|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/mm/memory_hotplug.c | 
|  | * | 
|  | *  Copyright (C) | 
|  | */ | 
|  |  | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/page-isolation.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/firmware-map.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/compaction.h> | 
|  | #include <linux/rmap.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "shuffle.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | * memory_hotplug.memmap_on_memory parameter | 
|  | */ | 
|  | static bool memmap_on_memory __ro_after_init; | 
|  | #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY | 
|  | module_param(memmap_on_memory, bool, 0444); | 
|  | MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); | 
|  | #endif | 
|  |  | 
|  | enum { | 
|  | ONLINE_POLICY_CONTIG_ZONES = 0, | 
|  | ONLINE_POLICY_AUTO_MOVABLE, | 
|  | }; | 
|  |  | 
|  | const char *online_policy_to_str[] = { | 
|  | [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", | 
|  | [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", | 
|  | }; | 
|  |  | 
|  | static int set_online_policy(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | int ret = sysfs_match_string(online_policy_to_str, val); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | *((int *)kp->arg) = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_online_policy(char *buffer, const struct kernel_param *kp) | 
|  | { | 
|  | return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * memory_hotplug.online_policy: configure online behavior when onlining without | 
|  | * specifying a zone (MMOP_ONLINE) | 
|  | * | 
|  | * "contig-zones": keep zone contiguous | 
|  | * "auto-movable": online memory to ZONE_MOVABLE if the configuration | 
|  | *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it | 
|  | */ | 
|  | static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; | 
|  | static const struct kernel_param_ops online_policy_ops = { | 
|  | .set = set_online_policy, | 
|  | .get = get_online_policy, | 
|  | }; | 
|  | module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); | 
|  | MODULE_PARM_DESC(online_policy, | 
|  | "Set the online policy (\"contig-zones\", \"auto-movable\") " | 
|  | "Default: \"contig-zones\""); | 
|  |  | 
|  | /* | 
|  | * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio | 
|  | * | 
|  | * The ratio represent an upper limit and the kernel might decide to not | 
|  | * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory | 
|  | * doesn't allow for more MOVABLE memory. | 
|  | */ | 
|  | static unsigned int auto_movable_ratio __read_mostly = 301; | 
|  | module_param(auto_movable_ratio, uint, 0644); | 
|  | MODULE_PARM_DESC(auto_movable_ratio, | 
|  | "Set the maximum ratio of MOVABLE:KERNEL memory in the system " | 
|  | "in percent for \"auto-movable\" online policy. Default: 301"); | 
|  |  | 
|  | /* | 
|  | * memory_hotplug.auto_movable_numa_aware: consider numa node stats | 
|  | */ | 
|  | #ifdef CONFIG_NUMA | 
|  | static bool auto_movable_numa_aware __read_mostly = true; | 
|  | module_param(auto_movable_numa_aware, bool, 0644); | 
|  | MODULE_PARM_DESC(auto_movable_numa_aware, | 
|  | "Consider numa node stats in addition to global stats in " | 
|  | "\"auto-movable\" online policy. Default: true"); | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * online_page_callback contains pointer to current page onlining function. | 
|  | * Initially it is generic_online_page(). If it is required it could be | 
|  | * changed by calling set_online_page_callback() for callback registration | 
|  | * and restore_online_page_callback() for generic callback restore. | 
|  | */ | 
|  |  | 
|  | static online_page_callback_t online_page_callback = generic_online_page; | 
|  | static DEFINE_MUTEX(online_page_callback_lock); | 
|  |  | 
|  | DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); | 
|  |  | 
|  | void get_online_mems(void) | 
|  | { | 
|  | percpu_down_read(&mem_hotplug_lock); | 
|  | } | 
|  |  | 
|  | void put_online_mems(void) | 
|  | { | 
|  | percpu_up_read(&mem_hotplug_lock); | 
|  | } | 
|  |  | 
|  | bool movable_node_enabled = false; | 
|  |  | 
|  | #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE | 
|  | int mhp_default_online_type = MMOP_OFFLINE; | 
|  | #else | 
|  | int mhp_default_online_type = MMOP_ONLINE; | 
|  | #endif | 
|  |  | 
|  | static int __init setup_memhp_default_state(char *str) | 
|  | { | 
|  | const int online_type = mhp_online_type_from_str(str); | 
|  |  | 
|  | if (online_type >= 0) | 
|  | mhp_default_online_type = online_type; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("memhp_default_state=", setup_memhp_default_state); | 
|  |  | 
|  | void mem_hotplug_begin(void) | 
|  | { | 
|  | cpus_read_lock(); | 
|  | percpu_down_write(&mem_hotplug_lock); | 
|  | } | 
|  |  | 
|  | void mem_hotplug_done(void) | 
|  | { | 
|  | percpu_up_write(&mem_hotplug_lock); | 
|  | cpus_read_unlock(); | 
|  | } | 
|  |  | 
|  | u64 max_mem_size = U64_MAX; | 
|  |  | 
|  | /* add this memory to iomem resource */ | 
|  | static struct resource *register_memory_resource(u64 start, u64 size, | 
|  | const char *resource_name) | 
|  | { | 
|  | struct resource *res; | 
|  | unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; | 
|  |  | 
|  | if (strcmp(resource_name, "System RAM")) | 
|  | flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; | 
|  |  | 
|  | if (!mhp_range_allowed(start, size, true)) | 
|  | return ERR_PTR(-E2BIG); | 
|  |  | 
|  | /* | 
|  | * Make sure value parsed from 'mem=' only restricts memory adding | 
|  | * while booting, so that memory hotplug won't be impacted. Please | 
|  | * refer to document of 'mem=' in kernel-parameters.txt for more | 
|  | * details. | 
|  | */ | 
|  | if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) | 
|  | return ERR_PTR(-E2BIG); | 
|  |  | 
|  | /* | 
|  | * Request ownership of the new memory range.  This might be | 
|  | * a child of an existing resource that was present but | 
|  | * not marked as busy. | 
|  | */ | 
|  | res = __request_region(&iomem_resource, start, size, | 
|  | resource_name, flags); | 
|  |  | 
|  | if (!res) { | 
|  | pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", | 
|  | start, start + size); | 
|  | return ERR_PTR(-EEXIST); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void release_memory_resource(struct resource *res) | 
|  | { | 
|  | if (!res) | 
|  | return; | 
|  | release_resource(res); | 
|  | kfree(res); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE | 
|  | static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, | 
|  | const char *reason) | 
|  | { | 
|  | /* | 
|  | * Disallow all operations smaller than a sub-section and only | 
|  | * allow operations smaller than a section for | 
|  | * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() | 
|  | * enforces a larger memory_block_size_bytes() granularity for | 
|  | * memory that will be marked online, so this check should only | 
|  | * fire for direct arch_{add,remove}_memory() users outside of | 
|  | * add_memory_resource(). | 
|  | */ | 
|  | unsigned long min_align; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) | 
|  | min_align = PAGES_PER_SUBSECTION; | 
|  | else | 
|  | min_align = PAGES_PER_SECTION; | 
|  | if (!IS_ALIGNED(pfn, min_align) | 
|  | || !IS_ALIGNED(nr_pages, min_align)) { | 
|  | WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", | 
|  | reason, pfn, pfn + nr_pages - 1); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return page for the valid pfn only if the page is online. All pfn | 
|  | * walkers which rely on the fully initialized page->flags and others | 
|  | * should use this rather than pfn_valid && pfn_to_page | 
|  | */ | 
|  | struct page *pfn_to_online_page(unsigned long pfn) | 
|  | { | 
|  | unsigned long nr = pfn_to_section_nr(pfn); | 
|  | struct dev_pagemap *pgmap; | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (nr >= NR_MEM_SECTIONS) | 
|  | return NULL; | 
|  |  | 
|  | ms = __nr_to_section(nr); | 
|  | if (!online_section(ms)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Save some code text when online_section() + | 
|  | * pfn_section_valid() are sufficient. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) | 
|  | return NULL; | 
|  |  | 
|  | if (!pfn_section_valid(ms, pfn)) | 
|  | return NULL; | 
|  |  | 
|  | if (!online_device_section(ms)) | 
|  | return pfn_to_page(pfn); | 
|  |  | 
|  | /* | 
|  | * Slowpath: when ZONE_DEVICE collides with | 
|  | * ZONE_{NORMAL,MOVABLE} within the same section some pfns in | 
|  | * the section may be 'offline' but 'valid'. Only | 
|  | * get_dev_pagemap() can determine sub-section online status. | 
|  | */ | 
|  | pgmap = get_dev_pagemap(pfn, NULL); | 
|  | put_dev_pagemap(pgmap); | 
|  |  | 
|  | /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ | 
|  | if (pgmap) | 
|  | return NULL; | 
|  |  | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pfn_to_online_page); | 
|  |  | 
|  | /* | 
|  | * Reasonably generic function for adding memory.  It is | 
|  | * expected that archs that support memory hotplug will | 
|  | * call this function after deciding the zone to which to | 
|  | * add the new pages. | 
|  | */ | 
|  | int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, | 
|  | struct mhp_params *params) | 
|  | { | 
|  | const unsigned long end_pfn = pfn + nr_pages; | 
|  | unsigned long cur_nr_pages; | 
|  | int err; | 
|  | struct vmem_altmap *altmap = params->altmap; | 
|  |  | 
|  | if (WARN_ON_ONCE(!params->pgprot.pgprot)) | 
|  | return -EINVAL; | 
|  |  | 
|  | VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); | 
|  |  | 
|  | if (altmap) { | 
|  | /* | 
|  | * Validate altmap is within bounds of the total request | 
