark it EIO. | 
 | 	 */ | 
 | 	if (!bh) | 
 | 		return -EIO; | 
 |  | 
 | 	super = (struct btrfs_super_block *)bh->b_data; | 
 | 	if (btrfs_super_bytenr(super) != bytenr || | 
 | 		    btrfs_super_magic(super) != BTRFS_MAGIC) { | 
 | 		brelse(bh); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*bh_ret = bh; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	struct buffer_head *latest = NULL; | 
 | 	struct btrfs_super_block *super; | 
 | 	int i; | 
 | 	u64 transid = 0; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	/* we would like to check all the supers, but that would make | 
 | 	 * a btrfs mount succeed after a mkfs from a different FS. | 
 | 	 * So, we need to add a special mount option to scan for | 
 | 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
 | 	 */ | 
 | 	for (i = 0; i < 1; i++) { | 
 | 		ret = btrfs_read_dev_one_super(bdev, i, &bh); | 
 | 		if (ret) | 
 | 			continue; | 
 |  | 
 | 		super = (struct btrfs_super_block *)bh->b_data; | 
 |  | 
 | 		if (!latest || btrfs_super_generation(super) > transid) { | 
 | 			brelse(latest); | 
 | 			latest = bh; | 
 | 			transid = btrfs_super_generation(super); | 
 | 		} else { | 
 | 			brelse(bh); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!latest) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	return latest; | 
 | } | 
 |  | 
 | /* | 
 |  * Write superblock @sb to the @device. Do not wait for completion, all the | 
 |  * buffer heads we write are pinned. | 
 |  * | 
 |  * Write @max_mirrors copies of the superblock, where 0 means default that fit | 
 |  * the expected device size at commit time. Note that max_mirrors must be | 
 |  * same for write and wait phases. | 
 |  * | 
 |  * Return number of errors when buffer head is not found or submission fails. | 
 |  */ | 
 | static int write_dev_supers(struct btrfs_device *device, | 
 | 			    struct btrfs_super_block *sb, int max_mirrors) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = device->fs_info; | 
 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
 | 	struct buffer_head *bh; | 
 | 	int i; | 
 | 	int ret; | 
 | 	int errors = 0; | 
 | 	u64 bytenr; | 
 | 	int op_flags; | 
 |  | 
 | 	if (max_mirrors == 0) | 
 | 		max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
 |  | 
 | 	shash->tfm = fs_info->csum_shash; | 
 |  | 
 | 	for (i = 0; i < max_mirrors; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
 | 		    device->commit_total_bytes) | 
 | 			break; | 
 |  | 
 | 		btrfs_set_super_bytenr(sb, bytenr); | 
 |  | 
 | 		crypto_shash_init(shash); | 
 | 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, | 
 | 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); | 
 | 		crypto_shash_final(shash, sb->csum); | 
 |  | 
 | 		/* One reference for us, and we leave it for the caller */ | 
 | 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, | 
 | 			      BTRFS_SUPER_INFO_SIZE); | 
 | 		if (!bh) { | 
 | 			btrfs_err(device->fs_info, | 
 | 			    "couldn't get super buffer head for bytenr %llu", | 
 | 			    bytenr); | 
 | 			errors++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); | 
 |  | 
 | 		/* one reference for submit_bh */ | 
 | 		get_bh(bh); | 
 |  | 
 | 		set_buffer_uptodate(bh); | 
 | 		lock_buffer(bh); | 
 | 		bh->b_end_io = btrfs_end_buffer_write_sync; | 
 | 		bh->b_private = device; | 
 |  | 
 | 		/* | 
 | 		 * we fua the first super.  The others we allow | 
 | 		 * to go down lazy. | 
 | 		 */ | 
 | 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO; | 
 | 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) | 
 | 			op_flags |= REQ_FUA; | 
 | 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); | 
 | 		if (ret) | 
 | 			errors++; | 
 | 	} | 
 | 	return errors < i ? 0 : -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for write completion of superblocks done by write_dev_supers, | 
 |  * @max_mirrors same for write and wait phases. | 
 |  * | 
 |  * Return number of errors when buffer head is not found or not marked up to | 
 |  * date. | 
 |  */ | 
 | static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	int i; | 
 | 	int errors = 0; | 
 | 	bool primary_failed = false; | 
 | 	u64 bytenr; | 
 |  | 
 | 	if (max_mirrors == 0) | 
 | 		max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
 |  | 
 | 	for (i = 0; i < max_mirrors; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
 | 		    device->commit_total_bytes) | 
 | 			break; | 
 |  | 
 | 		bh = __find_get_block(device->bdev, | 
 | 				      bytenr / BTRFS_BDEV_BLOCKSIZE, | 
 | 				      BTRFS_SUPER_INFO_SIZE); | 
 | 		if (!bh) { | 
 | 			errors++; | 
