| /* | 
 |    BlueZ - Bluetooth protocol stack for Linux | 
 |  | 
 |    Copyright (C) 2014 Intel Corporation | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License version 2 as | 
 |    published by the Free Software Foundation; | 
 |  | 
 |    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | 
 |    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. | 
 |    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY | 
 |    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES | 
 |    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
 |    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
 |    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
 |  | 
 |    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, | 
 |    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS | 
 |    SOFTWARE IS DISCLAIMED. | 
 | */ | 
 |  | 
 | #include <linux/sched/signal.h> | 
 |  | 
 | #include <net/bluetooth/bluetooth.h> | 
 | #include <net/bluetooth/hci_core.h> | 
 | #include <net/bluetooth/mgmt.h> | 
 |  | 
 | #include "smp.h" | 
 | #include "hci_request.h" | 
 | #include "msft.h" | 
 |  | 
 | #define HCI_REQ_DONE	  0 | 
 | #define HCI_REQ_PEND	  1 | 
 | #define HCI_REQ_CANCELED  2 | 
 |  | 
 | void hci_req_init(struct hci_request *req, struct hci_dev *hdev) | 
 | { | 
 | 	skb_queue_head_init(&req->cmd_q); | 
 | 	req->hdev = hdev; | 
 | 	req->err = 0; | 
 | } | 
 |  | 
 | void hci_req_purge(struct hci_request *req) | 
 | { | 
 | 	skb_queue_purge(&req->cmd_q); | 
 | } | 
 |  | 
 | bool hci_req_status_pend(struct hci_dev *hdev) | 
 | { | 
 | 	return hdev->req_status == HCI_REQ_PEND; | 
 | } | 
 |  | 
 | static int req_run(struct hci_request *req, hci_req_complete_t complete, | 
 | 		   hci_req_complete_skb_t complete_skb) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned long flags; | 
 |  | 
 | 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); | 
 |  | 
 | 	/* If an error occurred during request building, remove all HCI | 
 | 	 * commands queued on the HCI request queue. | 
 | 	 */ | 
 | 	if (req->err) { | 
 | 		skb_queue_purge(&req->cmd_q); | 
 | 		return req->err; | 
 | 	} | 
 |  | 
 | 	/* Do not allow empty requests */ | 
 | 	if (skb_queue_empty(&req->cmd_q)) | 
 | 		return -ENODATA; | 
 |  | 
 | 	skb = skb_peek_tail(&req->cmd_q); | 
 | 	if (complete) { | 
 | 		bt_cb(skb)->hci.req_complete = complete; | 
 | 	} else if (complete_skb) { | 
 | 		bt_cb(skb)->hci.req_complete_skb = complete_skb; | 
 | 		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&hdev->cmd_q.lock, flags); | 
 | 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); | 
 | 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); | 
 |  | 
 | 	queue_work(hdev->workqueue, &hdev->cmd_work); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int hci_req_run(struct hci_request *req, hci_req_complete_t complete) | 
 | { | 
 | 	return req_run(req, complete, NULL); | 
 | } | 
 |  | 
 | int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) | 
 | { | 
 | 	return req_run(req, NULL, complete); | 
 | } | 
 |  | 
 | static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, | 
 | 				  struct sk_buff *skb) | 
 | { | 
 | 	bt_dev_dbg(hdev, "result 0x%2.2x", result); | 
 |  | 
 | 	if (hdev->req_status == HCI_REQ_PEND) { | 
 | 		hdev->req_result = result; | 
 | 		hdev->req_status = HCI_REQ_DONE; | 
 | 		if (skb) { | 
 | 			kfree_skb(hdev->req_skb); | 
 | 			hdev->req_skb = skb_get(skb); | 
 | 		} | 
 | 		wake_up_interruptible(&hdev->req_wait_q); | 
 | 	} | 
 | } | 
 |  | 
 | void hci_req_sync_cancel(struct hci_dev *hdev, int err) | 
 | { | 
 | 	bt_dev_dbg(hdev, "err 0x%2.2x", err); | 
 |  | 
 | 	if (hdev->req_status == HCI_REQ_PEND) { | 
 | 		hdev->req_result = err; | 
 | 		hdev->req_status = HCI_REQ_CANCELED; | 
 | 		wake_up_interruptible(&hdev->req_wait_q); | 
 | 	} | 
 | } | 
 |  | 
 | struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 				  const void *param, u8 event, u32 timeout) | 
 | { | 
 | 	struct hci_request req; | 
 | 	struct sk_buff *skb; | 
 | 	int err = 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	hci_req_add_ev(&req, opcode, plen, param, event); | 
 |  | 
 | 	hdev->req_status = HCI_REQ_PEND; | 
 |  | 
 | 	err = hci_req_run_skb(&req, hci_req_sync_complete); | 
 | 	if (err < 0) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	err = wait_event_interruptible_timeout(hdev->req_wait_q, | 
 | 			hdev->req_status != HCI_REQ_PEND, timeout); | 
 |  | 
 | 	if (err == -ERESTARTSYS) | 
 | 		return ERR_PTR(-EINTR); | 
 |  | 
 | 	switch (hdev->req_status) { | 
 | 	case HCI_REQ_DONE: | 
 | 		err = -bt_to_errno(hdev->req_result); | 
 | 		break; | 
 |  | 
 | 	case HCI_REQ_CANCELED: | 
 | 		err = -hdev->req_result; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		err = -ETIMEDOUT; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	hdev->req_status = hdev->req_result = 0; | 
 | 	skb = hdev->req_skb; | 
 | 	hdev->req_skb = NULL; | 
 |  | 
 | 	bt_dev_dbg(hdev, "end: err %d", err); | 
 |  | 
 | 	if (err < 0) { | 
 | 		kfree_skb(skb); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	if (!skb) | 
 | 		return ERR_PTR(-ENODATA); | 
 |  | 
 | 	return skb; | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync_ev); | 
 |  | 
 | struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 			       const void *param, u32 timeout) | 
 | { | 
 | 	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync); | 
 |  | 
 | /* Execute request and wait for completion. */ | 
 | int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, | 
 | 						     unsigned long opt), | 
 | 		   unsigned long opt, u32 timeout, u8 *hci_status) | 
 | { | 
 | 	struct hci_request req; | 
 | 	int err = 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, "start"); | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	hdev->req_status = HCI_REQ_PEND; | 
 |  | 
 | 	err = func(&req, opt); | 
 | 	if (err) { | 
 | 		if (hci_status) | 
 | 			*hci_status = HCI_ERROR_UNSPECIFIED; | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = hci_req_run_skb(&req, hci_req_sync_complete); | 
 | 	if (err < 0) { | 
 | 		hdev->req_status = 0; | 
 |  | 
 | 		/* ENODATA means the HCI request command queue is empty. | 
 | 		 * This can happen when a request with conditionals doesn't | 
 | 		 * trigger any commands to be sent. This is normal behavior | 
 | 		 * and should not trigger an error return. | 
 | 		 */ | 
 | 		if (err == -ENODATA) { | 
 | 			if (hci_status) | 
 | 				*hci_status = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (hci_status) | 
 | 			*hci_status = HCI_ERROR_UNSPECIFIED; | 
 |  | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = wait_event_interruptible_timeout(hdev->req_wait_q, | 
 | 			hdev->req_status != HCI_REQ_PEND, timeout); | 
 |  | 
 | 	if (err == -ERESTARTSYS) | 
 | 		return -EINTR; | 
 |  | 
 | 	switch (hdev->req_status) { | 
 | 	case HCI_REQ_DONE: | 
 | 		err = -bt_to_errno(hdev->req_result); | 
 | 		if (hci_status) | 
 | 			*hci_status = hdev->req_result; | 
 | 		break; | 
 |  | 
 | 	case HCI_REQ_CANCELED: | 
 | 		err = -hdev->req_result; | 
 | 		if (hci_status) | 
 | 			*hci_status = HCI_ERROR_UNSPECIFIED; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		err = -ETIMEDOUT; | 
 | 		if (hci_status) | 
 | 			*hci_status = HCI_ERROR_UNSPECIFIED; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	kfree_skb(hdev->req_skb); | 
 | 	hdev->req_skb = NULL; | 
 | 	hdev->req_status = hdev->req_result = 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, "end: err %d", err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, | 
 | 						  unsigned long opt), | 
 | 		 unsigned long opt, u32 timeout, u8 *hci_status) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* Serialize all requests */ | 
 | 	hci_req_sync_lock(hdev); | 
 | 	/* check the state after obtaing the lock to protect the HCI_UP | 
 | 	 * against any races from hci_dev_do_close when the controller | 
 | 	 * gets removed. | 
 | 	 */ | 
 | 	if (test_bit(HCI_UP, &hdev->flags)) | 
 | 		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); | 
 | 	else | 
 | 		ret = -ENETDOWN; | 
 | 	hci_req_sync_unlock(hdev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 				const void *param) | 
 | { | 
 | 	int len = HCI_COMMAND_HDR_SIZE + plen; | 
 | 	struct hci_command_hdr *hdr; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = bt_skb_alloc(len, GFP_ATOMIC); | 
 | 	if (!skb) | 
 | 		return NULL; | 
 |  | 
 | 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); | 
 | 	hdr->opcode = cpu_to_le16(opcode); | 
 | 	hdr->plen   = plen; | 
 |  | 
 | 	if (plen) | 
 | 		skb_put_data(skb, param, plen); | 
 |  | 
 | 	bt_dev_dbg(hdev, "skb len %d", skb->len); | 
 |  | 
 | 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; | 
 | 	hci_skb_opcode(skb) = opcode; | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | /* Queue a command to an asynchronous HCI request */ | 
 | void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, | 
 | 		    const void *param, u8 event) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); | 
 |  | 
 | 	/* If an error occurred during request building, there is no point in | 
 | 	 * queueing the HCI command. We can simply return. | 
 | 	 */ | 
 | 	if (req->err) | 
 | 		return; | 
 |  | 
 | 	skb = hci_prepare_cmd(hdev, opcode, plen, param); | 
 | 	if (!skb) { | 
 | 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", | 
 | 			   opcode); | 
 | 		req->err = -ENOMEM; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (skb_queue_empty(&req->cmd_q)) | 
 | 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START; | 
 |  | 
 | 	bt_cb(skb)->hci.req_event = event; | 
 |  | 
 | 	skb_queue_tail(&req->cmd_q, skb); | 
 | } | 
 |  | 
 | void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, | 
 | 		 const void *param) | 
 | { | 
 | 	hci_req_add_ev(req, opcode, plen, param, 0); | 
 | } | 
 |  | 
 | void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_cp_write_page_scan_activity acp; | 
 | 	u8 type; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (hdev->hci_ver < BLUETOOTH_VER_1_2) | 
 | 		return; | 
 |  | 
 | 	if (enable) { | 
 | 		type = PAGE_SCAN_TYPE_INTERLACED; | 
 |  | 
 | 		/* 160 msec page scan interval */ | 
 | 		acp.interval = cpu_to_le16(0x0100); | 
 | 	} else { | 
 | 		type = hdev->def_page_scan_type; | 
 | 		acp.interval = cpu_to_le16(hdev->def_page_scan_int); | 
 | 	} | 
 |  | 
 | 	acp.window = cpu_to_le16(hdev->def_page_scan_window); | 
 |  | 
 | 	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || | 
 | 	    __cpu_to_le16(hdev->page_scan_window) != acp.window) | 
 | 		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, | 
 | 			    sizeof(acp), &acp); | 
 |  | 
 | 	if (hdev->page_scan_type != type) | 
 | 		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); | 
 | } | 
 |  | 
 | static void start_interleave_scan(struct hci_dev *hdev) | 
 | { | 
 | 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; | 
 | 	queue_delayed_work(hdev->req_workqueue, | 
 | 			   &hdev->interleave_scan, 0); | 
 | } | 
 |  | 
 | static bool is_interleave_scanning(struct hci_dev *hdev) | 
 | { | 
 | 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; | 
 | } | 
 |  | 
 | static void cancel_interleave_scan(struct hci_dev *hdev) | 
 | { | 
 | 	bt_dev_dbg(hdev, "cancelling interleave scan"); | 
 |  | 
 | 	cancel_delayed_work_sync(&hdev->interleave_scan); | 
 |  | 
 | 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; | 
 | } | 
 |  | 
 | /* Return true if interleave_scan wasn't started until exiting this function, | 
 |  * otherwise, return false | 
 |  */ | 
 | static bool __hci_update_interleaved_scan(struct hci_dev *hdev) | 
 | { | 
 | 	/* Do interleaved scan only if all of the following are true: | 
 | 	 * - There is at least one ADV monitor | 
 | 	 * - At least one pending LE connection or one device to be scanned for | 
 | 	 * - Monitor offloading is not supported | 
 | 	 * If so, we should alternate between allowlist scan and one without | 
 | 	 * any filters to save power. | 
 | 	 */ | 
 | 	bool use_interleaving = hci_is_adv_monitoring(hdev) && | 
 | 				!(list_empty(&hdev->pend_le_conns) && | 
 | 				  list_empty(&hdev->pend_le_reports)) && | 
 | 				hci_get_adv_monitor_offload_ext(hdev) == | 
 | 				    HCI_ADV_MONITOR_EXT_NONE; | 
 | 	bool is_interleaving = is_interleave_scanning(hdev); | 
 |  | 
 | 	if (use_interleaving && !is_interleaving) { | 
 | 		start_interleave_scan(hdev); | 
 | 		bt_dev_dbg(hdev, "starting interleave scan"); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (!use_interleaving && is_interleaving) | 
 | 		cancel_interleave_scan(hdev); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* This function controls the background scanning based on hdev->pend_le_conns | 
 |  * list. If there are pending LE connection we start the background scanning, | 
 |  * otherwise we stop it. | 
 |  * | 
 |  * This function requires the caller holds hdev->lock. | 
 |  */ | 
 | static void __hci_update_background_scan(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	if (!test_bit(HCI_UP, &hdev->flags) || | 
 | 	    test_bit(HCI_INIT, &hdev->flags) || | 
 | 	    hci_dev_test_flag(hdev, HCI_SETUP) || | 
 | 	    hci_dev_test_flag(hdev, HCI_CONFIG) || | 
 | 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) || | 
 | 	    hci_dev_test_flag(hdev, HCI_UNREGISTER)) | 
 | 		return; | 
 |  | 
 | 	/* No point in doing scanning if LE support hasn't been enabled */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	/* If discovery is active don't interfere with it */ | 
