|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/posix_acl.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/btrfs.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/posix_acl_xattr.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/iversion.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/iomap.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "print-tree.h" | 
|  | #include "ordered-data.h" | 
|  | #include "xattr.h" | 
|  | #include "tree-log.h" | 
|  | #include "volumes.h" | 
|  | #include "compression.h" | 
|  | #include "locking.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "props.h" | 
|  | #include "qgroup.h" | 
|  | #include "delalloc-space.h" | 
|  | #include "block-group.h" | 
|  | #include "space-info.h" | 
|  | #include "zoned.h" | 
|  | #include "subpage.h" | 
|  |  | 
|  | struct btrfs_iget_args { | 
|  | u64 ino; | 
|  | struct btrfs_root *root; | 
|  | }; | 
|  |  | 
|  | struct btrfs_dio_data { | 
|  | ssize_t submitted; | 
|  | struct extent_changeset *data_reserved; | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations btrfs_dir_inode_operations; | 
|  | static const struct inode_operations btrfs_symlink_inode_operations; | 
|  | static const struct inode_operations btrfs_special_inode_operations; | 
|  | static const struct inode_operations btrfs_file_inode_operations; | 
|  | static const struct address_space_operations btrfs_aops; | 
|  | static const struct file_operations btrfs_dir_file_operations; | 
|  |  | 
|  | static struct kmem_cache *btrfs_inode_cachep; | 
|  | struct kmem_cache *btrfs_trans_handle_cachep; | 
|  | struct kmem_cache *btrfs_path_cachep; | 
|  | struct kmem_cache *btrfs_free_space_cachep; | 
|  | struct kmem_cache *btrfs_free_space_bitmap_cachep; | 
|  |  | 
|  | static int btrfs_setsize(struct inode *inode, struct iattr *attr); | 
|  | static int btrfs_truncate(struct inode *inode, bool skip_writeback); | 
|  | static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); | 
|  | static noinline int cow_file_range(struct btrfs_inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 start, u64 end, int *page_started, | 
|  | unsigned long *nr_written, int unlock); | 
|  | static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, | 
|  | u64 len, u64 orig_start, u64 block_start, | 
|  | u64 block_len, u64 orig_block_len, | 
|  | u64 ram_bytes, int compress_type, | 
|  | int type); | 
|  |  | 
|  | static void __endio_write_update_ordered(struct btrfs_inode *inode, | 
|  | const u64 offset, const u64 bytes, | 
|  | const bool uptodate); | 
|  |  | 
|  | /* | 
|  | * btrfs_inode_lock - lock inode i_rwsem based on arguments passed | 
|  | * | 
|  | * ilock_flags can have the following bit set: | 
|  | * | 
|  | * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode | 
|  | * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt | 
|  | *		     return -EAGAIN | 
|  | * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock | 
|  | */ | 
|  | int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) | 
|  | { | 
|  | if (ilock_flags & BTRFS_ILOCK_SHARED) { | 
|  | if (ilock_flags & BTRFS_ILOCK_TRY) { | 
|  | if (!inode_trylock_shared(inode)) | 
|  | return -EAGAIN; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  | inode_lock_shared(inode); | 
|  | } else { | 
|  | if (ilock_flags & BTRFS_ILOCK_TRY) { | 
|  | if (!inode_trylock(inode)) | 
|  | return -EAGAIN; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  | inode_lock(inode); | 
|  | } | 
|  | if (ilock_flags & BTRFS_ILOCK_MMAP) | 
|  | down_write(&BTRFS_I(inode)->i_mmap_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_inode_unlock - unock inode i_rwsem | 
|  | * | 
|  | * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() | 
|  | * to decide whether the lock acquired is shared or exclusive. | 
|  | */ | 
|  | void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) | 
|  | { | 
|  | if (ilock_flags & BTRFS_ILOCK_MMAP) | 
|  | up_write(&BTRFS_I(inode)->i_mmap_lock); | 
|  | if (ilock_flags & BTRFS_ILOCK_SHARED) | 
|  | inode_unlock_shared(inode); | 
|  | else | 
|  | inode_unlock(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cleanup all submitted ordered extents in specified range to handle errors | 
|  | * from the btrfs_run_delalloc_range() callback. | 
|  | * | 
|  | * NOTE: caller must ensure that when an error happens, it can not call | 
|  | * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING | 
|  | * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata | 
|  | * to be released, which we want to happen only when finishing the ordered | 
|  | * extent (btrfs_finish_ordered_io()). | 
|  | */ | 
|  | static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | unsigned long index = offset >> PAGE_SHIFT; | 
|  | unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; | 
|  | u64 page_start = page_offset(locked_page); | 
|  | u64 page_end = page_start + PAGE_SIZE - 1; | 
|  |  | 
|  | struct page *page; | 
|  |  | 
|  | while (index <= end_index) { | 
|  | /* | 
|  | * For locked page, we will call end_extent_writepage() on it | 
|  | * in run_delalloc_range() for the error handling.  That | 
|  | * end_extent_writepage() function will call | 
|  | * btrfs_mark_ordered_io_finished() to clear page Ordered and | 
|  | * run the ordered extent accounting. | 
|  | * | 
|  | * Here we can't just clear the Ordered bit, or | 
|  | * btrfs_mark_ordered_io_finished() would skip the accounting | 
|  | * for the page range, and the ordered extent will never finish. | 
|  | */ | 
|  | if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { | 
|  | index++; | 
|  | continue; | 
|  | } | 
|  | page = find_get_page(inode->vfs_inode.i_mapping, index); | 
|  | index++; | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Here we just clear all Ordered bits for every page in the | 
|  | * range, then __endio_write_update_ordered() will handle | 
|  | * the ordered extent accounting for the range. | 
|  | */ | 
|  | btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, | 
|  | offset, bytes); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /* The locked page covers the full range, nothing needs to be done */ | 
|  | if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) | 
|  | return; | 
|  | /* | 
|  | * In case this page belongs to the delalloc range being instantiated | 
|  | * then skip it, since the first page of a range is going to be | 
|  | * properly cleaned up by the caller of run_delalloc_range | 
|  | */ | 
|  | if (page_start >= offset && page_end <= (offset + bytes - 1)) { | 
|  | bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; | 
|  | offset = page_offset(locked_page) + PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return __endio_write_update_ordered(inode, offset, bytes, false); | 
|  | } | 
|  |  | 
|  | static int btrfs_dirty_inode(struct inode *inode); | 
|  |  | 
|  | static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode,  struct inode *dir, | 
|  | const struct qstr *qstr) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = btrfs_init_acl(trans, inode, dir); | 
|  | if (!err) | 
|  | err = btrfs_xattr_security_init(trans, inode, dir, qstr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this does all the hard work for inserting an inline extent into | 
|  | * the btree.  The caller should have done a btrfs_drop_extents so that | 
|  | * no overlapping inline items exist in the btree | 
|  | */ | 
|  | static int insert_inline_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, bool extent_inserted, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | u64 start, size_t size, size_t compressed_size, | 
|  | int compress_type, | 
|  | struct page **compressed_pages) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct page *page = NULL; | 
|  | char *kaddr; | 
|  | unsigned long ptr; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | int ret; | 
|  | size_t cur_size = size; | 
|  | unsigned long offset; | 
|  |  | 
|  | ASSERT((compressed_size > 0 && compressed_pages) || | 
|  | (compressed_size == 0 && !compressed_pages)); | 
|  |  | 
|  | if (compressed_size && compressed_pages) | 
|  | cur_size = compressed_size; | 
|  |  | 
|  | if (!extent_inserted) { | 
|  | struct btrfs_key key; | 
|  | size_t datasize; | 
|  |  | 
|  | key.objectid = btrfs_ino(BTRFS_I(inode)); | 
|  | key.offset = start; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  |  | 
|  | datasize = btrfs_file_extent_calc_inline_size(cur_size); | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | datasize); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, ei, trans->transid); | 
|  | btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); | 
|  | btrfs_set_file_extent_encryption(leaf, ei, 0); | 
|  | btrfs_set_file_extent_other_encoding(leaf, ei, 0); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, ei, size); | 
|  | ptr = btrfs_file_extent_inline_start(ei); | 
|  |  | 
|  | if (compress_type != BTRFS_COMPRESS_NONE) { | 
|  | struct page *cpage; | 
|  | int i = 0; | 
|  | while (compressed_size > 0) { | 
|  | cpage = compressed_pages[i]; | 
|  | cur_size = min_t(unsigned long, compressed_size, | 
|  | PAGE_SIZE); | 
|  |  | 
|  | kaddr = kmap_atomic(cpage); | 
|  | write_extent_buffer(leaf, kaddr, ptr, cur_size); | 
|  | kunmap_atomic(kaddr); | 
|  |  | 
|  | i++; | 
|  | ptr += cur_size; | 
|  | compressed_size -= cur_size; | 
|  | } | 
|  | btrfs_set_file_extent_compression(leaf, ei, | 
|  | compress_type); | 
|  | } else { | 
|  | page = find_get_page(inode->i_mapping, | 
|  | start >> PAGE_SHIFT); | 
|  | btrfs_set_file_extent_compression(leaf, ei, 0); | 
|  | kaddr = kmap_atomic(page); | 
|  | offset = offset_in_page(start); | 
|  | write_extent_buffer(leaf, kaddr + offset, ptr, size); | 
|  | kunmap_atomic(kaddr); | 
|  | put_page(page); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We align size to sectorsize for inline extents just for simplicity | 
|  | * sake. | 
|  | */ | 
|  | size = ALIGN(size, root->fs_info->sectorsize); | 
|  | ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * we're an inline extent, so nobody can | 
|  | * extend the file past i_size without locking | 
|  | * a page we already have locked. | 
|  | * | 
|  | * We must do any isize and inode updates | 
|  | * before we unlock the pages.  Otherwise we | 
|  | * could end up racing with unlink. | 
|  | */ | 
|  | BTRFS_I(inode)->disk_i_size = inode->i_size; | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * conditionally insert an inline extent into the file.  This | 
|  | * does the checks required to make sure the data is small enough | 
|  | * to fit as an inline extent. | 
|  | */ | 
|  | static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, | 
|  | u64 end, size_t compressed_size, | 
|  | int compress_type, | 
|  | struct page **compressed_pages) | 
|  | { | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 isize = i_size_read(&inode->vfs_inode); | 
|  | u64 actual_end = min(end + 1, isize); | 
|  | u64 inline_len = actual_end - start; | 
|  | u64 aligned_end = ALIGN(end, fs_info->sectorsize); | 
|  | u64 data_len = inline_len; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | if (compressed_size) | 
|  | data_len = compressed_size; | 
|  |  | 
|  | if (start > 0 || | 
|  | actual_end > fs_info->sectorsize || | 
|  | data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || | 
|  | (!compressed_size && | 
|  | (actual_end & (fs_info->sectorsize - 1)) == 0) || | 
|  | end + 1 < isize || | 
|  | data_len > fs_info->max_inline) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  | trans->block_rsv = &inode->block_rsv; | 
|  |  | 
|  | drop_args.path = path; | 
|  | drop_args.start = start; | 
|  | drop_args.end = aligned_end; | 
|  | drop_args.drop_cache = true; | 
|  | drop_args.replace_extent = true; | 
|  |  | 
|  | if (compressed_size && compressed_pages) | 
|  | drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( | 
|  | compressed_size); | 
|  | else | 
|  | drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( | 
|  | inline_len); | 
|  |  | 
|  | ret = btrfs_drop_extents(trans, root, inode, &drop_args); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (isize > actual_end) | 
|  | inline_len = min_t(u64, isize, actual_end); | 
|  | ret = insert_inline_extent(trans, path, drop_args.extent_inserted, | 
|  | root, &inode->vfs_inode, start, | 
|  | inline_len, compressed_size, | 
|  | compress_type, compressed_pages); | 
|  | if (ret && ret != -ENOSPC) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } else if (ret == -ENOSPC) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | if (ret && ret != -ENOSPC) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } else if (ret == -ENOSPC) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); | 
|  | out: | 
|  | /* | 
|  | * Don't forget to free the reserved space, as for inlined extent | 
|  | * it won't count as data extent, free them directly here. | 
|  | * And at reserve time, it's always aligned to page size, so | 
|  | * just free one page here. | 
|  | */ | 
|  | btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); | 
|  | btrfs_free_path(path); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct async_extent { | 
|  | u64 start; | 
|  | u64 ram_size; | 
|  | u64 compressed_size; | 
|  | struct page **pages; | 
|  | unsigned long nr_pages; | 
|  | int compress_type; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | struct async_chunk { | 
|  | struct inode *inode; | 
|  | struct page *locked_page; | 
|  | u64 start; | 
|  | u64 end; | 
|  | unsigned int write_flags; | 
|  | struct list_head extents; | 
|  | struct cgroup_subsys_state *blkcg_css; | 
|  | struct btrfs_work work; | 
|  | atomic_t *pending; | 
|  | }; | 
|  |  | 
|  | struct async_cow { | 
|  | /* Number of chunks in flight; must be first in the structure */ | 
|  | atomic_t num_chunks; | 
|  | struct async_chunk chunks[]; | 
|  | }; | 
|  |  | 
|  | static noinline int add_async_extent(struct async_chunk *cow, | 
|  | u64 start, u64 ram_size, | 
|  | u64 compressed_size, | 
|  | struct page **pages, | 
|  | unsigned long nr_pages, | 
|  | int compress_type) | 
|  | { | 
|  | struct async_extent *async_extent; | 
|  |  | 
|  | async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); | 
|  | BUG_ON(!async_extent); /* -ENOMEM */ | 
|  | async_extent->start = start; | 
|  | async_extent->ram_size = ram_size; | 
|  | async_extent->compressed_size = compressed_size; | 
|  | async_extent->pages = pages; | 
|  | async_extent->nr_pages = nr_pages; | 
|  | async_extent->compress_type = compress_type; | 
|  | list_add_tail(&async_extent->list, &cow->extents); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the inode has flags compatible with compression | 
|  | */ | 
|  | static inline bool inode_can_compress(struct btrfs_inode *inode) | 
|  | { | 
|  | /* Subpage doesn't support compression yet */ | 
|  | if (inode->root->fs_info->sectorsize < PAGE_SIZE) | 
|  | return false; | 
|  | if (inode->flags & BTRFS_INODE_NODATACOW || | 