 | 			if (i == 0) | 
 | 				primary_failed = true; | 
 | 			continue; | 
 | 		} | 
 | 		wait_on_buffer(bh); | 
 | 		if (!buffer_uptodate(bh)) { | 
 | 			errors++; | 
 | 			if (i == 0) | 
 | 				primary_failed = true; | 
 | 		} | 
 |  | 
 | 		/* drop our reference */ | 
 | 		brelse(bh); | 
 |  | 
 | 		/* drop the reference from the writing run */ | 
 | 		brelse(bh); | 
 | 	} | 
 |  | 
 | 	/* log error, force error return */ | 
 | 	if (primary_failed) { | 
 | 		btrfs_err(device->fs_info, "error writing primary super block to device %llu", | 
 | 			  device->devid); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return errors < i ? 0 : -1; | 
 | } | 
 |  | 
 | /* | 
 |  * endio for the write_dev_flush, this will wake anyone waiting | 
 |  * for the barrier when it is done | 
 |  */ | 
 | static void btrfs_end_empty_barrier(struct bio *bio) | 
 | { | 
 | 	complete(bio->bi_private); | 
 | } | 
 |  | 
 | /* | 
 |  * Submit a flush request to the device if it supports it. Error handling is | 
 |  * done in the waiting counterpart. | 
 |  */ | 
 | static void write_dev_flush(struct btrfs_device *device) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(device->bdev); | 
 | 	struct bio *bio = device->flush_bio; | 
 |  | 
 | 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) | 
 | 		return; | 
 |  | 
 | 	bio_reset(bio); | 
 | 	bio->bi_end_io = btrfs_end_empty_barrier; | 
 | 	bio_set_dev(bio, device->bdev); | 
 | 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; | 
 | 	init_completion(&device->flush_wait); | 
 | 	bio->bi_private = &device->flush_wait; | 
 |  | 
 | 	btrfsic_submit_bio(bio); | 
 | 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); | 
 | } | 
 |  | 
 | /* | 
 |  * If the flush bio has been submitted by write_dev_flush, wait for it. | 
 |  */ | 
 | static blk_status_t wait_dev_flush(struct btrfs_device *device) | 
 | { | 
 | 	struct bio *bio = device->flush_bio; | 
 |  | 
 | 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) | 
 | 		return BLK_STS_OK; | 
 |  | 
 | 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); | 
 | 	wait_for_completion_io(&device->flush_wait); | 
 |  | 
 | 	return bio->bi_status; | 
 | } | 
 |  | 
 | static int check_barrier_error(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	if (!btrfs_check_rw_degradable(fs_info, NULL)) | 
 | 		return -EIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * send an empty flush down to each device in parallel, | 
 |  * then wait for them | 
 |  */ | 
 | static int barrier_all_devices(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct btrfs_device *dev; | 
 | 	int errors_wait = 0; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	lockdep_assert_held(&info->fs_devices->device_list_mutex); | 
 | 	/* send down all the barriers */ | 
 | 	head = &info->fs_devices->devices; | 
 | 	list_for_each_entry(dev, head, dev_list) { | 
 | 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
 | 			continue; | 
 | 		if (!dev->bdev) | 
 | 			continue; | 
 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
 | 			continue; | 
 |  | 
 | 		write_dev_flush(dev); | 
 | 		dev->last_flush_error = BLK_STS_OK; | 
 | 	} | 
 |  | 
 | 	/* wait for all the barriers */ | 
 | 	list_for_each_entry(dev, head, dev_list) { | 
 | 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
 | 			continue; | 
 | 		if (!dev->bdev) { | 
 | 			errors_wait++; | 
 | 			continue; | 
 | 		} | 
 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
 | 			continue; | 
 |  | 
 | 		ret = wait_dev_flush(dev); | 
 | 		if (ret) { | 
 | 			dev->last_flush_error = ret; | 
 | 			btrfs_dev_stat_inc_and_print(dev, | 
 | 					BTRFS_DEV_STAT_FLUSH_ERRS); | 
 | 			errors_wait++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (errors_wait) { | 
 | 		/* | 
 | 		 * At some point we need the status of all disks | 
 | 		 * to arrive at the volume status. So error checking | 
 | 		 * is being pushed to a separate loop. | 
 | 		 */ | 
 | 		return check_barrier_error(info); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) | 
 | { | 
 | 	int raid_type; | 
 | 	int min_tolerated = INT_MAX; | 
 |  | 
 | 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || | 
 | 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) | 
 | 		min_tolerated = min_t(int, min_tolerated, | 
 | 				    btrfs_raid_array[BTRFS_RAID_SINGLE]. | 
 | 				    tolerated_failures); | 
 |  | 
 | 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { | 
 | 		if (raid_type == BTRFS_RAID_SINGLE) | 
 | 			continue; | 
 | 		if (!(flags & btrfs_raid_array[raid_type].bg_flag)) | 
 | 			continue; | 