 | 	if (hdev->discovery.state != DISCOVERY_STOPPED) | 
 | 		return; | 
 |  | 
 | 	/* Reset RSSI and UUID filters when starting background scanning | 
 | 	 * since these filters are meant for service discovery only. | 
 | 	 * | 
 | 	 * The Start Discovery and Start Service Discovery operations | 
 | 	 * ensure to set proper values for RSSI threshold and UUID | 
 | 	 * filter list. So it is safe to just reset them here. | 
 | 	 */ | 
 | 	hci_discovery_filter_clear(hdev); | 
 |  | 
 | 	bt_dev_dbg(hdev, "ADV monitoring is %s", | 
 | 		   hci_is_adv_monitoring(hdev) ? "on" : "off"); | 
 |  | 
 | 	if (list_empty(&hdev->pend_le_conns) && | 
 | 	    list_empty(&hdev->pend_le_reports) && | 
 | 	    !hci_is_adv_monitoring(hdev)) { | 
 | 		/* If there is no pending LE connections or devices | 
 | 		 * to be scanned for or no ADV monitors, we should stop the | 
 | 		 * background scanning. | 
 | 		 */ | 
 |  | 
 | 		/* If controller is not scanning we are done. */ | 
 | 		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
 | 			return; | 
 |  | 
 | 		hci_req_add_le_scan_disable(req, false); | 
 |  | 
 | 		bt_dev_dbg(hdev, "stopping background scanning"); | 
 | 	} else { | 
 | 		/* If there is at least one pending LE connection, we should | 
 | 		 * keep the background scan running. | 
 | 		 */ | 
 |  | 
 | 		/* If controller is connecting, we should not start scanning | 
 | 		 * since some controllers are not able to scan and connect at | 
 | 		 * the same time. | 
 | 		 */ | 
 | 		if (hci_lookup_le_connect(hdev)) | 
 | 			return; | 
 |  | 
 | 		/* If controller is currently scanning, we stop it to ensure we | 
 | 		 * don't miss any advertising (due to duplicates filter). | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
 | 			hci_req_add_le_scan_disable(req, false); | 
 |  | 
 | 		hci_req_add_le_passive_scan(req); | 
 | 		bt_dev_dbg(hdev, "starting background scanning"); | 
 | 	} | 
 | } | 
 |  | 
 | void __hci_req_update_name(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_cp_write_local_name cp; | 
 |  | 
 | 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); | 
 |  | 
 | 	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); | 
 | } | 
 |  | 
 | #define PNP_INFO_SVCLASS_ID		0x1200 | 
 |  | 
 | static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) | 
 | { | 
 | 	u8 *ptr = data, *uuids_start = NULL; | 
 | 	struct bt_uuid *uuid; | 
 |  | 
 | 	if (len < 4) | 
 | 		return ptr; | 
 |  | 
 | 	list_for_each_entry(uuid, &hdev->uuids, list) { | 
 | 		u16 uuid16; | 
 |  | 
 | 		if (uuid->size != 16) | 
 | 			continue; | 
 |  | 
 | 		uuid16 = get_unaligned_le16(&uuid->uuid[12]); | 
 | 		if (uuid16 < 0x1100) | 
 | 			continue; | 
 |  | 
 | 		if (uuid16 == PNP_INFO_SVCLASS_ID) | 
 | 			continue; | 
 |  | 
 | 		if (!uuids_start) { | 
 | 			uuids_start = ptr; | 
 | 			uuids_start[0] = 1; | 
 | 			uuids_start[1] = EIR_UUID16_ALL; | 
 | 			ptr += 2; | 
 | 		} | 
 |  | 
 | 		/* Stop if not enough space to put next UUID */ | 
 | 		if ((ptr - data) + sizeof(u16) > len) { | 
 | 			uuids_start[1] = EIR_UUID16_SOME; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		*ptr++ = (uuid16 & 0x00ff); | 
 | 		*ptr++ = (uuid16 & 0xff00) >> 8; | 
 | 		uuids_start[0] += sizeof(uuid16); | 
 | 	} | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) | 
 | { | 
 | 	u8 *ptr = data, *uuids_start = NULL; | 
 | 	struct bt_uuid *uuid; | 
 |  | 
 | 	if (len < 6) | 
 | 		return ptr; | 
 |  | 
 | 	list_for_each_entry(uuid, &hdev->uuids, list) { | 
 | 		if (uuid->size != 32) | 
 | 			continue; | 
 |  | 
 | 		if (!uuids_start) { | 
 | 			uuids_start = ptr; | 
 | 			uuids_start[0] = 1; | 
 | 			uuids_start[1] = EIR_UUID32_ALL; | 
 | 			ptr += 2; | 
 | 		} | 
 |  | 
 | 		/* Stop if not enough space to put next UUID */ | 
 | 		if ((ptr - data) + sizeof(u32) > len) { | 
 | 			uuids_start[1] = EIR_UUID32_SOME; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		memcpy(ptr, &uuid->uuid[12], sizeof(u32)); | 
 | 		ptr += sizeof(u32); | 
 | 		uuids_start[0] += sizeof(u32); | 
 | 	} | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) | 
 | { | 
 | 	u8 *ptr = data, *uuids_start = NULL; | 
 | 	struct bt_uuid *uuid; | 
 |  | 
 | 	if (len < 18) | 
 | 		return ptr; | 
 |  | 
 | 	list_for_each_entry(uuid, &hdev->uuids, list) { | 
 | 		if (uuid->size != 128) | 
 | 			continue; | 
 |  | 
 | 		if (!uuids_start) { | 
 | 			uuids_start = ptr; | 
 | 			uuids_start[0] = 1; | 
 | 			uuids_start[1] = EIR_UUID128_ALL; | 
 | 			ptr += 2; | 
 | 		} | 
 |  | 
 | 		/* Stop if not enough space to put next UUID */ | 
 | 		if ((ptr - data) + 16 > len) { | 
 | 			uuids_start[1] = EIR_UUID128_SOME; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		memcpy(ptr, uuid->uuid, 16); | 
 | 		ptr += 16; | 
 | 		uuids_start[0] += 16; | 
 | 	} | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static void create_eir(struct hci_dev *hdev, u8 *data) | 
 | { | 
 | 	u8 *ptr = data; | 
 | 	size_t name_len; | 
 |  | 
 | 	name_len = strlen(hdev->dev_name); | 
 |  | 
 | 	if (name_len > 0) { | 
 | 		/* EIR Data type */ | 
 | 		if (name_len > 48) { | 
 | 			name_len = 48; | 
 | 			ptr[1] = EIR_NAME_SHORT; | 
 | 		} else | 
 | 			ptr[1] = EIR_NAME_COMPLETE; | 
 |  | 
 | 		/* EIR Data length */ | 
 | 		ptr[0] = name_len + 1; | 
 |  | 
 | 		memcpy(ptr + 2, hdev->dev_name, name_len); | 
 |  | 
 | 		ptr += (name_len + 2); | 
 | 	} | 
 |  | 
 | 	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { | 
 | 		ptr[0] = 2; | 
 | 		ptr[1] = EIR_TX_POWER; | 
 | 		ptr[2] = (u8) hdev->inq_tx_power; | 
 |  | 
 | 		ptr += 3; | 
 | 	} | 
 |  | 
 | 	if (hdev->devid_source > 0) { | 
 | 		ptr[0] = 9; | 
 | 		ptr[1] = EIR_DEVICE_ID; | 
 |  | 
 | 		put_unaligned_le16(hdev->devid_source, ptr + 2); | 
 | 		put_unaligned_le16(hdev->devid_vendor, ptr + 4); | 
 | 		put_unaligned_le16(hdev->devid_product, ptr + 6); | 
 | 		put_unaligned_le16(hdev->devid_version, ptr + 8); | 
 |  | 
 | 		ptr += 10; | 
 | 	} | 
 |  | 
 | 	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); | 
 | 	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); | 
 | 	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); | 
 | } | 
 |  | 
 | void __hci_req_update_eir(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_cp_write_eir cp; | 
 |  | 
 | 	if (!hdev_is_powered(hdev)) | 
 | 		return; | 
 |  | 
 | 	if (!lmp_ext_inq_capable(hdev)) | 
 | 		return; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) | 
 | 		return; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	create_eir(hdev, cp.data); | 
 |  | 
 | 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) | 
 | 		return; | 
 |  | 
 | 	memcpy(hdev->eir, cp.data, sizeof(cp.data)); | 
 |  | 
 | 	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); | 
 | } | 
 |  | 
 | void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (hdev->suspended) | 
 | 		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks); | 
 |  | 
 | 	if (use_ext_scan(hdev)) { | 
 | 		struct hci_cp_le_set_ext_scan_enable cp; | 
 |  | 
 | 		memset(&cp, 0, sizeof(cp)); | 
 | 		cp.enable = LE_SCAN_DISABLE; | 
 | 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), | 
 | 			    &cp); | 
 | 	} else { | 
 | 		struct hci_cp_le_set_scan_enable cp; | 
 |  | 
 | 		memset(&cp, 0, sizeof(cp)); | 
 | 		cp.enable = LE_SCAN_DISABLE; | 
 | 		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); | 
 | 	} | 
 |  | 
 | 	/* Disable address resolution */ | 
 | 	if (use_ll_privacy(hdev) && | 
 | 	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && | 
 | 	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) { | 
 | 		__u8 enable = 0x00; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); | 
 | 	} | 
 | } | 
 |  | 
 | static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr, | 
 | 				 u8 bdaddr_type) | 
 | { | 
 | 	struct hci_cp_le_del_from_accept_list cp; | 
 |  | 
 | 	cp.bdaddr_type = bdaddr_type; | 
 | 	bacpy(&cp.bdaddr, bdaddr); | 
 |  | 
 | 	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr, | 
 | 		   cp.bdaddr_type); | 
 | 	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp); | 
 |  | 
 | 	if (use_ll_privacy(req->hdev) && | 
 | 	    hci_dev_test_flag(req->hdev, HCI_ENABLE_LL_PRIVACY)) { | 
 | 		struct smp_irk *irk; | 
 |  | 
 | 		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type); | 
 | 		if (irk) { | 
 | 			struct hci_cp_le_del_from_resolv_list cp; | 
 |  | 
 | 			cp.bdaddr_type = bdaddr_type; | 
 | 			bacpy(&cp.bdaddr, bdaddr); | 
 |  | 
 | 			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST, | 
 | 				    sizeof(cp), &cp); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Adds connection to accept list if needed. On error, returns -1. */ | 
 | static int add_to_accept_list(struct hci_request *req, | 
 | 			      struct hci_conn_params *params, u8 *num_entries, | 
 | 			      bool allow_rpa) | 
 | { | 
 | 	struct hci_cp_le_add_to_accept_list cp; | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	/* Already in accept list */ | 
 | 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, | 
 | 				   params->addr_type)) | 
 | 		return 0; | 
 |  | 
 | 	/* Select filter policy to accept all advertising */ | 
 | 	if (*num_entries >= hdev->le_accept_list_size) | 
 | 		return -1; | 
 |  | 
 | 	/* Accept list can not be used with RPAs */ | 
 | 	if (!allow_rpa && | 
 | 	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && | 
 | 	    hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* During suspend, only wakeable devices can be in accept list */ | 
 | 	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, | 
 | 						   params->current_flags)) | 
 | 		return 0; | 
 |  | 
 | 	*num_entries += 1; | 
 | 	cp.bdaddr_type = params->addr_type; | 
 | 	bacpy(&cp.bdaddr, ¶ms->addr); | 
 |  | 
 | 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr, | 
 | 		   cp.bdaddr_type); | 
 | 	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp); | 
 |  | 
 | 	if (use_ll_privacy(hdev) && | 
 | 	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) { | 
 | 		struct smp_irk *irk; | 
 |  | 
 | 		irk = hci_find_irk_by_addr(hdev, ¶ms->addr, | 
 | 					   params->addr_type); | 
 | 		if (irk) { | 
 | 			struct hci_cp_le_add_to_resolv_list cp; | 
 |  | 
 | 			cp.bdaddr_type = params->addr_type; | 
 | 			bacpy(&cp.bdaddr, ¶ms->addr); | 
 | 			memcpy(cp.peer_irk, irk->val, 16); | 
 |  | 
 | 			if (hci_dev_test_flag(hdev, HCI_PRIVACY)) | 
 | 				memcpy(cp.local_irk, hdev->irk, 16); | 
 | 			else | 
 | 				memset(cp.local_irk, 0, 16); | 
 |  | 
 | 			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST, | 
 | 				    sizeof(cp), &cp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u8 update_accept_list(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_conn_params *params; | 
 | 	struct bdaddr_list *b; | 
 | 	u8 num_entries = 0; | 
 | 	bool pend_conn, pend_report; | 
 | 	/* We allow usage of accept list even with RPAs in suspend. In the worst | 
 | 	 * case, we won't be able to wake from devices that use the privacy1.2 | 
 | 	 * features. Additionally, once we support privacy1.2 and IRK | 
 | 	 * offloading, we can update this to also check for those conditions. | 
 | 	 */ | 
 | 	bool allow_rpa = hdev->suspended; | 
 |  | 
 | 	if (use_ll_privacy(hdev) && | 
 | 	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) | 
 | 		allow_rpa = true; | 
 |  | 
 | 	/* Go through the current accept list programmed into the | 
 | 	 * controller one by one and check if that address is still | 
 | 	 * in the list of pending connections or list of devices to | 
 | 	 * report. If not present in either list, then queue the | 
 | 	 * command to remove it from the controller. | 
 | 	 */ | 
 | 	list_for_each_entry(b, &hdev->le_accept_list, list) { | 
 | 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, | 
 | 						      &b->bdaddr, | 
 | 						      b->bdaddr_type); | 
 | 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, | 
 | 							&b->bdaddr, | 
 | 							b->bdaddr_type); | 
 |  | 
 | 		/* If the device is not likely to connect or report, | 
 | 		 * remove it from the accept list. | 
 | 		 */ | 
 | 		if (!pend_conn && !pend_report) { | 
 | 			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Accept list can not be used with RPAs */ | 
 | 		if (!allow_rpa && | 
 | 		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && | 
 | 		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { | 
 | 			return 0x00; | 
 | 		} | 
 |  | 
 | 		num_entries++; | 
 | 	} | 
 |  | 
 | 	/* Since all no longer valid accept list entries have been | 
 | 	 * removed, walk through the list of pending connections | 
 | 	 * and ensure that any new device gets programmed into | 
 | 	 * the controller. | 
 | 	 * | 
 | 	 * If the list of the devices is larger than the list of | 
 | 	 * available accept list entries in the controller, then | 
 | 	 * just abort and return filer policy value to not use the | 
 | 	 * accept list. | 
 | 	 */ | 
 | 	list_for_each_entry(params, &hdev->pend_le_conns, action) { | 
 | 		if (add_to_accept_list(req, params, &num_entries, allow_rpa)) | 
 | 			return 0x00; | 
 | 	} | 
 |  | 
 | 	/* After adding all new pending connections, walk through | 
 | 	 * the list of pending reports and also add these to the | 
 | 	 * accept list if there is still space. Abort if space runs out. | 
 | 	 */ | 
 | 	list_for_each_entry(params, &hdev->pend_le_reports, action) { | 
 | 		if (add_to_accept_list(req, params, &num_entries, allow_rpa)) | 
 | 			return 0x00; | 
 | 	} | 
 |  | 
 | 	/* Use the allowlist unless the following conditions are all true: | 
 | 	 * - We are not currently suspending | 