|  | inode->flags & BTRFS_INODE_NODATASUM) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the inode needs to be submitted to compression, based on mount | 
|  | * options, defragmentation, properties or heuristics. | 
|  | */ | 
|  | static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, | 
|  | u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  |  | 
|  | if (!inode_can_compress(inode)) { | 
|  | WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), | 
|  | KERN_ERR "BTRFS: unexpected compression for ino %llu\n", | 
|  | btrfs_ino(inode)); | 
|  | return 0; | 
|  | } | 
|  | /* force compress */ | 
|  | if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) | 
|  | return 1; | 
|  | /* defrag ioctl */ | 
|  | if (inode->defrag_compress) | 
|  | return 1; | 
|  | /* bad compression ratios */ | 
|  | if (inode->flags & BTRFS_INODE_NOCOMPRESS) | 
|  | return 0; | 
|  | if (btrfs_test_opt(fs_info, COMPRESS) || | 
|  | inode->flags & BTRFS_INODE_COMPRESS || | 
|  | inode->prop_compress) | 
|  | return btrfs_compress_heuristic(&inode->vfs_inode, start, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void inode_should_defrag(struct btrfs_inode *inode, | 
|  | u64 start, u64 end, u64 num_bytes, u64 small_write) | 
|  | { | 
|  | /* If this is a small write inside eof, kick off a defrag */ | 
|  | if (num_bytes < small_write && | 
|  | (start > 0 || end + 1 < inode->disk_i_size)) | 
|  | btrfs_add_inode_defrag(NULL, inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we create compressed extents in two phases.  The first | 
|  | * phase compresses a range of pages that have already been | 
|  | * locked (both pages and state bits are locked). | 
|  | * | 
|  | * This is done inside an ordered work queue, and the compression | 
|  | * is spread across many cpus.  The actual IO submission is step | 
|  | * two, and the ordered work queue takes care of making sure that | 
|  | * happens in the same order things were put onto the queue by | 
|  | * writepages and friends. | 
|  | * | 
|  | * If this code finds it can't get good compression, it puts an | 
|  | * entry onto the work queue to write the uncompressed bytes.  This | 
|  | * makes sure that both compressed inodes and uncompressed inodes | 
|  | * are written in the same order that the flusher thread sent them | 
|  | * down. | 
|  | */ | 
|  | static noinline int compress_file_range(struct async_chunk *async_chunk) | 
|  | { | 
|  | struct inode *inode = async_chunk->inode; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 blocksize = fs_info->sectorsize; | 
|  | u64 start = async_chunk->start; | 
|  | u64 end = async_chunk->end; | 
|  | u64 actual_end; | 
|  | u64 i_size; | 
|  | int ret = 0; | 
|  | struct page **pages = NULL; | 
|  | unsigned long nr_pages; | 
|  | unsigned long total_compressed = 0; | 
|  | unsigned long total_in = 0; | 
|  | int i; | 
|  | int will_compress; | 
|  | int compress_type = fs_info->compress_type; | 
|  | int compressed_extents = 0; | 
|  | int redirty = 0; | 
|  |  | 
|  | inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, | 
|  | SZ_16K); | 
|  |  | 
|  | /* | 
|  | * We need to save i_size before now because it could change in between | 
|  | * us evaluating the size and assigning it.  This is because we lock and | 
|  | * unlock the page in truncate and fallocate, and then modify the i_size | 
|  | * later on. | 
|  | * | 
|  | * The barriers are to emulate READ_ONCE, remove that once i_size_read | 
|  | * does that for us. | 
|  | */ | 
|  | barrier(); | 
|  | i_size = i_size_read(inode); | 
|  | barrier(); | 
|  | actual_end = min_t(u64, i_size, end + 1); | 
|  | again: | 
|  | will_compress = 0; | 
|  | nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; | 
|  | BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); | 
|  | nr_pages = min_t(unsigned long, nr_pages, | 
|  | BTRFS_MAX_COMPRESSED / PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * we don't want to send crud past the end of i_size through | 
|  | * compression, that's just a waste of CPU time.  So, if the | 
|  | * end of the file is before the start of our current | 
|  | * requested range of bytes, we bail out to the uncompressed | 
|  | * cleanup code that can deal with all of this. | 
|  | * | 
|  | * It isn't really the fastest way to fix things, but this is a | 
|  | * very uncommon corner. | 
|  | */ | 
|  | if (actual_end <= start) | 
|  | goto cleanup_and_bail_uncompressed; | 
|  |  | 
|  | total_compressed = actual_end - start; | 
|  |  | 
|  | /* | 
|  | * skip compression for a small file range(<=blocksize) that | 
|  | * isn't an inline extent, since it doesn't save disk space at all. | 
|  | */ | 
|  | if (total_compressed <= blocksize && | 
|  | (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) | 
|  | goto cleanup_and_bail_uncompressed; | 
|  |  | 
|  | total_compressed = min_t(unsigned long, total_compressed, | 
|  | BTRFS_MAX_UNCOMPRESSED); | 
|  | total_in = 0; | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * we do compression for mount -o compress and when the | 
|  | * inode has not been flagged as nocompress.  This flag can | 
|  | * change at any time if we discover bad compression ratios. | 
|  | */ | 
|  | if (inode_need_compress(BTRFS_I(inode), start, end)) { | 
|  | WARN_ON(pages); | 
|  | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); | 
|  | if (!pages) { | 
|  | /* just bail out to the uncompressed code */ | 
|  | nr_pages = 0; | 
|  | goto cont; | 
|  | } | 
|  |  | 
|  | if (BTRFS_I(inode)->defrag_compress) | 
|  | compress_type = BTRFS_I(inode)->defrag_compress; | 
|  | else if (BTRFS_I(inode)->prop_compress) | 
|  | compress_type = BTRFS_I(inode)->prop_compress; | 
|  |  | 
|  | /* | 
|  | * we need to call clear_page_dirty_for_io on each | 
|  | * page in the range.  Otherwise applications with the file | 
|  | * mmap'd can wander in and change the page contents while | 
|  | * we are compressing them. | 
|  | * | 
|  | * If the compression fails for any reason, we set the pages | 
|  | * dirty again later on. | 
|  | * | 
|  | * Note that the remaining part is redirtied, the start pointer | 
|  | * has moved, the end is the original one. | 
|  | */ | 
|  | if (!redirty) { | 
|  | extent_range_clear_dirty_for_io(inode, start, end); | 
|  | redirty = 1; | 
|  | } | 
|  |  | 
|  | /* Compression level is applied here and only here */ | 
|  | ret = btrfs_compress_pages( | 
|  | compress_type | (fs_info->compress_level << 4), | 
|  | inode->i_mapping, start, | 
|  | pages, | 
|  | &nr_pages, | 
|  | &total_in, | 
|  | &total_compressed); | 
|  |  | 
|  | if (!ret) { | 
|  | unsigned long offset = offset_in_page(total_compressed); | 
|  | struct page *page = pages[nr_pages - 1]; | 
|  |  | 
|  | /* zero the tail end of the last page, we might be | 
|  | * sending it down to disk | 
|  | */ | 
|  | if (offset) | 
|  | memzero_page(page, offset, PAGE_SIZE - offset); | 
|  | will_compress = 1; | 
|  | } | 
|  | } | 
|  | cont: | 
|  | /* | 
|  | * Check cow_file_range() for why we don't even try to create inline | 
|  | * extent for subpage case. | 
|  | */ | 
|  | if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { | 
|  | /* lets try to make an inline extent */ | 
|  | if (ret || total_in < actual_end) { | 
|  | /* we didn't compress the entire range, try | 
|  | * to make an uncompressed inline extent. | 
|  | */ | 
|  | ret = cow_file_range_inline(BTRFS_I(inode), start, end, | 
|  | 0, BTRFS_COMPRESS_NONE, | 
|  | NULL); | 
|  | } else { | 
|  | /* try making a compressed inline extent */ | 
|  | ret = cow_file_range_inline(BTRFS_I(inode), start, end, | 
|  | total_compressed, | 
|  | compress_type, pages); | 
|  | } | 
|  | if (ret <= 0) { | 
|  | unsigned long clear_flags = EXTENT_DELALLOC | | 
|  | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | | 
|  | EXTENT_DO_ACCOUNTING; | 
|  | unsigned long page_error_op; | 
|  |  | 
|  | page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; | 
|  |  | 
|  | /* | 
|  | * inline extent creation worked or returned error, | 
|  | * we don't need to create any more async work items. | 
|  | * Unlock and free up our temp pages. | 
|  | * | 
|  | * We use DO_ACCOUNTING here because we need the | 
|  | * delalloc_release_metadata to be done _after_ we drop | 
|  | * our outstanding extent for clearing delalloc for this | 
|  | * range. | 
|  | */ | 
|  | extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, | 
|  | NULL, | 
|  | clear_flags, | 
|  | PAGE_UNLOCK | | 
|  | PAGE_START_WRITEBACK | | 
|  | page_error_op | | 
|  | PAGE_END_WRITEBACK); | 
|  |  | 
|  | /* | 
|  | * Ensure we only free the compressed pages if we have | 
|  | * them allocated, as we can still reach here with | 
|  | * inode_need_compress() == false. | 
|  | */ | 
|  | if (pages) { | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | WARN_ON(pages[i]->mapping); | 
|  | put_page(pages[i]); | 
|  | } | 
|  | kfree(pages); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (will_compress) { | 
|  | /* | 
|  | * we aren't doing an inline extent round the compressed size | 
|  | * up to a block size boundary so the allocator does sane | 
|  | * things | 
|  | */ | 
|  | total_compressed = ALIGN(total_compressed, blocksize); | 
|  |  | 
|  | /* | 
|  | * one last check to make sure the compression is really a | 
|  | * win, compare the page count read with the blocks on disk, | 
|  | * compression must free at least one sector size | 
|  | */ | 
|  | total_in = ALIGN(total_in, PAGE_SIZE); | 
|  | if (total_compressed + blocksize <= total_in) { | 
|  | compressed_extents++; | 
|  |  | 
|  | /* | 
|  | * The async work queues will take care of doing actual | 
|  | * allocation on disk for these compressed pages, and | 
|  | * will submit them to the elevator. | 
|  | */ | 
|  | add_async_extent(async_chunk, start, total_in, | 
|  | total_compressed, pages, nr_pages, | 
|  | compress_type); | 
|  |  | 
|  | if (start + total_in < end) { | 
|  | start += total_in; | 
|  | pages = NULL; | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | return compressed_extents; | 
|  | } | 
|  | } | 
|  | if (pages) { | 
|  | /* | 
|  | * the compression code ran but failed to make things smaller, | 
|  | * free any pages it allocated and our page pointer array | 
|  | */ | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | WARN_ON(pages[i]->mapping); | 
|  | put_page(pages[i]); | 
|  | } | 
|  | kfree(pages); | 
|  | pages = NULL; | 
|  | total_compressed = 0; | 
|  | nr_pages = 0; | 
|  |  | 
|  | /* flag the file so we don't compress in the future */ | 
|  | if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && | 
|  | !(BTRFS_I(inode)->prop_compress)) { | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; | 
|  | } | 
|  | } | 
|  | cleanup_and_bail_uncompressed: | 
|  | /* | 
|  | * No compression, but we still need to write the pages in the file | 
|  | * we've been given so far.  redirty the locked page if it corresponds | 
|  | * to our extent and set things up for the async work queue to run | 
|  | * cow_file_range to do the normal delalloc dance. | 
|  | */ | 
|  | if (async_chunk->locked_page && | 
|  | (page_offset(async_chunk->locked_page) >= start && | 
|  | page_offset(async_chunk->locked_page)) <= end) { | 
|  | __set_page_dirty_nobuffers(async_chunk->locked_page); | 
|  | /* unlocked later on in the async handlers */ | 
|  | } | 
|  |  | 
|  | if (redirty) | 
|  | extent_range_redirty_for_io(inode, start, end); | 
|  | add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, | 
|  | BTRFS_COMPRESS_NONE); | 
|  | compressed_extents++; | 
|  |  | 
|  | return compressed_extents; | 
|  | } | 
|  |  | 
|  | static void free_async_extent_pages(struct async_extent *async_extent) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!async_extent->pages) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < async_extent->nr_pages; i++) { | 
|  | WARN_ON(async_extent->pages[i]->mapping); | 
|  | put_page(async_extent->pages[i]); | 
|  | } | 
|  | kfree(async_extent->pages); | 
|  | async_extent->nr_pages = 0; | 
|  | async_extent->pages = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * phase two of compressed writeback.  This is the ordered portion | 
|  | * of the code, which only gets called in the order the work was | 
|  | * queued.  We walk all the async extents created by compress_file_range | 
|  | * and send them down to the disk. | 
|  | */ | 
|  | static noinline void submit_compressed_extents(struct async_chunk *async_chunk) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct async_extent *async_extent; | 
|  | u64 alloc_hint = 0; | 
|  | struct btrfs_key ins; | 
|  | struct extent_map *em; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  | int ret = 0; | 
|  |  | 
|  | again: | 
|  | while (!list_empty(&async_chunk->extents)) { | 
|  | async_extent = list_entry(async_chunk->extents.next, | 
|  | struct async_extent, list); | 
|  | list_del(&async_extent->list); | 
|  |  | 
|  | retry: | 
|  | lock_extent(io_tree, async_extent->start, | 
|  | async_extent->start + async_extent->ram_size - 1); | 
|  | /* did the compression code fall back to uncompressed IO? */ | 
|  | if (!async_extent->pages) { | 
|  | int page_started = 0; | 
|  | unsigned long nr_written = 0; | 
|  |  | 
|  | /* allocate blocks */ | 
|  | ret = cow_file_range(inode, async_chunk->locked_page, | 
|  | async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1, | 
|  | &page_started, &nr_written, 0); | 
|  |  | 
|  | /* JDM XXX */ | 
|  |  | 
|  | /* | 
|  | * if page_started, cow_file_range inserted an | 
|  | * inline extent and took care of all the unlocking | 
|  | * and IO for us.  Otherwise, we need to submit | 
|  | * all those pages down to the drive. | 
|  | */ | 
|  | if (!page_started && !ret) | 
|  | extent_write_locked_range(&inode->vfs_inode, | 
|  | async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1, | 
|  | WB_SYNC_ALL); | 
|  | else if (ret && async_chunk->locked_page) | 
|  | unlock_page(async_chunk->locked_page); | 
|  | kfree(async_extent); | 
|  | cond_resched(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = btrfs_reserve_extent(root, async_extent->ram_size, | 
|  | async_extent->compressed_size, | 
|  | async_extent->compressed_size, | 
|  | 0, alloc_hint, &ins, 1, 1); | 
|  | if (ret) { | 
|  | free_async_extent_pages(async_extent); | 
|  |  | 
|  | if (ret == -ENOSPC) { | 
|  | unlock_extent(io_tree, async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1); | 
|  |  | 
|  | /* | 
|  | * we need to redirty the pages if we decide to | 
|  | * fallback to uncompressed IO, otherwise we | 
|  | * will not submit these pages down to lower | 
|  | * layers. | 
|  | */ | 
|  | extent_range_redirty_for_io(&inode->vfs_inode, | 
|  | async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | goto out_free; | 
|  | } | 
|  | /* | 
|  | * here we're doing allocation and writeback of the | 
|  | * compressed pages | 
|  | */ | 
|  | em = create_io_em(inode, async_extent->start, | 
|  | async_extent->ram_size, /* len */ | 
|  | async_extent->start, /* orig_start */ | 
|  | ins.objectid, /* block_start */ | 