 | 		min_tolerated = min_t(int, min_tolerated, | 
 | 				    btrfs_raid_array[raid_type]. | 
 | 				    tolerated_failures); | 
 | 	} | 
 |  | 
 | 	if (min_tolerated == INT_MAX) { | 
 | 		pr_warn("BTRFS: unknown raid flag: %llu", flags); | 
 | 		min_tolerated = 0; | 
 | 	} | 
 |  | 
 | 	return min_tolerated; | 
 | } | 
 |  | 
 | int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct btrfs_device *dev; | 
 | 	struct btrfs_super_block *sb; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	int ret; | 
 | 	int do_barriers; | 
 | 	int max_errors; | 
 | 	int total_errors = 0; | 
 | 	u64 flags; | 
 |  | 
 | 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); | 
 |  | 
 | 	/* | 
 | 	 * max_mirrors == 0 indicates we're from commit_transaction, | 
 | 	 * not from fsync where the tree roots in fs_info have not | 
 | 	 * been consistent on disk. | 
 | 	 */ | 
 | 	if (max_mirrors == 0) | 
 | 		backup_super_roots(fs_info); | 
 |  | 
 | 	sb = fs_info->super_for_commit; | 
 | 	dev_item = &sb->dev_item; | 
 |  | 
 | 	mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
 | 	head = &fs_info->fs_devices->devices; | 
 | 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; | 
 |  | 
 | 	if (do_barriers) { | 
 | 		ret = barrier_all_devices(fs_info); | 
 | 		if (ret) { | 
 | 			mutex_unlock( | 
 | 				&fs_info->fs_devices->device_list_mutex); | 
 | 			btrfs_handle_fs_error(fs_info, ret, | 
 | 					      "errors while submitting device barriers."); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(dev, head, dev_list) { | 
 | 		if (!dev->bdev) { | 
 | 			total_errors++; | 
 | 			continue; | 
 | 		} | 
 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
 | 			continue; | 
 |  | 
 | 		btrfs_set_stack_device_generation(dev_item, 0); | 
 | 		btrfs_set_stack_device_type(dev_item, dev->type); | 
 | 		btrfs_set_stack_device_id(dev_item, dev->devid); | 
 | 		btrfs_set_stack_device_total_bytes(dev_item, | 
 | 						   dev->commit_total_bytes); | 
 | 		btrfs_set_stack_device_bytes_used(dev_item, | 
 | 						  dev->commit_bytes_used); | 
 | 		btrfs_set_stack_device_io_align(dev_item, dev->io_align); | 
 | 		btrfs_set_stack_device_io_width(dev_item, dev->io_width); | 
 | 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); | 
 | 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | 
 | 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, | 
 | 		       BTRFS_FSID_SIZE); | 
 |  | 
 | 		flags = btrfs_super_flags(sb); | 
 | 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); | 
 |  | 
 | 		ret = btrfs_validate_write_super(fs_info, sb); | 
 | 		if (ret < 0) { | 
 | 			mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 			btrfs_handle_fs_error(fs_info, -EUCLEAN, | 
 | 				"unexpected superblock corruption detected"); | 
 | 			return -EUCLEAN; | 
 | 		} | 
 |  | 
 | 		ret = write_dev_supers(dev, sb, max_mirrors); | 
 | 		if (ret) | 
 | 			total_errors++; | 
 | 	} | 
 | 	if (total_errors > max_errors) { | 
 | 		btrfs_err(fs_info, "%d errors while writing supers", | 
 | 			  total_errors); | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 		/* FUA is masked off if unsupported and can't be the reason */ | 
 | 		btrfs_handle_fs_error(fs_info, -EIO, | 
 | 				      "%d errors while writing supers", | 
 | 				      total_errors); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	total_errors = 0; | 
 | 	list_for_each_entry(dev, head, dev_list) { | 
 | 		if (!dev->bdev) | 
 | 			continue; | 
 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
 | 			continue; | 
 |  | 
 | 		ret = wait_dev_supers(dev, max_mirrors); | 
 | 		if (ret) | 
 | 			total_errors++; | 
 | 	} | 
 | 	mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 	if (total_errors > max_errors) { | 
 | 		btrfs_handle_fs_error(fs_info, -EIO, | 
 | 				      "%d errors while writing supers", | 
 | 				      total_errors); | 
 | 		return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Drop a fs root from the radix tree and free it. */ | 
 | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, | 
 | 				  struct btrfs_root *root) | 
 | { | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	radix_tree_delete(&fs_info->fs_roots_radix, | 
 | 			  (unsigned long)root->root_key.objectid); | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 |  | 
 | 	if (btrfs_root_refs(&root->root_item) == 0) | 
 | 		synchronize_srcu(&fs_info->subvol_srcu); | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
 | 		btrfs_free_log(NULL, root); | 
 | 		if (root->reloc_root) { | 
 | 			free_extent_buffer(root->reloc_root->node); | 
 | 			free_extent_buffer(root->reloc_root->commit_root); | 