 | 	 * - There are 1 or more ADV monitors registered and it's not offloaded | 
 | 	 * - Interleaved scanning is not currently using the allowlist | 
 | 	 */ | 
 | 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && | 
 | 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && | 
 | 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) | 
 | 		return 0x00; | 
 |  | 
 | 	/* Select filter policy to use accept list */ | 
 | 	return 0x01; | 
 | } | 
 |  | 
 | static bool scan_use_rpa(struct hci_dev *hdev) | 
 | { | 
 | 	return hci_dev_test_flag(hdev, HCI_PRIVACY); | 
 | } | 
 |  | 
 | static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, | 
 | 			       u16 window, u8 own_addr_type, u8 filter_policy, | 
 | 			       bool filter_dup, bool addr_resolv) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (use_ll_privacy(hdev) && | 
 | 	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && | 
 | 	    addr_resolv) { | 
 | 		u8 enable = 0x01; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); | 
 | 	} | 
 |  | 
 | 	/* Use ext scanning if set ext scan param and ext scan enable is | 
 | 	 * supported | 
 | 	 */ | 
 | 	if (use_ext_scan(hdev)) { | 
 | 		struct hci_cp_le_set_ext_scan_params *ext_param_cp; | 
 | 		struct hci_cp_le_set_ext_scan_enable ext_enable_cp; | 
 | 		struct hci_cp_le_scan_phy_params *phy_params; | 
 | 		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; | 
 | 		u32 plen; | 
 |  | 
 | 		ext_param_cp = (void *)data; | 
 | 		phy_params = (void *)ext_param_cp->data; | 
 |  | 
 | 		memset(ext_param_cp, 0, sizeof(*ext_param_cp)); | 
 | 		ext_param_cp->own_addr_type = own_addr_type; | 
 | 		ext_param_cp->filter_policy = filter_policy; | 
 |  | 
 | 		plen = sizeof(*ext_param_cp); | 
 |  | 
 | 		if (scan_1m(hdev) || scan_2m(hdev)) { | 
 | 			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; | 
 |  | 
 | 			memset(phy_params, 0, sizeof(*phy_params)); | 
 | 			phy_params->type = type; | 
 | 			phy_params->interval = cpu_to_le16(interval); | 
 | 			phy_params->window = cpu_to_le16(window); | 
 |  | 
 | 			plen += sizeof(*phy_params); | 
 | 			phy_params++; | 
 | 		} | 
 |  | 
 | 		if (scan_coded(hdev)) { | 
 | 			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; | 
 |  | 
 | 			memset(phy_params, 0, sizeof(*phy_params)); | 
 | 			phy_params->type = type; | 
 | 			phy_params->interval = cpu_to_le16(interval); | 
 | 			phy_params->window = cpu_to_le16(window); | 
 |  | 
 | 			plen += sizeof(*phy_params); | 
 | 			phy_params++; | 
 | 		} | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, | 
 | 			    plen, ext_param_cp); | 
 |  | 
 | 		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); | 
 | 		ext_enable_cp.enable = LE_SCAN_ENABLE; | 
 | 		ext_enable_cp.filter_dup = filter_dup; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, | 
 | 			    sizeof(ext_enable_cp), &ext_enable_cp); | 
 | 	} else { | 
 | 		struct hci_cp_le_set_scan_param param_cp; | 
 | 		struct hci_cp_le_set_scan_enable enable_cp; | 
 |  | 
 | 		memset(¶m_cp, 0, sizeof(param_cp)); | 
 | 		param_cp.type = type; | 
 | 		param_cp.interval = cpu_to_le16(interval); | 
 | 		param_cp.window = cpu_to_le16(window); | 
 | 		param_cp.own_address_type = own_addr_type; | 
 | 		param_cp.filter_policy = filter_policy; | 
 | 		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), | 
 | 			    ¶m_cp); | 
 |  | 
 | 		memset(&enable_cp, 0, sizeof(enable_cp)); | 
 | 		enable_cp.enable = LE_SCAN_ENABLE; | 
 | 		enable_cp.filter_dup = filter_dup; | 
 | 		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), | 
 | 			    &enable_cp); | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns true if an le connection is in the scanning state */ | 
 | static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_conn_hash *h = &hdev->conn_hash; | 
 | 	struct hci_conn  *c; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	list_for_each_entry_rcu(c, &h->list, list) { | 
 | 		if (c->type == LE_LINK && c->state == BT_CONNECT && | 
 | 		    test_bit(HCI_CONN_SCANNING, &c->flags)) { | 
 | 			rcu_read_unlock(); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Ensure to call hci_req_add_le_scan_disable() first to disable the | 
 |  * controller based address resolution to be able to reconfigure | 
 |  * resolving list. | 
 |  */ | 
 | void hci_req_add_le_passive_scan(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 own_addr_type; | 
 | 	u8 filter_policy; | 
 | 	u16 window, interval; | 
 | 	/* Default is to enable duplicates filter */ | 
 | 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
 | 	/* Background scanning should run with address resolution */ | 
 | 	bool addr_resolv = true; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Set require_privacy to false since no SCAN_REQ are send | 
 | 	 * during passive scanning. Not using an non-resolvable address | 
 | 	 * here is important so that peer devices using direct | 
 | 	 * advertising with our address will be correctly reported | 
 | 	 * by the controller. | 
 | 	 */ | 
 | 	if (hci_update_random_address(req, false, scan_use_rpa(hdev), | 
 | 				      &own_addr_type)) | 
 | 		return; | 
 |  | 
 | 	if (hdev->enable_advmon_interleave_scan && | 
 | 	    __hci_update_interleaved_scan(hdev)) | 
 | 		return; | 
 |  | 
 | 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); | 
 | 	/* Adding or removing entries from the accept list must | 
 | 	 * happen before enabling scanning. The controller does | 
 | 	 * not allow accept list modification while scanning. | 
 | 	 */ | 
 | 	filter_policy = update_accept_list(req); | 
 |  | 
 | 	/* When the controller is using random resolvable addresses and | 
 | 	 * with that having LE privacy enabled, then controllers with | 
 | 	 * Extended Scanner Filter Policies support can now enable support | 
 | 	 * for handling directed advertising. | 
 | 	 * | 
 | 	 * So instead of using filter polices 0x00 (no accept list) | 
 | 	 * and 0x01 (accept list enabled) use the new filter policies | 
 | 	 * 0x02 (no accept list) and 0x03 (accept list enabled). | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) && | 
 | 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) | 
 | 		filter_policy |= 0x02; | 
 |  | 
 | 	if (hdev->suspended) { | 
 | 		window = hdev->le_scan_window_suspend; | 
 | 		interval = hdev->le_scan_int_suspend; | 
 |  | 
 | 		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks); | 
 | 	} else if (hci_is_le_conn_scanning(hdev)) { | 
 | 		window = hdev->le_scan_window_connect; | 
 | 		interval = hdev->le_scan_int_connect; | 
 | 	} else if (hci_is_adv_monitoring(hdev)) { | 
 | 		window = hdev->le_scan_window_adv_monitor; | 
 | 		interval = hdev->le_scan_int_adv_monitor; | 
 |  | 
 | 		/* Disable duplicates filter when scanning for advertisement | 
 | 		 * monitor for the following reasons. | 
 | 		 * | 
 | 		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm | 
 | 		 * controllers ignore RSSI_Sampling_Period when the duplicates | 
 | 		 * filter is enabled. | 
 | 		 * | 
 | 		 * For SW pattern filtering, when we're not doing interleaved | 
 | 		 * scanning, it is necessary to disable duplicates filter, | 
 | 		 * otherwise hosts can only receive one advertisement and it's | 
 | 		 * impossible to know if a peer is still in range. | 
 | 		 */ | 
 | 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE; | 
 | 	} else { | 
 | 		window = hdev->le_scan_window; | 
 | 		interval = hdev->le_scan_interval; | 
 | 	} | 
 |  | 
 | 	bt_dev_dbg(hdev, "LE passive scan with accept list = %d", | 
 | 		   filter_policy); | 
 | 	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window, | 
 | 			   own_addr_type, filter_policy, filter_dup, | 
 | 			   addr_resolv); | 
 | } | 
 |  | 
 | static bool adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct adv_info *adv_instance; | 
 |  | 
 | 	/* Instance 0x00 always set local name */ | 
 | 	if (instance == 0x00) | 
 | 		return true; | 
 |  | 
 | 	adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 	if (!adv_instance) | 
 | 		return false; | 
 |  | 
 | 	if (adv_instance->flags & MGMT_ADV_FLAG_APPEARANCE || | 
 | 	    adv_instance->flags & MGMT_ADV_FLAG_LOCAL_NAME) | 
 | 		return true; | 
 |  | 
 | 	return adv_instance->scan_rsp_len ? true : false; | 
 | } | 
 |  | 
 | static void hci_req_clear_event_filter(struct hci_request *req) | 
 | { | 
 | 	struct hci_cp_set_event_filter f; | 
 |  | 
 | 	if (!hci_dev_test_flag(req->hdev, HCI_BREDR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (hci_dev_test_flag(req->hdev, HCI_EVENT_FILTER_CONFIGURED)) { | 
 | 		memset(&f, 0, sizeof(f)); | 
 | 		f.flt_type = HCI_FLT_CLEAR_ALL; | 
 | 		hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f); | 
 | 	} | 
 | } | 
 |  | 
 | static void hci_req_set_event_filter(struct hci_request *req) | 
 | { | 
 | 	struct bdaddr_list_with_flags *b; | 
 | 	struct hci_cp_set_event_filter f; | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 scan = SCAN_DISABLED; | 
 | 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags); | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	/* Always clear event filter when starting */ | 
 | 	hci_req_clear_event_filter(req); | 
 |  | 
 | 	list_for_each_entry(b, &hdev->accept_list, list) { | 
 | 		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, | 
 | 					b->current_flags)) | 
 | 			continue; | 
 |  | 
 | 		memset(&f, 0, sizeof(f)); | 
 | 		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr); | 
 | 		f.flt_type = HCI_FLT_CONN_SETUP; | 
 | 		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR; | 
 | 		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON; | 
 |  | 
 | 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); | 
 | 		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f); | 
 | 		scan = SCAN_PAGE; | 
 | 	} | 
 |  | 
 | 	if (scan && !scanning) { | 
 | 		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks); | 
 | 		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); | 
 | 	} else if (!scan && scanning) { | 
 | 		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks); | 
 | 		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); | 
 | 	} | 
 | } | 
 |  | 
 | static void cancel_adv_timeout(struct hci_dev *hdev) | 
 | { | 
 | 	if (hdev->adv_instance_timeout) { | 
 | 		hdev->adv_instance_timeout = 0; | 
 | 		cancel_delayed_work(&hdev->adv_instance_expire); | 
 | 	} | 
 | } | 
 |  | 
 | /* This function requires the caller holds hdev->lock */ | 
 | void __hci_req_pause_adv_instances(struct hci_request *req) | 
 | { | 
 | 	bt_dev_dbg(req->hdev, "Pausing advertising instances"); | 
 |  | 
 | 	/* Call to disable any advertisements active on the controller. | 
 | 	 * This will succeed even if no advertisements are configured. | 
 | 	 */ | 
 | 	__hci_req_disable_advertising(req); | 
 |  | 
 | 	/* If we are using software rotation, pause the loop */ | 
 | 	if (!ext_adv_capable(req->hdev)) | 
 | 		cancel_adv_timeout(req->hdev); | 
 | } | 
 |  | 
 | /* This function requires the caller holds hdev->lock */ | 
 | static void __hci_req_resume_adv_instances(struct hci_request *req) | 
 | { | 
 | 	struct adv_info *adv; | 
 |  | 
 | 	bt_dev_dbg(req->hdev, "Resuming advertising instances"); | 
 |  | 
 | 	if (ext_adv_capable(req->hdev)) { | 
 | 		/* Call for each tracked instance to be re-enabled */ | 
 | 		list_for_each_entry(adv, &req->hdev->adv_instances, list) { | 
 | 			__hci_req_enable_ext_advertising(req, | 
 | 							 adv->instance); | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		/* Schedule for most recent instance to be restarted and begin | 
 | 		 * the software rotation loop | 
 | 		 */ | 
 | 		__hci_req_schedule_adv_instance(req, | 
 | 						req->hdev->cur_adv_instance, | 
 | 						true); | 
 | 	} | 
 | } | 
 |  | 
 | /* This function requires the caller holds hdev->lock */ | 
 | int hci_req_resume_adv_instances(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_request req; | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 | 	__hci_req_resume_adv_instances(&req); | 
 |  | 
 | 	return hci_req_run(&req, NULL); | 
 | } | 
 |  | 
 | static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode) | 
 | { | 
 | 	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode, | 
 | 		   status); | 
 | 	if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) || | 
 | 	    test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) { | 
 | 		clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks); | 
 | 		clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks); | 
 | 		wake_up(&hdev->suspend_wait_q); | 
 | 	} | 
 |  | 
 | 	if (test_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks)) { | 
 | 		clear_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks); | 
 | 		wake_up(&hdev->suspend_wait_q); | 
 | 	} | 
 | } | 
 |  | 
 | static void hci_req_add_set_adv_filter_enable(struct hci_request *req, | 
 | 					      bool enable) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	switch (hci_get_adv_monitor_offload_ext(hdev)) { | 
 | 	case HCI_ADV_MONITOR_EXT_MSFT: | 
 | 		msft_req_add_set_filter_enable(req, enable); | 
 | 		break; | 
 | 	default: | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* No need to block when enabling since it's on resume path */ | 
 | 	if (hdev->suspended && !enable) | 
 | 		set_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks); | 
 | } | 
 |  | 
 | /* Call with hci_dev_lock */ | 
 | void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next) | 
 | { | 
 | 	int old_state; | 
 | 	struct hci_conn *conn; | 
 | 	struct hci_request req; | 
 | 	u8 page_scan; | 
 | 	int disconnect_counter; | 