|  | ins.offset, /* block_len */ | 
|  | ins.offset, /* orig_block_len */ | 
|  | async_extent->ram_size, /* ram_bytes */ | 
|  | async_extent->compress_type, | 
|  | BTRFS_ORDERED_COMPRESSED); | 
|  | if (IS_ERR(em)) | 
|  | /* ret value is not necessary due to void function */ | 
|  | goto out_free_reserve; | 
|  | free_extent_map(em); | 
|  |  | 
|  | ret = btrfs_add_ordered_extent_compress(inode, | 
|  | async_extent->start, | 
|  | ins.objectid, | 
|  | async_extent->ram_size, | 
|  | ins.offset, | 
|  | async_extent->compress_type); | 
|  | if (ret) { | 
|  | btrfs_drop_extent_cache(inode, async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1, 0); | 
|  | goto out_free_reserve; | 
|  | } | 
|  | btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
|  |  | 
|  | /* | 
|  | * clear dirty, set writeback and unlock the pages. | 
|  | */ | 
|  | extent_clear_unlock_delalloc(inode, async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1, | 
|  | NULL, EXTENT_LOCKED | EXTENT_DELALLOC, | 
|  | PAGE_UNLOCK | PAGE_START_WRITEBACK); | 
|  | if (btrfs_submit_compressed_write(inode, async_extent->start, | 
|  | async_extent->ram_size, | 
|  | ins.objectid, | 
|  | ins.offset, async_extent->pages, | 
|  | async_extent->nr_pages, | 
|  | async_chunk->write_flags, | 
|  | async_chunk->blkcg_css)) { | 
|  | struct page *p = async_extent->pages[0]; | 
|  | const u64 start = async_extent->start; | 
|  | const u64 end = start + async_extent->ram_size - 1; | 
|  |  | 
|  | p->mapping = inode->vfs_inode.i_mapping; | 
|  | btrfs_writepage_endio_finish_ordered(inode, p, start, | 
|  | end, false); | 
|  |  | 
|  | p->mapping = NULL; | 
|  | extent_clear_unlock_delalloc(inode, start, end, NULL, 0, | 
|  | PAGE_END_WRITEBACK | | 
|  | PAGE_SET_ERROR); | 
|  | free_async_extent_pages(async_extent); | 
|  | } | 
|  | alloc_hint = ins.objectid + ins.offset; | 
|  | kfree(async_extent); | 
|  | cond_resched(); | 
|  | } | 
|  | return; | 
|  | out_free_reserve: | 
|  | btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
|  | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); | 
|  | out_free: | 
|  | extent_clear_unlock_delalloc(inode, async_extent->start, | 
|  | async_extent->start + | 
|  | async_extent->ram_size - 1, | 
|  | NULL, EXTENT_LOCKED | EXTENT_DELALLOC | | 
|  | EXTENT_DELALLOC_NEW | | 
|  | EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, | 
|  | PAGE_UNLOCK | PAGE_START_WRITEBACK | | 
|  | PAGE_END_WRITEBACK | PAGE_SET_ERROR); | 
|  | free_async_extent_pages(async_extent); | 
|  | kfree(async_extent); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | struct extent_map *em; | 
|  | u64 alloc_hint = 0; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = search_extent_mapping(em_tree, start, num_bytes); | 
|  | if (em) { | 
|  | /* | 
|  | * if block start isn't an actual block number then find the | 
|  | * first block in this inode and use that as a hint.  If that | 
|  | * block is also bogus then just don't worry about it. | 
|  | */ | 
|  | if (em->block_start >= EXTENT_MAP_LAST_BYTE) { | 
|  | free_extent_map(em); | 
|  | em = search_extent_mapping(em_tree, 0, 0); | 
|  | if (em && em->block_start < EXTENT_MAP_LAST_BYTE) | 
|  | alloc_hint = em->block_start; | 
|  | if (em) | 
|  | free_extent_map(em); | 
|  | } else { | 
|  | alloc_hint = em->block_start; | 
|  | free_extent_map(em); | 
|  | } | 
|  | } | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | return alloc_hint; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when extent_io.c finds a delayed allocation range in the file, | 
|  | * the call backs end up in this code.  The basic idea is to | 
|  | * allocate extents on disk for the range, and create ordered data structs | 
|  | * in ram to track those extents. | 
|  | * | 
|  | * locked_page is the page that writepage had locked already.  We use | 
|  | * it to make sure we don't do extra locks or unlocks. | 
|  | * | 
|  | * *page_started is set to one if we unlock locked_page and do everything | 
|  | * required to start IO on it.  It may be clean and already done with | 
|  | * IO when we return. | 
|  | * | 
|  | * When unlock == 1, we unlock the pages in successfully allocated regions. | 
|  | * When unlock == 0, we leave them locked for writing them out. | 
|  | * | 
|  | * However, we unlock all the pages except @locked_page in case of failure. | 
|  | * | 
|  | * In summary, page locking state will be as follow: | 
|  | * | 
|  | * - page_started == 1 (return value) | 
|  | *     - All the pages are unlocked. IO is started. | 
|  | *     - Note that this can happen only on success | 
|  | * - unlock == 1 | 
|  | *     - All the pages except @locked_page are unlocked in any case | 
|  | * - unlock == 0 | 
|  | *     - On success, all the pages are locked for writing out them | 
|  | *     - On failure, all the pages except @locked_page are unlocked | 
|  | * | 
|  | * When a failure happens in the second or later iteration of the | 
|  | * while-loop, the ordered extents created in previous iterations are kept | 
|  | * intact. So, the caller must clean them up by calling | 
|  | * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for | 
|  | * example. | 
|  | */ | 
|  | static noinline int cow_file_range(struct btrfs_inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 start, u64 end, int *page_started, | 
|  | unsigned long *nr_written, int unlock) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 alloc_hint = 0; | 
|  | u64 orig_start = start; | 
|  | u64 num_bytes; | 
|  | unsigned long ram_size; | 
|  | u64 cur_alloc_size = 0; | 
|  | u64 min_alloc_size; | 
|  | u64 blocksize = fs_info->sectorsize; | 
|  | struct btrfs_key ins; | 
|  | struct extent_map *em; | 
|  | unsigned clear_bits; | 
|  | unsigned long page_ops; | 
|  | bool extent_reserved = false; | 
|  | int ret = 0; | 
|  |  | 
|  | if (btrfs_is_free_space_inode(inode)) { | 
|  | ret = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | num_bytes = ALIGN(end - start + 1, blocksize); | 
|  | num_bytes = max(blocksize,  num_bytes); | 
|  | ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); | 
|  |  | 
|  | inode_should_defrag(inode, start, end, num_bytes, SZ_64K); | 
|  |  | 
|  | /* | 
|  | * Due to the page size limit, for subpage we can only trigger the | 
|  | * writeback for the dirty sectors of page, that means data writeback | 
|  | * is doing more writeback than what we want. | 
|  | * | 
|  | * This is especially unexpected for some call sites like fallocate, | 
|  | * where we only increase i_size after everything is done. | 
|  | * This means we can trigger inline extent even if we didn't want to. | 
|  | * So here we skip inline extent creation completely. | 
|  | */ | 
|  | if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { | 
|  | /* lets try to make an inline extent */ | 
|  | ret = cow_file_range_inline(inode, start, end, 0, | 
|  | BTRFS_COMPRESS_NONE, NULL); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * We use DO_ACCOUNTING here because we need the | 
|  | * delalloc_release_metadata to be run _after_ we drop | 
|  | * our outstanding extent for clearing delalloc for this | 
|  | * range. | 
|  | */ | 
|  | extent_clear_unlock_delalloc(inode, start, end, | 
|  | locked_page, | 
|  | EXTENT_LOCKED | EXTENT_DELALLOC | | 
|  | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | | 
|  | EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | | 
|  | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); | 
|  | *nr_written = *nr_written + | 
|  | (end - start + PAGE_SIZE) / PAGE_SIZE; | 
|  | *page_started = 1; | 
|  | /* | 
|  | * locked_page is locked by the caller of | 
|  | * writepage_delalloc(), not locked by | 
|  | * __process_pages_contig(). | 
|  | * | 
|  | * We can't let __process_pages_contig() to unlock it, | 
|  | * as it doesn't have any subpage::writers recorded. | 
|  | * | 
|  | * Here we manually unlock the page, since the caller | 
|  | * can't use page_started to determine if it's an | 
|  | * inline extent or a compressed extent. | 
|  | */ | 
|  | unlock_page(locked_page); | 
|  | goto out; | 
|  | } else if (ret < 0) { | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); | 
|  | btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); | 
|  |  | 
|  | /* | 
|  | * Relocation relies on the relocated extents to have exactly the same | 
|  | * size as the original extents. Normally writeback for relocation data | 
|  | * extents follows a NOCOW path because relocation preallocates the | 
|  | * extents. However, due to an operation such as scrub turning a block | 
|  | * group to RO mode, it may fallback to COW mode, so we must make sure | 
|  | * an extent allocated during COW has exactly the requested size and can | 
|  | * not be split into smaller extents, otherwise relocation breaks and | 
|  | * fails during the stage where it updates the bytenr of file extent | 
|  | * items. | 
|  | */ | 
|  | if (btrfs_is_data_reloc_root(root)) | 
|  | min_alloc_size = num_bytes; | 
|  | else | 
|  | min_alloc_size = fs_info->sectorsize; | 
|  |  | 
|  | while (num_bytes > 0) { | 
|  | cur_alloc_size = num_bytes; | 
|  | ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, | 
|  | min_alloc_size, 0, alloc_hint, | 
|  | &ins, 1, 1); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | cur_alloc_size = ins.offset; | 
|  | extent_reserved = true; | 
|  |  | 
|  | ram_size = ins.offset; | 
|  | em = create_io_em(inode, start, ins.offset, /* len */ | 
|  | start, /* orig_start */ | 
|  | ins.objectid, /* block_start */ | 
|  | ins.offset, /* block_len */ | 
|  | ins.offset, /* orig_block_len */ | 
|  | ram_size, /* ram_bytes */ | 
|  | BTRFS_COMPRESS_NONE, /* compress_type */ | 
|  | BTRFS_ORDERED_REGULAR /* type */); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out_reserve; | 
|  | } | 
|  | free_extent_map(em); | 
|  |  | 
|  | ret = btrfs_add_ordered_extent(inode, start, ins.objectid, | 
|  | ram_size, cur_alloc_size, | 
|  | BTRFS_ORDERED_REGULAR); | 
|  | if (ret) | 
|  | goto out_drop_extent_cache; | 
|  |  | 
|  | if (btrfs_is_data_reloc_root(root)) { | 
|  | ret = btrfs_reloc_clone_csums(inode, start, | 
|  | cur_alloc_size); | 
|  | /* | 
|  | * Only drop cache here, and process as normal. | 
|  | * | 
|  | * We must not allow extent_clear_unlock_delalloc() | 
|  | * at out_unlock label to free meta of this ordered | 
|  | * extent, as its meta should be freed by | 
|  | * btrfs_finish_ordered_io(). | 
|  | * | 
|  | * So we must continue until @start is increased to | 
|  | * skip current ordered extent. | 
|  | */ | 
|  | if (ret) | 
|  | btrfs_drop_extent_cache(inode, start, | 
|  | start + ram_size - 1, 0); | 
|  | } | 
|  |  | 
|  | btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
|  |  | 
|  | /* | 
|  | * We're not doing compressed IO, don't unlock the first page | 
|  | * (which the caller expects to stay locked), don't clear any | 
|  | * dirty bits and don't set any writeback bits | 
|  | * | 
|  | * Do set the Ordered (Private2) bit so we know this page was | 
|  | * properly setup for writepage. | 
|  | */ | 
|  | page_ops = unlock ? PAGE_UNLOCK : 0; | 
|  | page_ops |= PAGE_SET_ORDERED; | 
|  |  | 
|  | extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, | 
|  | locked_page, | 
|  | EXTENT_LOCKED | EXTENT_DELALLOC, | 
|  | page_ops); | 
|  | if (num_bytes < cur_alloc_size) | 
|  | num_bytes = 0; | 
|  | else | 
|  | num_bytes -= cur_alloc_size; | 
|  | alloc_hint = ins.objectid + ins.offset; | 
|  | start += cur_alloc_size; | 
|  | extent_reserved = false; | 
|  |  | 
|  | /* | 
|  | * btrfs_reloc_clone_csums() error, since start is increased | 
|  | * extent_clear_unlock_delalloc() at out_unlock label won't | 
|  | * free metadata of current ordered extent, we're OK to exit. | 
|  | */ | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | out_drop_extent_cache: | 
|  | btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); | 
|  | out_reserve: | 
|  | btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
|  | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); | 
|  | out_unlock: | 
|  | /* | 
|  | * Now, we have three regions to clean up: | 
|  | * | 
|  | * |-------(1)----|---(2)---|-------------(3)----------| | 
|  | * `- orig_start  `- start  `- start + cur_alloc_size  `- end | 
|  | * | 
|  | * We process each region below. | 
|  | */ | 
|  |  | 
|  | clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | | 
|  | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; | 
|  | page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; | 
|  |  | 
|  | /* | 
|  | * For the range (1). We have already instantiated the ordered extents | 
|  | * for this region. They are cleaned up by | 
|  | * btrfs_cleanup_ordered_extents() in e.g, | 
|  | * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are | 
|  | * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | | 
|  | * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup | 
|  | * function. | 
|  | * | 
|  | * However, in case of unlock == 0, we still need to unlock the pages | 
|  | * (except @locked_page) to ensure all the pages are unlocked. | 
|  | */ | 
|  | if (!unlock && orig_start < start) | 
|  | extent_clear_unlock_delalloc(inode, orig_start, start - 1, | 
|  | locked_page, 0, page_ops); | 
|  |  | 
|  | /* | 
|  | * For the range (2). If we reserved an extent for our delalloc range | 
|  | * (or a subrange) and failed to create the respective ordered extent, | 
|  | * then it means that when we reserved the extent we decremented the | 
|  | * extent's size from the data space_info's bytes_may_use counter and | 
|  | * incremented the space_info's bytes_reserved counter by the same | 
|  | * amount. We must make sure extent_clear_unlock_delalloc() does not try | 
|  | * to decrement again the data space_info's bytes_may_use counter, | 
|  | * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. | 
|  | */ | 
|  | if (extent_reserved) { | 
|  | extent_clear_unlock_delalloc(inode, start, | 
|  | start + cur_alloc_size - 1, | 
|  | locked_page, | 
|  | clear_bits, | 
|  | page_ops); | 
|  | start += cur_alloc_size; | 
|  | if (start >= end) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For the range (3). We never touched the region. In addition to the | 
|  | * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data | 
|  | * space_info's bytes_may_use counter, reserved in | 
|  | * btrfs_check_data_free_space(). | 
|  | */ | 
|  | extent_clear_unlock_delalloc(inode, start, end, locked_page, | 
|  | clear_bits | EXTENT_CLEAR_DATA_RESV, | 
|  | page_ops); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * work queue call back to started compression on a file and pages | 
|  | */ | 
|  | static noinline void async_cow_start(struct btrfs_work *work) | 
|  | { | 
|  | struct async_chunk *async_chunk; | 
|  | int compressed_extents; | 
|  |  | 
|  | async_chunk = container_of(work, struct async_chunk, work); | 
|  |  | 
|  | compressed_extents = compress_file_range(async_chunk); | 
|  | if (compressed_extents == 0) { | 
|  | btrfs_add_delayed_iput(async_chunk->inode); | 