 | 			btrfs_put_fs_root(root->reloc_root); | 
 | 			root->reloc_root = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (root->free_ino_pinned) | 
 | 		__btrfs_remove_free_space_cache(root->free_ino_pinned); | 
 | 	if (root->free_ino_ctl) | 
 | 		__btrfs_remove_free_space_cache(root->free_ino_ctl); | 
 | 	btrfs_free_fs_root(root); | 
 | } | 
 |  | 
 | void btrfs_free_fs_root(struct btrfs_root *root) | 
 | { | 
 | 	iput(root->ino_cache_inode); | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); | 
 | 	if (root->anon_dev) | 
 | 		free_anon_bdev(root->anon_dev); | 
 | 	if (root->subv_writers) | 
 | 		btrfs_free_subvolume_writers(root->subv_writers); | 
 | 	free_extent_buffer(root->node); | 
 | 	free_extent_buffer(root->commit_root); | 
 | 	kfree(root->free_ino_ctl); | 
 | 	kfree(root->free_ino_pinned); | 
 | 	btrfs_put_fs_root(root); | 
 | } | 
 |  | 
 | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	u64 root_objectid = 0; | 
 | 	struct btrfs_root *gang[8]; | 
 | 	int i = 0; | 
 | 	int err = 0; | 
 | 	unsigned int ret = 0; | 
 | 	int index; | 
 |  | 
 | 	while (1) { | 
 | 		index = srcu_read_lock(&fs_info->subvol_srcu); | 
 | 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
 | 					     (void **)gang, root_objectid, | 
 | 					     ARRAY_SIZE(gang)); | 
 | 		if (!ret) { | 
 | 			srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 | 			break; | 
 | 		} | 
 | 		root_objectid = gang[ret - 1]->root_key.objectid + 1; | 
 |  | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			/* Avoid to grab roots in dead_roots */ | 
 | 			if (btrfs_root_refs(&gang[i]->root_item) == 0) { | 
 | 				gang[i] = NULL; | 
 | 				continue; | 
 | 			} | 
 | 			/* grab all the search result for later use */ | 
 | 			gang[i] = btrfs_grab_fs_root(gang[i]); | 
 | 		} | 
 | 		srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 |  | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			if (!gang[i]) | 
 | 				continue; | 
 | 			root_objectid = gang[i]->root_key.objectid; | 
 | 			err = btrfs_orphan_cleanup(gang[i]); | 
 | 			if (err) | 
 | 				break; | 
 | 			btrfs_put_fs_root(gang[i]); | 
 | 		} | 
 | 		root_objectid++; | 
 | 	} | 
 |  | 
 | 	/* release the uncleaned roots due to error */ | 
 | 	for (; i < ret; i++) { | 
 | 		if (gang[i]) | 
 | 			btrfs_put_fs_root(gang[i]); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int btrfs_commit_super(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	mutex_lock(&fs_info->cleaner_mutex); | 
 | 	btrfs_run_delayed_iputs(fs_info); | 
 | 	mutex_unlock(&fs_info->cleaner_mutex); | 
 | 	wake_up_process(fs_info->cleaner_kthread); | 
 |  | 
 | 	/* wait until ongoing cleanup work done */ | 
 | 	down_write(&fs_info->cleanup_work_sem); | 
 | 	up_write(&fs_info->cleanup_work_sem); | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 | 	return btrfs_commit_transaction(trans); | 
 | } | 
 |  | 
 | void close_ctree(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); | 
 | 	/* | 
 | 	 * We don't want the cleaner to start new transactions, add more delayed | 
 | 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet | 
 | 	 * because that frees the task_struct, and the transaction kthread might | 
 | 	 * still try to wake up the cleaner. | 
 | 	 */ | 
 | 	kthread_park(fs_info->cleaner_kthread); | 
 |  | 
 | 	/* wait for the qgroup rescan worker to stop */ | 
 | 	btrfs_qgroup_wait_for_completion(fs_info, false); | 
 |  | 
 | 	/* wait for the uuid_scan task to finish */ | 
 | 	down(&fs_info->uuid_tree_rescan_sem); | 
 | 	/* avoid complains from lockdep et al., set sem back to initial state */ | 
 | 	up(&fs_info->uuid_tree_rescan_sem); | 
 |  | 
 | 	/* pause restriper - we want to resume on mount */ | 
 | 	btrfs_pause_balance(fs_info); | 
 |  | 
 | 	btrfs_dev_replace_suspend_for_unmount(fs_info); | 
 |  | 
 | 	btrfs_scrub_cancel(fs_info); | 
 |  | 
 | 	/* wait for any defraggers to finish */ | 
 | 	wait_event(fs_info->transaction_wait, | 
 | 		   (atomic_read(&fs_info->defrag_running) == 0)); | 
 |  | 
 | 	/* clear out the rbtree of defraggable inodes */ | 
 | 	btrfs_cleanup_defrag_inodes(fs_info); | 
 |  | 
 | 	cancel_work_sync(&fs_info->async_reclaim_work); | 
 |  | 
 | 	if (!sb_rdonly(fs_info->sb)) { | 
 | 		/* | 
 | 		 * The cleaner kthread is stopped, so do one final pass over | 
 | 		 * unused block groups. | 
 | 		 */ | 
 | 		btrfs_delete_unused_bgs(fs_info); | 
 |  | 
 | 		/* | 
 | 		 * There might be existing delayed inode workers still running | 
 | 		 * and holding an empty delayed inode item. We must wait for | 
 | 		 * them to complete first because they can create a transaction. | 