 |  | 
 | 	if (next == hdev->suspend_state) { | 
 | 		bt_dev_dbg(hdev, "Same state before and after: %d", next); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	hdev->suspend_state = next; | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	if (next == BT_SUSPEND_DISCONNECT) { | 
 | 		/* Mark device as suspended */ | 
 | 		hdev->suspended = true; | 
 |  | 
 | 		/* Pause discovery if not already stopped */ | 
 | 		old_state = hdev->discovery.state; | 
 | 		if (old_state != DISCOVERY_STOPPED) { | 
 | 			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks); | 
 | 			hci_discovery_set_state(hdev, DISCOVERY_STOPPING); | 
 | 			queue_work(hdev->req_workqueue, &hdev->discov_update); | 
 | 		} | 
 |  | 
 | 		hdev->discovery_paused = true; | 
 | 		hdev->discovery_old_state = old_state; | 
 |  | 
 | 		/* Stop directed advertising */ | 
 | 		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); | 
 | 		if (old_state) { | 
 | 			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks); | 
 | 			cancel_delayed_work(&hdev->discov_off); | 
 | 			queue_delayed_work(hdev->req_workqueue, | 
 | 					   &hdev->discov_off, 0); | 
 | 		} | 
 |  | 
 | 		/* Pause other advertisements */ | 
 | 		if (hdev->adv_instance_cnt) | 
 | 			__hci_req_pause_adv_instances(&req); | 
 |  | 
 | 		hdev->advertising_paused = true; | 
 | 		hdev->advertising_old_state = old_state; | 
 |  | 
 | 		/* Disable page scan if enabled */ | 
 | 		if (test_bit(HCI_PSCAN, &hdev->flags)) { | 
 | 			page_scan = SCAN_DISABLED; | 
 | 			hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, | 
 | 				    &page_scan); | 
 | 			set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks); | 
 | 		} | 
 |  | 
 | 		/* Disable LE passive scan if enabled */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
 | 			cancel_interleave_scan(hdev); | 
 | 			hci_req_add_le_scan_disable(&req, false); | 
 | 		} | 
 |  | 
 | 		/* Disable advertisement filters */ | 
 | 		hci_req_add_set_adv_filter_enable(&req, false); | 
 |  | 
 | 		/* Prevent disconnects from causing scanning to be re-enabled */ | 
 | 		hdev->scanning_paused = true; | 
 |  | 
 | 		/* Run commands before disconnecting */ | 
 | 		hci_req_run(&req, suspend_req_complete); | 
 |  | 
 | 		disconnect_counter = 0; | 
 | 		/* Soft disconnect everything (power off) */ | 
 | 		list_for_each_entry(conn, &hdev->conn_hash.list, list) { | 
 | 			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF); | 
 | 			disconnect_counter++; | 
 | 		} | 
 |  | 
 | 		if (disconnect_counter > 0) { | 
 | 			bt_dev_dbg(hdev, | 
 | 				   "Had %d disconnects. Will wait on them", | 
 | 				   disconnect_counter); | 
 | 			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks); | 
 | 		} | 
 | 	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) { | 
 | 		/* Unpause to take care of updating scanning params */ | 
 | 		hdev->scanning_paused = false; | 
 | 		/* Enable event filter for paired devices */ | 
 | 		hci_req_set_event_filter(&req); | 
 | 		/* Enable passive scan at lower duty cycle */ | 
 | 		__hci_update_background_scan(&req); | 
 | 		/* Pause scan changes again. */ | 
 | 		hdev->scanning_paused = true; | 
 | 		hci_req_run(&req, suspend_req_complete); | 
 | 	} else { | 
 | 		hdev->suspended = false; | 
 | 		hdev->scanning_paused = false; | 
 |  | 
 | 		/* Clear any event filters and restore scan state */ | 
 | 		hci_req_clear_event_filter(&req); | 
 | 		__hci_req_update_scan(&req); | 
 |  | 
 | 		/* Reset passive/background scanning to normal */ | 
 | 		__hci_update_background_scan(&req); | 
 | 		/* Enable all of the advertisement filters */ | 
 | 		hci_req_add_set_adv_filter_enable(&req, true); | 
 |  | 
 | 		/* Unpause directed advertising */ | 
 | 		hdev->advertising_paused = false; | 
 | 		if (hdev->advertising_old_state) { | 
 | 			set_bit(SUSPEND_UNPAUSE_ADVERTISING, | 
 | 				hdev->suspend_tasks); | 
 | 			hci_dev_set_flag(hdev, HCI_ADVERTISING); | 
 | 			queue_work(hdev->req_workqueue, | 
 | 				   &hdev->discoverable_update); | 
 | 			hdev->advertising_old_state = 0; | 
 | 		} | 
 |  | 
 | 		/* Resume other advertisements */ | 
 | 		if (hdev->adv_instance_cnt) | 
 | 			__hci_req_resume_adv_instances(&req); | 
 |  | 
 | 		/* Unpause discovery */ | 
 | 		hdev->discovery_paused = false; | 
 | 		if (hdev->discovery_old_state != DISCOVERY_STOPPED && | 
 | 		    hdev->discovery_old_state != DISCOVERY_STOPPING) { | 
 | 			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks); | 
 | 			hci_discovery_set_state(hdev, DISCOVERY_STARTING); | 
 | 			queue_work(hdev->req_workqueue, &hdev->discov_update); | 
 | 		} | 
 |  | 
 | 		hci_req_run(&req, suspend_req_complete); | 
 | 	} | 
 |  | 
 | 	hdev->suspend_state = next; | 
 |  | 
 | done: | 
 | 	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks); | 
 | 	wake_up(&hdev->suspend_wait_q); | 
 | } | 
 |  | 
 | static bool adv_cur_instance_is_scannable(struct hci_dev *hdev) | 
 | { | 
 | 	return adv_instance_is_scannable(hdev, hdev->cur_adv_instance); | 
 | } | 
 |  | 
 | void __hci_req_disable_advertising(struct hci_request *req) | 
 | { | 
 | 	if (ext_adv_capable(req->hdev)) { | 
 | 		__hci_req_disable_ext_adv_instance(req, 0x00); | 
 |  | 
 | 	} else { | 
 | 		u8 enable = 0x00; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); | 
 | 	} | 
 | } | 
 |  | 
 | static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	u32 flags; | 
 | 	struct adv_info *adv_instance; | 
 |  | 
 | 	if (instance == 0x00) { | 
 | 		/* Instance 0 always manages the "Tx Power" and "Flags" | 
 | 		 * fields | 
 | 		 */ | 
 | 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; | 
 |  | 
 | 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting | 
 | 		 * corresponds to the "connectable" instance flag. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) | 
 | 			flags |= MGMT_ADV_FLAG_CONNECTABLE; | 
 |  | 
 | 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) | 
 | 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; | 
 | 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
 | 			flags |= MGMT_ADV_FLAG_DISCOV; | 
 |  | 
 | 		return flags; | 
 | 	} | 
 |  | 
 | 	adv_instance = hci_find_adv_instance(hdev, instance); | 
 |  | 
 | 	/* Return 0 when we got an invalid instance identifier. */ | 
 | 	if (!adv_instance) | 
 | 		return 0; | 
 |  | 
 | 	return adv_instance->flags; | 
 | } | 
 |  | 
 | static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) | 
 | { | 
 | 	/* If privacy is not enabled don't use RPA */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) | 
 | 		return false; | 
 |  | 
 | 	/* If basic privacy mode is enabled use RPA */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) | 
 | 		return true; | 
 |  | 
 | 	/* If limited privacy mode is enabled don't use RPA if we're | 
 | 	 * both discoverable and bondable. | 
 | 	 */ | 
 | 	if ((flags & MGMT_ADV_FLAG_DISCOV) && | 
 | 	    hci_dev_test_flag(hdev, HCI_BONDABLE)) | 
 | 		return false; | 
 |  | 
 | 	/* We're neither bondable nor discoverable in the limited | 
 | 	 * privacy mode, therefore use RPA. | 
 | 	 */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) | 
 | { | 
 | 	/* If there is no connection we are OK to advertise. */ | 
 | 	if (hci_conn_num(hdev, LE_LINK) == 0) | 
 | 		return true; | 
 |  | 
 | 	/* Check le_states if there is any connection in peripheral role. */ | 
 | 	if (hdev->conn_hash.le_num_peripheral > 0) { | 
 | 		/* Peripheral connection state and non connectable mode bit 20. | 
 | 		 */ | 
 | 		if (!connectable && !(hdev->le_states[2] & 0x10)) | 
 | 			return false; | 
 |  | 
 | 		/* Peripheral connection state and connectable mode bit 38 | 
 | 		 * and scannable bit 21. | 
 | 		 */ | 
 | 		if (connectable && (!(hdev->le_states[4] & 0x40) || | 
 | 				    !(hdev->le_states[2] & 0x20))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* Check le_states if there is any connection in central role. */ | 
 | 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { | 
 | 		/* Central connection state and non connectable mode bit 18. */ | 
 | 		if (!connectable && !(hdev->le_states[2] & 0x02)) | 
 | 			return false; | 
 |  | 
 | 		/* Central connection state and connectable mode bit 35 and | 
 | 		 * scannable 19. | 
 | 		 */ | 
 | 		if (connectable && (!(hdev->le_states[4] & 0x08) || | 
 | 				    !(hdev->le_states[2] & 0x08))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void __hci_req_enable_advertising(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct adv_info *adv_instance; | 
 | 	struct hci_cp_le_set_adv_param cp; | 
 | 	u8 own_addr_type, enable = 0x01; | 
 | 	bool connectable; | 
 | 	u16 adv_min_interval, adv_max_interval; | 
 | 	u32 flags; | 
 |  | 
 | 	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); | 
 | 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); | 
 |  | 
 | 	/* If the "connectable" instance flag was not set, then choose between | 
 | 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. | 
 | 	 */ | 
 | 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || | 
 | 		      mgmt_get_connectable(hdev); | 
 |  | 
 | 	if (!is_advertising_allowed(hdev, connectable)) | 
 | 		return; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
 | 		__hci_req_disable_advertising(req); | 
 |  | 
 | 	/* Clear the HCI_LE_ADV bit temporarily so that the | 
 | 	 * hci_update_random_address knows that it's safe to go ahead | 
 | 	 * and write a new random address. The flag will be set back on | 
 | 	 * as soon as the SET_ADV_ENABLE HCI command completes. | 
 | 	 */ | 
 | 	hci_dev_clear_flag(hdev, HCI_LE_ADV); | 
 |  | 
 | 	/* Set require_privacy to true only when non-connectable | 
 | 	 * advertising is used. In that case it is fine to use a | 
 | 	 * non-resolvable private address. | 
 | 	 */ | 
 | 	if (hci_update_random_address(req, !connectable, | 
 | 				      adv_use_rpa(hdev, flags), | 
 | 				      &own_addr_type) < 0) | 
 | 		return; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (adv_instance) { | 
 | 		adv_min_interval = adv_instance->min_interval; | 
 | 		adv_max_interval = adv_instance->max_interval; | 
 | 	} else { | 
 | 		adv_min_interval = hdev->le_adv_min_interval; | 
 | 		adv_max_interval = hdev->le_adv_max_interval; | 
 | 	} | 
 |  | 
 | 	if (connectable) { | 
 | 		cp.type = LE_ADV_IND; | 
 | 	} else { | 
 | 		if (adv_cur_instance_is_scannable(hdev)) | 
 | 			cp.type = LE_ADV_SCAN_IND; | 
 | 		else | 
 | 			cp.type = LE_ADV_NONCONN_IND; | 
 |  | 
 | 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || | 
 | 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { | 
 | 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; | 
 | 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cp.min_interval = cpu_to_le16(adv_min_interval); | 
 | 	cp.max_interval = cpu_to_le16(adv_max_interval); | 
 | 	cp.own_address_type = own_addr_type; | 
 | 	cp.channel_map = hdev->le_adv_channel_map; | 
 |  | 
 | 	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); | 
 |  | 
 | 	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); | 
 | } | 
 |  | 
 | u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) | 
 | { | 
 | 	size_t short_len; | 
 | 	size_t complete_len; | 
 |  | 
 | 	/* no space left for name (+ NULL + type + len) */ | 
 | 	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) | 
 | 		return ad_len; | 
 |  | 
 | 	/* use complete name if present and fits */ | 
 | 	complete_len = strlen(hdev->dev_name); | 
 | 	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) | 
 | 		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, | 
 | 				       hdev->dev_name, complete_len + 1); | 
 |  | 
 | 	/* use short name if present */ | 
 | 	short_len = strlen(hdev->short_name); | 
 | 	if (short_len) | 
 | 		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, | 
 | 				       hdev->short_name, short_len + 1); | 
 |  | 
 | 	/* use shortened full name if present, we already know that name | 
 | 	 * is longer then HCI_MAX_SHORT_NAME_LENGTH | 
 | 	 */ | 
 | 	if (complete_len) { | 
 | 		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; | 
 |  | 
 | 		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); | 
 | 		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; | 
 |  | 
 | 		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, | 
 | 				       sizeof(name)); | 
 | 	} | 
 |  | 
 | 	return ad_len; | 
 | } | 
 |  | 
 | static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) | 
 | { | 
 | 	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); | 
 | } | 
 |  | 
 | static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) | 
 | { | 
 | 	u8 scan_rsp_len = 0; | 
 |  | 
 | 	if (hdev->appearance) | 
 | 		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); | 
 |  | 
 | 	return append_local_name(hdev, ptr, scan_rsp_len); | 
 | } | 
 |  | 
 | static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, | 
 | 					u8 *ptr) | 
 | { | 
 | 	struct adv_info *adv_instance; | 
 | 	u32 instance_flags; | 
 | 	u8 scan_rsp_len = 0; | 
 |  | 
 | 	adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 	if (!adv_instance) | 
 | 		return 0; | 
 |  | 
 | 	instance_flags = adv_instance->flags; | 
 |  | 
 | 	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) | 
 | 		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); | 
 |  | 
 | 	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, | 
 | 	       adv_instance->scan_rsp_len); | 
 |  | 
 | 	scan_rsp_len += adv_instance->scan_rsp_len; | 
 |  | 
 | 	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) | 
 | 		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); | 
 |  | 