|  | */ | 
|  | if (altmap->base_pfn != pfn | 
|  | || vmem_altmap_offset(altmap) > nr_pages) { | 
|  | pr_warn_once("memory add fail, invalid altmap\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | altmap->alloc = 0; | 
|  | } | 
|  |  | 
|  | err = check_pfn_span(pfn, nr_pages, "add"); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (; pfn < end_pfn; pfn += cur_nr_pages) { | 
|  | /* Select all remaining pages up to the next section boundary */ | 
|  | cur_nr_pages = min(end_pfn - pfn, | 
|  | SECTION_ALIGN_UP(pfn + 1) - pfn); | 
|  | err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); | 
|  | if (err) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | vmemmap_populate_print_last(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ | 
|  | static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, | 
|  | unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { | 
|  | if (unlikely(!pfn_to_online_page(start_pfn))) | 
|  | continue; | 
|  |  | 
|  | if (unlikely(pfn_to_nid(start_pfn) != nid)) | 
|  | continue; | 
|  |  | 
|  | if (zone != page_zone(pfn_to_page(start_pfn))) | 
|  | continue; | 
|  |  | 
|  | return start_pfn; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ | 
|  | static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, | 
|  | unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | /* pfn is the end pfn of a memory section. */ | 
|  | pfn = end_pfn - 1; | 
|  | for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { | 
|  | if (unlikely(!pfn_to_online_page(pfn))) | 
|  | continue; | 
|  |  | 
|  | if (unlikely(pfn_to_nid(pfn) != nid)) | 
|  | continue; | 
|  |  | 
|  | if (zone != page_zone(pfn_to_page(pfn))) | 
|  | continue; | 
|  |  | 
|  | return pfn; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | int nid = zone_to_nid(zone); | 
|  |  | 
|  | if (zone->zone_start_pfn == start_pfn) { | 
|  | /* | 
|  | * If the section is smallest section in the zone, it need | 
|  | * shrink zone->zone_start_pfn and zone->zone_spanned_pages. | 
|  | * In this case, we find second smallest valid mem_section | 
|  | * for shrinking zone. | 
|  | */ | 
|  | pfn = find_smallest_section_pfn(nid, zone, end_pfn, | 
|  | zone_end_pfn(zone)); | 
|  | if (pfn) { | 
|  | zone->spanned_pages = zone_end_pfn(zone) - pfn; | 
|  | zone->zone_start_pfn = pfn; | 
|  | } else { | 
|  | zone->zone_start_pfn = 0; | 
|  | zone->spanned_pages = 0; | 
|  | } | 
|  | } else if (zone_end_pfn(zone) == end_pfn) { | 
|  | /* | 
|  | * If the section is biggest section in the zone, it need | 
|  | * shrink zone->spanned_pages. | 
|  | * In this case, we find second biggest valid mem_section for | 
|  | * shrinking zone. | 
|  | */ | 
|  | pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, | 
|  | start_pfn); | 
|  | if (pfn) | 
|  | zone->spanned_pages = pfn - zone->zone_start_pfn + 1; | 
|  | else { | 
|  | zone->zone_start_pfn = 0; | 
|  | zone->spanned_pages = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_pgdat_span(struct pglist_data *pgdat) | 
|  | { | 
|  | unsigned long node_start_pfn = 0, node_end_pfn = 0; | 
|  | struct zone *zone; | 
|  |  | 
|  | for (zone = pgdat->node_zones; | 
|  | zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { | 
|  | unsigned long end_pfn = zone_end_pfn(zone); | 
|  |  | 
|  | /* No need to lock the zones, they can't change. */ | 
|  | if (!zone->spanned_pages) | 
|  | continue; | 
|  | if (!node_end_pfn) { | 
|  | node_start_pfn = zone->zone_start_pfn; | 
|  | node_end_pfn = end_pfn; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (end_pfn > node_end_pfn) | 
|  | node_end_pfn = end_pfn; | 
|  | if (zone->zone_start_pfn < node_start_pfn) | 
|  | node_start_pfn = zone->zone_start_pfn; | 
|  | } | 
|  |  | 
|  | pgdat->node_start_pfn = node_start_pfn; | 
|  | pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; | 
|  | } | 
|  |  | 
|  | void __ref remove_pfn_range_from_zone(struct zone *zone, | 
|  | unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | const unsigned long end_pfn = start_pfn + nr_pages; | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | unsigned long pfn, cur_nr_pages; | 
|  |  | 
|  | /* Poison struct pages because they are now uninitialized again. */ | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { | 
|  | cond_resched(); | 
|  |  | 
|  | /* Select all remaining pages up to the next section boundary */ | 
|  | cur_nr_pages = | 
|  | min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); | 
|  | page_init_poison(pfn_to_page(pfn), | 
|  | sizeof(struct page) * cur_nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zone shrinking code cannot properly deal with ZONE_DEVICE. So | 
|  | * we will not try to shrink the zones - which is okay as | 
|  | * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. | 
|  | */ | 
|  | if (zone_is_zone_device(zone)) | 
|  | return; | 
|  |  | 
|  | clear_zone_contiguous(zone); | 
|  |  | 
|  | shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); | 
|  | update_pgdat_span(pgdat); | 
|  |  | 
|  | set_zone_contiguous(zone); | 
|  | } | 
|  |  | 
|  | static void __remove_section(unsigned long pfn, unsigned long nr_pages, | 
|  | unsigned long map_offset, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | struct mem_section *ms = __pfn_to_section(pfn); | 
|  |  | 
|  | if (WARN_ON_ONCE(!valid_section(ms))) | 
|  | return; | 
|  |  | 
|  | sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __remove_pages() - remove sections of pages | 
|  | * @pfn: starting pageframe (must be aligned to start of a section) | 
|  | * @nr_pages: number of pages to remove (must be multiple of section size) | 
|  | * @altmap: alternative device page map or %NULL if default memmap is used | 
|  | * | 
|  | * Generic helper function to remove section mappings and sysfs entries | 
|  | * for the section of the memory we are removing. Caller needs to make | 
|  | * sure that pages are marked reserved and zones are adjust properly by | 
|  | * calling offline_pages(). | 
|  | */ | 
|  | void __remove_pages(unsigned long pfn, unsigned long nr_pages, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | const unsigned long end_pfn = pfn + nr_pages; | 
|  | unsigned long cur_nr_pages; | 
|  | unsigned long map_offset = 0; | 
|  |  | 
|  | map_offset = vmem_altmap_offset(altmap); | 
|  |  | 
|  | if (check_pfn_span(pfn, nr_pages, "remove")) | 
|  | return; | 
|  |  | 
|  | for (; pfn < end_pfn; pfn += cur_nr_pages) { | 
|  | cond_resched(); | 
|  | /* Select all remaining pages up to the next section boundary */ | 
|  | cur_nr_pages = min(end_pfn - pfn, | 
|  | SECTION_ALIGN_UP(pfn + 1) - pfn); | 
|  | __remove_section(pfn, cur_nr_pages, map_offset, altmap); | 
|  | map_offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int set_online_page_callback(online_page_callback_t callback) | 
|  | { | 
|  | int rc = -EINVAL; | 
|  |  | 
|  | get_online_mems(); | 
|  | mutex_lock(&online_page_callback_lock); | 
|  |  | 
|  | if (online_page_callback == generic_online_page) { | 
|  | online_page_callback = callback; | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&online_page_callback_lock); | 
|  | put_online_mems(); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_online_page_callback); | 
|  |  | 
|  | int restore_online_page_callback(online_page_callback_t callback) | 
|  | { | 
|  | int rc = -EINVAL; | 
|  |  | 
|  | get_online_mems(); | 
|  | mutex_lock(&online_page_callback_lock); | 
|  |  | 
|  | if (online_page_callback == callback) { | 
|  | online_page_callback = generic_online_page; | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&online_page_callback_lock); | 
|  | put_online_mems(); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(restore_online_page_callback); | 
|  |  | 
|  | void generic_online_page(struct page *page, unsigned int order) | 
|  | { | 
|  | /* | 
|  | * Freeing the page with debug_pagealloc enabled will try to unmap it, | 
|  | * so we should map it first. This is better than introducing a special | 
|  | * case in page freeing fast path. | 
|  | */ | 
|  | debug_pagealloc_map_pages(page, 1 << order); | 
|  | __free_pages_core(page, order); | 
|  | totalram_pages_add(1UL << order); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (PageHighMem(page)) | 
|  | totalhigh_pages_add(1UL << order); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(generic_online_page); | 
|  |  | 
|  | static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) | 
|  | { | 
|  | const unsigned long end_pfn = start_pfn + nr_pages; | 
|  | unsigned long pfn; | 
|  |  | 
|  | /* | 
|  | * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might | 
|  | * decide to not expose all pages to the buddy (e.g., expose them | 
|  | * later). We account all pages as being online and belonging to this | 
|  | * zone ("present"). | 
|  | * When using memmap_on_memory, the range might not be aligned to | 
|  | * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect | 
|  | * this and the first chunk to online will be pageblock_nr_pages. | 
|  | */ | 
|  | for (pfn = start_pfn; pfn < end_pfn;) { | 
|  | int order = min(MAX_ORDER - 1UL, __ffs(pfn)); | 
|  |  | 
|  | (*online_page_callback)(pfn_to_page(pfn), order); | 
|  | pfn += (1UL << order); | 
|  | } | 
|  |  | 
|  | /* mark all involved sections as online */ | 
|  | online_mem_sections(start_pfn, end_pfn); | 
|  | } | 
|  |  | 
|  | /* check which state of node_states will be changed when online memory */ | 
|  | static void node_states_check_changes_online(unsigned long nr_pages, | 
|  | struct zone *zone, struct memory_notify *arg) | 
|  | { | 
|  | int nid = zone_to_nid(zone); | 
|  |  | 
|  | arg->status_change_nid = NUMA_NO_NODE; | 
|  | arg->status_change_nid_normal = NUMA_NO_NODE; | 
|  | arg->status_change_nid_high = NUMA_NO_NODE; | 
|  |  | 