 | 		 * This happens when someone calls btrfs_balance_delayed_items() | 
 | 		 * and then a transaction commit runs the same delayed nodes | 
 | 		 * before any delayed worker has done something with the nodes. | 
 | 		 * We must wait for any worker here and not at transaction | 
 | 		 * commit time since that could cause a deadlock. | 
 | 		 * This is a very rare case. | 
 | 		 */ | 
 | 		btrfs_flush_workqueue(fs_info->delayed_workers); | 
 |  | 
 | 		ret = btrfs_commit_super(fs_info); | 
 | 		if (ret) | 
 | 			btrfs_err(fs_info, "commit super ret %d", ret); | 
 | 	} | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || | 
 | 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) | 
 | 		btrfs_error_commit_super(fs_info); | 
 |  | 
 | 	kthread_stop(fs_info->transaction_kthread); | 
 | 	kthread_stop(fs_info->cleaner_kthread); | 
 |  | 
 | 	ASSERT(list_empty(&fs_info->delayed_iputs)); | 
 | 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); | 
 |  | 
 | 	btrfs_free_qgroup_config(fs_info); | 
 | 	ASSERT(list_empty(&fs_info->delalloc_roots)); | 
 |  | 
 | 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) { | 
 | 		btrfs_info(fs_info, "at unmount delalloc count %lld", | 
 | 		       percpu_counter_sum(&fs_info->delalloc_bytes)); | 
 | 	} | 
 |  | 
 | 	if (percpu_counter_sum(&fs_info->dio_bytes)) | 
 | 		btrfs_info(fs_info, "at unmount dio bytes count %lld", | 
 | 			   percpu_counter_sum(&fs_info->dio_bytes)); | 
 |  | 
 | 	btrfs_sysfs_remove_mounted(fs_info); | 
 | 	btrfs_sysfs_remove_fsid(fs_info->fs_devices); | 
 |  | 
 | 	btrfs_free_fs_roots(fs_info); | 
 |  | 
 | 	btrfs_put_block_group_cache(fs_info); | 
 |  | 
 | 	/* | 
 | 	 * we must make sure there is not any read request to | 
 | 	 * submit after we stopping all workers. | 
 | 	 */ | 
 | 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
 | 	btrfs_stop_all_workers(fs_info); | 
 |  | 
 | 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
 | 	free_root_pointers(fs_info, true); | 
 |  | 
 | 	/* | 
 | 	 * We must free the block groups after dropping the fs_roots as we could | 
 | 	 * have had an IO error and have left over tree log blocks that aren't | 
 | 	 * cleaned up until the fs roots are freed.  This makes the block group | 
 | 	 * accounting appear to be wrong because there's pending reserved bytes, | 
 | 	 * so make sure we do the block group cleanup afterwards. | 
 | 	 */ | 
 | 	btrfs_free_block_groups(fs_info); | 
 |  | 
 | 	iput(fs_info->btree_inode); | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) | 
 | 		btrfsic_unmount(fs_info->fs_devices); | 
 | #endif | 
 |  | 
 | 	btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
 | 	btrfs_close_devices(fs_info->fs_devices); | 
 |  | 
 | 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
 | 	percpu_counter_destroy(&fs_info->delalloc_bytes); | 
 | 	percpu_counter_destroy(&fs_info->dio_bytes); | 
 | 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter); | 
 | 	cleanup_srcu_struct(&fs_info->subvol_srcu); | 
 |  | 
 | 	btrfs_free_csum_hash(fs_info); | 
 | 	btrfs_free_stripe_hash_table(fs_info); | 
 | 	btrfs_free_ref_cache(fs_info); | 
 | } | 
 |  | 
 | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, | 
 | 			  int atomic) | 
 | { | 
 | 	int ret; | 
 | 	struct inode *btree_inode = buf->pages[0]->mapping->host; | 
 |  | 
 | 	ret = extent_buffer_uptodate(buf); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, | 
 | 				    parent_transid, atomic); | 
 | 	if (ret == -EAGAIN) | 
 | 		return ret; | 
 | 	return !ret; | 
 | } | 
 |  | 
 | void btrfs_mark_buffer_dirty(struct extent_buffer *buf) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_root *root; | 
 | 	u64 transid = btrfs_header_generation(buf); | 
 | 	int was_dirty; | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | 	/* | 
 | 	 * This is a fast path so only do this check if we have sanity tests | 
 | 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty | 
 | 	 * outside of the sanity tests. | 
 | 	 */ | 
 | 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) | 
 | 		return; | 
 | #endif | 
 | 	root = BTRFS_I(buf->pages[0]->mapping->host)->root; | 
 | 	fs_info = root->fs_info; | 
 | 	btrfs_assert_tree_locked(buf); | 
 | 	if (transid != fs_info->generation) | 
 | 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", | 
 | 			buf->start, transid, fs_info->generation); | 
 | 	was_dirty = set_extent_buffer_dirty(buf); | 
 | 	if (!was_dirty) | 
 | 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
 | 					 buf->len, | 