|  | async_chunk->inode = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * work queue call back to submit previously compressed pages | 
|  | */ | 
|  | static noinline void async_cow_submit(struct btrfs_work *work) | 
|  | { | 
|  | struct async_chunk *async_chunk = container_of(work, struct async_chunk, | 
|  | work); | 
|  | struct btrfs_fs_info *fs_info = btrfs_work_owner(work); | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> | 
|  | PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * ->inode could be NULL if async_chunk_start has failed to compress, | 
|  | * in which case we don't have anything to submit, yet we need to | 
|  | * always adjust ->async_delalloc_pages as its paired with the init | 
|  | * happening in cow_file_range_async | 
|  | */ | 
|  | if (async_chunk->inode) | 
|  | submit_compressed_extents(async_chunk); | 
|  |  | 
|  | /* atomic_sub_return implies a barrier */ | 
|  | if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < | 
|  | 5 * SZ_1M) | 
|  | cond_wake_up_nomb(&fs_info->async_submit_wait); | 
|  | } | 
|  |  | 
|  | static noinline void async_cow_free(struct btrfs_work *work) | 
|  | { | 
|  | struct async_chunk *async_chunk; | 
|  |  | 
|  | async_chunk = container_of(work, struct async_chunk, work); | 
|  | if (async_chunk->inode) | 
|  | btrfs_add_delayed_iput(async_chunk->inode); | 
|  | if (async_chunk->blkcg_css) | 
|  | css_put(async_chunk->blkcg_css); | 
|  | /* | 
|  | * Since the pointer to 'pending' is at the beginning of the array of | 
|  | * async_chunk's, freeing it ensures the whole array has been freed. | 
|  | */ | 
|  | if (atomic_dec_and_test(async_chunk->pending)) | 
|  | kvfree(async_chunk->pending); | 
|  | } | 
|  |  | 
|  | static int cow_file_range_async(struct btrfs_inode *inode, | 
|  | struct writeback_control *wbc, | 
|  | struct page *locked_page, | 
|  | u64 start, u64 end, int *page_started, | 
|  | unsigned long *nr_written) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); | 
|  | struct async_cow *ctx; | 
|  | struct async_chunk *async_chunk; | 
|  | unsigned long nr_pages; | 
|  | u64 cur_end; | 
|  | u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); | 
|  | int i; | 
|  | bool should_compress; | 
|  | unsigned nofs_flag; | 
|  | const unsigned int write_flags = wbc_to_write_flags(wbc); | 
|  |  | 
|  | unlock_extent(&inode->io_tree, start, end); | 
|  |  | 
|  | if (inode->flags & BTRFS_INODE_NOCOMPRESS && | 
|  | !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { | 
|  | num_chunks = 1; | 
|  | should_compress = false; | 
|  | } else { | 
|  | should_compress = true; | 
|  | } | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | if (!ctx) { | 
|  | unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | | 
|  | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | | 
|  | EXTENT_DO_ACCOUNTING; | 
|  | unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | | 
|  | PAGE_END_WRITEBACK | PAGE_SET_ERROR; | 
|  |  | 
|  | extent_clear_unlock_delalloc(inode, start, end, locked_page, | 
|  | clear_bits, page_ops); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | async_chunk = ctx->chunks; | 
|  | atomic_set(&ctx->num_chunks, num_chunks); | 
|  |  | 
|  | for (i = 0; i < num_chunks; i++) { | 
|  | if (should_compress) | 
|  | cur_end = min(end, start + SZ_512K - 1); | 
|  | else | 
|  | cur_end = end; | 
|  |  | 
|  | /* | 
|  | * igrab is called higher up in the call chain, take only the | 
|  | * lightweight reference for the callback lifetime | 
|  | */ | 
|  | ihold(&inode->vfs_inode); | 
|  | async_chunk[i].pending = &ctx->num_chunks; | 
|  | async_chunk[i].inode = &inode->vfs_inode; | 
|  | async_chunk[i].start = start; | 
|  | async_chunk[i].end = cur_end; | 
|  | async_chunk[i].write_flags = write_flags; | 
|  | INIT_LIST_HEAD(&async_chunk[i].extents); | 
|  |  | 
|  | /* | 
|  | * The locked_page comes all the way from writepage and its | 
|  | * the original page we were actually given.  As we spread | 
|  | * this large delalloc region across multiple async_chunk | 
|  | * structs, only the first struct needs a pointer to locked_page | 
|  | * | 
|  | * This way we don't need racey decisions about who is supposed | 
|  | * to unlock it. | 
|  | */ | 
|  | if (locked_page) { | 
|  | /* | 
|  | * Depending on the compressibility, the pages might or | 
|  | * might not go through async.  We want all of them to | 
|  | * be accounted against wbc once.  Let's do it here | 
|  | * before the paths diverge.  wbc accounting is used | 
|  | * only for foreign writeback detection and doesn't | 
|  | * need full accuracy.  Just account the whole thing | 
|  | * against the first page. | 
|  | */ | 
|  | wbc_account_cgroup_owner(wbc, locked_page, | 
|  | cur_end - start); | 
|  | async_chunk[i].locked_page = locked_page; | 
|  | locked_page = NULL; | 
|  | } else { | 
|  | async_chunk[i].locked_page = NULL; | 
|  | } | 
|  |  | 
|  | if (blkcg_css != blkcg_root_css) { | 
|  | css_get(blkcg_css); | 
|  | async_chunk[i].blkcg_css = blkcg_css; | 
|  | } else { | 
|  | async_chunk[i].blkcg_css = NULL; | 
|  | } | 
|  |  | 
|  | btrfs_init_work(&async_chunk[i].work, async_cow_start, | 
|  | async_cow_submit, async_cow_free); | 
|  |  | 
|  | nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); | 
|  | atomic_add(nr_pages, &fs_info->async_delalloc_pages); | 
|  |  | 
|  | btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); | 
|  |  | 
|  | *nr_written += nr_pages; | 
|  | start = cur_end + 1; | 
|  | } | 
|  | *page_started = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int run_delalloc_zoned(struct btrfs_inode *inode, | 
|  | struct page *locked_page, u64 start, | 
|  | u64 end, int *page_started, | 
|  | unsigned long *nr_written) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cow_file_range(inode, locked_page, start, end, page_started, | 
|  | nr_written, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (*page_started) | 
|  | return 0; | 
|  |  | 
|  | __set_page_dirty_nobuffers(locked_page); | 
|  | account_page_redirty(locked_page); | 
|  | extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); | 
|  | *page_started = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_ordered_sum *sums; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, | 
|  | bytenr + num_bytes - 1, &list, 0); | 
|  | if (ret == 0 && list_empty(&list)) | 
|  | return 0; | 
|  |  | 
|  | while (!list_empty(&list)) { | 
|  | sums = list_entry(list.next, struct btrfs_ordered_sum, list); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, | 
|  | const u64 start, const u64 end, | 
|  | int *page_started, unsigned long *nr_written) | 
|  | { | 
|  | const bool is_space_ino = btrfs_is_free_space_inode(inode); | 
|  | const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); | 
|  | const u64 range_bytes = end + 1 - start; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  | u64 range_start = start; | 
|  | u64 count; | 
|  |  | 
|  | /* | 
|  | * If EXTENT_NORESERVE is set it means that when the buffered write was | 
|  | * made we had not enough available data space and therefore we did not | 
|  | * reserve data space for it, since we though we could do NOCOW for the | 
|  | * respective file range (either there is prealloc extent or the inode | 
|  | * has the NOCOW bit set). | 
|  | * | 
|  | * However when we need to fallback to COW mode (because for example the | 
|  | * block group for the corresponding extent was turned to RO mode by a | 
|  | * scrub or relocation) we need to do the following: | 
|  | * | 
|  | * 1) We increment the bytes_may_use counter of the data space info. | 
|  | *    If COW succeeds, it allocates a new data extent and after doing | 
|  | *    that it decrements the space info's bytes_may_use counter and | 
|  | *    increments its bytes_reserved counter by the same amount (we do | 
|  | *    this at btrfs_add_reserved_bytes()). So we need to increment the | 
|  | *    bytes_may_use counter to compensate (when space is reserved at | 
|  | *    buffered write time, the bytes_may_use counter is incremented); | 
|  | * | 
|  | * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so | 
|  | *    that if the COW path fails for any reason, it decrements (through | 
|  | *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the | 
|  | *    data space info, which we incremented in the step above. | 
|  | * | 
|  | * If we need to fallback to cow and the inode corresponds to a free | 
|  | * space cache inode or an inode of the data relocation tree, we must | 
|  | * also increment bytes_may_use of the data space_info for the same | 
|  | * reason. Space caches and relocated data extents always get a prealloc | 
|  | * extent for them, however scrub or balance may have set the block | 
|  | * group that contains that extent to RO mode and therefore force COW | 
|  | * when starting writeback. | 
|  | */ | 
|  | count = count_range_bits(io_tree, &range_start, end, range_bytes, | 
|  | EXTENT_NORESERVE, 0); | 
|  | if (count > 0 || is_space_ino || is_reloc_ino) { | 
|  | u64 bytes = count; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_space_info *sinfo = fs_info->data_sinfo; | 
|  |  | 
|  | if (is_space_ino || is_reloc_ino) | 
|  | bytes = range_bytes; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | if (count > 0) | 
|  | clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, | 
|  | 0, 0, NULL); | 
|  | } | 
|  |  | 
|  | return cow_file_range(inode, locked_page, start, end, page_started, | 
|  | nr_written, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when nowcow writeback call back.  This checks for snapshots or COW copies | 
|  | * of the extents that exist in the file, and COWs the file as required. | 
|  | * | 
|  | * If no cow copies or snapshots exist, we write directly to the existing | 
|  | * blocks on disk | 
|  | */ | 
|  | static noinline int run_delalloc_nocow(struct btrfs_inode *inode, | 
|  | struct page *locked_page, | 
|  | const u64 start, const u64 end, | 
|  | int *page_started, | 
|  | unsigned long *nr_written) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_path *path; | 
|  | u64 cow_start = (u64)-1; | 
|  | u64 cur_offset = start; | 
|  | int ret; | 
|  | bool check_prev = true; | 
|  | const bool freespace_inode = btrfs_is_free_space_inode(inode); | 
|  | u64 ino = btrfs_ino(inode); | 
|  | bool nocow = false; | 
|  | u64 disk_bytenr = 0; | 
|  | const bool force = inode->flags & BTRFS_INODE_NODATACOW; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | extent_clear_unlock_delalloc(inode, start, end, locked_page, | 
|  | EXTENT_LOCKED | EXTENT_DELALLOC | | 
|  | EXTENT_DO_ACCOUNTING | | 
|  | EXTENT_DEFRAG, PAGE_UNLOCK | | 
|  | PAGE_START_WRITEBACK | | 
|  | PAGE_END_WRITEBACK); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_buffer *leaf; | 
|  | u64 extent_end; | 
|  | u64 extent_offset; | 
|  | u64 num_bytes = 0; | 
|  | u64 disk_num_bytes; | 
|  | u64 ram_bytes; | 
|  | int extent_type; | 
|  |  | 
|  | nocow = false; | 
|  |  | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, ino, | 
|  | cur_offset, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * If there is no extent for our range when doing the initial | 
|  | * search, then go back to the previous slot as it will be the | 
|  | * one containing the search offset | 
|  | */ | 
|  | if (ret > 0 && path->slots[0] > 0 && check_prev) { | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, | 
|  | path->slots[0] - 1); | 
|  | if (found_key.objectid == ino && | 
|  | found_key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  | check_prev = false; | 
|  | next_slot: | 
|  | /* Go to next leaf if we have exhausted the current one */ | 
|  | leaf = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) { | 
|  | if (cow_start != (u64)-1) | 
|  | cur_offset = cow_start; | 
|  | goto error; | 
|  | } | 
|  | if (ret > 0) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | /* Didn't find anything for our INO */ | 
|  | if (found_key.objectid > ino) | 
|  | break; | 
|  | /* | 
|  | * Keep searching until we find an EXTENT_ITEM or there are no | 
|  | * more extents for this inode | 
|  | */ | 
|  | if (WARN_ON_ONCE(found_key.objectid < ino) || | 
|  | found_key.type < BTRFS_EXTENT_DATA_KEY) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | /* Found key is not EXTENT_DATA_KEY or starts after req range */ | 
|  | if (found_key.type > BTRFS_EXTENT_DATA_KEY || | 
|  | found_key.offset > end) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If the found extent starts after requested offset, then | 
|  | * adjust extent_end to be right before this extent begins | 
|  | */ | 
|  | if (found_key.offset > cur_offset) { | 
|  | extent_end = found_key.offset; | 
|  | extent_type = 0; | 
|  | goto out_check; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Found extent which begins before our range and potentially | 
|  | * intersect it | 
|  | */ | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(leaf, fi); | 
|  |  | 
|  | ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_REG || | 
|  | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | extent_offset = btrfs_file_extent_offset(leaf, fi); | 
|  | extent_end = found_key.offset + | 
|  | btrfs_file_extent_num_bytes(leaf, fi); | 
|  | disk_num_bytes = | 
|  | btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | /* | 
|  | * If the extent we got ends before our current offset, | 
|  | * skip to the next extent. | 
|  | */ | 
|  | if (extent_end <= cur_offset) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  | /* Skip holes */ | 
|  | if (disk_bytenr == 0) | 
|  | goto out_check; | 
|  | /* Skip compressed/encrypted/encoded extents */ | 
|  | if (btrfs_file_extent_compression(leaf, fi) || | 
|  | btrfs_file_extent_encryption(leaf, fi) || | 
|  | btrfs_file_extent_other_encoding(leaf, fi)) | 
|  | goto out_check; | 
|  | /* | 
|  | * If extent is created before the last volume's snapshot | 
|  | * this implies the extent is shared, hence we can't do | 
|  | * nocow. This is the same check as in | 
|  | * btrfs_cross_ref_exist but without calling | 
|  | * btrfs_search_slot. | 
|  | */ | 
|  | if (!freespace_inode && | 
|  | btrfs_file_extent_generation(leaf, fi) <= | 
|  | btrfs_root_last_snapshot(&root->root_item)) | 
|  | goto out_check; | 
|  | if (extent_type == BTRFS_FILE_EXTENT_REG && !force) | 
|  | goto out_check; | 
|  |  | 
|  | /* | 
|  | * The following checks can be expensive, as they need to | 
|  | * take other locks and do btree or rbtree searches, so | 
|  | * release the path to avoid blocking other tasks for too | 
|  | * long. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_cross_ref_exist(root, ino, | 
|  | found_key.offset - | 
|  | extent_offset, disk_bytenr, false); | 
|  | if (ret) { | 
|  | /* | 
|  | * ret could be -EIO if the above fails to read | 
|  | * metadata. | 
|  | */ | 
|  | if (ret < 0) { | 
|  | if (cow_start != (u64)-1) | 
|  | cur_offset = cow_start; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(freespace_inode); | 
|  | goto out_check; | 
|  | } | 