 | 	return scan_rsp_len; | 
 | } | 
 |  | 
 | void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 len; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) { | 
 | 		struct { | 
 | 			struct hci_cp_le_set_ext_scan_rsp_data cp; | 
 | 			u8 data[HCI_MAX_EXT_AD_LENGTH]; | 
 | 		} pdu; | 
 |  | 
 | 		memset(&pdu, 0, sizeof(pdu)); | 
 |  | 
 | 		if (instance) | 
 | 			len = create_instance_scan_rsp_data(hdev, instance, | 
 | 							    pdu.data); | 
 | 		else | 
 | 			len = create_default_scan_rsp_data(hdev, pdu.data); | 
 |  | 
 | 		if (hdev->scan_rsp_data_len == len && | 
 | 		    !memcmp(pdu.data, hdev->scan_rsp_data, len)) | 
 | 			return; | 
 |  | 
 | 		memcpy(hdev->scan_rsp_data, pdu.data, len); | 
 | 		hdev->scan_rsp_data_len = len; | 
 |  | 
 | 		pdu.cp.handle = instance; | 
 | 		pdu.cp.length = len; | 
 | 		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; | 
 | 		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, | 
 | 			    sizeof(pdu.cp) + len, &pdu.cp); | 
 | 	} else { | 
 | 		struct hci_cp_le_set_scan_rsp_data cp; | 
 |  | 
 | 		memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 		if (instance) | 
 | 			len = create_instance_scan_rsp_data(hdev, instance, | 
 | 							    cp.data); | 
 | 		else | 
 | 			len = create_default_scan_rsp_data(hdev, cp.data); | 
 |  | 
 | 		if (hdev->scan_rsp_data_len == len && | 
 | 		    !memcmp(cp.data, hdev->scan_rsp_data, len)) | 
 | 			return; | 
 |  | 
 | 		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); | 
 | 		hdev->scan_rsp_data_len = len; | 
 |  | 
 | 		cp.length = len; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); | 
 | 	} | 
 | } | 
 |  | 
 | static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) | 
 | { | 
 | 	struct adv_info *adv_instance = NULL; | 
 | 	u8 ad_len = 0, flags = 0; | 
 | 	u32 instance_flags; | 
 |  | 
 | 	/* Return 0 when the current instance identifier is invalid. */ | 
 | 	if (instance) { | 
 | 		adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 		if (!adv_instance) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	instance_flags = get_adv_instance_flags(hdev, instance); | 
 |  | 
 | 	/* If instance already has the flags set skip adding it once | 
 | 	 * again. | 
 | 	 */ | 
 | 	if (adv_instance && eir_get_data(adv_instance->adv_data, | 
 | 					 adv_instance->adv_data_len, EIR_FLAGS, | 
 | 					 NULL)) | 
 | 		goto skip_flags; | 
 |  | 
 | 	/* The Add Advertising command allows userspace to set both the general | 
 | 	 * and limited discoverable flags. | 
 | 	 */ | 
 | 	if (instance_flags & MGMT_ADV_FLAG_DISCOV) | 
 | 		flags |= LE_AD_GENERAL; | 
 |  | 
 | 	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) | 
 | 		flags |= LE_AD_LIMITED; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		flags |= LE_AD_NO_BREDR; | 
 |  | 
 | 	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { | 
 | 		/* If a discovery flag wasn't provided, simply use the global | 
 | 		 * settings. | 
 | 		 */ | 
 | 		if (!flags) | 
 | 			flags |= mgmt_get_adv_discov_flags(hdev); | 
 |  | 
 | 		/* If flags would still be empty, then there is no need to | 
 | 		 * include the "Flags" AD field". | 
 | 		 */ | 
 | 		if (flags) { | 
 | 			ptr[0] = 0x02; | 
 | 			ptr[1] = EIR_FLAGS; | 
 | 			ptr[2] = flags; | 
 |  | 
 | 			ad_len += 3; | 
 | 			ptr += 3; | 
 | 		} | 
 | 	} | 
 |  | 
 | skip_flags: | 
 | 	if (adv_instance) { | 
 | 		memcpy(ptr, adv_instance->adv_data, | 
 | 		       adv_instance->adv_data_len); | 
 | 		ad_len += adv_instance->adv_data_len; | 
 | 		ptr += adv_instance->adv_data_len; | 
 | 	} | 
 |  | 
 | 	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { | 
 | 		s8 adv_tx_power; | 
 |  | 
 | 		if (ext_adv_capable(hdev)) { | 
 | 			if (adv_instance) | 
 | 				adv_tx_power = adv_instance->tx_power; | 
 | 			else | 
 | 				adv_tx_power = hdev->adv_tx_power; | 
 | 		} else { | 
 | 			adv_tx_power = hdev->adv_tx_power; | 
 | 		} | 
 |  | 
 | 		/* Provide Tx Power only if we can provide a valid value for it */ | 
 | 		if (adv_tx_power != HCI_TX_POWER_INVALID) { | 
 | 			ptr[0] = 0x02; | 
 | 			ptr[1] = EIR_TX_POWER; | 
 | 			ptr[2] = (u8)adv_tx_power; | 
 |  | 
 | 			ad_len += 3; | 
 | 			ptr += 3; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ad_len; | 
 | } | 
 |  | 
 | void __hci_req_update_adv_data(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 len; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) { | 
 | 		struct { | 
 | 			struct hci_cp_le_set_ext_adv_data cp; | 
 | 			u8 data[HCI_MAX_EXT_AD_LENGTH]; | 
 | 		} pdu; | 
 |  | 
 | 		memset(&pdu, 0, sizeof(pdu)); | 
 |  | 
 | 		len = create_instance_adv_data(hdev, instance, pdu.data); | 
 |  | 
 | 		/* There's nothing to do if the data hasn't changed */ | 
 | 		if (hdev->adv_data_len == len && | 
 | 		    memcmp(pdu.data, hdev->adv_data, len) == 0) | 
 | 			return; | 
 |  | 
 | 		memcpy(hdev->adv_data, pdu.data, len); | 
 | 		hdev->adv_data_len = len; | 
 |  | 
 | 		pdu.cp.length = len; | 
 | 		pdu.cp.handle = instance; | 
 | 		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; | 
 | 		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, | 
 | 			    sizeof(pdu.cp) + len, &pdu.cp); | 
 | 	} else { | 
 | 		struct hci_cp_le_set_adv_data cp; | 
 |  | 
 | 		memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 		len = create_instance_adv_data(hdev, instance, cp.data); | 
 |  | 
 | 		/* There's nothing to do if the data hasn't changed */ | 
 | 		if (hdev->adv_data_len == len && | 
 | 		    memcmp(cp.data, hdev->adv_data, len) == 0) | 
 | 			return; | 
 |  | 
 | 		memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); | 
 | 		hdev->adv_data_len = len; | 
 |  | 
 | 		cp.length = len; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); | 
 | 	} | 
 | } | 
 |  | 
 | int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct hci_request req; | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 | 	__hci_req_update_adv_data(&req, instance); | 
 |  | 
 | 	return hci_req_run(&req, NULL); | 
 | } | 
 |  | 
 | static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status, | 
 | 					    u16 opcode) | 
 | { | 
 | 	BT_DBG("%s status %u", hdev->name, status); | 
 | } | 
 |  | 
 | void hci_req_disable_address_resolution(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_request req; | 
 | 	__u8 enable = 0x00; | 
 |  | 
 | 	if (!use_ll_privacy(hdev) && | 
 | 	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) | 
 | 		return; | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); | 
 |  | 
 | 	hci_req_run(&req, enable_addr_resolution_complete); | 
 | } | 
 |  | 
 | static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) | 
 | { | 
 | 	bt_dev_dbg(hdev, "status %u", status); | 
 | } | 
 |  | 
 | void hci_req_reenable_advertising(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_request req; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && | 
 | 	    list_empty(&hdev->adv_instances)) | 
 | 		return; | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	if (hdev->cur_adv_instance) { | 
 | 		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, | 
 | 						true); | 
 | 	} else { | 
 | 		if (ext_adv_capable(hdev)) { | 
 | 			__hci_req_start_ext_adv(&req, 0x00); | 
 | 		} else { | 
 | 			__hci_req_update_adv_data(&req, 0x00); | 
 | 			__hci_req_update_scan_rsp_data(&req, 0x00); | 
 | 			__hci_req_enable_advertising(&req); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hci_req_run(&req, adv_enable_complete); | 
 | } | 
 |  | 
 | static void adv_timeout_expire(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    adv_instance_expire.work); | 
 |  | 
 | 	struct hci_request req; | 
 | 	u8 instance; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	hdev->adv_instance_timeout = 0; | 
 |  | 
 | 	instance = hdev->cur_adv_instance; | 
 | 	if (instance == 0x00) | 
 | 		goto unlock; | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); | 
 |  | 
 | 	if (list_empty(&hdev->adv_instances)) | 
 | 		__hci_req_disable_advertising(&req); | 
 |  | 
 | 	hci_req_run(&req, NULL); | 
 |  | 
 | unlock: | 
 | 	hci_dev_unlock(hdev); | 
 | } | 
 |  | 
 | static int hci_req_add_le_interleaved_scan(struct hci_request *req, | 
 | 					   unsigned long opt) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	int ret = 0; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
 | 		hci_req_add_le_scan_disable(req, false); | 
 | 	hci_req_add_le_passive_scan(req); | 
 |  | 
 | 	switch (hdev->interleave_scan_state) { | 
 | 	case INTERLEAVE_SCAN_ALLOWLIST: | 
 | 		bt_dev_dbg(hdev, "next state: allowlist"); | 
 | 		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; | 
 | 		break; | 
 | 	case INTERLEAVE_SCAN_NO_FILTER: | 
 | 		bt_dev_dbg(hdev, "next state: no filter"); | 
 | 		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; | 
 | 		break; | 
 | 	case INTERLEAVE_SCAN_NONE: | 
 | 		BT_ERR("unexpected error"); | 
 | 		ret = -1; | 
 | 	} | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void interleave_scan_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    interleave_scan.work); | 
 | 	u8 status; | 
 | 	unsigned long timeout; | 
 |  | 
 | 	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { | 
 | 		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); | 
 | 	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { | 
 | 		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); | 
 | 	} else { | 
 | 		bt_dev_err(hdev, "unexpected error"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0, | 
 | 		     HCI_CMD_TIMEOUT, &status); | 
 |  | 
 | 	/* Don't continue interleaving if it was canceled */ | 
 | 	if (is_interleave_scanning(hdev)) | 
 | 		queue_delayed_work(hdev->req_workqueue, | 
 | 				   &hdev->interleave_scan, timeout); | 
 | } | 
 |  | 
 | int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, | 
 | 			   bool use_rpa, struct adv_info *adv_instance, | 
 | 			   u8 *own_addr_type, bdaddr_t *rand_addr) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bacpy(rand_addr, BDADDR_ANY); | 
 |  | 
 | 	/* If privacy is enabled use a resolvable private address. If | 
 | 	 * current RPA has expired then generate a new one. | 
 | 	 */ | 
 | 	if (use_rpa) { | 
 | 		/* If Controller supports LL Privacy use own address type is | 
 | 		 * 0x03 | 
 | 		 */ | 
 | 		if (use_ll_privacy(hdev) && | 
 | 		    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) | 
 | 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; | 
 | 		else | 
 | 			*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 |  | 
 | 		if (adv_instance) { | 
 | 			if (adv_rpa_valid(adv_instance)) | 
 | 				return 0; | 
 | 		} else { | 
 | 			if (rpa_valid(hdev)) | 
 | 				return 0; | 
 | 		} | 
 |  | 
 | 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); | 
 | 		if (err < 0) { | 
 | 			bt_dev_err(hdev, "failed to generate new RPA"); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		bacpy(rand_addr, &hdev->rpa); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* In case of required privacy without resolvable private address, | 
 | 	 * use an non-resolvable private address. This is useful for | 
 | 	 * non-connectable advertising. | 
 | 	 */ | 
 | 	if (require_privacy) { | 
 | 		bdaddr_t nrpa; | 
 |  | 
 | 		while (true) { | 
 | 			/* The non-resolvable private address is generated | 
 | 			 * from random six bytes with the two most significant | 
 | 			 * bits cleared. | 
 | 			 */ | 
 | 			get_random_bytes(&nrpa, 6); | 
 | 			nrpa.b[5] &= 0x3f; | 
 |  | 
 | 			/* The non-resolvable private address shall not be | 
 | 			 * equal to the public address. | 
 | 			 */ | 
 | 			if (bacmp(&hdev->bdaddr, &nrpa)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 | 		bacpy(rand_addr, &nrpa); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* No privacy so use a public address. */ | 
 | 	*own_addr_type = ADDR_LE_DEV_PUBLIC; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __hci_req_clear_ext_adv_sets(struct hci_request *req) | 
 | { | 
 | 	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); | 
 | } | 
 |  | 
 | static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	/* If we're advertising or initiating an LE connection we can't | 
 | 	 * go ahead and change the random address at this time. This is | 
 | 	 * because the eventual initiator address used for the | 
 | 	 * subsequently created connection will be undefined (some | 
 | 	 * controllers use the new address and others the one we had | 
 | 	 * when the operation started). | 
 | 	 * | 
 | 	 * In this kind of scenario skip the update and let the random | 
 | 	 * address be updated at the next cycle. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) || | 
 | 	    hci_lookup_le_connect(hdev)) { | 
 | 		bt_dev_dbg(hdev, "Deferring random address update"); | 
 | 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); | 
 | } | 
 |  | 
 | int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_cp_le_set_ext_adv_params cp; | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	bool connectable; | 
 | 	u32 flags; | 
 | 	bdaddr_t random_addr; | 
 | 	u8 own_addr_type; | 
 | 	int err; | 
 | 	struct adv_info *adv_instance; | 
 | 	bool secondary_adv; | 
 |  | 
 | 	if (instance > 0) { | 
 | 		adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 		if (!adv_instance) | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		adv_instance = NULL; | 
 | 	} | 
 |  | 
 | 	flags = get_adv_instance_flags(hdev, instance); | 
 |  | 
 | 	/* If the "connectable" instance flag was not set, then choose between | 
 | 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. | 
 | 	 */ | 