 | 					 fs_info->dirty_metadata_batch); | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 	/* | 
 | 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set | 
 | 	 * but item data not updated. | 
 | 	 * So here we should only check item pointers, not item data. | 
 | 	 */ | 
 | 	if (btrfs_header_level(buf) == 0 && | 
 | 	    btrfs_check_leaf_relaxed(buf)) { | 
 | 		btrfs_print_leaf(buf); | 
 | 		ASSERT(0); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, | 
 | 					int flush_delayed) | 
 | { | 
 | 	/* | 
 | 	 * looks as though older kernels can get into trouble with | 
 | 	 * this code, they end up stuck in balance_dirty_pages forever | 
 | 	 */ | 
 | 	int ret; | 
 |  | 
 | 	if (current->flags & PF_MEMALLOC) | 
 | 		return; | 
 |  | 
 | 	if (flush_delayed) | 
 | 		btrfs_balance_delayed_items(fs_info); | 
 |  | 
 | 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
 | 				     BTRFS_DIRTY_METADATA_THRESH, | 
 | 				     fs_info->dirty_metadata_batch); | 
 | 	if (ret > 0) { | 
 | 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	__btrfs_btree_balance_dirty(fs_info, 1); | 
 | } | 
 |  | 
 | void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	__btrfs_btree_balance_dirty(fs_info, 0); | 
 | } | 
 |  | 
 | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, | 
 | 		      struct btrfs_key *first_key) | 
 | { | 
 | 	return btree_read_extent_buffer_pages(buf, parent_transid, | 
 | 					      level, first_key); | 
 | } | 
 |  | 
 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	/* cleanup FS via transaction */ | 
 | 	btrfs_cleanup_transaction(fs_info); | 
 |  | 
 | 	mutex_lock(&fs_info->cleaner_mutex); | 
 | 	btrfs_run_delayed_iputs(fs_info); | 
 | 	mutex_unlock(&fs_info->cleaner_mutex); | 
 |  | 
 | 	down_write(&fs_info->cleanup_work_sem); | 
 | 	up_write(&fs_info->cleanup_work_sem); | 
 | } | 
 |  | 
 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 	spin_lock(&root->ordered_extent_lock); | 
 | 	/* | 
 | 	 * This will just short circuit the ordered completion stuff which will | 
 | 	 * make sure the ordered extent gets properly cleaned up. | 
 | 	 */ | 
 | 	list_for_each_entry(ordered, &root->ordered_extents, | 
 | 			    root_extent_list) | 
 | 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); | 
 | 	spin_unlock(&root->ordered_extent_lock); | 
 | } | 
 |  | 
 | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	spin_lock(&fs_info->ordered_root_lock); | 
 | 	list_splice_init(&fs_info->ordered_roots, &splice); | 
 | 	while (!list_empty(&splice)) { | 
 | 		root = list_first_entry(&splice, struct btrfs_root, | 
 | 					ordered_root); | 
 | 		list_move_tail(&root->ordered_root, | 
 | 			       &fs_info->ordered_roots); | 
 |  | 
 | 		spin_unlock(&fs_info->ordered_root_lock); | 
 | 		btrfs_destroy_ordered_extents(root); | 
 |  | 
 | 		cond_resched(); | 
 | 		spin_lock(&fs_info->ordered_root_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->ordered_root_lock); | 
 |  | 
 | 	/* | 
 | 	 * We need this here because if we've been flipped read-only we won't | 
 | 	 * get sync() from the umount, so we need to make sure any ordered | 
 | 	 * extents that haven't had their dirty pages IO start writeout yet | 
 | 	 * actually get run and error out properly. | 
 | 	 */ | 
 | 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); | 
 | } | 
 |  | 
 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
 | 				      struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	int ret = 0; | 
 |  | 
 | 	delayed_refs = &trans->delayed_refs; | 
 |  | 
 | 	spin_lock(&delayed_refs->lock); | 
 | 	if (atomic_read(&delayed_refs->num_entries) == 0) { | 
 | 		spin_unlock(&delayed_refs->lock); | 
 | 		btrfs_info(fs_info, "delayed_refs has NO entry"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { | 
 | 		struct btrfs_delayed_ref_head *head; | 
 | 		struct rb_node *n; | 
 | 		bool pin_bytes = false; | 
 |  | 
 | 		head = rb_entry(node, struct btrfs_delayed_ref_head, | 
 | 				href_node); | 
 | 		if (btrfs_delayed_ref_lock(delayed_refs, head)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&head->lock); | 
 | 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) { | 
 | 			ref = rb_entry(n, struct btrfs_delayed_ref_node, | 
 | 				       ref_node); | 
 | 			ref->in_tree = 0; | 
 | 			rb_erase_cached(&ref->ref_node, &head->ref_tree); | 
 | 			RB_CLEAR_NODE(&ref->ref_node); | 
 | 			if (!list_empty(&ref->add_list)) | 
 | 				list_del(&ref->add_list); | 
 | 			atomic_dec(&delayed_refs->num_entries); | 
 | 			btrfs_put_delayed_ref(ref); | 
 | 		} | 
 | 		if (head->must_insert_reserved) | 
 | 			pin_bytes = true; | 
 | 		btrfs_free_delayed_extent_op(head->extent_op); | 