|  | disk_bytenr += extent_offset; | 
|  | disk_bytenr += cur_offset - found_key.offset; | 
|  | num_bytes = min(end + 1, extent_end) - cur_offset; | 
|  | /* | 
|  | * If there are pending snapshots for this root, we | 
|  | * fall into common COW way | 
|  | */ | 
|  | if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) | 
|  | goto out_check; | 
|  | /* | 
|  | * force cow if csum exists in the range. | 
|  | * this ensure that csum for a given extent are | 
|  | * either valid or do not exist. | 
|  | */ | 
|  | ret = csum_exist_in_range(fs_info, disk_bytenr, | 
|  | num_bytes); | 
|  | if (ret) { | 
|  | /* | 
|  | * ret could be -EIO if the above fails to read | 
|  | * metadata. | 
|  | */ | 
|  | if (ret < 0) { | 
|  | if (cow_start != (u64)-1) | 
|  | cur_offset = cow_start; | 
|  | goto error; | 
|  | } | 
|  | WARN_ON_ONCE(freespace_inode); | 
|  | goto out_check; | 
|  | } | 
|  | /* If the extent's block group is RO, we must COW */ | 
|  | if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) | 
|  | goto out_check; | 
|  | nocow = true; | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | extent_end = found_key.offset + ram_bytes; | 
|  | extent_end = ALIGN(extent_end, fs_info->sectorsize); | 
|  | /* Skip extents outside of our requested range */ | 
|  | if (extent_end <= start) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  | } else { | 
|  | /* If this triggers then we have a memory corruption */ | 
|  | BUG(); | 
|  | } | 
|  | out_check: | 
|  | /* | 
|  | * If nocow is false then record the beginning of the range | 
|  | * that needs to be COWed | 
|  | */ | 
|  | if (!nocow) { | 
|  | if (cow_start == (u64)-1) | 
|  | cow_start = cur_offset; | 
|  | cur_offset = extent_end; | 
|  | if (cur_offset > end) | 
|  | break; | 
|  | if (!path->nodes[0]) | 
|  | continue; | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * COW range from cow_start to found_key.offset - 1. As the key | 
|  | * will contain the beginning of the first extent that can be | 
|  | * NOCOW, following one which needs to be COW'ed | 
|  | */ | 
|  | if (cow_start != (u64)-1) { | 
|  | ret = fallback_to_cow(inode, locked_page, | 
|  | cow_start, found_key.offset - 1, | 
|  | page_started, nr_written); | 
|  | if (ret) | 
|  | goto error; | 
|  | cow_start = (u64)-1; | 
|  | } | 
|  |  | 
|  | if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | u64 orig_start = found_key.offset - extent_offset; | 
|  | struct extent_map *em; | 
|  |  | 
|  | em = create_io_em(inode, cur_offset, num_bytes, | 
|  | orig_start, | 
|  | disk_bytenr, /* block_start */ | 
|  | num_bytes, /* block_len */ | 
|  | disk_num_bytes, /* orig_block_len */ | 
|  | ram_bytes, BTRFS_COMPRESS_NONE, | 
|  | BTRFS_ORDERED_PREALLOC); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto error; | 
|  | } | 
|  | free_extent_map(em); | 
|  | ret = btrfs_add_ordered_extent(inode, cur_offset, | 
|  | disk_bytenr, num_bytes, | 
|  | num_bytes, | 
|  | BTRFS_ORDERED_PREALLOC); | 
|  | if (ret) { | 
|  | btrfs_drop_extent_cache(inode, cur_offset, | 
|  | cur_offset + num_bytes - 1, | 
|  | 0); | 
|  | goto error; | 
|  | } | 
|  | } else { | 
|  | ret = btrfs_add_ordered_extent(inode, cur_offset, | 
|  | disk_bytenr, num_bytes, | 
|  | num_bytes, | 
|  | BTRFS_ORDERED_NOCOW); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (nocow) | 
|  | btrfs_dec_nocow_writers(fs_info, disk_bytenr); | 
|  | nocow = false; | 
|  |  | 
|  | if (btrfs_is_data_reloc_root(root)) | 
|  | /* | 
|  | * Error handled later, as we must prevent | 
|  | * extent_clear_unlock_delalloc() in error handler | 
|  | * from freeing metadata of created ordered extent. | 
|  | */ | 
|  | ret = btrfs_reloc_clone_csums(inode, cur_offset, | 
|  | num_bytes); | 
|  |  | 
|  | extent_clear_unlock_delalloc(inode, cur_offset, | 
|  | cur_offset + num_bytes - 1, | 
|  | locked_page, EXTENT_LOCKED | | 
|  | EXTENT_DELALLOC | | 
|  | EXTENT_CLEAR_DATA_RESV, | 
|  | PAGE_UNLOCK | PAGE_SET_ORDERED); | 
|  |  | 
|  | cur_offset = extent_end; | 
|  |  | 
|  | /* | 
|  | * btrfs_reloc_clone_csums() error, now we're OK to call error | 
|  | * handler, as metadata for created ordered extent will only | 
|  | * be freed by btrfs_finish_ordered_io(). | 
|  | */ | 
|  | if (ret) | 
|  | goto error; | 
|  | if (cur_offset > end) | 
|  | break; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (cur_offset <= end && cow_start == (u64)-1) | 
|  | cow_start = cur_offset; | 
|  |  | 
|  | if (cow_start != (u64)-1) { | 
|  | cur_offset = end; | 
|  | ret = fallback_to_cow(inode, locked_page, cow_start, end, | 
|  | page_started, nr_written); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | error: | 
|  | if (nocow) | 
|  | btrfs_dec_nocow_writers(fs_info, disk_bytenr); | 
|  |  | 
|  | if (ret && cur_offset < end) | 
|  | extent_clear_unlock_delalloc(inode, cur_offset, end, | 
|  | locked_page, EXTENT_LOCKED | | 
|  | EXTENT_DELALLOC | EXTENT_DEFRAG | | 
|  | EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | | 
|  | PAGE_START_WRITEBACK | | 
|  | PAGE_END_WRITEBACK); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) | 
|  | { | 
|  | if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { | 
|  | if (inode->defrag_bytes && | 
|  | test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, | 
|  | 0, NULL)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to process delayed allocation (create CoW) for ranges which are | 
|  | * being touched for the first time. | 
|  | */ | 
|  | int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, | 
|  | u64 start, u64 end, int *page_started, unsigned long *nr_written, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  | const bool zoned = btrfs_is_zoned(inode->root->fs_info); | 
|  |  | 
|  | if (should_nocow(inode, start, end)) { | 
|  | /* | 
|  | * Normally on a zoned device we're only doing COW writes, but | 
|  | * in case of relocation on a zoned filesystem we have taken | 
|  | * precaution, that we're only writing sequentially. It's safe | 
|  | * to use run_delalloc_nocow() here, like for  regular | 
|  | * preallocated inodes. | 
|  | */ | 
|  | ASSERT(!zoned || | 
|  | (zoned && btrfs_is_data_reloc_root(inode->root))); | 
|  | ret = run_delalloc_nocow(inode, locked_page, start, end, | 
|  | page_started, nr_written); | 
|  | } else if (!inode_can_compress(inode) || | 
|  | !inode_need_compress(inode, start, end)) { | 
|  | if (zoned) | 
|  | ret = run_delalloc_zoned(inode, locked_page, start, end, | 
|  | page_started, nr_written); | 
|  | else | 
|  | ret = cow_file_range(inode, locked_page, start, end, | 
|  | page_started, nr_written, 1); | 
|  | } else { | 
|  | set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); | 
|  | ret = cow_file_range_async(inode, wbc, locked_page, start, end, | 
|  | page_started, nr_written); | 
|  | } | 
|  | ASSERT(ret <= 0); | 
|  | if (ret) | 
|  | btrfs_cleanup_ordered_extents(inode, locked_page, start, | 
|  | end - start + 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_split_delalloc_extent(struct inode *inode, | 
|  | struct extent_state *orig, u64 split) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 size; | 
|  |  | 
|  | /* not delalloc, ignore it */ | 
|  | if (!(orig->state & EXTENT_DELALLOC)) | 
|  | return; | 
|  |  | 
|  | size = orig->end - orig->start + 1; | 
|  | if (size > fs_info->max_extent_size) { | 
|  | u32 num_extents; | 
|  | u64 new_size; | 
|  |  | 
|  | /* | 
|  | * See the explanation in btrfs_merge_delalloc_extent, the same | 
|  | * applies here, just in reverse. | 
|  | */ | 
|  | new_size = orig->end - split + 1; | 
|  | num_extents = count_max_extents(fs_info, new_size); | 
|  | new_size = split - orig->start; | 
|  | num_extents += count_max_extents(fs_info, new_size); | 
|  | if (count_max_extents(fs_info, size) >= num_extents) | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle merged delayed allocation extents so we can keep track of new extents | 
|  | * that are just merged onto old extents, such as when we are doing sequential | 
|  | * writes, so we can properly account for the metadata space we'll need. | 
|  | */ | 
|  | void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, | 
|  | struct extent_state *other) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 new_size, old_size; | 
|  | u32 num_extents; | 
|  |  | 
|  | /* not delalloc, ignore it */ | 
|  | if (!(other->state & EXTENT_DELALLOC)) | 
|  | return; | 
|  |  | 
|  | if (new->start > other->start) | 
|  | new_size = new->end - other->start + 1; | 
|  | else | 
|  | new_size = other->end - new->start + 1; | 
|  |  | 
|  | /* we're not bigger than the max, unreserve the space and go */ | 
|  | if (new_size <= fs_info->max_extent_size) { | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to add up either side to figure out how many extents were | 
|  | * accounted for before we merged into one big extent.  If the number of | 
|  | * extents we accounted for is <= the amount we need for the new range | 
|  | * then we can return, otherwise drop.  Think of it like this | 
|  | * | 
|  | * [ 4k][MAX_SIZE] | 
|  | * | 
|  | * So we've grown the extent by a MAX_SIZE extent, this would mean we | 
|  | * need 2 outstanding extents, on one side we have 1 and the other side | 
|  | * we have 1 so they are == and we can return.  But in this case | 
|  | * | 
|  | * [MAX_SIZE+4k][MAX_SIZE+4k] | 
|  | * | 
|  | * Each range on their own accounts for 2 extents, but merged together | 
|  | * they are only 3 extents worth of accounting, so we need to drop in | 
|  | * this case. | 
|  | */ | 
|  | old_size = other->end - other->start + 1; | 
|  | num_extents = count_max_extents(fs_info, old_size); | 
|  | old_size = new->end - new->start + 1; | 
|  | num_extents += count_max_extents(fs_info, old_size); | 
|  | if (count_max_extents(fs_info, new_size) >= num_extents) | 
|  | return; | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_add_delalloc_inodes(struct btrfs_root *root, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  |  | 
|  | spin_lock(&root->delalloc_lock); | 
|  | if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { | 
|  | list_add_tail(&BTRFS_I(inode)->delalloc_inodes, | 
|  | &root->delalloc_inodes); | 
|  | set_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | root->nr_delalloc_inodes++; | 
|  | if (root->nr_delalloc_inodes == 1) { | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | BUG_ON(!list_empty(&root->delalloc_root)); | 
|  | list_add_tail(&root->delalloc_root, | 
|  | &fs_info->delalloc_roots); | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock(&root->delalloc_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | void __btrfs_del_delalloc_inode(struct btrfs_root *root, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (!list_empty(&inode->delalloc_inodes)) { | 
|  | list_del_init(&inode->delalloc_inodes); | 
|  | clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
|  | &inode->runtime_flags); | 
|  | root->nr_delalloc_inodes--; | 
|  | if (!root->nr_delalloc_inodes) { | 
|  | ASSERT(list_empty(&root->delalloc_inodes)); | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | BUG_ON(list_empty(&root->delalloc_root)); | 
|  | list_del_init(&root->delalloc_root); | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_del_delalloc_inode(struct btrfs_root *root, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | spin_lock(&root->delalloc_lock); | 
|  | __btrfs_del_delalloc_inode(root, inode); | 
|  | spin_unlock(&root->delalloc_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Properly track delayed allocation bytes in the inode and to maintain the | 
|  | * list of inodes that have pending delalloc work to be done. | 
|  | */ | 
|  | void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, | 
|  | unsigned *bits) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  |  | 
|  | if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) | 
|  | WARN_ON(1); | 
|  | /* | 
|  | * set_bit and clear bit hooks normally require _irqsave/restore | 
|  | * but in this case, we are only testing for the DELALLOC | 
|  | * bit, which is only set or cleared with irqs on | 
|  | */ | 
|  | if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 len = state->end + 1 - state->start; | 
|  | u32 num_extents = count_max_extents(fs_info, len); | 
|  | bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  |  | 
|  | /* For sanity tests */ | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return; | 
|  |  | 
|  | percpu_counter_add_batch(&fs_info->delalloc_bytes, len, | 
|  | fs_info->delalloc_batch); | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | BTRFS_I(inode)->delalloc_bytes += len; | 
|  | if (*bits & EXTENT_DEFRAG) | 
|  | BTRFS_I(inode)->defrag_bytes += len; | 
|  | if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | btrfs_add_delalloc_inodes(root, inode); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | } | 
|  |  | 
|  | if (!(state->state & EXTENT_DELALLOC_NEW) && | 
|  | (*bits & EXTENT_DELALLOC_NEW)) { | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - | 
|  | state->start; | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Once a range is no longer delalloc this function ensures that proper | 
|  | * accounting happens. | 
|  | */ | 
|  | void btrfs_clear_delalloc_extent(struct inode *vfs_inode, | 
|  | struct extent_state *state, unsigned *bits) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(vfs_inode); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); | 
|  | u64 len = state->end + 1 - state->start; | 
|  | u32 num_extents = count_max_extents(fs_info, len); | 
|  |  | 
|  | if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { | 
|  | spin_lock(&inode->lock); | 
|  | inode->defrag_bytes -= len; | 
|  | spin_unlock(&inode->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set_bit and clear bit hooks normally require _irqsave/restore | 
|  | * but in this case, we are only testing for the DELALLOC | 
|  | * bit, which is only set or cleared with irqs on | 
|  | */ | 
|  | if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { | 
|  | struct btrfs_root *root = inode->root; | 
|  | bool do_list = !btrfs_is_free_space_inode(inode); | 
|  |  | 
|  | spin_lock(&inode->lock); | 
|  | btrfs_mod_outstanding_extents(inode, -num_extents); | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | /* | 
|  | * We don't reserve metadata space for space cache inodes so we | 
|  | * don't need to call delalloc_release_metadata if there is an | 
|  | * error. | 
|  | */ | 
|  | if (*bits & EXTENT_CLEAR_META_RESV && | 
|  | root != fs_info->tree_root) | 
|  | btrfs_delalloc_release_metadata(inode, len, true); | 
|  |  | 
|  | /* For sanity tests. */ | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return; | 
|  |  | 
|  | if (!btrfs_is_data_reloc_root(root) && | 
|  | do_list && !(state->state & EXTENT_NORESERVE) && | 
|  | (*bits & EXTENT_CLEAR_DATA_RESV)) | 
|  | btrfs_free_reserved_data_space_noquota(fs_info, len); | 
|  |  | 
|  | percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, | 
|  | fs_info->delalloc_batch); | 