|  | if (!node_state(nid, N_MEMORY)) | 
|  | arg->status_change_nid = nid; | 
|  | if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) | 
|  | arg->status_change_nid_normal = nid; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) | 
|  | arg->status_change_nid_high = nid; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void node_states_set_node(int node, struct memory_notify *arg) | 
|  | { | 
|  | if (arg->status_change_nid_normal >= 0) | 
|  | node_set_state(node, N_NORMAL_MEMORY); | 
|  |  | 
|  | if (arg->status_change_nid_high >= 0) | 
|  | node_set_state(node, N_HIGH_MEMORY); | 
|  |  | 
|  | if (arg->status_change_nid >= 0) | 
|  | node_set_state(node, N_MEMORY); | 
|  | } | 
|  |  | 
|  | static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long old_end_pfn = zone_end_pfn(zone); | 
|  |  | 
|  | if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) | 
|  | zone->zone_start_pfn = start_pfn; | 
|  |  | 
|  | zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; | 
|  | } | 
|  |  | 
|  | static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long old_end_pfn = pgdat_end_pfn(pgdat); | 
|  |  | 
|  | if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) | 
|  | pgdat->node_start_pfn = start_pfn; | 
|  |  | 
|  | pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void section_taint_zone_device(unsigned long pfn) | 
|  | { | 
|  | struct mem_section *ms = __pfn_to_section(pfn); | 
|  |  | 
|  | ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Associate the pfn range with the given zone, initializing the memmaps | 
|  | * and resizing the pgdat/zone data to span the added pages. After this | 
|  | * call, all affected pages are PG_reserved. | 
|  | * | 
|  | * All aligned pageblocks are initialized to the specified migratetype | 
|  | * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related | 
|  | * zone stats (e.g., nr_isolate_pageblock) are touched. | 
|  | */ | 
|  | void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, | 
|  | unsigned long nr_pages, | 
|  | struct vmem_altmap *altmap, int migratetype) | 
|  | { | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | int nid = pgdat->node_id; | 
|  |  | 
|  | clear_zone_contiguous(zone); | 
|  |  | 
|  | if (zone_is_empty(zone)) | 
|  | init_currently_empty_zone(zone, start_pfn, nr_pages); | 
|  | resize_zone_range(zone, start_pfn, nr_pages); | 
|  | resize_pgdat_range(pgdat, start_pfn, nr_pages); | 
|  |  | 
|  | /* | 
|  | * Subsection population requires care in pfn_to_online_page(). | 
|  | * Set the taint to enable the slow path detection of | 
|  | * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE} | 
|  | * section. | 
|  | */ | 
|  | if (zone_is_zone_device(zone)) { | 
|  | if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) | 
|  | section_taint_zone_device(start_pfn); | 
|  | if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) | 
|  | section_taint_zone_device(start_pfn + nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO now we have a visible range of pages which are not associated | 
|  | * with their zone properly. Not nice but set_pfnblock_flags_mask | 
|  | * expects the zone spans the pfn range. All the pages in the range | 
|  | * are reserved so nobody should be touching them so we should be safe | 
|  | */ | 
|  | memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, | 
|  | MEMINIT_HOTPLUG, altmap, migratetype); | 
|  |  | 
|  | set_zone_contiguous(zone); | 
|  | } | 
|  |  | 
|  | struct auto_movable_stats { | 
|  | unsigned long kernel_early_pages; | 
|  | unsigned long movable_pages; | 
|  | }; | 
|  |  | 
|  | static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, | 
|  | struct zone *zone) | 
|  | { | 
|  | if (zone_idx(zone) == ZONE_MOVABLE) { | 
|  | stats->movable_pages += zone->present_pages; | 
|  | } else { | 
|  | stats->kernel_early_pages += zone->present_early_pages; | 
|  | #ifdef CONFIG_CMA | 
|  | /* | 
|  | * CMA pages (never on hotplugged memory) behave like | 
|  | * ZONE_MOVABLE. | 
|  | */ | 
|  | stats->movable_pages += zone->cma_pages; | 
|  | stats->kernel_early_pages -= zone->cma_pages; | 
|  | #endif /* CONFIG_CMA */ | 
|  | } | 
|  | } | 
|  | struct auto_movable_group_stats { | 
|  | unsigned long movable_pages; | 
|  | unsigned long req_kernel_early_pages; | 
|  | }; | 
|  |  | 
|  | static int auto_movable_stats_account_group(struct memory_group *group, | 
|  | void *arg) | 
|  | { | 
|  | const int ratio = READ_ONCE(auto_movable_ratio); | 
|  | struct auto_movable_group_stats *stats = arg; | 
|  | long pages; | 
|  |  | 
|  | /* | 
|  | * We don't support modifying the config while the auto-movable online | 
|  | * policy is already enabled. Just avoid the division by zero below. | 
|  | */ | 
|  | if (!ratio) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Calculate how many early kernel pages this group requires to | 
|  | * satisfy the configured zone ratio. | 
|  | */ | 
|  | pages = group->present_movable_pages * 100 / ratio; | 
|  | pages -= group->present_kernel_pages; | 
|  |  | 
|  | if (pages > 0) | 
|  | stats->req_kernel_early_pages += pages; | 
|  | stats->movable_pages += group->present_movable_pages; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool auto_movable_can_online_movable(int nid, struct memory_group *group, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long kernel_early_pages, movable_pages; | 
|  | struct auto_movable_group_stats group_stats = {}; | 
|  | struct auto_movable_stats stats = {}; | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | struct zone *zone; | 
|  | int i; | 
|  |  | 
|  | /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ | 
|  | if (nid == NUMA_NO_NODE) { | 
|  | /* TODO: cache values */ | 
|  | for_each_populated_zone(zone) | 
|  | auto_movable_stats_account_zone(&stats, zone); | 
|  | } else { | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | zone = pgdat->node_zones + i; | 
|  | if (populated_zone(zone)) | 
|  | auto_movable_stats_account_zone(&stats, zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | kernel_early_pages = stats.kernel_early_pages; | 
|  | movable_pages = stats.movable_pages; | 
|  |  | 
|  | /* | 
|  | * Kernel memory inside dynamic memory group allows for more MOVABLE | 
|  | * memory within the same group. Remove the effect of all but the | 
|  | * current group from the stats. | 
|  | */ | 
|  | walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, | 
|  | group, &group_stats); | 
|  | if (kernel_early_pages <= group_stats.req_kernel_early_pages) | 
|  | return false; | 
|  | kernel_early_pages -= group_stats.req_kernel_early_pages; | 
|  | movable_pages -= group_stats.movable_pages; | 
|  |  | 
|  | if (group && group->is_dynamic) | 
|  | kernel_early_pages += group->present_kernel_pages; | 
|  |  | 
|  | /* | 
|  | * Test if we could online the given number of pages to ZONE_MOVABLE | 
|  | * and still stay in the configured ratio. | 
|  | */ | 
|  | movable_pages += nr_pages; | 
|  | return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a default kernel memory zone for the given pfn range. | 
|  | * If no kernel zone covers this pfn range it will automatically go | 
|  | * to the ZONE_NORMAL. | 
|  | */ | 
|  | static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | struct pglist_data *pgdat = NODE_DATA(nid); | 
|  | int zid; | 
|  |  | 
|  | for (zid = 0; zid <= ZONE_NORMAL; zid++) { | 
|  | struct zone *zone = &pgdat->node_zones[zid]; | 
|  |  | 
|  | if (zone_intersects(zone, start_pfn, nr_pages)) | 
|  | return zone; | 
|  | } | 
|  |  | 
|  | return &pgdat->node_zones[ZONE_NORMAL]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine to which zone to online memory dynamically based on user | 
|  | * configuration and system stats. We care about the following ratio: | 
|  | * | 
|  | *   MOVABLE : KERNEL | 
|  | * | 
|  | * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in | 
|  | * one of the kernel zones. CMA pages inside one of the kernel zones really | 
|  | * behaves like ZONE_MOVABLE, so we treat them accordingly. | 
|  | * | 
|  | * We don't allow for hotplugged memory in a KERNEL zone to increase the | 
|  | * amount of MOVABLE memory we can have, so we end up with: | 
|  | * | 
|  | *   MOVABLE : KERNEL_EARLY | 
|  | * | 
|  | * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze | 
|  | * boot. We base our calculation on KERNEL_EARLY internally, because: | 
|  | * | 
|  | * a) Hotplugged memory in one of the kernel zones can sometimes still get | 
|  | *    hotunplugged, especially when hot(un)plugging individual memory blocks. | 
|  | *    There is no coordination across memory devices, therefore "automatic" | 
|  | *    hotunplugging, as implemented in hypervisors, could result in zone | 
|  | *    imbalances. | 
|  | * b) Early/boot memory in one of the kernel zones can usually not get | 
|  | *    hotunplugged again (e.g., no firmware interface to unplug, fragmented | 
|  | *    with unmovable allocations). While there are corner cases where it might | 
|  | *    still work, it is barely relevant in practice. | 
|  | * | 
|  | * Exceptions are dynamic memory groups, which allow for more MOVABLE | 
|  | * memory within the same memory group -- because in that case, there is | 
|  | * coordination within the single memory device managed by a single driver. | 
|  | * | 
|  | * We rely on "present pages" instead of "managed pages", as the latter is | 
|  | * highly unreliable and dynamic in virtualized environments, and does not | 
|  | * consider boot time allocations. For example, memory ballooning adjusts the | 
|  | * managed pages when inflating/deflating the balloon, and balloon compaction | 
|  | * can even migrate inflated pages between zones. | 
|  | * | 
|  | * Using "present pages" is better but some things to keep in mind are: | 
|  | * | 