 | 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || | 
 | 		      mgmt_get_connectable(hdev); | 
 |  | 
 | 	if (!is_advertising_allowed(hdev, connectable)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* Set require_privacy to true only when non-connectable | 
 | 	 * advertising is used. In that case it is fine to use a | 
 | 	 * non-resolvable private address. | 
 | 	 */ | 
 | 	err = hci_get_random_address(hdev, !connectable, | 
 | 				     adv_use_rpa(hdev, flags), adv_instance, | 
 | 				     &own_addr_type, &random_addr); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (adv_instance) { | 
 | 		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval); | 
 | 		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval); | 
 | 		cp.tx_power = adv_instance->tx_power; | 
 | 	} else { | 
 | 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); | 
 | 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); | 
 | 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; | 
 | 	} | 
 |  | 
 | 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); | 
 |  | 
 | 	if (connectable) { | 
 | 		if (secondary_adv) | 
 | 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); | 
 | 		else | 
 | 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); | 
 | 	} else if (adv_instance_is_scannable(hdev, instance) || | 
 | 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) { | 
 | 		if (secondary_adv) | 
 | 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); | 
 | 		else | 
 | 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); | 
 | 	} else { | 
 | 		if (secondary_adv) | 
 | 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); | 
 | 		else | 
 | 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); | 
 | 	} | 
 |  | 
 | 	cp.own_addr_type = own_addr_type; | 
 | 	cp.channel_map = hdev->le_adv_channel_map; | 
 | 	cp.handle = instance; | 
 |  | 
 | 	if (flags & MGMT_ADV_FLAG_SEC_2M) { | 
 | 		cp.primary_phy = HCI_ADV_PHY_1M; | 
 | 		cp.secondary_phy = HCI_ADV_PHY_2M; | 
 | 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) { | 
 | 		cp.primary_phy = HCI_ADV_PHY_CODED; | 
 | 		cp.secondary_phy = HCI_ADV_PHY_CODED; | 
 | 	} else { | 
 | 		/* In all other cases use 1M */ | 
 | 		cp.primary_phy = HCI_ADV_PHY_1M; | 
 | 		cp.secondary_phy = HCI_ADV_PHY_1M; | 
 | 	} | 
 |  | 
 | 	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); | 
 |  | 
 | 	if (own_addr_type == ADDR_LE_DEV_RANDOM && | 
 | 	    bacmp(&random_addr, BDADDR_ANY)) { | 
 | 		struct hci_cp_le_set_adv_set_rand_addr cp; | 
 |  | 
 | 		/* Check if random address need to be updated */ | 
 | 		if (adv_instance) { | 
 | 			if (!bacmp(&random_addr, &adv_instance->random_addr)) | 
 | 				return 0; | 
 | 		} else { | 
 | 			if (!bacmp(&random_addr, &hdev->random_addr)) | 
 | 				return 0; | 
 | 			/* Instance 0x00 doesn't have an adv_info, instead it | 
 | 			 * uses hdev->random_addr to track its address so | 
 | 			 * whenever it needs to be updated this also set the | 
 | 			 * random address since hdev->random_addr is shared with | 
 | 			 * scan state machine. | 
 | 			 */ | 
 | 			set_random_addr(req, &random_addr); | 
 | 		} | 
 |  | 
 | 		memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 		cp.handle = instance; | 
 | 		bacpy(&cp.bdaddr, &random_addr); | 
 |  | 
 | 		hci_req_add(req, | 
 | 			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR, | 
 | 			    sizeof(cp), &cp); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_cp_le_set_ext_adv_enable *cp; | 
 | 	struct hci_cp_ext_adv_set *adv_set; | 
 | 	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; | 
 | 	struct adv_info *adv_instance; | 
 |  | 
 | 	if (instance > 0) { | 
 | 		adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 		if (!adv_instance) | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		adv_instance = NULL; | 
 | 	} | 
 |  | 
 | 	cp = (void *) data; | 
 | 	adv_set = (void *) cp->data; | 
 |  | 
 | 	memset(cp, 0, sizeof(*cp)); | 
 |  | 
 | 	cp->enable = 0x01; | 
 | 	cp->num_of_sets = 0x01; | 
 |  | 
 | 	memset(adv_set, 0, sizeof(*adv_set)); | 
 |  | 
 | 	adv_set->handle = instance; | 
 |  | 
 | 	/* Set duration per instance since controller is responsible for | 
 | 	 * scheduling it. | 
 | 	 */ | 
 | 	if (adv_instance && adv_instance->timeout) { | 
 | 		u16 duration = adv_instance->timeout * MSEC_PER_SEC; | 
 |  | 
 | 		/* Time = N * 10 ms */ | 
 | 		adv_set->duration = cpu_to_le16(duration / 10); | 
 | 	} | 
 |  | 
 | 	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, | 
 | 		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, | 
 | 		    data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_cp_le_set_ext_adv_enable *cp; | 
 | 	struct hci_cp_ext_adv_set *adv_set; | 
 | 	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; | 
 | 	u8 req_size; | 
 |  | 
 | 	/* If request specifies an instance that doesn't exist, fail */ | 
 | 	if (instance > 0 && !hci_find_adv_instance(hdev, instance)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memset(data, 0, sizeof(data)); | 
 |  | 
 | 	cp = (void *)data; | 
 | 	adv_set = (void *)cp->data; | 
 |  | 
 | 	/* Instance 0x00 indicates all advertising instances will be disabled */ | 
 | 	cp->num_of_sets = !!instance; | 
 | 	cp->enable = 0x00; | 
 |  | 
 | 	adv_set->handle = instance; | 
 |  | 
 | 	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets; | 
 | 	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	/* If request specifies an instance that doesn't exist, fail */ | 
 | 	if (instance > 0 && !hci_find_adv_instance(hdev, instance)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 	int err; | 
 |  | 
 | 	/* If instance isn't pending, the chip knows about it, and it's safe to | 
 | 	 * disable | 
 | 	 */ | 
 | 	if (adv_instance && !adv_instance->pending) | 
 | 		__hci_req_disable_ext_adv_instance(req, instance); | 
 |  | 
 | 	err = __hci_req_setup_ext_adv_instance(req, instance); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	__hci_req_update_scan_rsp_data(req, instance); | 
 | 	__hci_req_enable_ext_advertising(req, instance); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, | 
 | 				    bool force) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct adv_info *adv_instance = NULL; | 
 | 	u16 timeout; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
 | 	    list_empty(&hdev->adv_instances)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (hdev->adv_instance_timeout) | 
 | 		return -EBUSY; | 
 |  | 
 | 	adv_instance = hci_find_adv_instance(hdev, instance); | 
 | 	if (!adv_instance) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* A zero timeout means unlimited advertising. As long as there is | 
 | 	 * only one instance, duration should be ignored. We still set a timeout | 
 | 	 * in case further instances are being added later on. | 
 | 	 * | 
 | 	 * If the remaining lifetime of the instance is more than the duration | 
 | 	 * then the timeout corresponds to the duration, otherwise it will be | 
 | 	 * reduced to the remaining instance lifetime. | 
 | 	 */ | 
 | 	if (adv_instance->timeout == 0 || | 
 | 	    adv_instance->duration <= adv_instance->remaining_time) | 
 | 		timeout = adv_instance->duration; | 
 | 	else | 
 | 		timeout = adv_instance->remaining_time; | 
 |  | 
 | 	/* The remaining time is being reduced unless the instance is being | 
 | 	 * advertised without time limit. | 
 | 	 */ | 
 | 	if (adv_instance->timeout) | 
 | 		adv_instance->remaining_time = | 
 | 				adv_instance->remaining_time - timeout; | 
 |  | 
 | 	/* Only use work for scheduling instances with legacy advertising */ | 
 | 	if (!ext_adv_capable(hdev)) { | 
 | 		hdev->adv_instance_timeout = timeout; | 
 | 		queue_delayed_work(hdev->req_workqueue, | 
 | 			   &hdev->adv_instance_expire, | 
 | 			   msecs_to_jiffies(timeout * 1000)); | 
 | 	} | 
 |  | 
 | 	/* If we're just re-scheduling the same instance again then do not | 
 | 	 * execute any HCI commands. This happens when a single instance is | 
 | 	 * being advertised. | 
 | 	 */ | 
 | 	if (!force && hdev->cur_adv_instance == instance && | 
 | 	    hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
 | 		return 0; | 
 |  | 
 | 	hdev->cur_adv_instance = instance; | 
 | 	if (ext_adv_capable(hdev)) { | 
 | 		__hci_req_start_ext_adv(req, instance); | 
 | 	} else { | 
 | 		__hci_req_update_adv_data(req, instance); | 
 | 		__hci_req_update_scan_rsp_data(req, instance); | 
 | 		__hci_req_enable_advertising(req); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* For a single instance: | 
 |  * - force == true: The instance will be removed even when its remaining | 
 |  *   lifetime is not zero. | 
 |  * - force == false: the instance will be deactivated but kept stored unless | 
 |  *   the remaining lifetime is zero. | 
 |  * | 
 |  * For instance == 0x00: | 
 |  * - force == true: All instances will be removed regardless of their timeout | 
 |  *   setting. | 
 |  * - force == false: Only instances that have a timeout will be removed. | 
 |  */ | 
 | void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, | 
 | 				struct hci_request *req, u8 instance, | 
 | 				bool force) | 
 | { | 
 | 	struct adv_info *adv_instance, *n, *next_instance = NULL; | 
 | 	int err; | 
 | 	u8 rem_inst; | 
 |  | 
 | 	/* Cancel any timeout concerning the removed instance(s). */ | 
 | 	if (!instance || hdev->cur_adv_instance == instance) | 
 | 		cancel_adv_timeout(hdev); | 
 |  | 
 | 	/* Get the next instance to advertise BEFORE we remove | 
 | 	 * the current one. This can be the same instance again | 
 | 	 * if there is only one instance. | 
 | 	 */ | 
 | 	if (instance && hdev->cur_adv_instance == instance) | 
 | 		next_instance = hci_get_next_instance(hdev, instance); | 
 |  | 
 | 	if (instance == 0x00) { | 
 | 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, | 
 | 					 list) { | 
 | 			if (!(force || adv_instance->timeout)) | 
 | 				continue; | 
 |  | 
 | 			rem_inst = adv_instance->instance; | 
 | 			err = hci_remove_adv_instance(hdev, rem_inst); | 
 | 			if (!err) | 
 | 				mgmt_advertising_removed(sk, hdev, rem_inst); | 
 | 		} | 
 | 	} else { | 
 | 		adv_instance = hci_find_adv_instance(hdev, instance); | 
 |  | 
 | 		if (force || (adv_instance && adv_instance->timeout && | 
 | 			      !adv_instance->remaining_time)) { | 
 | 			/* Don't advertise a removed instance. */ | 
 | 			if (next_instance && | 
 | 			    next_instance->instance == instance) | 
 | 				next_instance = NULL; | 
 |  | 
 | 			err = hci_remove_adv_instance(hdev, instance); | 
 | 			if (!err) | 
 | 				mgmt_advertising_removed(sk, hdev, instance); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!req || !hdev_is_powered(hdev) || | 
 | 	    hci_dev_test_flag(hdev, HCI_ADVERTISING)) | 
 | 		return; | 
 |  | 
 | 	if (next_instance && !ext_adv_capable(hdev)) | 
 | 		__hci_req_schedule_adv_instance(req, next_instance->instance, | 
 | 						false); | 
 | } | 
 |  | 
 | int hci_update_random_address(struct hci_request *req, bool require_privacy, | 
 | 			      bool use_rpa, u8 *own_addr_type) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	int err; | 
 |  | 
 | 	/* If privacy is enabled use a resolvable private address. If | 
 | 	 * current RPA has expired or there is something else than | 
 | 	 * the current RPA in use, then generate a new one. | 
 | 	 */ | 
 | 	if (use_rpa) { | 
 | 		/* If Controller supports LL Privacy use own address type is | 
 | 		 * 0x03 | 
 | 		 */ | 
 | 		if (use_ll_privacy(hdev) && | 
 | 		    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) | 
 | 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; | 
 | 		else | 
 | 			*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 |  | 
 | 		if (rpa_valid(hdev)) | 
 | 			return 0; | 
 |  | 
 | 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); | 
 | 		if (err < 0) { | 
 | 			bt_dev_err(hdev, "failed to generate new RPA"); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		set_random_addr(req, &hdev->rpa); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* In case of required privacy without resolvable private address, | 
 | 	 * use an non-resolvable private address. This is useful for active | 
 | 	 * scanning and non-connectable advertising. | 
 | 	 */ | 
 | 	if (require_privacy) { | 
 | 		bdaddr_t nrpa; | 
 |  | 
 | 		while (true) { | 
 | 			/* The non-resolvable private address is generated | 
 | 			 * from random six bytes with the two most significant | 
 | 			 * bits cleared. | 
 | 			 */ | 
 | 			get_random_bytes(&nrpa, 6); | 
 | 			nrpa.b[5] &= 0x3f; | 
 |  | 
 | 			/* The non-resolvable private address shall not be | 
 | 			 * equal to the public address. | 
 | 			 */ | 
 | 			if (bacmp(&hdev->bdaddr, &nrpa)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 | 		set_random_addr(req, &nrpa); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* If forcing static address is in use or there is no public | 
 | 	 * address use the static address as random address (but skip | 
 | 	 * the HCI command if the current random address is already the | 
 | 	 * static one. | 
 | 	 * | 
 | 	 * In case BR/EDR has been disabled on a dual-mode controller | 
 | 	 * and a static address has been configured, then use that | 
 | 	 * address instead of the public BR/EDR address. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || | 
 | 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) || | 
 | 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && | 
 | 	     bacmp(&hdev->static_addr, BDADDR_ANY))) { | 
 | 		*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 | 		if (bacmp(&hdev->static_addr, &hdev->random_addr)) | 