|  | spin_lock(&inode->lock); | 
|  | inode->delalloc_bytes -= len; | 
|  | if (do_list && inode->delalloc_bytes == 0 && | 
|  | test_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
|  | &inode->runtime_flags)) | 
|  | btrfs_del_delalloc_inode(root, inode); | 
|  | spin_unlock(&inode->lock); | 
|  | } | 
|  |  | 
|  | if ((state->state & EXTENT_DELALLOC_NEW) && | 
|  | (*bits & EXTENT_DELALLOC_NEW)) { | 
|  | spin_lock(&inode->lock); | 
|  | ASSERT(inode->new_delalloc_bytes >= len); | 
|  | inode->new_delalloc_bytes -= len; | 
|  | if (*bits & EXTENT_ADD_INODE_BYTES) | 
|  | inode_add_bytes(&inode->vfs_inode, len); | 
|  | spin_unlock(&inode->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit | 
|  | * in a chunk's stripe. This function ensures that bios do not span a | 
|  | * stripe/chunk | 
|  | * | 
|  | * @page - The page we are about to add to the bio | 
|  | * @size - size we want to add to the bio | 
|  | * @bio - bio we want to ensure is smaller than a stripe | 
|  | * @bio_flags - flags of the bio | 
|  | * | 
|  | * return 1 if page cannot be added to the bio | 
|  | * return 0 if page can be added to the bio | 
|  | * return error otherwise | 
|  | */ | 
|  | int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, | 
|  | unsigned long bio_flags) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 logical = bio->bi_iter.bi_sector << 9; | 
|  | u32 bio_len = bio->bi_iter.bi_size; | 
|  | struct extent_map *em; | 
|  | int ret = 0; | 
|  | struct btrfs_io_geometry geom; | 
|  |  | 
|  | if (bio_flags & EXTENT_BIO_COMPRESSED) | 
|  | return 0; | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  | ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (geom.len < bio_len + size) | 
|  | ret = 1; | 
|  | out: | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * in order to insert checksums into the metadata in large chunks, | 
|  | * we wait until bio submission time.   All the pages in the bio are | 
|  | * checksummed and sums are attached onto the ordered extent record. | 
|  | * | 
|  | * At IO completion time the cums attached on the ordered extent record | 
|  | * are inserted into the btree | 
|  | */ | 
|  | static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, | 
|  | u64 dio_file_offset) | 
|  | { | 
|  | return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split an extent_map at [start, start + len] | 
|  | * | 
|  | * This function is intended to be used only for extract_ordered_extent(). | 
|  | */ | 
|  | static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, | 
|  | u64 pre, u64 post) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | struct extent_map *em; | 
|  | struct extent_map *split_pre = NULL; | 
|  | struct extent_map *split_mid = NULL; | 
|  | struct extent_map *split_post = NULL; | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Sanity check */ | 
|  | if (pre == 0 && post == 0) | 
|  | return 0; | 
|  |  | 
|  | split_pre = alloc_extent_map(); | 
|  | if (pre) | 
|  | split_mid = alloc_extent_map(); | 
|  | if (post) | 
|  | split_post = alloc_extent_map(); | 
|  | if (!split_pre || (pre && !split_mid) || (post && !split_post)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(pre + post < len); | 
|  |  | 
|  | lock_extent(&inode->io_tree, start, start + len - 1); | 
|  | write_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, start, len); | 
|  | if (!em) { | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ASSERT(em->len == len); | 
|  | ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); | 
|  | ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); | 
|  | ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); | 
|  | ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); | 
|  | ASSERT(!list_empty(&em->list)); | 
|  |  | 
|  | flags = em->flags; | 
|  | clear_bit(EXTENT_FLAG_PINNED, &em->flags); | 
|  |  | 
|  | /* First, replace the em with a new extent_map starting from * em->start */ | 
|  | split_pre->start = em->start; | 
|  | split_pre->len = (pre ? pre : em->len - post); | 
|  | split_pre->orig_start = split_pre->start; | 
|  | split_pre->block_start = em->block_start; | 
|  | split_pre->block_len = split_pre->len; | 
|  | split_pre->orig_block_len = split_pre->block_len; | 
|  | split_pre->ram_bytes = split_pre->len; | 
|  | split_pre->flags = flags; | 
|  | split_pre->compress_type = em->compress_type; | 
|  | split_pre->generation = em->generation; | 
|  |  | 
|  | replace_extent_mapping(em_tree, em, split_pre, 1); | 
|  |  | 
|  | /* | 
|  | * Now we only have an extent_map at: | 
|  | *     [em->start, em->start + pre] if pre != 0 | 
|  | *     [em->start, em->start + em->len - post] if pre == 0 | 
|  | */ | 
|  |  | 
|  | if (pre) { | 
|  | /* Insert the middle extent_map */ | 
|  | split_mid->start = em->start + pre; | 
|  | split_mid->len = em->len - pre - post; | 
|  | split_mid->orig_start = split_mid->start; | 
|  | split_mid->block_start = em->block_start + pre; | 
|  | split_mid->block_len = split_mid->len; | 
|  | split_mid->orig_block_len = split_mid->block_len; | 
|  | split_mid->ram_bytes = split_mid->len; | 
|  | split_mid->flags = flags; | 
|  | split_mid->compress_type = em->compress_type; | 
|  | split_mid->generation = em->generation; | 
|  | add_extent_mapping(em_tree, split_mid, 1); | 
|  | } | 
|  |  | 
|  | if (post) { | 
|  | split_post->start = em->start + em->len - post; | 
|  | split_post->len = post; | 
|  | split_post->orig_start = split_post->start; | 
|  | split_post->block_start = em->block_start + em->len - post; | 
|  | split_post->block_len = split_post->len; | 
|  | split_post->orig_block_len = split_post->block_len; | 
|  | split_post->ram_bytes = split_post->len; | 
|  | split_post->flags = flags; | 
|  | split_post->compress_type = em->compress_type; | 
|  | split_post->generation = em->generation; | 
|  | add_extent_mapping(em_tree, split_post, 1); | 
|  | } | 
|  |  | 
|  | /* Once for us */ | 
|  | free_extent_map(em); | 
|  | /* Once for the tree */ | 
|  | free_extent_map(em); | 
|  |  | 
|  | out_unlock: | 
|  | write_unlock(&em_tree->lock); | 
|  | unlock_extent(&inode->io_tree, start, start + len - 1); | 
|  | out: | 
|  | free_extent_map(split_pre); | 
|  | free_extent_map(split_mid); | 
|  | free_extent_map(split_post); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, | 
|  | struct bio *bio, loff_t file_offset) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | u64 file_len; | 
|  | u64 len = bio->bi_iter.bi_size; | 
|  | u64 end = start + len; | 
|  | u64 ordered_end; | 
|  | u64 pre, post; | 
|  | int ret = 0; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_extent(inode, file_offset); | 
|  | if (WARN_ON_ONCE(!ordered)) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | /* No need to split */ | 
|  | if (ordered->disk_num_bytes == len) | 
|  | goto out; | 
|  |  | 
|  | /* We cannot split once end_bio'd ordered extent */ | 
|  | if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We cannot split a compressed ordered extent */ | 
|  | if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; | 
|  | /* bio must be in one ordered extent */ | 
|  | if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Checksum list should be empty */ | 
|  | if (WARN_ON_ONCE(!list_empty(&ordered->list))) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | file_len = ordered->num_bytes; | 
|  | pre = start - ordered->disk_bytenr; | 
|  | post = ordered_end - end; | 
|  |  | 
|  | ret = btrfs_split_ordered_extent(ordered, pre, post); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = split_zoned_em(inode, file_offset, file_len, pre, post); | 
|  |  | 
|  | out: | 
|  | btrfs_put_ordered_extent(ordered); | 
|  |  | 
|  | return errno_to_blk_status(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * extent_io.c submission hook. This does the right thing for csum calculation | 
|  | * on write, or reading the csums from the tree before a read. | 
|  | * | 
|  | * Rules about async/sync submit, | 
|  | * a) read:				sync submit | 
|  | * | 
|  | * b) write without checksum:		sync submit | 
|  | * | 
|  | * c) write with checksum: | 
|  | *    c-1) if bio is issued by fsync:	sync submit | 
|  | *         (sync_writers != 0) | 
|  | * | 
|  | *    c-2) if root is reloc root:	sync submit | 
|  | *         (only in case of buffered IO) | 
|  | * | 
|  | *    c-3) otherwise:			async submit | 
|  | */ | 
|  | blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, | 
|  | int mirror_num, unsigned long bio_flags) | 
|  |  | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; | 
|  | blk_status_t ret = 0; | 
|  | int skip_sum; | 
|  | int async = !atomic_read(&BTRFS_I(inode)->sync_writers); | 
|  |  | 
|  | skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || | 
|  | !fs_info->csum_root; | 
|  |  | 
|  | if (btrfs_is_free_space_inode(BTRFS_I(inode))) | 
|  | metadata = BTRFS_WQ_ENDIO_FREE_SPACE; | 
|  |  | 
|  | if (bio_op(bio) == REQ_OP_ZONE_APPEND) { | 
|  | struct page *page = bio_first_bvec_all(bio)->bv_page; | 
|  | loff_t file_offset = page_offset(page); | 
|  |  | 
|  | ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (btrfs_op(bio) != BTRFS_MAP_WRITE) { | 
|  | ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (bio_flags & EXTENT_BIO_COMPRESSED) { | 
|  | ret = btrfs_submit_compressed_read(inode, bio, | 
|  | mirror_num, | 
|  | bio_flags); | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * Lookup bio sums does extra checks around whether we | 
|  | * need to csum or not, which is why we ignore skip_sum | 
|  | * here. | 
|  | */ | 
|  | ret = btrfs_lookup_bio_sums(inode, bio, NULL); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | goto mapit; | 
|  | } else if (async && !skip_sum) { | 
|  | /* csum items have already been cloned */ | 
|  | if (btrfs_is_data_reloc_root(root)) | 
|  | goto mapit; | 
|  | /* we're doing a write, do the async checksumming */ | 
|  | ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, | 
|  | 0, btrfs_submit_bio_start); | 
|  | goto out; | 
|  | } else if (!skip_sum) { | 
|  | ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mapit: | 
|  | ret = btrfs_map_bio(fs_info, bio, mirror_num); | 
|  |  | 
|  | out: | 
|  | if (ret) { | 
|  | bio->bi_status = ret; | 
|  | bio_endio(bio); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a list of ordered sums record them in the inode.  This happens | 
|  | * at IO completion time based on sums calculated at bio submission time. | 
|  | */ | 
|  | static int add_pending_csums(struct btrfs_trans_handle *trans, | 
|  | struct list_head *list) | 
|  | { | 
|  | struct btrfs_ordered_sum *sum; | 
|  | int ret; | 
|  |  | 
|  | list_for_each_entry(sum, list, list) { | 
|  | trans->adding_csums = true; | 
|  | ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); | 
|  | trans->adding_csums = false; | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, | 
|  | const u64 start, | 
|  | const u64 len, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | u64 search_start = start; | 
|  | const u64 end = start + len - 1; | 
|  |  | 
|  | while (search_start < end) { | 
|  | const u64 search_len = end - search_start + 1; | 
|  | struct extent_map *em; | 
|  | u64 em_len; | 
|  | int ret = 0; | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  |  | 
|  | if (em->block_start != EXTENT_MAP_HOLE) | 
|  | goto next; | 
|  |  | 
|  | em_len = em->len; | 
|  | if (em->start < search_start) | 
|  | em_len -= search_start - em->start; | 
|  | if (em_len > search_len) | 
|  | em_len = search_len; | 
|  |  | 
|  | ret = set_extent_bit(&inode->io_tree, search_start, | 
|  | search_start + em_len - 1, | 
|  | EXTENT_DELALLOC_NEW, 0, NULL, cached_state, | 
|  | GFP_NOFS, NULL); | 
|  | next: | 
|  | search_start = extent_map_end(em); | 
|  | free_extent_map(em); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, | 
|  | unsigned int extra_bits, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | WARN_ON(PAGE_ALIGNED(end)); | 
|  |  | 
|  | if (start >= i_size_read(&inode->vfs_inode) && | 
|  | !(inode->flags & BTRFS_INODE_PREALLOC)) { | 
|  | /* | 
|  | * There can't be any extents following eof in this case so just | 
|  | * set the delalloc new bit for the range directly. | 
|  | */ | 
|  | extra_bits |= EXTENT_DELALLOC_NEW; | 
|  | } else { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_find_new_delalloc_bytes(inode, start, | 
|  | end + 1 - start, | 
|  | cached_state); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, | 
|  | cached_state); | 
|  | } | 
|  |  | 
|  | /* see btrfs_writepage_start_hook for details on why this is required */ | 
|  | struct btrfs_writepage_fixup { | 
|  | struct page *page; | 
|  | struct inode *inode; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | static void btrfs_writepage_fixup_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_writepage_fixup *fixup; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | struct page *page; | 
|  | struct btrfs_inode *inode; | 
|  | u64 page_start; | 
|  | u64 page_end; | 
|  | int ret = 0; | 
|  | bool free_delalloc_space = true; | 
|  |  | 
|  | fixup = container_of(work, struct btrfs_writepage_fixup, work); | 
|  | page = fixup->page; | 
|  | inode = BTRFS_I(fixup->inode); | 
|  | page_start = page_offset(page); | 
|  | page_end = page_offset(page) + PAGE_SIZE - 1; | 
|  |  | 
|  | /* | 
|  | * This is similar to page_mkwrite, we need to reserve the space before | 
|  | * we take the page lock. | 
|  | */ | 
|  | ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, | 
|  | PAGE_SIZE); | 
|  | again: | 
|  | lock_page(page); | 
|  |  | 
|  | /* | 
|  | * Before we queued this fixup, we took a reference on the page. | 
|  | * page->mapping may go NULL, but it shouldn't be moved to a different | 
|  | * address space. | 
|  | */ | 
|  | if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { | 
|  | /* | 
|  | * Unfortunately this is a little tricky, either | 
|  | * | 
|  | * 1) We got here and our page had already been dealt with and | 
|  | *    we reserved our space, thus ret == 0, so we need to just | 
|  | *    drop our space reservation and bail.  This can happen the | 
|  | *    first time we come into the fixup worker, or could happen | 
|  | *    while waiting for the ordered extent. | 
|  | * 2) Our page was already dealt with, but we happened to get an | 
|  | *    ENOSPC above from the btrfs_delalloc_reserve_space.  In | 
|  | *    this case we obviously don't have anything to release, but | 
|  | *    because the page was already dealt with we don't want to | 
|  | *    mark the page with an error, so make sure we're resetting | 
|  | *    ret to 0.  This is why we have this check _before_ the ret | 
|  | *    check, because we do not want to have a surprise ENOSPC | 
|  | *    when the page was already properly dealt with. | 
|  | */ | 
|  | if (!ret) { | 
|  | btrfs_delalloc_release_extents(inode, PAGE_SIZE); | 
|  | btrfs_delalloc_release_space(inode, data_reserved, | 
|  | page_start, PAGE_SIZE, | 
|  | true); | 
|  | } | 
|  | ret = 0; | 