|  | * a) Some memblock allocations, such as for the crashkernel area, are | 
|  | *    effectively unused by the kernel, yet they account to "present pages". | 
|  | *    Fortunately, these allocations are comparatively small in relevant setups | 
|  | *    (e.g., fraction of system memory). | 
|  | * b) Some hotplugged memory blocks in virtualized environments, esecially | 
|  | *    hotplugged by virtio-mem, look like they are completely present, however, | 
|  | *    only parts of the memory block are actually currently usable. | 
|  | *    "present pages" is an upper limit that can get reached at runtime. As | 
|  | *    we base our calculations on KERNEL_EARLY, this is not an issue. | 
|  | */ | 
|  | static struct zone *auto_movable_zone_for_pfn(int nid, | 
|  | struct memory_group *group, | 
|  | unsigned long pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long online_pages = 0, max_pages, end_pfn; | 
|  | struct page *page; | 
|  |  | 
|  | if (!auto_movable_ratio) | 
|  | goto kernel_zone; | 
|  |  | 
|  | if (group && !group->is_dynamic) { | 
|  | max_pages = group->s.max_pages; | 
|  | online_pages = group->present_movable_pages; | 
|  |  | 
|  | /* If anything is !MOVABLE online the rest !MOVABLE. */ | 
|  | if (group->present_kernel_pages) | 
|  | goto kernel_zone; | 
|  | } else if (!group || group->d.unit_pages == nr_pages) { | 
|  | max_pages = nr_pages; | 
|  | } else { | 
|  | max_pages = group->d.unit_pages; | 
|  | /* | 
|  | * Take a look at all online sections in the current unit. | 
|  | * We can safely assume that all pages within a section belong | 
|  | * to the same zone, because dynamic memory groups only deal | 
|  | * with hotplugged memory. | 
|  | */ | 
|  | pfn = ALIGN_DOWN(pfn, group->d.unit_pages); | 
|  | end_pfn = pfn + group->d.unit_pages; | 
|  | for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 
|  | page = pfn_to_online_page(pfn); | 
|  | if (!page) | 
|  | continue; | 
|  | /* If anything is !MOVABLE online the rest !MOVABLE. */ | 
|  | if (page_zonenum(page) != ZONE_MOVABLE) | 
|  | goto kernel_zone; | 
|  | online_pages += PAGES_PER_SECTION; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Online MOVABLE if we could *currently* online all remaining parts | 
|  | * MOVABLE. We expect to (add+) online them immediately next, so if | 
|  | * nobody interferes, all will be MOVABLE if possible. | 
|  | */ | 
|  | nr_pages = max_pages - online_pages; | 
|  | if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) | 
|  | goto kernel_zone; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | if (auto_movable_numa_aware && | 
|  | !auto_movable_can_online_movable(nid, group, nr_pages)) | 
|  | goto kernel_zone; | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; | 
|  | kernel_zone: | 
|  | return default_kernel_zone_for_pfn(nid, pfn, nr_pages); | 
|  | } | 
|  |  | 
|  | static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, | 
|  | nr_pages); | 
|  | struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; | 
|  | bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); | 
|  | bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); | 
|  |  | 
|  | /* | 
|  | * We inherit the existing zone in a simple case where zones do not | 
|  | * overlap in the given range | 
|  | */ | 
|  | if (in_kernel ^ in_movable) | 
|  | return (in_kernel) ? kernel_zone : movable_zone; | 
|  |  | 
|  | /* | 
|  | * If the range doesn't belong to any zone or two zones overlap in the | 
|  | * given range then we use movable zone only if movable_node is | 
|  | * enabled because we always online to a kernel zone by default. | 
|  | */ | 
|  | return movable_node_enabled ? movable_zone : kernel_zone; | 
|  | } | 
|  |  | 
|  | struct zone *zone_for_pfn_range(int online_type, int nid, | 
|  | struct memory_group *group, unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | if (online_type == MMOP_ONLINE_KERNEL) | 
|  | return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); | 
|  |  | 
|  | if (online_type == MMOP_ONLINE_MOVABLE) | 
|  | return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; | 
|  |  | 
|  | if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) | 
|  | return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); | 
|  |  | 
|  | return default_zone_for_pfn(nid, start_pfn, nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function should only be called by memory_block_{online,offline}, | 
|  | * and {online,offline}_pages. | 
|  | */ | 
|  | void adjust_present_page_count(struct page *page, struct memory_group *group, | 
|  | long nr_pages) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | const bool movable = zone_idx(zone) == ZONE_MOVABLE; | 
|  |  | 
|  | /* | 
|  | * We only support onlining/offlining/adding/removing of complete | 
|  | * memory blocks; therefore, either all is either early or hotplugged. | 
|  | */ | 
|  | if (early_section(__pfn_to_section(page_to_pfn(page)))) | 
|  | zone->present_early_pages += nr_pages; | 
|  | zone->present_pages += nr_pages; | 
|  | zone->zone_pgdat->node_present_pages += nr_pages; | 
|  |  | 
|  | if (group && movable) | 
|  | group->present_movable_pages += nr_pages; | 
|  | else if (group && !movable) | 
|  | group->present_kernel_pages += nr_pages; | 
|  | } | 
|  |  | 
|  | int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, | 
|  | struct zone *zone) | 
|  | { | 
|  | unsigned long end_pfn = pfn + nr_pages; | 
|  | int ret; | 
|  |  | 
|  | ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); | 
|  |  | 
|  | /* | 
|  | * It might be that the vmemmap_pages fully span sections. If that is | 
|  | * the case, mark those sections online here as otherwise they will be | 
|  | * left offline. | 
|  | */ | 
|  | if (nr_pages >= PAGES_PER_SECTION) | 
|  | online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long end_pfn = pfn + nr_pages; | 
|  |  | 
|  | /* | 
|  | * It might be that the vmemmap_pages fully span sections. If that is | 
|  | * the case, mark those sections offline here as otherwise they will be | 
|  | * left online. | 
|  | */ | 
|  | if (nr_pages >= PAGES_PER_SECTION) | 
|  | offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); | 
|  |  | 
|  | /* | 
|  | * The pages associated with this vmemmap have been offlined, so | 
|  | * we can reset its state here. | 
|  | */ | 
|  | remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); | 
|  | kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); | 
|  | } | 
|  |  | 
|  | int __ref online_pages(unsigned long pfn, unsigned long nr_pages, | 
|  | struct zone *zone, struct memory_group *group) | 
|  | { | 
|  | unsigned long flags; | 
|  | int need_zonelists_rebuild = 0; | 
|  | const int nid = zone_to_nid(zone); | 
|  | int ret; | 
|  | struct memory_notify arg; | 
|  |  | 
|  | /* | 
|  | * {on,off}lining is constrained to full memory sections (or more | 
|  | * precisely to memory blocks from the user space POV). | 
|  | * memmap_on_memory is an exception because it reserves initial part | 
|  | * of the physical memory space for vmemmaps. That space is pageblock | 
|  | * aligned. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!nr_pages || | 
|  | !IS_ALIGNED(pfn, pageblock_nr_pages) || | 
|  | !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mem_hotplug_begin(); | 
|  |  | 
|  | /* associate pfn range with the zone */ | 
|  | move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); | 
|  |  | 
|  | arg.start_pfn = pfn; | 
|  | arg.nr_pages = nr_pages; | 
|  | node_states_check_changes_online(nr_pages, zone, &arg); | 
|  |  | 
|  | ret = memory_notify(MEM_GOING_ONLINE, &arg); | 
|  | ret = notifier_to_errno(ret); | 
|  | if (ret) | 
|  | goto failed_addition; | 
|  |  | 
|  | /* | 
|  | * Fixup the number of isolated pageblocks before marking the sections | 
|  | * onlining, such that undo_isolate_page_range() works correctly. | 
|  | */ | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  |  | 
|  | /* | 
|  | * If this zone is not populated, then it is not in zonelist. | 
|  | * This means the page allocator ignores this zone. | 
|  | * So, zonelist must be updated after online. | 
|  | */ | 
|  | if (!populated_zone(zone)) { | 
|  | need_zonelists_rebuild = 1; | 
|  | setup_zone_pageset(zone); | 
|  | } | 
|  |  | 
|  | online_pages_range(pfn, nr_pages); | 
|  | adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); | 
|  |  | 
|  | node_states_set_node(nid, &arg); | 
|  | if (need_zonelists_rebuild) | 
|  | build_all_zonelists(NULL); | 
|  |  | 
|  | /* Basic onlining is complete, allow allocation of onlined pages. */ | 
|  | undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); | 
|  |  | 
|  | /* | 
|  | * Freshly onlined pages aren't shuffled (e.g., all pages are placed to | 
|  | * the tail of the freelist when undoing isolation). Shuffle the whole | 
|  | * zone to make sure the just onlined pages are properly distributed | 
|  | * across the whole freelist - to create an initial shuffle. | 
|  | */ | 
|  | shuffle_zone(zone); | 
|  |  | 
|  | /* reinitialise watermarks and update pcp limits */ | 
|  | init_per_zone_wmark_min(); | 
|  |  | 
|  | kswapd_run(nid); | 
|  | kcompactd_run(nid); | 
|  |  | 
|  | writeback_set_ratelimit(); | 
|  |  | 
|  | memory_notify(MEM_ONLINE, &arg); | 
|  | mem_hotplug_done(); | 
|  | return 0; | 
|  |  | 
|  | failed_addition: | 
|  | pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", | 
|  | (unsigned long long) pfn << PAGE_SHIFT, | 
|  | (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); | 
|  | memory_notify(MEM_CANCEL_ONLINE, &arg); | 
|  | remove_pfn_range_from_zone(zone, pfn, nr_pages); | 
|  | mem_hotplug_done(); | 
|  | return ret; | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ | 
|  |  | 
|  | static void reset_node_present_pages(pg_data_t *pgdat) | 