 | 			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, | 
 | 				    &hdev->static_addr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Neither privacy nor static address is being used so use a | 
 | 	 * public address. | 
 | 	 */ | 
 | 	*own_addr_type = ADDR_LE_DEV_PUBLIC; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool disconnected_accept_list_entries(struct hci_dev *hdev) | 
 | { | 
 | 	struct bdaddr_list *b; | 
 |  | 
 | 	list_for_each_entry(b, &hdev->accept_list, list) { | 
 | 		struct hci_conn *conn; | 
 |  | 
 | 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); | 
 | 		if (!conn) | 
 | 			return true; | 
 |  | 
 | 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void __hci_req_update_scan(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 scan; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (!hdev_is_powered(hdev)) | 
 | 		return; | 
 |  | 
 | 	if (mgmt_powering_down(hdev)) | 
 | 		return; | 
 |  | 
 | 	if (hdev->scanning_paused) | 
 | 		return; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || | 
 | 	    disconnected_accept_list_entries(hdev)) | 
 | 		scan = SCAN_PAGE; | 
 | 	else | 
 | 		scan = SCAN_DISABLED; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
 | 		scan |= SCAN_INQUIRY; | 
 |  | 
 | 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && | 
 | 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) | 
 | 		return; | 
 |  | 
 | 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); | 
 | } | 
 |  | 
 | static int update_scan(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	hci_dev_lock(req->hdev); | 
 | 	__hci_req_update_scan(req); | 
 | 	hci_dev_unlock(req->hdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scan_update_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); | 
 |  | 
 | 	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); | 
 | } | 
 |  | 
 | static int connectable_update(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	__hci_req_update_scan(req); | 
 |  | 
 | 	/* If BR/EDR is not enabled and we disable advertising as a | 
 | 	 * by-product of disabling connectable, we need to update the | 
 | 	 * advertising flags. | 
 | 	 */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		__hci_req_update_adv_data(req, hdev->cur_adv_instance); | 
 |  | 
 | 	/* Update the advertising parameters if necessary */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
 | 	    !list_empty(&hdev->adv_instances)) { | 
 | 		if (ext_adv_capable(hdev)) | 
 | 			__hci_req_start_ext_adv(req, hdev->cur_adv_instance); | 
 | 		else | 
 | 			__hci_req_enable_advertising(req); | 
 | 	} | 
 |  | 
 | 	__hci_update_background_scan(req); | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void connectable_update_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    connectable_update); | 
 | 	u8 status; | 
 |  | 
 | 	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); | 
 | 	mgmt_set_connectable_complete(hdev, status); | 
 | } | 
 |  | 
 | static u8 get_service_classes(struct hci_dev *hdev) | 
 | { | 
 | 	struct bt_uuid *uuid; | 
 | 	u8 val = 0; | 
 |  | 
 | 	list_for_each_entry(uuid, &hdev->uuids, list) | 
 | 		val |= uuid->svc_hint; | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | void __hci_req_update_class(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 cod[3]; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (!hdev_is_powered(hdev)) | 
 | 		return; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) | 
 | 		return; | 
 |  | 
 | 	cod[0] = hdev->minor_class; | 
 | 	cod[1] = hdev->major_class; | 
 | 	cod[2] = get_service_classes(hdev); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) | 
 | 		cod[1] |= 0x20; | 
 |  | 
 | 	if (memcmp(cod, hdev->dev_class, 3) == 0) | 
 | 		return; | 
 |  | 
 | 	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); | 
 | } | 
 |  | 
 | static void write_iac(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct hci_cp_write_current_iac_lap cp; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
 | 		return; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { | 
 | 		/* Limited discoverable mode */ | 
 | 		cp.num_iac = min_t(u8, hdev->num_iac, 2); | 
 | 		cp.iac_lap[0] = 0x00;	/* LIAC */ | 
 | 		cp.iac_lap[1] = 0x8b; | 
 | 		cp.iac_lap[2] = 0x9e; | 
 | 		cp.iac_lap[3] = 0x33;	/* GIAC */ | 
 | 		cp.iac_lap[4] = 0x8b; | 
 | 		cp.iac_lap[5] = 0x9e; | 
 | 	} else { | 
 | 		/* General discoverable mode */ | 
 | 		cp.num_iac = 1; | 
 | 		cp.iac_lap[0] = 0x33;	/* GIAC */ | 
 | 		cp.iac_lap[1] = 0x8b; | 
 | 		cp.iac_lap[2] = 0x9e; | 
 | 	} | 
 |  | 
 | 	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, | 
 | 		    (cp.num_iac * 3) + 1, &cp); | 
 | } | 
 |  | 
 | static int discoverable_update(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { | 
 | 		write_iac(req); | 
 | 		__hci_req_update_scan(req); | 
 | 		__hci_req_update_class(req); | 
 | 	} | 
 |  | 
 | 	/* Advertising instances don't use the global discoverable setting, so | 
 | 	 * only update AD if advertising was enabled using Set Advertising. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { | 
 | 		__hci_req_update_adv_data(req, 0x00); | 
 |  | 
 | 		/* Discoverable mode affects the local advertising | 
 | 		 * address in limited privacy mode. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { | 
 | 			if (ext_adv_capable(hdev)) | 
 | 				__hci_req_start_ext_adv(req, 0x00); | 
 | 			else | 
 | 				__hci_req_enable_advertising(req); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void discoverable_update_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    discoverable_update); | 
 | 	u8 status; | 
 |  | 
 | 	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); | 
 | 	mgmt_set_discoverable_complete(hdev, status); | 
 | } | 
 |  | 
 | void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, | 
 | 		      u8 reason) | 
 | { | 
 | 	switch (conn->state) { | 
 | 	case BT_CONNECTED: | 
 | 	case BT_CONFIG: | 
 | 		if (conn->type == AMP_LINK) { | 
 | 			struct hci_cp_disconn_phy_link cp; | 
 |  | 
 | 			cp.phy_handle = HCI_PHY_HANDLE(conn->handle); | 
 | 			cp.reason = reason; | 
 | 			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), | 
 | 				    &cp); | 
 | 		} else { | 
 | 			struct hci_cp_disconnect dc; | 
 |  | 
 | 			dc.handle = cpu_to_le16(conn->handle); | 
 | 			dc.reason = reason; | 
 | 			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); | 
 | 		} | 
 |  | 
 | 		conn->state = BT_DISCONN; | 
 |  | 
 | 		break; | 
 | 	case BT_CONNECT: | 
 | 		if (conn->type == LE_LINK) { | 
 | 			if (test_bit(HCI_CONN_SCANNING, &conn->flags)) | 
 | 				break; | 
 | 			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, | 
 | 				    0, NULL); | 
 | 		} else if (conn->type == ACL_LINK) { | 
 | 			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) | 
 | 				break; | 
 | 			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, | 
 | 				    6, &conn->dst); | 
 | 		} | 
 | 		break; | 
 | 	case BT_CONNECT2: | 
 | 		if (conn->type == ACL_LINK) { | 
 | 			struct hci_cp_reject_conn_req rej; | 
 |  | 
 | 			bacpy(&rej.bdaddr, &conn->dst); | 
 | 			rej.reason = reason; | 
 |  | 
 | 			hci_req_add(req, HCI_OP_REJECT_CONN_REQ, | 
 | 				    sizeof(rej), &rej); | 
 | 		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { | 
 | 			struct hci_cp_reject_sync_conn_req rej; | 
 |  | 
 | 			bacpy(&rej.bdaddr, &conn->dst); | 
 |  | 
 | 			/* SCO rejection has its own limited set of | 
 | 			 * allowed error values (0x0D-0x0F) which isn't | 
 | 			 * compatible with most values passed to this | 
 | 			 * function. To be safe hard-code one of the | 
 | 			 * values that's suitable for SCO. | 
 | 			 */ | 
 | 			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; | 
 |  | 
 | 			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, | 
 | 				    sizeof(rej), &rej); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		conn->state = BT_CLOSED; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) | 
 | { | 
 | 	if (status) | 
 | 		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status); | 
 | } | 
 |  | 
 | int hci_abort_conn(struct hci_conn *conn, u8 reason) | 
 | { | 
 | 	struct hci_request req; | 
 | 	int err; | 
 |  | 
 | 	hci_req_init(&req, conn->hdev); | 
 |  | 
 | 	__hci_abort_conn(&req, conn, reason); | 
 |  | 
 | 	err = hci_req_run(&req, abort_conn_complete); | 
 | 	if (err && err != -ENODATA) { | 
 | 		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int update_bg_scan(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	hci_dev_lock(req->hdev); | 
 | 	__hci_update_background_scan(req); | 
 | 	hci_dev_unlock(req->hdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bg_scan_update(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    bg_scan_update); | 
 | 	struct hci_conn *conn; | 
 | 	u8 status; | 
 | 	int err; | 
 |  | 
 | 	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); | 
 | 	if (!err) | 
 | 		return; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); | 
 | 	if (conn) | 
 | 		hci_le_conn_failed(conn, status); | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 | } | 
 |  | 
 | static int le_scan_disable(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	hci_req_add_le_scan_disable(req, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bredr_inquiry(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	u8 length = opt; | 
 | 	const u8 giac[3] = { 0x33, 0x8b, 0x9e }; | 
 | 	const u8 liac[3] = { 0x00, 0x8b, 0x9e }; | 
 | 	struct hci_cp_inquiry cp; | 
 |  | 
 | 	if (test_bit(HCI_INQUIRY, &req->hdev->flags)) | 
 | 		return 0; | 
 |  | 
 | 	bt_dev_dbg(req->hdev, ""); | 
 |  | 
 | 	hci_dev_lock(req->hdev); | 
 | 	hci_inquiry_cache_flush(req->hdev); | 
 | 	hci_dev_unlock(req->hdev); | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (req->hdev->discovery.limited) | 
 | 		memcpy(&cp.lap, liac, sizeof(cp.lap)); | 
 | 	else | 
 | 		memcpy(&cp.lap, giac, sizeof(cp.lap)); | 
 |  | 
 | 	cp.length = length; | 
 |  | 
 | 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void le_scan_disable_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    le_scan_disable.work); | 
 | 	u8 status; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
 | 		return; | 
 |  | 
 | 	cancel_delayed_work(&hdev->le_scan_restart); | 
 |  | 
 | 	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); | 
 | 	if (status) { | 
 | 		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", | 
 | 			   status); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hdev->discovery.scan_start = 0; | 
 |  | 
 | 	/* If we were running LE only scan, change discovery state. If | 
 | 	 * we were running both LE and BR/EDR inquiry simultaneously, | 
 | 	 * and BR/EDR inquiry is already finished, stop discovery, | 
 | 	 * otherwise BR/EDR inquiry will stop discovery when finished. | 
 | 	 * If we will resolve remote device name, do not change | 
 | 	 * discovery state. | 
 | 	 */ | 
 |  | 
 | 	if (hdev->discovery.type == DISCOV_TYPE_LE) | 
 | 		goto discov_stopped; | 
 |  | 
 | 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) | 
 | 		return; | 
 |  | 
 | 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { | 
 | 		if (!test_bit(HCI_INQUIRY, &hdev->flags) && | 
 | 		    hdev->discovery.state != DISCOVERY_RESOLVING) | 
 | 			goto discov_stopped; | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, | 
 | 		     HCI_CMD_TIMEOUT, &status); | 
 | 	if (status) { | 
 | 		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); | 
 | 		goto discov_stopped; | 
 | 	} | 
 |  | 
 | 	return; | 
 |  | 
 | discov_stopped: | 
 | 	hci_dev_lock(hdev); | 
 | 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
 | 	hci_dev_unlock(hdev); | 
 | } | 
 |  | 
 | static int le_scan_restart(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 |  | 
 | 	/* If controller is not scanning we are done. */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
 | 		return 0; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	hci_req_add_le_scan_disable(req, false); | 
 |  | 
 | 	if (use_ext_scan(hdev)) { | 
 | 		struct hci_cp_le_set_ext_scan_enable ext_enable_cp; | 
 |  | 
 | 		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); | 
 | 		ext_enable_cp.enable = LE_SCAN_ENABLE; | 
 | 		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, | 
 | 			    sizeof(ext_enable_cp), &ext_enable_cp); | 
 | 	} else { | 
 | 		struct hci_cp_le_set_scan_enable cp; | 
 |  | 
 | 		memset(&cp, 0, sizeof(cp)); | 
 | 		cp.enable = LE_SCAN_ENABLE; | 
 | 		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
 | 		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void le_scan_restart_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    le_scan_restart.work); | 
 | 	unsigned long timeout, duration, scan_start, now; | 
 | 	u8 status; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); | 
 | 	if (status) { | 
 | 		bt_dev_err(hdev, "failed to restart LE scan: status %d", | 
 | 			   status); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || | 
 | 	    !hdev->discovery.scan_start) | 
 | 		goto unlock; | 
 |  | 
 | 	/* When the scan was started, hdev->le_scan_disable has been queued | 
 | 	 * after duration from scan_start. During scan restart this job | 
 | 	 * has been canceled, and we need to queue it again after proper | 
 | 	 * timeout, to make sure that scan does not run indefinitely. | 
 | 	 */ | 
 | 	duration = hdev->discovery.scan_duration; | 
 | 	scan_start = hdev->discovery.scan_start; | 
 | 	now = jiffies; | 
 | 	if (now - scan_start <= duration) { | 
 | 		int elapsed; | 