|  | goto out_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't mess with the page state unless it is locked, so now that | 
|  | * it is locked bail if we failed to make our space reservation. | 
|  | */ | 
|  | if (ret) | 
|  | goto out_page; | 
|  |  | 
|  | lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); | 
|  |  | 
|  | /* already ordered? We're done */ | 
|  | if (PageOrdered(page)) | 
|  | goto out_reserved; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); | 
|  | if (ordered) { | 
|  | unlock_extent_cached(&inode->io_tree, page_start, page_end, | 
|  | &cached_state); | 
|  | unlock_page(page); | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, | 
|  | &cached_state); | 
|  | if (ret) | 
|  | goto out_reserved; | 
|  |  | 
|  | /* | 
|  | * Everything went as planned, we're now the owner of a dirty page with | 
|  | * delayed allocation bits set and space reserved for our COW | 
|  | * destination. | 
|  | * | 
|  | * The page was dirty when we started, nothing should have cleaned it. | 
|  | */ | 
|  | BUG_ON(!PageDirty(page)); | 
|  | free_delalloc_space = false; | 
|  | out_reserved: | 
|  | btrfs_delalloc_release_extents(inode, PAGE_SIZE); | 
|  | if (free_delalloc_space) | 
|  | btrfs_delalloc_release_space(inode, data_reserved, page_start, | 
|  | PAGE_SIZE, true); | 
|  | unlock_extent_cached(&inode->io_tree, page_start, page_end, | 
|  | &cached_state); | 
|  | out_page: | 
|  | if (ret) { | 
|  | /* | 
|  | * We hit ENOSPC or other errors.  Update the mapping and page | 
|  | * to reflect the errors and clean the page. | 
|  | */ | 
|  | mapping_set_error(page->mapping, ret); | 
|  | end_extent_writepage(page, ret, page_start, page_end); | 
|  | clear_page_dirty_for_io(page); | 
|  | SetPageError(page); | 
|  | } | 
|  | ClearPageChecked(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | kfree(fixup); | 
|  | extent_changeset_free(data_reserved); | 
|  | /* | 
|  | * As a precaution, do a delayed iput in case it would be the last iput | 
|  | * that could need flushing space. Recursing back to fixup worker would | 
|  | * deadlock. | 
|  | */ | 
|  | btrfs_add_delayed_iput(&inode->vfs_inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a few paths in the higher layers of the kernel that directly | 
|  | * set the page dirty bit without asking the filesystem if it is a | 
|  | * good idea.  This causes problems because we want to make sure COW | 
|  | * properly happens and the data=ordered rules are followed. | 
|  | * | 
|  | * In our case any range that doesn't have the ORDERED bit set | 
|  | * hasn't been properly setup for IO.  We kick off an async process | 
|  | * to fix it up.  The async helper will wait for ordered extents, set | 
|  | * the delalloc bit and make it safe to write the page. | 
|  | */ | 
|  | int btrfs_writepage_cow_fixup(struct page *page) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_writepage_fixup *fixup; | 
|  |  | 
|  | /* This page has ordered extent covering it already */ | 
|  | if (PageOrdered(page)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * PageChecked is set below when we create a fixup worker for this page, | 
|  | * don't try to create another one if we're already PageChecked() | 
|  | * | 
|  | * The extent_io writepage code will redirty the page if we send back | 
|  | * EAGAIN. | 
|  | */ | 
|  | if (PageChecked(page)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | fixup = kzalloc(sizeof(*fixup), GFP_NOFS); | 
|  | if (!fixup) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * We are already holding a reference to this inode from | 
|  | * write_cache_pages.  We need to hold it because the space reservation | 
|  | * takes place outside of the page lock, and we can't trust | 
|  | * page->mapping outside of the page lock. | 
|  | */ | 
|  | ihold(inode); | 
|  | SetPageChecked(page); | 
|  | get_page(page); | 
|  | btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); | 
|  | fixup->page = page; | 
|  | fixup->inode = inode; | 
|  | btrfs_queue_work(fs_info->fixup_workers, &fixup->work); | 
|  |  | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, u64 file_pos, | 
|  | struct btrfs_file_extent_item *stack_fi, | 
|  | const bool update_inode_bytes, | 
|  | u64 qgroup_reserved) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | const u64 sectorsize = root->fs_info->sectorsize; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key ins; | 
|  | u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); | 
|  | u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); | 
|  | u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); | 
|  | u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * we may be replacing one extent in the tree with another. | 
|  | * The new extent is pinned in the extent map, and we don't want | 
|  | * to drop it from the cache until it is completely in the btree. | 
|  | * | 
|  | * So, tell btrfs_drop_extents to leave this extent in the cache. | 
|  | * the caller is expected to unpin it and allow it to be merged | 
|  | * with the others. | 
|  | */ | 
|  | drop_args.path = path; | 
|  | drop_args.start = file_pos; | 
|  | drop_args.end = file_pos + num_bytes; | 
|  | drop_args.replace_extent = true; | 
|  | drop_args.extent_item_size = sizeof(*stack_fi); | 
|  | ret = btrfs_drop_extents(trans, root, inode, &drop_args); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (!drop_args.extent_inserted) { | 
|  | ins.objectid = btrfs_ino(inode); | 
|  | ins.offset = file_pos; | 
|  | ins.type = BTRFS_EXTENT_DATA_KEY; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &ins, | 
|  | sizeof(*stack_fi)); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); | 
|  | write_extent_buffer(leaf, stack_fi, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | sizeof(struct btrfs_file_extent_item)); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * If we dropped an inline extent here, we know the range where it is | 
|  | * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the | 
|  | * number of bytes only for that range containing the inline extent. | 
|  | * The remaining of the range will be processed when clearning the | 
|  | * EXTENT_DELALLOC_BIT bit through the ordered extent completion. | 
|  | */ | 
|  | if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { | 
|  | u64 inline_size = round_down(drop_args.bytes_found, sectorsize); | 
|  |  | 
|  | inline_size = drop_args.bytes_found - inline_size; | 
|  | btrfs_update_inode_bytes(inode, sectorsize, inline_size); | 
|  | drop_args.bytes_found -= inline_size; | 
|  | num_bytes -= sectorsize; | 
|  | } | 
|  |  | 
|  | if (update_inode_bytes) | 
|  | btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); | 
|  |  | 
|  | ins.objectid = disk_bytenr; | 
|  | ins.offset = disk_num_bytes; | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), | 
|  | file_pos, qgroup_reserved, &ins); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | ASSERT(cache); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | cache->delalloc_bytes -= len; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_ordered_extent *oe) | 
|  | { | 
|  | struct btrfs_file_extent_item stack_fi; | 
|  | u64 logical_len; | 
|  | bool update_inode_bytes; | 
|  |  | 
|  | memset(&stack_fi, 0, sizeof(stack_fi)); | 
|  | btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); | 
|  | btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, | 
|  | oe->disk_num_bytes); | 
|  | if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) | 
|  | logical_len = oe->truncated_len; | 
|  | else | 
|  | logical_len = oe->num_bytes; | 
|  | btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); | 
|  | btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); | 
|  | btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); | 
|  | /* Encryption and other encoding is reserved and all 0 */ | 
|  |  | 
|  | /* | 
|  | * For delalloc, when completing an ordered extent we update the inode's | 
|  | * bytes when clearing the range in the inode's io tree, so pass false | 
|  | * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), | 
|  | * except if the ordered extent was truncated. | 
|  | */ | 
|  | update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || | 
|  | test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); | 
|  |  | 
|  | return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), | 
|  | oe->file_offset, &stack_fi, | 
|  | update_inode_bytes, oe->qgroup_rsv); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As ordered data IO finishes, this gets called so we can finish | 
|  | * an ordered extent if the range of bytes in the file it covers are | 
|  | * fully written. | 
|  | */ | 
|  | static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start, end; | 
|  | int compress_type = 0; | 
|  | int ret = 0; | 
|  | u64 logical_len = ordered_extent->num_bytes; | 
|  | bool freespace_inode; | 
|  | bool truncated = false; | 
|  | bool clear_reserved_extent = true; | 
|  | unsigned int clear_bits = EXTENT_DEFRAG; | 
|  |  | 
|  | start = ordered_extent->file_offset; | 
|  | end = start + ordered_extent->num_bytes - 1; | 
|  |  | 
|  | if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && | 
|  | !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && | 
|  | !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) | 
|  | clear_bits |= EXTENT_DELALLOC_NEW; | 
|  |  | 
|  | freespace_inode = btrfs_is_free_space_inode(inode); | 
|  |  | 
|  | if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ordered_extent->bdev) | 
|  | btrfs_rewrite_logical_zoned(ordered_extent); | 
|  |  | 
|  | btrfs_free_io_failure_record(inode, start, end); | 
|  |  | 
|  | if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { | 
|  | truncated = true; | 
|  | logical_len = ordered_extent->truncated_len; | 
|  | /* Truncated the entire extent, don't bother adding */ | 
|  | if (!logical_len) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { | 
|  | BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ | 
|  |  | 
|  | btrfs_inode_safe_disk_i_size_write(inode, 0); | 
|  | if (freespace_inode) | 
|  | trans = btrfs_join_transaction_spacecache(root); | 
|  | else | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto out; | 
|  | } | 
|  | trans->block_rsv = &inode->block_rsv; | 
|  | ret = btrfs_update_inode_fallback(trans, root, inode); | 
|  | if (ret) /* -ENOMEM or corruption */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | clear_bits |= EXTENT_LOCKED; | 
|  | lock_extent_bits(io_tree, start, end, &cached_state); | 
|  |  | 
|  | if (freespace_inode) | 
|  | trans = btrfs_join_transaction_spacecache(root); | 
|  | else | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans->block_rsv = &inode->block_rsv; | 
|  |  | 
|  | if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) | 
|  | compress_type = ordered_extent->compress_type; | 
|  | if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { | 
|  | BUG_ON(compress_type); | 
|  | ret = btrfs_mark_extent_written(trans, inode, | 
|  | ordered_extent->file_offset, | 
|  | ordered_extent->file_offset + | 
|  | logical_len); | 
|  | btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, | 
|  | ordered_extent->disk_num_bytes); | 
|  | } else { | 
|  | BUG_ON(root == fs_info->tree_root); | 
|  | ret = insert_ordered_extent_file_extent(trans, ordered_extent); | 
|  | if (!ret) { | 
|  | clear_reserved_extent = false; | 
|  | btrfs_release_delalloc_bytes(fs_info, | 
|  | ordered_extent->disk_bytenr, | 
|  | ordered_extent->disk_num_bytes); | 
|  | } | 
|  | } | 
|  | unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, | 
|  | ordered_extent->num_bytes, trans->transid); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = add_pending_csums(trans, &ordered_extent->list); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a new delalloc range, clear its new delalloc flag to | 
|  | * update the inode's number of bytes. This needs to be done first | 
|  | * before updating the inode item. | 
|  | */ | 
|  | if ((clear_bits & EXTENT_DELALLOC_NEW) && | 
|  | !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) | 
|  | clear_extent_bit(&inode->io_tree, start, end, | 
|  | EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, | 
|  | 0, 0, &cached_state); | 
|  |  | 
|  | btrfs_inode_safe_disk_i_size_write(inode, 0); | 
|  | ret = btrfs_update_inode_fallback(trans, root, inode); | 
|  | if (ret) { /* -ENOMEM or corruption */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | clear_extent_bit(&inode->io_tree, start, end, clear_bits, | 
|  | (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, | 
|  | &cached_state); | 
|  |  | 
|  | if (trans) | 
|  | btrfs_end_transaction(trans); | 
|  |  | 
|  | if (ret || truncated) { | 
|  | u64 unwritten_start = start; | 
|  |  | 
|  | /* | 
|  | * If we failed to finish this ordered extent for any reason we | 
|  | * need to make sure BTRFS_ORDERED_IOERR is set on the ordered | 
|  | * extent, and mark the inode with the error if it wasn't | 
|  | * already set.  Any error during writeback would have already | 
|  | * set the mapping error, so we need to set it if we're the ones | 
|  | * marking this ordered extent as failed. | 
|  | */ | 
|  | if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, | 
|  | &ordered_extent->flags)) | 
|  | mapping_set_error(ordered_extent->inode->i_mapping, -EIO); | 
|  |  | 
|  | if (truncated) | 
|  | unwritten_start += logical_len; | 
|  | clear_extent_uptodate(io_tree, unwritten_start, end, NULL); | 
|  |  | 
|  | /* Drop the cache for the part of the extent we didn't write. */ | 
|  | btrfs_drop_extent_cache(inode, unwritten_start, end, 0); | 
|  |  | 
|  | /* | 
|  | * If the ordered extent had an IOERR or something else went | 
|  | * wrong we need to return the space for this ordered extent | 
|  | * back to the allocator.  We only free the extent in the | 
|  | * truncated case if we didn't write out the extent at all. | 
|  | * | 
|  | * If we made it past insert_reserved_file_extent before we | 
|  | * errored out then we don't need to do this as the accounting | 
|  | * has already been done. | 
|  | */ | 
|  | if ((ret || !logical_len) && | 
|  | clear_reserved_extent && | 
|  | !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && | 
|  | !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { | 
|  | /* | 
|  | * Discard the range before returning it back to the | 
|  | * free space pool | 
|  | */ | 
|  | if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) | 
|  | btrfs_discard_extent(fs_info, | 
|  | ordered_extent->disk_bytenr, | 
|  | ordered_extent->disk_num_bytes, | 
|  | NULL); | 
|  | btrfs_free_reserved_extent(fs_info, | 
|  | ordered_extent->disk_bytenr, | 
|  | ordered_extent->disk_num_bytes, 1); | 
|  | /* | 
|  | * Actually free the qgroup rsv which was released when | 
|  | * the ordered extent was created. | 
|  | */ | 
|  | btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, | 
|  | ordered_extent->qgroup_rsv, | 
|  | BTRFS_QGROUP_RSV_DATA); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This needs to be done to make sure anybody waiting knows we are done | 