|  | { | 
|  | struct zone *z; | 
|  |  | 
|  | for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) | 
|  | z->present_pages = 0; | 
|  |  | 
|  | pgdat->node_present_pages = 0; | 
|  | } | 
|  |  | 
|  | /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ | 
|  | static pg_data_t __ref *hotadd_new_pgdat(int nid) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  |  | 
|  | pgdat = NODE_DATA(nid); | 
|  | if (!pgdat) { | 
|  | pgdat = arch_alloc_nodedata(nid); | 
|  | if (!pgdat) | 
|  | return NULL; | 
|  |  | 
|  | pgdat->per_cpu_nodestats = | 
|  | alloc_percpu(struct per_cpu_nodestat); | 
|  | arch_refresh_nodedata(nid, pgdat); | 
|  | } else { | 
|  | int cpu; | 
|  | /* | 
|  | * Reset the nr_zones, order and highest_zoneidx before reuse. | 
|  | * Note that kswapd will init kswapd_highest_zoneidx properly | 
|  | * when it starts in the near future. | 
|  | */ | 
|  | pgdat->nr_zones = 0; | 
|  | pgdat->kswapd_order = 0; | 
|  | pgdat->kswapd_highest_zoneidx = 0; | 
|  | for_each_online_cpu(cpu) { | 
|  | struct per_cpu_nodestat *p; | 
|  |  | 
|  | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | 
|  | memset(p, 0, sizeof(*p)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* we can use NODE_DATA(nid) from here */ | 
|  | pgdat->node_id = nid; | 
|  | pgdat->node_start_pfn = 0; | 
|  |  | 
|  | /* init node's zones as empty zones, we don't have any present pages.*/ | 
|  | free_area_init_core_hotplug(nid); | 
|  |  | 
|  | /* | 
|  | * The node we allocated has no zone fallback lists. For avoiding | 
|  | * to access not-initialized zonelist, build here. | 
|  | */ | 
|  | build_all_zonelists(pgdat); | 
|  |  | 
|  | /* | 
|  | * When memory is hot-added, all the memory is in offline state. So | 
|  | * clear all zones' present_pages because they will be updated in | 
|  | * online_pages() and offline_pages(). | 
|  | */ | 
|  | reset_node_managed_pages(pgdat); | 
|  | reset_node_present_pages(pgdat); | 
|  |  | 
|  | return pgdat; | 
|  | } | 
|  |  | 
|  | static void rollback_node_hotadd(int nid) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | arch_refresh_nodedata(nid, NULL); | 
|  | free_percpu(pgdat->per_cpu_nodestats); | 
|  | arch_free_nodedata(pgdat); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * __try_online_node - online a node if offlined | 
|  | * @nid: the node ID | 
|  | * @set_node_online: Whether we want to online the node | 
|  | * called by cpu_up() to online a node without onlined memory. | 
|  | * | 
|  | * Returns: | 
|  | * 1 -> a new node has been allocated | 
|  | * 0 -> the node is already online | 
|  | * -ENOMEM -> the node could not be allocated | 
|  | */ | 
|  | static int __try_online_node(int nid, bool set_node_online) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | int ret = 1; | 
|  |  | 
|  | if (node_online(nid)) | 
|  | return 0; | 
|  |  | 
|  | pgdat = hotadd_new_pgdat(nid); | 
|  | if (!pgdat) { | 
|  | pr_err("Cannot online node %d due to NULL pgdat\n", nid); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (set_node_online) { | 
|  | node_set_online(nid); | 
|  | ret = register_one_node(nid); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Users of this function always want to online/register the node | 
|  | */ | 
|  | int try_online_node(int nid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mem_hotplug_begin(); | 
|  | ret =  __try_online_node(nid, true); | 
|  | mem_hotplug_done(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_hotplug_memory_range(u64 start, u64 size) | 
|  | { | 
|  | /* memory range must be block size aligned */ | 
|  | if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || | 
|  | !IS_ALIGNED(size, memory_block_size_bytes())) { | 
|  | pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", | 
|  | memory_block_size_bytes(), start, size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int online_memory_block(struct memory_block *mem, void *arg) | 
|  | { | 
|  | mem->online_type = mhp_default_online_type; | 
|  | return device_online(&mem->dev); | 
|  | } | 
|  |  | 
|  | bool mhp_supports_memmap_on_memory(unsigned long size) | 
|  | { | 
|  | unsigned long nr_vmemmap_pages = size / PAGE_SIZE; | 
|  | unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); | 
|  | unsigned long remaining_size = size - vmemmap_size; | 
|  |  | 
|  | /* | 
|  | * Besides having arch support and the feature enabled at runtime, we | 
|  | * need a few more assumptions to hold true: | 
|  | * | 
|  | * a) We span a single memory block: memory onlining/offlinin;g happens | 
|  | *    in memory block granularity. We don't want the vmemmap of online | 
|  | *    memory blocks to reside on offline memory blocks. In the future, | 
|  | *    we might want to support variable-sized memory blocks to make the | 
|  | *    feature more versatile. | 
|  | * | 
|  | * b) The vmemmap pages span complete PMDs: We don't want vmemmap code | 
|  | *    to populate memory from the altmap for unrelated parts (i.e., | 
|  | *    other memory blocks) | 
|  | * | 
|  | * c) The vmemmap pages (and thereby the pages that will be exposed to | 
|  | *    the buddy) have to cover full pageblocks: memory onlining/offlining | 
|  | *    code requires applicable ranges to be page-aligned, for example, to | 
|  | *    set the migratetypes properly. | 
|  | * | 
|  | * TODO: Although we have a check here to make sure that vmemmap pages | 
|  | *       fully populate a PMD, it is not the right place to check for | 
|  | *       this. A much better solution involves improving vmemmap code | 
|  | *       to fallback to base pages when trying to populate vmemmap using | 
|  | *       altmap as an alternative source of memory, and we do not exactly | 
|  | *       populate a single PMD. | 
|  | */ | 
|  | return memmap_on_memory && | 
|  | !hugetlb_free_vmemmap_enabled && | 
|  | IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) && | 
|  | size == memory_block_size_bytes() && | 
|  | IS_ALIGNED(vmemmap_size, PMD_SIZE) && | 
|  | IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: The caller must call lock_device_hotplug() to serialize hotplug | 
|  | * and online/offline operations (triggered e.g. by sysfs). | 
|  | * | 
|  | * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG | 
|  | */ | 
|  | int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) | 
|  | { | 
|  | struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; | 
|  | struct vmem_altmap mhp_altmap = {}; | 
|  | struct memory_group *group = NULL; | 
|  | u64 start, size; | 
|  | bool new_node = false; | 
|  | int ret; | 
|  |  | 
|  | start = res->start; | 
|  | size = resource_size(res); | 
|  |  | 
|  | ret = check_hotplug_memory_range(start, size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (mhp_flags & MHP_NID_IS_MGID) { | 
|  | group = memory_group_find_by_id(nid); | 
|  | if (!group) | 
|  | return -EINVAL; | 
|  | nid = group->nid; | 
|  | } | 
|  |  | 
|  | if (!node_possible(nid)) { | 
|  | WARN(1, "node %d was absent from the node_possible_map\n", nid); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mem_hotplug_begin(); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { | 
|  | ret = memblock_add_node(start, size, nid, MEMBLOCK_NONE); | 
|  | if (ret) | 
|  | goto error_mem_hotplug_end; | 
|  | } | 
|  |  | 
|  | ret = __try_online_node(nid, false); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | new_node = ret; | 
|  |  | 
|  | /* | 
|  | * Self hosted memmap array | 
|  | */ | 
|  | if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { | 
|  | if (!mhp_supports_memmap_on_memory(size)) { | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  | mhp_altmap.free = PHYS_PFN(size); | 
|  | mhp_altmap.base_pfn = PHYS_PFN(start); | 
|  | params.altmap = &mhp_altmap; | 
|  | } | 
|  |  | 
|  | /* call arch's memory hotadd */ | 
|  | ret = arch_add_memory(nid, start, size, ¶ms); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | /* create memory block devices after memory was added */ | 
|  | ret = create_memory_block_devices(start, size, mhp_altmap.alloc, | 
|  | group); | 
|  | if (ret) { | 
|  | arch_remove_memory(start, size, NULL); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (new_node) { | 
|  | /* If sysfs file of new node can't be created, cpu on the node | 
|  | * can't be hot-added. There is no rollback way now. | 
|  | * So, check by BUG_ON() to catch it reluctantly.. | 
|  | * We online node here. We can't roll back from here. | 
|  | */ | 
|  | node_set_online(nid); | 
|  | ret = __register_one_node(nid); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | /* link memory sections under this node.*/ | 
|  | link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), | 
|  | MEMINIT_HOTPLUG); | 
|  |  | 
|  | /* create new memmap entry */ | 
|  | if (!strcmp(res->name, "System RAM")) | 
|  | firmware_map_add_hotplug(start, start + size, "System RAM"); | 
|  |  | 
|  | /* device_online() will take the lock when calling online_pages() */ | 
|  | mem_hotplug_done(); | 
|  |  | 
|  | /* | 
|  | * In case we're allowed to merge the resource, flag it and trigger | 
|  | * merging now that adding succeeded. | 
|  | */ | 
|  | if (mhp_flags & MHP_MERGE_RESOURCE) | 
|  | merge_system_ram_resource(res); | 
|  |  | 
|  | /* online pages if requested */ | 
|  | if (mhp_default_online_type != MMOP_OFFLINE) | 
|  | walk_memory_blocks(start, size, NULL, online_memory_block); | 
|  |  | 
|  | return ret; | 
|  | error: | 
|  | /* rollback pgdat allocation and others */ | 
|  | if (new_node) | 
|  | rollback_node_hotadd(nid); | 
|  | if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) | 
|  | memblock_remove(start, size); | 
|  | error_mem_hotplug_end: | 
|  | mem_hotplug_done(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* requires device_hotplug_lock, see add_memory_resource() */ | 