 | 		btrfs_delete_ref_head(delayed_refs, head); | 
 | 		spin_unlock(&head->lock); | 
 | 		spin_unlock(&delayed_refs->lock); | 
 | 		mutex_unlock(&head->mutex); | 
 |  | 
 | 		if (pin_bytes) | 
 | 			btrfs_pin_extent(fs_info, head->bytenr, | 
 | 					 head->num_bytes, 1); | 
 | 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); | 
 | 		btrfs_put_delayed_ref_head(head); | 
 | 		cond_resched(); | 
 | 		spin_lock(&delayed_refs->lock); | 
 | 	} | 
 | 	btrfs_qgroup_destroy_extent_records(trans); | 
 |  | 
 | 	spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_inode *btrfs_inode; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	spin_lock(&root->delalloc_lock); | 
 | 	list_splice_init(&root->delalloc_inodes, &splice); | 
 |  | 
 | 	while (!list_empty(&splice)) { | 
 | 		struct inode *inode = NULL; | 
 | 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode, | 
 | 					       delalloc_inodes); | 
 | 		__btrfs_del_delalloc_inode(root, btrfs_inode); | 
 | 		spin_unlock(&root->delalloc_lock); | 
 |  | 
 | 		/* | 
 | 		 * Make sure we get a live inode and that it'll not disappear | 
 | 		 * meanwhile. | 
 | 		 */ | 
 | 		inode = igrab(&btrfs_inode->vfs_inode); | 
 | 		if (inode) { | 
 | 			invalidate_inode_pages2(inode->i_mapping); | 
 | 			iput(inode); | 
 | 		} | 
 | 		spin_lock(&root->delalloc_lock); | 
 | 	} | 
 | 	spin_unlock(&root->delalloc_lock); | 
 | } | 
 |  | 
 | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	spin_lock(&fs_info->delalloc_root_lock); | 
 | 	list_splice_init(&fs_info->delalloc_roots, &splice); | 
 | 	while (!list_empty(&splice)) { | 
 | 		root = list_first_entry(&splice, struct btrfs_root, | 
 | 					 delalloc_root); | 
 | 		root = btrfs_grab_fs_root(root); | 
 | 		BUG_ON(!root); | 
 | 		spin_unlock(&fs_info->delalloc_root_lock); | 
 |  | 
 | 		btrfs_destroy_delalloc_inodes(root); | 
 | 		btrfs_put_fs_root(root); | 
 |  | 
 | 		spin_lock(&fs_info->delalloc_root_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->delalloc_root_lock); | 
 | } | 
 |  | 
 | static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, | 
 | 					struct extent_io_tree *dirty_pages, | 
 | 					int mark) | 
 | { | 
 | 	int ret; | 
 | 	struct extent_buffer *eb; | 
 | 	u64 start = 0; | 
 | 	u64 end; | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_extent_bit(dirty_pages, start, &start, &end, | 
 | 					    mark, NULL); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		clear_extent_bits(dirty_pages, start, end, mark); | 
 | 		while (start <= end) { | 
 | 			eb = find_extent_buffer(fs_info, start); | 
 | 			start += fs_info->nodesize; | 
 | 			if (!eb) | 
 | 				continue; | 
 | 			wait_on_extent_buffer_writeback(eb); | 
 |  | 
 | 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, | 
 | 					       &eb->bflags)) | 
 | 				clear_extent_buffer_dirty(eb); | 
 | 			free_extent_buffer_stale(eb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, | 
 | 				       struct extent_io_tree *pinned_extents) | 
 | { | 
 | 	struct extent_io_tree *unpin; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int ret; | 
 | 	bool loop = true; | 
 |  | 
 | 	unpin = pinned_extents; | 
 | again: | 
 | 	while (1) { | 
 | 		struct extent_state *cached_state = NULL; | 
 |  | 
 | 		/* | 
 | 		 * The btrfs_finish_extent_commit() may get the same range as | 
 | 		 * ours between find_first_extent_bit and clear_extent_dirty. | 
 | 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin | 
 | 		 * the same extent range. | 
 | 		 */ | 
 | 		mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
 | 		ret = find_first_extent_bit(unpin, 0, &start, &end, | 
 | 					    EXTENT_DIRTY, &cached_state); | 
 | 		if (ret) { | 
 | 			mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		clear_extent_dirty(unpin, start, end, &cached_state); | 
 | 		free_extent_state(cached_state); | 
 | 		btrfs_error_unpin_extent_range(fs_info, start, end); | 
 | 		mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (loop) { | 
 | 		if (unpin == &fs_info->freed_extents[0]) | 
 | 			unpin = &fs_info->freed_extents[1]; | 
 | 		else | 
 | 			unpin = &fs_info->freed_extents[0]; | 
 | 		loop = false; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = cache->io_ctl.inode; | 
 | 	if (inode) { | 
 | 		invalidate_inode_pages2(inode->i_mapping); | 
 | 		BTRFS_I(inode)->generation = 0; | 
 | 		cache->io_ctl.inode = NULL; | 
 | 		iput(inode); | 
 | 	} | 
 | 	ASSERT(cache->io_ctl.pages == NULL); | 
 | 	btrfs_put_block_group(cache); | 
 | } | 
 |  | 
 | void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, | 