 |  | 
 | 		if (now >= scan_start) | 
 | 			elapsed = now - scan_start; | 
 | 		else | 
 | 			elapsed = ULONG_MAX - scan_start + now; | 
 |  | 
 | 		timeout = duration - elapsed; | 
 | 	} else { | 
 | 		timeout = 0; | 
 | 	} | 
 |  | 
 | 	queue_delayed_work(hdev->req_workqueue, | 
 | 			   &hdev->le_scan_disable, timeout); | 
 |  | 
 | unlock: | 
 | 	hci_dev_unlock(hdev); | 
 | } | 
 |  | 
 | static int active_scan(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	uint16_t interval = opt; | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 own_addr_type; | 
 | 	/* Accept list is not used for discovery */ | 
 | 	u8 filter_policy = 0x00; | 
 | 	/* Default is to enable duplicates filter */ | 
 | 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
 | 	/* Discovery doesn't require controller address resolution */ | 
 | 	bool addr_resolv = false; | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	/* If controller is scanning, it means the background scanning is | 
 | 	 * running. Thus, we should temporarily stop it in order to set the | 
 | 	 * discovery scanning parameters. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
 | 		hci_req_add_le_scan_disable(req, false); | 
 | 		cancel_interleave_scan(hdev); | 
 | 	} | 
 |  | 
 | 	/* All active scans will be done with either a resolvable private | 
 | 	 * address (when privacy feature has been enabled) or non-resolvable | 
 | 	 * private address. | 
 | 	 */ | 
 | 	err = hci_update_random_address(req, true, scan_use_rpa(hdev), | 
 | 					&own_addr_type); | 
 | 	if (err < 0) | 
 | 		own_addr_type = ADDR_LE_DEV_PUBLIC; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 | 	if (hci_is_adv_monitoring(hdev)) { | 
 | 		/* Duplicate filter should be disabled when some advertisement | 
 | 		 * monitor is activated, otherwise AdvMon can only receive one | 
 | 		 * advertisement for one peer(*) during active scanning, and | 
 | 		 * might report loss to these peers. | 
 | 		 * | 
 | 		 * Note that different controllers have different meanings of | 
 | 		 * |duplicate|. Some of them consider packets with the same | 
 | 		 * address as duplicate, and others consider packets with the | 
 | 		 * same address and the same RSSI as duplicate. Although in the | 
 | 		 * latter case we don't need to disable duplicate filter, but | 
 | 		 * it is common to have active scanning for a short period of | 
 | 		 * time, the power impact should be neglectable. | 
 | 		 */ | 
 | 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE; | 
 | 	} | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, | 
 | 			   hdev->le_scan_window_discovery, own_addr_type, | 
 | 			   filter_policy, filter_dup, addr_resolv); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int interleaved_discov(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(req->hdev, ""); | 
 |  | 
 | 	err = active_scan(req, opt); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); | 
 | } | 
 |  | 
 | static void start_discovery(struct hci_dev *hdev, u8 *status) | 
 | { | 
 | 	unsigned long timeout; | 
 |  | 
 | 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type); | 
 |  | 
 | 	switch (hdev->discovery.type) { | 
 | 	case DISCOV_TYPE_BREDR: | 
 | 		if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) | 
 | 			hci_req_sync(hdev, bredr_inquiry, | 
 | 				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, | 
 | 				     status); | 
 | 		return; | 
 | 	case DISCOV_TYPE_INTERLEAVED: | 
 | 		/* When running simultaneous discovery, the LE scanning time | 
 | 		 * should occupy the whole discovery time sine BR/EDR inquiry | 
 | 		 * and LE scanning are scheduled by the controller. | 
 | 		 * | 
 | 		 * For interleaving discovery in comparison, BR/EDR inquiry | 
 | 		 * and LE scanning are done sequentially with separate | 
 | 		 * timeouts. | 
 | 		 */ | 
 | 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, | 
 | 			     &hdev->quirks)) { | 
 | 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); | 
 | 			/* During simultaneous discovery, we double LE scan | 
 | 			 * interval. We must leave some time for the controller | 
 | 			 * to do BR/EDR inquiry. | 
 | 			 */ | 
 | 			hci_req_sync(hdev, interleaved_discov, | 
 | 				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT, | 
 | 				     status); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); | 
 | 		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, | 
 | 			     HCI_CMD_TIMEOUT, status); | 
 | 		break; | 
 | 	case DISCOV_TYPE_LE: | 
 | 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); | 
 | 		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, | 
 | 			     HCI_CMD_TIMEOUT, status); | 
 | 		break; | 
 | 	default: | 
 | 		*status = HCI_ERROR_UNSPECIFIED; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (*status) | 
 | 		return; | 
 |  | 
 | 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); | 
 |  | 
 | 	/* When service discovery is used and the controller has a | 
 | 	 * strict duplicate filter, it is important to remember the | 
 | 	 * start and duration of the scan. This is required for | 
 | 	 * restarting scanning during the discovery phase. | 
 | 	 */ | 
 | 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && | 
 | 		     hdev->discovery.result_filtering) { | 
 | 		hdev->discovery.scan_start = jiffies; | 
 | 		hdev->discovery.scan_duration = timeout; | 
 | 	} | 
 |  | 
 | 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, | 
 | 			   timeout); | 
 | } | 
 |  | 
 | bool hci_req_stop_discovery(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct discovery_state *d = &hdev->discovery; | 
 | 	struct hci_cp_remote_name_req_cancel cp; | 
 | 	struct inquiry_entry *e; | 
 | 	bool ret = false; | 
 |  | 
 | 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state); | 
 |  | 
 | 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { | 
 | 		if (test_bit(HCI_INQUIRY, &hdev->flags)) | 
 | 			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); | 
 |  | 
 | 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
 | 			cancel_delayed_work(&hdev->le_scan_disable); | 
 | 			cancel_delayed_work(&hdev->le_scan_restart); | 
 | 			hci_req_add_le_scan_disable(req, false); | 
 | 		} | 
 |  | 
 | 		ret = true; | 
 | 	} else { | 
 | 		/* Passive scanning */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
 | 			hci_req_add_le_scan_disable(req, false); | 
 | 			ret = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* No further actions needed for LE-only discovery */ | 
 | 	if (d->type == DISCOV_TYPE_LE) | 
 | 		return ret; | 
 |  | 
 | 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { | 
 | 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, | 
 | 						     NAME_PENDING); | 
 | 		if (!e) | 
 | 			return ret; | 
 |  | 
 | 		bacpy(&cp.bdaddr, &e->data.bdaddr); | 
 | 		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), | 
 | 			    &cp); | 
 | 		ret = true; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int stop_discovery(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	hci_dev_lock(req->hdev); | 
 | 	hci_req_stop_discovery(req); | 
 | 	hci_dev_unlock(req->hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void discov_update(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    discov_update); | 
 | 	u8 status = 0; | 
 |  | 
 | 	switch (hdev->discovery.state) { | 
 | 	case DISCOVERY_STARTING: | 
 | 		start_discovery(hdev, &status); | 
 | 		mgmt_start_discovery_complete(hdev, status); | 
 | 		if (status) | 
 | 			hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
 | 		else | 
 | 			hci_discovery_set_state(hdev, DISCOVERY_FINDING); | 
 | 		break; | 
 | 	case DISCOVERY_STOPPING: | 
 | 		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); | 
 | 		mgmt_stop_discovery_complete(hdev, status); | 
 | 		if (!status) | 
 | 			hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
 | 		break; | 
 | 	case DISCOVERY_STOPPED: | 
 | 	default: | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | static void discov_off(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, | 
 | 					    discov_off.work); | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	/* When discoverable timeout triggers, then just make sure | 
 | 	 * the limited discoverable flag is cleared. Even in the case | 
 | 	 * of a timeout triggered from general discoverable, it is | 
 | 	 * safe to unconditionally clear the flag. | 
 | 	 */ | 
 | 	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); | 
 | 	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); | 
 | 	hdev->discov_timeout = 0; | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); | 
 | 	mgmt_new_settings(hdev); | 
 | } | 
 |  | 
 | static int powered_update_hci(struct hci_request *req, unsigned long opt) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	u8 link_sec; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && | 
 | 	    !lmp_host_ssp_capable(hdev)) { | 
 | 		u8 mode = 0x01; | 
 |  | 
 | 		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); | 
 |  | 
 | 		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { | 
 | 			u8 support = 0x01; | 
 |  | 
 | 			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, | 
 | 				    sizeof(support), &support); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && | 
 | 	    lmp_bredr_capable(hdev)) { | 
 | 		struct hci_cp_write_le_host_supported cp; | 
 |  | 
 | 		cp.le = 0x01; | 
 | 		cp.simul = 0x00; | 
 |  | 
 | 		/* Check first if we already have the right | 
 | 		 * host state (host features set) | 
 | 		 */ | 
 | 		if (cp.le != lmp_host_le_capable(hdev) || | 
 | 		    cp.simul != lmp_host_le_br_capable(hdev)) | 
 | 			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, | 
 | 				    sizeof(cp), &cp); | 
 | 	} | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { | 
 | 		/* Make sure the controller has a good default for | 
 | 		 * advertising data. This also applies to the case | 
 | 		 * where BR/EDR was toggled during the AUTO_OFF phase. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
 | 		    list_empty(&hdev->adv_instances)) { | 
 | 			int err; | 
 |  | 
 | 			if (ext_adv_capable(hdev)) { | 
 | 				err = __hci_req_setup_ext_adv_instance(req, | 
 | 								       0x00); | 
 | 				if (!err) | 
 | 					__hci_req_update_scan_rsp_data(req, | 
 | 								       0x00); | 
 | 			} else { | 
 | 				err = 0; | 
 | 				__hci_req_update_adv_data(req, 0x00); | 
 | 				__hci_req_update_scan_rsp_data(req, 0x00); | 
 | 			} | 
 |  | 
 | 			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { | 
 | 				if (!ext_adv_capable(hdev)) | 
 | 					__hci_req_enable_advertising(req); | 
 | 				else if (!err) | 
 | 					__hci_req_enable_ext_advertising(req, | 
 | 									 0x00); | 
 | 			} | 
 | 		} else if (!list_empty(&hdev->adv_instances)) { | 
 | 			struct adv_info *adv_instance; | 
 |  | 
 | 			adv_instance = list_first_entry(&hdev->adv_instances, | 
 | 							struct adv_info, list); | 
 | 			__hci_req_schedule_adv_instance(req, | 
 | 							adv_instance->instance, | 
 | 							true); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); | 
 | 	if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) | 
 | 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, | 
 | 			    sizeof(link_sec), &link_sec); | 
 |  | 
 | 	if (lmp_bredr_capable(hdev)) { | 
 | 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) | 
 | 			__hci_req_write_fast_connectable(req, true); | 
 | 		else | 
 | 			__hci_req_write_fast_connectable(req, false); | 
 | 		__hci_req_update_scan(req); | 
 | 		__hci_req_update_class(req); | 
 | 		__hci_req_update_name(req); | 
 | 		__hci_req_update_eir(req); | 
 | 	} | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __hci_req_hci_power_on(struct hci_dev *hdev) | 
 | { | 
 | 	/* Register the available SMP channels (BR/EDR and LE) only when | 
 | 	 * successfully powering on the controller. This late | 
 | 	 * registration is required so that LE SMP can clearly decide if | 
 | 	 * the public address or static address is used. | 
 | 	 */ | 
 | 	smp_register(hdev); | 
 |  | 
 | 	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, | 
 | 			      NULL); | 
 | } | 
 |  | 
 | void hci_request_setup(struct hci_dev *hdev) | 
 | { | 
 | 	INIT_WORK(&hdev->discov_update, discov_update); | 
 | 	INIT_WORK(&hdev->bg_scan_update, bg_scan_update); | 
 | 	INIT_WORK(&hdev->scan_update, scan_update_work); | 
 | 	INIT_WORK(&hdev->connectable_update, connectable_update_work); | 
 | 	INIT_WORK(&hdev->discoverable_update, discoverable_update_work); | 
 | 	INIT_DELAYED_WORK(&hdev->discov_off, discov_off); | 
 | 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); | 
 | 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); | 
 | 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); | 
 | 	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); | 
 | } | 
 |  | 
 | void hci_request_cancel_all(struct hci_dev *hdev) | 
 | { | 
 | 	hci_req_sync_cancel(hdev, ENODEV); | 
 |  | 
 | 	cancel_work_sync(&hdev->discov_update); | 
 | 	cancel_work_sync(&hdev->bg_scan_update); | 
 | 	cancel_work_sync(&hdev->scan_update); | 
 | 	cancel_work_sync(&hdev->connectable_update); | 
 | 	cancel_work_sync(&hdev->discoverable_update); | 
 | 	cancel_delayed_work_sync(&hdev->discov_off); | 
 | 	cancel_delayed_work_sync(&hdev->le_scan_disable); | 
 | 	cancel_delayed_work_sync(&hdev->le_scan_restart); | 
 |  | 
 | 	if (hdev->adv_instance_timeout) { | 
 | 		cancel_delayed_work_sync(&hdev->adv_instance_expire); | 
 | 		hdev->adv_instance_timeout = 0; | 
 | 	} | 
 |  | 
 | 	cancel_interleave_scan(hdev); | 
 | } |