|  | int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) | 
|  | { | 
|  | struct resource *res; | 
|  | int ret; | 
|  |  | 
|  | res = register_memory_resource(start, size, "System RAM"); | 
|  | if (IS_ERR(res)) | 
|  | return PTR_ERR(res); | 
|  |  | 
|  | ret = add_memory_resource(nid, res, mhp_flags); | 
|  | if (ret < 0) | 
|  | release_memory_resource(res); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | lock_device_hotplug(); | 
|  | rc = __add_memory(nid, start, size, mhp_flags); | 
|  | unlock_device_hotplug(); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_memory); | 
|  |  | 
|  | /* | 
|  | * Add special, driver-managed memory to the system as system RAM. Such | 
|  | * memory is not exposed via the raw firmware-provided memmap as system | 
|  | * RAM, instead, it is detected and added by a driver - during cold boot, | 
|  | * after a reboot, and after kexec. | 
|  | * | 
|  | * Reasons why this memory should not be used for the initial memmap of a | 
|  | * kexec kernel or for placing kexec images: | 
|  | * - The booting kernel is in charge of determining how this memory will be | 
|  | *   used (e.g., use persistent memory as system RAM) | 
|  | * - Coordination with a hypervisor is required before this memory | 
|  | *   can be used (e.g., inaccessible parts). | 
|  | * | 
|  | * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided | 
|  | * memory map") are created. Also, the created memory resource is flagged | 
|  | * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case | 
|  | * this memory as well (esp., not place kexec images onto it). | 
|  | * | 
|  | * The resource_name (visible via /proc/iomem) has to have the format | 
|  | * "System RAM ($DRIVER)". | 
|  | */ | 
|  | int add_memory_driver_managed(int nid, u64 start, u64 size, | 
|  | const char *resource_name, mhp_t mhp_flags) | 
|  | { | 
|  | struct resource *res; | 
|  | int rc; | 
|  |  | 
|  | if (!resource_name || | 
|  | strstr(resource_name, "System RAM (") != resource_name || | 
|  | resource_name[strlen(resource_name) - 1] != ')') | 
|  | return -EINVAL; | 
|  |  | 
|  | lock_device_hotplug(); | 
|  |  | 
|  | res = register_memory_resource(start, size, resource_name); | 
|  | if (IS_ERR(res)) { | 
|  | rc = PTR_ERR(res); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | rc = add_memory_resource(nid, res, mhp_flags); | 
|  | if (rc < 0) | 
|  | release_memory_resource(res); | 
|  |  | 
|  | out_unlock: | 
|  | unlock_device_hotplug(); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_memory_driver_managed); | 
|  |  | 
|  | /* | 
|  | * Platforms should define arch_get_mappable_range() that provides | 
|  | * maximum possible addressable physical memory range for which the | 
|  | * linear mapping could be created. The platform returned address | 
|  | * range must adhere to these following semantics. | 
|  | * | 
|  | * - range.start <= range.end | 
|  | * - Range includes both end points [range.start..range.end] | 
|  | * | 
|  | * There is also a fallback definition provided here, allowing the | 
|  | * entire possible physical address range in case any platform does | 
|  | * not define arch_get_mappable_range(). | 
|  | */ | 
|  | struct range __weak arch_get_mappable_range(void) | 
|  | { | 
|  | struct range mhp_range = { | 
|  | .start = 0UL, | 
|  | .end = -1ULL, | 
|  | }; | 
|  | return mhp_range; | 
|  | } | 
|  |  | 
|  | struct range mhp_get_pluggable_range(bool need_mapping) | 
|  | { | 
|  | const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; | 
|  | struct range mhp_range; | 
|  |  | 
|  | if (need_mapping) { | 
|  | mhp_range = arch_get_mappable_range(); | 
|  | if (mhp_range.start > max_phys) { | 
|  | mhp_range.start = 0; | 
|  | mhp_range.end = 0; | 
|  | } | 
|  | mhp_range.end = min_t(u64, mhp_range.end, max_phys); | 
|  | } else { | 
|  | mhp_range.start = 0; | 
|  | mhp_range.end = max_phys; | 
|  | } | 
|  | return mhp_range; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); | 
|  |  | 
|  | bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) | 
|  | { | 
|  | struct range mhp_range = mhp_get_pluggable_range(need_mapping); | 
|  | u64 end = start + size; | 
|  |  | 
|  | if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) | 
|  | return true; | 
|  |  | 
|  | pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", | 
|  | start, end, mhp_range.start, mhp_range.end); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | /* | 
|  | * Confirm all pages in a range [start, end) belong to the same zone (skipping | 
|  | * memory holes). When true, return the zone. | 
|  | */ | 
|  | struct zone *test_pages_in_a_zone(unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn, sec_end_pfn; | 
|  | struct zone *zone = NULL; | 
|  | struct page *page; | 
|  |  | 
|  | for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); | 
|  | pfn < end_pfn; | 
|  | pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { | 
|  | /* Make sure the memory section is present first */ | 
|  | if (!present_section_nr(pfn_to_section_nr(pfn))) | 
|  | continue; | 
|  | for (; pfn < sec_end_pfn && pfn < end_pfn; | 
|  | pfn += MAX_ORDER_NR_PAGES) { | 
|  | /* Check if we got outside of the zone */ | 
|  | if (zone && !zone_spans_pfn(zone, pfn)) | 
|  | return NULL; | 
|  | page = pfn_to_page(pfn); | 
|  | if (zone && page_zone(page) != zone) | 
|  | return NULL; | 
|  | zone = page_zone(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | return zone; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, | 
|  | * non-lru movable pages and hugepages). Will skip over most unmovable | 
|  | * pages (esp., pages that can be skipped when offlining), but bail out on | 
|  | * definitely unmovable pages. | 
|  | * | 
|  | * Returns: | 
|  | *	0 in case a movable page is found and movable_pfn was updated. | 
|  | *	-ENOENT in case no movable page was found. | 
|  | *	-EBUSY in case a definitely unmovable page was found. | 
|  | */ | 
|  | static int scan_movable_pages(unsigned long start, unsigned long end, | 
|  | unsigned long *movable_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | for (pfn = start; pfn < end; pfn++) { | 
|  | struct page *page, *head; | 
|  | unsigned long skip; | 
|  |  | 
|  | if (!pfn_valid(pfn)) | 
|  | continue; | 
|  | page = pfn_to_page(pfn); | 
|  | if (PageLRU(page)) | 
|  | goto found; | 
|  | if (__PageMovable(page)) | 
|  | goto found; | 
|  |  | 
|  | /* | 
|  | * PageOffline() pages that are not marked __PageMovable() and | 
|  | * have a reference count > 0 (after MEM_GOING_OFFLINE) are | 
|  | * definitely unmovable. If their reference count would be 0, | 
|  | * they could at least be skipped when offlining memory. | 
|  | */ | 
|  | if (PageOffline(page) && page_count(page)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!PageHuge(page)) | 
|  | continue; | 
|  | head = compound_head(page); | 
|  | /* | 
|  | * This test is racy as we hold no reference or lock.  The | 
|  | * hugetlb page could have been free'ed and head is no longer | 
|  | * a hugetlb page before the following check.  In such unlikely | 
|  | * cases false positives and negatives are possible.  Calling | 
|  | * code must deal with these scenarios. | 
|  | */ | 
|  | if (HPageMigratable(head)) | 
|  | goto found; | 
|  | skip = compound_nr(head) - (pfn - page_to_pfn(head)); | 
|  | pfn += skip - 1; | 
|  | } | 
|  | return -ENOENT; | 
|  | found: | 
|  | *movable_pfn = pfn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | struct page *page, *head; | 
|  | int ret = 0; | 
|  | LIST_HEAD(source); | 
|  | static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | if (!pfn_valid(pfn)) | 
|  | continue; | 
|  | page = pfn_to_page(pfn); | 
|  | head = compound_head(page); | 
|  |  | 
|  | if (PageHuge(page)) { | 
|  | pfn = page_to_pfn(head) + compound_nr(head) - 1; | 
|  | isolate_hugetlb(head, &source); | 
|  | continue; | 
|  | } else if (PageTransHuge(page)) | 
|  | pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; | 
|  |  | 
|  | /* | 
|  | * HWPoison pages have elevated reference counts so the migration would | 
|  | * fail on them. It also doesn't make any sense to migrate them in the | 
|  | * first place. Still try to unmap such a page in case it is still mapped | 
|  | * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep | 
|  | * the unmap as the catch all safety net). | 
|  | */ | 
|  | if (PageHWPoison(page)) { | 
|  | if (WARN_ON(PageLRU(page))) | 
|  | isolate_lru_page(page); | 
|  | if (page_mapped(page)) | 
|  | try_to_unmap(page, TTU_IGNORE_MLOCK); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!get_page_unless_zero(page)) | 
|  | continue; | 
|  | /* | 
|  | * We can skip free pages. And we can deal with pages on | 
|  | * LRU and non-lru movable pages. | 
|  | */ | 
|  | if (PageLRU(page)) | 
|  | ret = isolate_lru_page(page); | 
|  | else | 
|  | ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); | 
|  | if (!ret) { /* Success */ | 
|  | list_add_tail(&page->lru, &source); | 
|  | if (!__PageMovable(page)) | 
|  | inc_node_page_state(page, NR_ISOLATED_ANON + | 
|  | page_is_file_lru(page)); | 
|  |  | 
|  | } else { | 
|  | if (__ratelimit(&migrate_rs)) { | 
|  | pr_warn("failed to isolate pfn %lx\n", pfn); | 
|  | dump_page(page, "isolation failed"); | 
|  | } | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  | if (!list_empty(&source)) { | 
|  | nodemask_t nmask = node_states[N_MEMORY]; | 
|  | struct migration_target_control mtc = { | 
|  | .nmask = &nmask, | 
|  | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We have checked that migration range is on a single zone so | 
|  | * we can use the nid of the first page to all the others. | 
|  | */ | 
|  | mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); | 