 | 			     struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 	while (!list_empty(&cur_trans->dirty_bgs)) { | 
 | 		cache = list_first_entry(&cur_trans->dirty_bgs, | 
 | 					 struct btrfs_block_group_cache, | 
 | 					 dirty_list); | 
 |  | 
 | 		if (!list_empty(&cache->io_list)) { | 
 | 			spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 			list_del_init(&cache->io_list); | 
 | 			btrfs_cleanup_bg_io(cache); | 
 | 			spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 		} | 
 |  | 
 | 		list_del_init(&cache->dirty_list); | 
 | 		spin_lock(&cache->lock); | 
 | 		cache->disk_cache_state = BTRFS_DC_ERROR; | 
 | 		spin_unlock(&cache->lock); | 
 |  | 
 | 		spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 		btrfs_put_block_group(cache); | 
 | 		btrfs_delayed_refs_rsv_release(fs_info, 1); | 
 | 		spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 	} | 
 | 	spin_unlock(&cur_trans->dirty_bgs_lock); | 
 |  | 
 | 	/* | 
 | 	 * Refer to the definition of io_bgs member for details why it's safe | 
 | 	 * to use it without any locking | 
 | 	 */ | 
 | 	while (!list_empty(&cur_trans->io_bgs)) { | 
 | 		cache = list_first_entry(&cur_trans->io_bgs, | 
 | 					 struct btrfs_block_group_cache, | 
 | 					 io_list); | 
 |  | 
 | 		list_del_init(&cache->io_list); | 
 | 		spin_lock(&cache->lock); | 
 | 		cache->disk_cache_state = BTRFS_DC_ERROR; | 
 | 		spin_unlock(&cache->lock); | 
 | 		btrfs_cleanup_bg_io(cache); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, | 
 | 				   struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_device *dev, *tmp; | 
 |  | 
 | 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info); | 
 | 	ASSERT(list_empty(&cur_trans->dirty_bgs)); | 
 | 	ASSERT(list_empty(&cur_trans->io_bgs)); | 
 |  | 
 | 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, | 
 | 				 post_commit_list) { | 
 | 		list_del_init(&dev->post_commit_list); | 
 | 	} | 
 |  | 
 | 	btrfs_destroy_delayed_refs(cur_trans, fs_info); | 
 |  | 
 | 	cur_trans->state = TRANS_STATE_COMMIT_START; | 
 | 	wake_up(&fs_info->transaction_blocked_wait); | 
 |  | 
 | 	cur_trans->state = TRANS_STATE_UNBLOCKED; | 
 | 	wake_up(&fs_info->transaction_wait); | 
 |  | 
 | 	btrfs_destroy_delayed_inodes(fs_info); | 
 |  | 
 | 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, | 
 | 				     EXTENT_DIRTY); | 
 | 	btrfs_destroy_pinned_extent(fs_info, | 
 | 				    fs_info->pinned_extents); | 
 |  | 
 | 	cur_trans->state =TRANS_STATE_COMPLETED; | 
 | 	wake_up(&cur_trans->commit_wait); | 
 | } | 
 |  | 
 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_transaction *t; | 
 |  | 
 | 	mutex_lock(&fs_info->transaction_kthread_mutex); | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	while (!list_empty(&fs_info->trans_list)) { | 
 | 		t = list_first_entry(&fs_info->trans_list, | 
 | 				     struct btrfs_transaction, list); | 
 | 		if (t->state >= TRANS_STATE_COMMIT_START) { | 
 | 			refcount_inc(&t->use_count); | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			btrfs_wait_for_commit(fs_info, t->transid); | 
 | 			btrfs_put_transaction(t); | 
 | 			spin_lock(&fs_info->trans_lock); | 
 | 			continue; | 
 | 		} | 
 | 		if (t == fs_info->running_transaction) { | 
 | 			t->state = TRANS_STATE_COMMIT_DOING; | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			/* | 
 | 			 * We wait for 0 num_writers since we don't hold a trans | 
 | 			 * handle open currently for this transaction. | 
 | 			 */ | 
 | 			wait_event(t->writer_wait, | 
 | 				   atomic_read(&t->num_writers) == 0); | 
 | 		} else { | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 		} | 
 | 		btrfs_cleanup_one_transaction(t, fs_info); | 
 |  | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 		if (t == fs_info->running_transaction) | 
 | 			fs_info->running_transaction = NULL; | 
 | 		list_del_init(&t->list); | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 		btrfs_put_transaction(t); | 
 | 		trace_btrfs_transaction_commit(fs_info->tree_root); | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 | 	btrfs_destroy_all_ordered_extents(fs_info); | 
 | 	btrfs_destroy_delayed_inodes(fs_info); | 
 | 	btrfs_assert_delayed_root_empty(fs_info); | 
 | 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); | 
 | 	btrfs_destroy_all_delalloc_inodes(fs_info); | 
 | 	mutex_unlock(&fs_info->transaction_kthread_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct extent_io_ops btree_extent_io_ops = { | 
 | 	/* mandatory callbacks */ | 
 | 	.submit_bio_hook = btree_submit_bio_hook, | 
 | 	.readpage_end_io_hook = btree_readpage_end_io_hook, | 
 | }; |