|  |  | 
|  | /* | 
|  | * try to allocate from a different node but reuse this node | 
|  | * if there are no other online nodes to be used (e.g. we are | 
|  | * offlining a part of the only existing node) | 
|  | */ | 
|  | node_clear(mtc.nid, nmask); | 
|  | if (nodes_empty(nmask)) | 
|  | node_set(mtc.nid, nmask); | 
|  | ret = migrate_pages(&source, alloc_migration_target, NULL, | 
|  | (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); | 
|  | if (ret) { | 
|  | list_for_each_entry(page, &source, lru) { | 
|  | if (__ratelimit(&migrate_rs)) { | 
|  | pr_warn("migrating pfn %lx failed ret:%d\n", | 
|  | page_to_pfn(page), ret); | 
|  | dump_page(page, "migration failure"); | 
|  | } | 
|  | } | 
|  | putback_movable_pages(&source); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init cmdline_parse_movable_node(char *p) | 
|  | { | 
|  | movable_node_enabled = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("movable_node", cmdline_parse_movable_node); | 
|  |  | 
|  | /* check which state of node_states will be changed when offline memory */ | 
|  | static void node_states_check_changes_offline(unsigned long nr_pages, | 
|  | struct zone *zone, struct memory_notify *arg) | 
|  | { | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | unsigned long present_pages = 0; | 
|  | enum zone_type zt; | 
|  |  | 
|  | arg->status_change_nid = NUMA_NO_NODE; | 
|  | arg->status_change_nid_normal = NUMA_NO_NODE; | 
|  | arg->status_change_nid_high = NUMA_NO_NODE; | 
|  |  | 
|  | /* | 
|  | * Check whether node_states[N_NORMAL_MEMORY] will be changed. | 
|  | * If the memory to be offline is within the range | 
|  | * [0..ZONE_NORMAL], and it is the last present memory there, | 
|  | * the zones in that range will become empty after the offlining, | 
|  | * thus we can determine that we need to clear the node from | 
|  | * node_states[N_NORMAL_MEMORY]. | 
|  | */ | 
|  | for (zt = 0; zt <= ZONE_NORMAL; zt++) | 
|  | present_pages += pgdat->node_zones[zt].present_pages; | 
|  | if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) | 
|  | arg->status_change_nid_normal = zone_to_nid(zone); | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | /* | 
|  | * node_states[N_HIGH_MEMORY] contains nodes which | 
|  | * have normal memory or high memory. | 
|  | * Here we add the present_pages belonging to ZONE_HIGHMEM. | 
|  | * If the zone is within the range of [0..ZONE_HIGHMEM), and | 
|  | * we determine that the zones in that range become empty, | 
|  | * we need to clear the node for N_HIGH_MEMORY. | 
|  | */ | 
|  | present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; | 
|  | if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) | 
|  | arg->status_change_nid_high = zone_to_nid(zone); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We have accounted the pages from [0..ZONE_NORMAL), and | 
|  | * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM | 
|  | * as well. | 
|  | * Here we count the possible pages from ZONE_MOVABLE. | 
|  | * If after having accounted all the pages, we see that the nr_pages | 
|  | * to be offlined is over or equal to the accounted pages, | 
|  | * we know that the node will become empty, and so, we can clear | 
|  | * it for N_MEMORY as well. | 
|  | */ | 
|  | present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; | 
|  |  | 
|  | if (nr_pages >= present_pages) | 
|  | arg->status_change_nid = zone_to_nid(zone); | 
|  | } | 
|  |  | 
|  | static void node_states_clear_node(int node, struct memory_notify *arg) | 
|  | { | 
|  | if (arg->status_change_nid_normal >= 0) | 
|  | node_clear_state(node, N_NORMAL_MEMORY); | 
|  |  | 
|  | if (arg->status_change_nid_high >= 0) | 
|  | node_clear_state(node, N_HIGH_MEMORY); | 
|  |  | 
|  | if (arg->status_change_nid >= 0) | 
|  | node_clear_state(node, N_MEMORY); | 
|  | } | 
|  |  | 
|  | static int count_system_ram_pages_cb(unsigned long start_pfn, | 
|  | unsigned long nr_pages, void *data) | 
|  | { | 
|  | unsigned long *nr_system_ram_pages = data; | 
|  |  | 
|  | *nr_system_ram_pages += nr_pages; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, | 
|  | struct memory_group *group) | 
|  | { | 
|  | const unsigned long end_pfn = start_pfn + nr_pages; | 
|  | unsigned long pfn, system_ram_pages = 0; | 
|  | unsigned long flags; | 
|  | struct zone *zone; | 
|  | struct memory_notify arg; | 
|  | int ret, node; | 
|  | char *reason; | 
|  |  | 
|  | /* | 
|  | * {on,off}lining is constrained to full memory sections (or more | 
|  | * precisely to memory blocks from the user space POV). | 
|  | * memmap_on_memory is an exception because it reserves initial part | 
|  | * of the physical memory space for vmemmaps. That space is pageblock | 
|  | * aligned. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!nr_pages || | 
|  | !IS_ALIGNED(start_pfn, pageblock_nr_pages) || | 
|  | !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mem_hotplug_begin(); | 
|  |  | 
|  | /* | 
|  | * Don't allow to offline memory blocks that contain holes. | 
|  | * Consequently, memory blocks with holes can never get onlined | 
|  | * via the hotplug path - online_pages() - as hotplugged memory has | 
|  | * no holes. This way, we e.g., don't have to worry about marking | 
|  | * memory holes PG_reserved, don't need pfn_valid() checks, and can | 
|  | * avoid using walk_system_ram_range() later. | 
|  | */ | 
|  | walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, | 
|  | count_system_ram_pages_cb); | 
|  | if (system_ram_pages != nr_pages) { | 
|  | ret = -EINVAL; | 
|  | reason = "memory holes"; | 
|  | goto failed_removal; | 
|  | } | 
|  |  | 
|  | /* This makes hotplug much easier...and readable. | 
|  | we assume this for now. .*/ | 
|  | zone = test_pages_in_a_zone(start_pfn, end_pfn); | 
|  | if (!zone) { | 
|  | ret = -EINVAL; | 
|  | reason = "multizone range"; | 
|  | goto failed_removal; | 
|  | } | 
|  | node = zone_to_nid(zone); | 
|  |  | 
|  | /* | 
|  | * Disable pcplists so that page isolation cannot race with freeing | 
|  | * in a way that pages from isolated pageblock are left on pcplists. | 
|  | */ | 
|  | zone_pcp_disable(zone); | 
|  | lru_cache_disable(); | 
|  |  | 
|  | /* set above range as isolated */ | 
|  | ret = start_isolate_page_range(start_pfn, end_pfn, | 
|  | MIGRATE_MOVABLE, | 
|  | MEMORY_OFFLINE | REPORT_FAILURE); | 
|  | if (ret) { | 
|  | reason = "failure to isolate range"; | 
|  | goto failed_removal_pcplists_disabled; | 
|  | } | 
|  |  | 
|  | arg.start_pfn = start_pfn; | 
|  | arg.nr_pages = nr_pages; | 
|  | node_states_check_changes_offline(nr_pages, zone, &arg); | 
|  |  | 
|  | ret = memory_notify(MEM_GOING_OFFLINE, &arg); | 
|  | ret = notifier_to_errno(ret); | 
|  | if (ret) { | 
|  | reason = "notifier failure"; | 
|  | goto failed_removal_isolated; | 
|  | } | 
|  |  | 
|  | do { | 
|  | pfn = start_pfn; | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | reason = "signal backoff"; | 
|  | goto failed_removal_isolated; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | ret = scan_movable_pages(pfn, end_pfn, &pfn); | 
|  | if (!ret) { | 
|  | /* | 
|  | * TODO: fatal migration failures should bail | 
|  | * out | 
|  | */ | 
|  | do_migrate_range(pfn, end_pfn); | 
|  | } | 
|  | } while (!ret); | 
|  |  | 
|  | if (ret != -ENOENT) { | 
|  | reason = "unmovable page"; | 
|  | goto failed_removal_isolated; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dissolve free hugepages in the memory block before doing | 
|  | * offlining actually in order to make hugetlbfs's object | 
|  | * counting consistent. | 
|  | */ | 
|  | ret = dissolve_free_huge_pages(start_pfn, end_pfn); | 
|  | if (ret) { | 
|  | reason = "failure to dissolve huge pages"; | 
|  | goto failed_removal_isolated; | 
|  | } | 
|  |  | 
|  | ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); | 
|  |  | 
|  | } while (ret); | 
|  |  | 
|  | /* Mark all sections offline and remove free pages from the buddy. */ | 
|  | __offline_isolated_pages(start_pfn, end_pfn); | 
|  | pr_debug("Offlined Pages %ld\n", nr_pages); | 
|  |  | 
|  | /* | 
|  | * The memory sections are marked offline, and the pageblock flags | 
|  | * effectively stale; nobody should be touching them. Fixup the number | 
|  | * of isolated pageblocks, memory onlining will properly revert this. | 
|  | */ | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  |  | 
|  | lru_cache_enable(); | 
|  | zone_pcp_enable(zone); | 
|  |  | 
|  | /* removal success */ | 
|  | adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); | 
|  | adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); | 
|  |  | 
|  | /* reinitialise watermarks and update pcp limits */ | 
|  | init_per_zone_wmark_min(); | 
|  |  | 
|  | if (!populated_zone(zone)) { | 
|  | zone_pcp_reset(zone); | 
|  | build_all_zonelists(NULL); | 
|  | } | 
|  |  | 
|  | node_states_clear_node(node, &arg); | 
|  | if (arg.status_change_nid >= 0) { | 
|  | kswapd_stop(node); | 
|  | kcompactd_stop(node); | 
|  | } | 
|  |  | 
|  | writeback_set_ratelimit(); | 
|  |  | 
|  | memory_notify(MEM_OFFLINE, &arg); | 
|  | remove_pfn_range_from_zone(zone, start_pfn, nr_pages); | 
|  | mem_hotplug_done(); | 
|  | return 0; | 
|  |  | 
|  | failed_removal_isolated: | 
|  | undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); | 
|  | memory_notify(MEM_CANCEL_OFFLINE, &arg); | 
|  | failed_removal_pcplists_disabled: | 
|  | lru_cache_enable(); | 
|  | zone_pcp_enable(zone); | 
|  | failed_removal: | 
|  | pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", | 
|  | (unsigned long long) start_pfn << PAGE_SHIFT, | 
|  | ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, | 
|  | reason); | 
|  | /* pushback to free area */ | 
|  | mem_hotplug_done(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) | 
|  | { | 
|  | int ret = !is_memblock_offlined(mem); | 
|  | int *nid = arg; | 
|  |  | 
|  | *nid = mem->nid; | 
|  | if (unlikely(ret)) { | 
|  | phys_addr_t beginpa, endpa; | 
|  |  | 
|  | beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); | 
|  | endpa = beginpa + memory_block_size_bytes() - 1; | 
|  | pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", | 
|  | &beginpa, &endpa); | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) | 
|  | { | 
|  | /* | 
|  | * If not set, continue with the next block. | 
|  | */ | 
|  | return mem->nr_vmemmap_pages; | 
|  | } | 
|  |  | 
|  | static int check_cpu_on_node(pg_data_t *pgdat) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_present_cpu(cpu) { | 
|  | if (cpu_to_node(cpu) == pgdat->node_id) | 
|  | /* | 
|  | * the cpu on this node isn't removed, and we can't | 
|  | * offline this node. | 
|  | */ | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) | 
|  | { | 
|  | int nid = *(int *)arg; | 
|  |  | 
|  | /* | 
|  | * If a memory block belongs to multiple nodes, the stored nid is not | 
|  | * reliable. However, such blocks are always online (e.g., cannot get | 
|  | * offlined) and, therefore, are still spanned by the node. | 
|  | */ | 
|  | return mem->nid == nid ? -EEXIST : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_offline_node | 
|  | * @nid: the node ID | 
|  | * | 
|  | * Offline a node if all memory sections and cpus of the node are removed. | 
|  | * | 
|  | * NOTE: The caller must call lock_device_hotplug() to serialize hotplug | 
|  | * and online/offline operations before this call. | 
|  | */ | 
|  | void try_offline_node(int nid) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * If the node still spans pages (especially ZONE_DEVICE), don't | 
|  | * offline it. A node spans memory after move_pfn_range_to_zone(), | 
|  | * e.g., after the memory block was onlined. | 
|  | */ | 
|  | if (pgdat->node_spanned_pages) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Especially offline memory blocks might not be spanned by the | 
|  | * node. They will get spanned by the node once they get onlined. | 
|  | * However, they link to the node in sysfs and can get onlined later. | 
|  | */ | 
|  | rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); | 
|  | if (rc) | 
|  | return; | 
|  |  | 
|  | if (check_cpu_on_node(pgdat)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * all memory/cpu of this node are removed, we can offline this | 
|  | * node now. | 
|  | */ | 
|  | node_set_offline(nid); | 
|  | unregister_one_node(nid); | 
|  | } | 
|  | EXPORT_SYMBOL(try_offline_node); | 
|  |  | 
|  | static int __ref try_remove_memory(u64 start, u64 size) | 
|  | { | 
|  | struct vmem_altmap mhp_altmap = {}; | 
|  | struct vmem_altmap *altmap = NULL; | 
|  | unsigned long nr_vmemmap_pages; | 
|  | int rc = 0, nid = NUMA_NO_NODE; | 
|  |  | 
|  | BUG_ON(check_hotplug_memory_range(start, size)); | 
|  |  | 
|  | /* | 
|  | * All memory blocks must be offlined before removing memory.  Check | 
|  | * whether all memory blocks in question are offline and return error | 
|  | * if this is not the case. | 
|  | * | 
|  | * While at it, determine the nid. Note that if we'd have mixed nodes, | 
|  | * we'd only try to offline the last determined one -- which is good | 
|  | * enough for the cases we care about. | 
|  | */ | 
|  | rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* | 
|  | * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in | 
|  | * the same granularity it was added - a single memory block. | 
|  | */ | 
|  | if (memmap_on_memory) { | 
|  | nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, | 
|  | get_nr_vmemmap_pages_cb); | 
|  | if (nr_vmemmap_pages) { | 
|  | if (size != memory_block_size_bytes()) { | 
|  | pr_warn("Refuse to remove %#llx - %#llx," | 
|  | "wrong granularity\n", | 
|  | start, start + size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let remove_pmd_table->free_hugepage_table do the | 
|  | * right thing if we used vmem_altmap when hot-adding | 
|  | * the range. | 
|  | */ | 
|  | mhp_altmap.alloc = nr_vmemmap_pages; | 
|  | altmap = &mhp_altmap; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* remove memmap entry */ | 
|  | firmware_map_remove(start, start + size, "System RAM"); | 
|  |  | 
|  | /* | 
|  | * Memory block device removal under the device_hotplug_lock is | 
|  | * a barrier against racing online attempts. | 
|  | */ | 
|  | remove_memory_block_devices(start, size); | 
|  |  | 
|  | mem_hotplug_begin(); | 
|  |  | 
|  | arch_remove_memory(start, size, altmap); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { | 
|  | memblock_free(start, size); | 
|  | memblock_remove(start, size); | 
|  | } | 
|  |  | 
|  | release_mem_region_adjustable(start, size); | 
|  |  | 
|  | if (nid != NUMA_NO_NODE) | 
|  | try_offline_node(nid); | 
|  |  | 
|  | mem_hotplug_done(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __remove_memory - Remove memory if every memory block is offline | 
|  | * @start: physical address of the region to remove | 
|  | * @size: size of the region to remove | 
|  | * | 
|  | * NOTE: The caller must call lock_device_hotplug() to serialize hotplug | 
|  | * and online/offline operations before this call, as required by | 
|  | * try_offline_node(). | 
|  | */ | 
|  | void __remove_memory(u64 start, u64 size) | 
|  | { | 
|  |  | 
|  | /* | 
|  | * trigger BUG() if some memory is not offlined prior to calling this | 
|  | * function | 
|  | */ | 
|  | if (try_remove_memory(start, size)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove memory if every memory block is offline, otherwise return -EBUSY is | 
|  | * some memory is not offline | 
|  | */ | 
|  | int remove_memory(u64 start, u64 size) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | lock_device_hotplug(); | 
|  | rc = try_remove_memory(start, size); | 
|  | unlock_device_hotplug(); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(remove_memory); | 
|  |  | 
|  | static int try_offline_memory_block(struct memory_block *mem, void *arg) | 
|  | { | 
|  | uint8_t online_type = MMOP_ONLINE_KERNEL; | 
|  | uint8_t **online_types = arg; | 
|  | struct page *page; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Sense the online_type via the zone of the memory block. Offlining | 
|  | * with multiple zones within one memory block will be rejected | 
|  | * by offlining code ... so we don't care about that. | 
|  | */ | 
|  | page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); | 
|  | if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) | 
|  | online_type = MMOP_ONLINE_MOVABLE; | 
|  |  | 
|  | rc = device_offline(&mem->dev); | 
|  | /* | 
|  | * Default is MMOP_OFFLINE - change it only if offlining succeeded, | 
|  | * so try_reonline_memory_block() can do the right thing. | 
|  | */ | 
|  | if (!rc) | 
|  | **online_types = online_type; | 
|  |  | 
|  | (*online_types)++; | 
|  | /* Ignore if already offline. */ | 
|  | return rc < 0 ? rc : 0; | 
|  | } | 
|  |  | 
|  | static int try_reonline_memory_block(struct memory_block *mem, void *arg) | 
|  | { | 
|  | uint8_t **online_types = arg; | 
|  | int rc; | 
|  |  | 
|  | if (**online_types != MMOP_OFFLINE) { | 
|  | mem->online_type = **online_types; | 
|  | rc = device_online(&mem->dev); | 
|  | if (rc < 0) | 
|  | pr_warn("%s: Failed to re-online memory: %d", | 
|  | __func__, rc); | 
|  | } | 
|  |  | 
|  | /* Continue processing all remaining memory blocks. */ | 
|  | (*online_types)++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to offline and remove memory. Might take a long time to finish in case | 
|  | * memory is still in use. Primarily useful for memory devices that logically | 
|  | * unplugged all memory (so it's no longer in use) and want to offline + remove | 
|  | * that memory. | 
|  | */ | 
|  | int offline_and_remove_memory(u64 start, u64 size) | 
|  | { | 
|  | const unsigned long mb_count = size / memory_block_size_bytes(); | 
|  | uint8_t *online_types, *tmp; | 
|  | int rc; | 
|  |  | 
|  | if (!IS_ALIGNED(start, memory_block_size_bytes()) || | 
|  | !IS_ALIGNED(size, memory_block_size_bytes()) || !size) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We'll remember the old online type of each memory block, so we can | 
|  | * try to revert whatever we did when offlining one memory block fails | 
|  | * after offlining some others succeeded. | 
|  | */ | 
|  | online_types = kmalloc_array(mb_count, sizeof(*online_types), | 
|  | GFP_KERNEL); | 
|  | if (!online_types) | 
|  | return -ENOMEM; | 
|  | /* | 
|  | * Initialize all states to MMOP_OFFLINE, so when we abort processing in | 
|  | * try_offline_memory_block(), we'll skip all unprocessed blocks in | 
|  | * try_reonline_memory_block(). | 
|  | */ | 
|  | memset(online_types, MMOP_OFFLINE, mb_count); | 
|  |  | 
|  | lock_device_hotplug(); | 
|  |  | 
|  | tmp = online_types; | 
|  | rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); | 
|  |  | 
|  | /* | 
|  | * In case we succeeded to offline all memory, remove it. | 
|  | * This cannot fail as it cannot get onlined in the meantime. | 
|  | */ | 
|  | if (!rc) { | 
|  | rc = try_remove_memory(start, size); | 
|  | if (rc) | 
|  | pr_err("%s: Failed to remove memory: %d", __func__, rc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rollback what we did. While memory onlining might theoretically fail | 
|  | * (nacked by a notifier), it barely ever happens. | 
|  | */ | 
|  | if (rc) { | 
|  | tmp = online_types; | 
|  | walk_memory_blocks(start, size, &tmp, | 
|  | try_reonline_memory_block); | 
|  | } | 
|  | unlock_device_hotplug(); | 
|  |  | 
|  | kfree(online_types); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(offline_and_remove_memory); | 
|  | #endif /* CONFIG_MEMORY_HOTREMOVE */ |