|  | * updating everything for this ordered extent. | 
|  | */ | 
|  | btrfs_remove_ordered_extent(inode, ordered_extent); | 
|  |  | 
|  | /* once for us */ | 
|  | btrfs_put_ordered_extent(ordered_extent); | 
|  | /* once for the tree */ | 
|  | btrfs_put_ordered_extent(ordered_extent); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void finish_ordered_fn(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered_extent; | 
|  | ordered_extent = container_of(work, struct btrfs_ordered_extent, work); | 
|  | btrfs_finish_ordered_io(ordered_extent); | 
|  | } | 
|  |  | 
|  | void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, | 
|  | struct page *page, u64 start, | 
|  | u64 end, bool uptodate) | 
|  | { | 
|  | trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); | 
|  |  | 
|  | btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, | 
|  | finish_ordered_fn, uptodate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check_data_csum - verify checksum of one sector of uncompressed data | 
|  | * @inode:	inode | 
|  | * @io_bio:	btrfs_io_bio which contains the csum | 
|  | * @bio_offset:	offset to the beginning of the bio (in bytes) | 
|  | * @page:	page where is the data to be verified | 
|  | * @pgoff:	offset inside the page | 
|  | * @start:	logical offset in the file | 
|  | * | 
|  | * The length of such check is always one sector size. | 
|  | */ | 
|  | static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, | 
|  | u32 bio_offset, struct page *page, u32 pgoff, | 
|  | u64 start) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
|  | char *kaddr; | 
|  | u32 len = fs_info->sectorsize; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | unsigned int offset_sectors; | 
|  | u8 *csum_expected; | 
|  | u8 csum[BTRFS_CSUM_SIZE]; | 
|  |  | 
|  | ASSERT(pgoff + len <= PAGE_SIZE); | 
|  |  | 
|  | offset_sectors = bio_offset >> fs_info->sectorsize_bits; | 
|  | csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; | 
|  |  | 
|  | kaddr = kmap_atomic(page); | 
|  | shash->tfm = fs_info->csum_shash; | 
|  |  | 
|  | crypto_shash_digest(shash, kaddr + pgoff, len, csum); | 
|  |  | 
|  | if (memcmp(csum, csum_expected, csum_size)) | 
|  | goto zeroit; | 
|  |  | 
|  | kunmap_atomic(kaddr); | 
|  | return 0; | 
|  | zeroit: | 
|  | btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, | 
|  | io_bio->mirror_num); | 
|  | if (io_bio->device) | 
|  | btrfs_dev_stat_inc_and_print(io_bio->device, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | memset(kaddr + pgoff, 1, len); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When reads are done, we need to check csums to verify the data is correct. | 
|  | * if there's a match, we allow the bio to finish.  If not, the code in | 
|  | * extent_io.c will try to find good copies for us. | 
|  | * | 
|  | * @bio_offset:	offset to the beginning of the bio (in bytes) | 
|  | * @start:	file offset of the range start | 
|  | * @end:	file offset of the range end (inclusive) | 
|  | * | 
|  | * Return a bitmap where bit set means a csum mismatch, and bit not set means | 
|  | * csum match. | 
|  | */ | 
|  | unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, | 
|  | struct page *page, u64 start, u64 end) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | const u32 sectorsize = root->fs_info->sectorsize; | 
|  | u32 pg_off; | 
|  | unsigned int result = 0; | 
|  |  | 
|  | if (PageChecked(page)) { | 
|  | ClearPageChecked(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For subpage case, above PageChecked is not safe as it's not subpage | 
|  | * compatible. | 
|  | * But for now only cow fixup and compressed read utilize PageChecked | 
|  | * flag, while in this context we can easily use io_bio->csum to | 
|  | * determine if we really need to do csum verification. | 
|  | * | 
|  | * So for now, just exit if io_bio->csum is NULL, as it means it's | 
|  | * compressed read, and its compressed data csum has already been | 
|  | * verified. | 
|  | */ | 
|  | if (io_bio->csum == NULL) | 
|  | return 0; | 
|  |  | 
|  | if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
|  | return 0; | 
|  |  | 
|  | if (!root->fs_info->csum_root) | 
|  | return 0; | 
|  |  | 
|  | ASSERT(page_offset(page) <= start && | 
|  | end <= page_offset(page) + PAGE_SIZE - 1); | 
|  | for (pg_off = offset_in_page(start); | 
|  | pg_off < offset_in_page(end); | 
|  | pg_off += sectorsize, bio_offset += sectorsize) { | 
|  | u64 file_offset = pg_off + page_offset(page); | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_is_data_reloc_root(root) && | 
|  | test_range_bit(io_tree, file_offset, | 
|  | file_offset + sectorsize - 1, | 
|  | EXTENT_NODATASUM, 1, NULL)) { | 
|  | /* Skip the range without csum for data reloc inode */ | 
|  | clear_extent_bits(io_tree, file_offset, | 
|  | file_offset + sectorsize - 1, | 
|  | EXTENT_NODATASUM); | 
|  | continue; | 
|  | } | 
|  | ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, | 
|  | page_offset(page) + pg_off); | 
|  | if (ret < 0) { | 
|  | const int nr_bit = (pg_off - offset_in_page(start)) >> | 
|  | root->fs_info->sectorsize_bits; | 
|  |  | 
|  | result |= (1U << nr_bit); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_add_delayed_iput - perform a delayed iput on @inode | 
|  | * | 
|  | * @inode: The inode we want to perform iput on | 
|  | * | 
|  | * This function uses the generic vfs_inode::i_count to track whether we should | 
|  | * just decrement it (in case it's > 1) or if this is the last iput then link | 
|  | * the inode to the delayed iput machinery. Delayed iputs are processed at | 
|  | * transaction commit time/superblock commit/cleaner kthread. | 
|  | */ | 
|  | void btrfs_add_delayed_iput(struct inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_inode *binode = BTRFS_I(inode); | 
|  |  | 
|  | if (atomic_add_unless(&inode->i_count, -1, 1)) | 
|  | return; | 
|  |  | 
|  | atomic_inc(&fs_info->nr_delayed_iputs); | 
|  | spin_lock(&fs_info->delayed_iput_lock); | 
|  | ASSERT(list_empty(&binode->delayed_iput)); | 
|  | list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); | 
|  | spin_unlock(&fs_info->delayed_iput_lock); | 
|  | if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) | 
|  | wake_up_process(fs_info->cleaner_kthread); | 
|  | } | 
|  |  | 
|  | static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | list_del_init(&inode->delayed_iput); | 
|  | spin_unlock(&fs_info->delayed_iput_lock); | 
|  | iput(&inode->vfs_inode); | 
|  | if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) | 
|  | wake_up(&fs_info->delayed_iputs_wait); | 
|  | spin_lock(&fs_info->delayed_iput_lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | if (!list_empty(&inode->delayed_iput)) { | 
|  | spin_lock(&fs_info->delayed_iput_lock); | 
|  | if (!list_empty(&inode->delayed_iput)) | 
|  | run_delayed_iput_locked(fs_info, inode); | 
|  | spin_unlock(&fs_info->delayed_iput_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  |  | 
|  | spin_lock(&fs_info->delayed_iput_lock); | 
|  | while (!list_empty(&fs_info->delayed_iputs)) { | 
|  | struct btrfs_inode *inode; | 
|  |  | 
|  | inode = list_first_entry(&fs_info->delayed_iputs, | 
|  | struct btrfs_inode, delayed_iput); | 
|  | run_delayed_iput_locked(fs_info, inode); | 
|  | cond_resched_lock(&fs_info->delayed_iput_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->delayed_iput_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Wait for flushing all delayed iputs | 
|  | * | 
|  | * @fs_info:  the filesystem | 
|  | * | 
|  | * This will wait on any delayed iputs that are currently running with KILLABLE | 
|  | * set.  Once they are all done running we will return, unless we are killed in | 
|  | * which case we return EINTR. This helps in user operations like fallocate etc | 
|  | * that might get blocked on the iputs. | 
|  | * | 
|  | * Return EINTR if we were killed, 0 if nothing's pending | 
|  | */ | 
|  | int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret = wait_event_killable(fs_info->delayed_iputs_wait, | 
|  | atomic_read(&fs_info->nr_delayed_iputs) == 0); | 
|  | if (ret) | 
|  | return -EINTR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This creates an orphan entry for the given inode in case something goes wrong | 
|  | * in the middle of an unlink. | 
|  | */ | 
|  | int btrfs_orphan_add(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); | 
|  | if (ret && ret != -EEXIST) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have done the delete so we can go ahead and remove the orphan item for | 
|  | * this particular inode. | 
|  | */ | 
|  | static int btrfs_orphan_del(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this cleans up any orphans that may be left on the list from the last use | 
|  | * of this root. | 
|  | */ | 
|  | int btrfs_orphan_cleanup(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key, found_key; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct inode *inode; | 
|  | u64 last_objectid = 0; | 
|  | int ret = 0, nr_unlink = 0; | 
|  |  | 
|  | if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | path->reada = READA_BACK; | 
|  |  | 
|  | key.objectid = BTRFS_ORPHAN_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * if ret == 0 means we found what we were searching for, which | 
|  | * is weird, but possible, so only screw with path if we didn't | 
|  | * find the key and see if we have stuff that matches | 
|  | */ | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | /* pull out the item */ | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | /* make sure the item matches what we want */ | 
|  | if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) | 
|  | break; | 
|  | if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | /* release the path since we're done with it */ | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * this is where we are basically btrfs_lookup, without the | 
|  | * crossing root thing.  we store the inode number in the | 
|  | * offset of the orphan item. | 
|  | */ | 
|  |  | 
|  | if (found_key.offset == last_objectid) { | 
|  | btrfs_err(fs_info, | 
|  | "Error removing orphan entry, stopping orphan cleanup"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | last_objectid = found_key.offset; | 
|  |  | 
|  | found_key.objectid = found_key.offset; | 
|  | found_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | found_key.offset = 0; | 
|  | inode = btrfs_iget(fs_info->sb, last_objectid, root); | 
|  | ret = PTR_ERR_OR_ZERO(inode); | 
|  | if (ret && ret != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | if (ret == -ENOENT && root == fs_info->tree_root) { | 
|  | struct btrfs_root *dead_root; | 
|  | int is_dead_root = 0; | 
|  |  | 
|  | /* | 
|  | * This is an orphan in the tree root. Currently these | 
|  | * could come from 2 sources: | 
|  | *  a) a root (snapshot/subvolume) deletion in progress | 
|  | *  b) a free space cache inode | 
|  | * We need to distinguish those two, as the orphan item | 
|  | * for a root must not get deleted before the deletion | 
|  | * of the snapshot/subvolume's tree completes. | 
|  | * | 
|  | * btrfs_find_orphan_roots() ran before us, which has | 
|  | * found all deleted roots and loaded them into | 
|  | * fs_info->fs_roots_radix. So here we can find if an | 
|  | * orphan item corresponds to a deleted root by looking | 
|  | * up the root from that radix tree. | 
|  | */ | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
|  | (unsigned long)found_key.objectid); | 
|  | if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) | 
|  | is_dead_root = 1; | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  |  | 
|  | if (is_dead_root) { | 
|  | /* prevent this orphan from being found again */ | 
|  | key.offset = found_key.objectid - 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have an inode with links, there are a couple of | 
|  | * possibilities: | 
|  | * | 
|  | * 1. We were halfway through creating fsverity metadata for the | 
|  | * file. In that case, the orphan item represents incomplete | 
|  | * fsverity metadata which must be cleaned up with | 
|  | * btrfs_drop_verity_items and deleting the orphan item. | 
|  |  | 
|  | * 2. Old kernels (before v3.12) used to create an | 
|  | * orphan item for truncate indicating that there were possibly | 
|  | * extent items past i_size that needed to be deleted. In v3.12, | 
|  | * truncate was changed to update i_size in sync with the extent | 
|  | * items, but the (useless) orphan item was still created. Since | 
|  | * v4.18, we don't create the orphan item for truncate at all. | 
|  | * | 
|  | * So, this item could mean that we need to do a truncate, but | 
|  | * only if this filesystem was last used on a pre-v3.12 kernel | 
|  | * and was not cleanly unmounted. The odds of that are quite | 
|  | * slim, and it's a pain to do the truncate now, so just delete | 
|  | * the orphan item. | 
|  | * | 
|  | * It's also possible that this orphan item was supposed to be | 
|  | * deleted but wasn't. The inode number may have been reused, | 
|  | * but either way, we can delete the orphan item. | 
|  | */ | 
|  | if (ret == -ENOENT || inode->i_nlink) { | 
|  | if (!ret) { | 
|  | ret = btrfs_drop_verity_items(BTRFS_I(inode)); | 
|  | iput(inode); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  | btrfs_debug(fs_info, "auto deleting %Lu", | 
|  | found_key.objectid); | 
|  | ret = btrfs_del_orphan_item(trans, root, | 
|  | found_key.objectid); | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret) | 
|  | goto out; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nr_unlink++; | 
|  |  | 
|  | /* this will do delete_inode and everything for us */ | 
|  | iput(inode); | 
|  | } | 
|  | /* release the path since we're done with it */ | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (!IS_ERR(trans)) | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | if (nr_unlink) | 
|  | btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); | 
|  |  | 
|  | out: | 
|  | if (ret) | 
|  | btrfs_err(fs_info, "could not do orphan cleanup %d", ret); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * very simple check to peek ahead in the leaf looking for xattrs.  If we | 
|  | * don't find any xattrs, we know there can't be any acls. | 
|  | * | 
|  | * slot is the slot the inode is in, objectid is the objectid of the inode | 
|  | */ | 
|  | static noinline int acls_after_inode_item(struct extent_buffer *leaf, | 
|  | int slot, u64 objectid, | 
|  | int *first_xattr_slot) | 
|  | { | 
|  | u32 nritems = btrfs_header_nritems(leaf); | 
|  | struct btrfs_key found_key; | 
|  | static u64 xattr_access = 0; | 
|  | static u64 xattr_default = 0; | 
|  | int scanned = 0; | 
|  |  | 
|  | if (!xattr_access) { | 
|  | xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, | 
|  | strlen(XATTR_NAME_POSIX_ACL_ACCESS)); | 
|  | xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, | 
|  | strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); | 
|  | } | 
|  |  | 
|  | slot++; | 
|  | *first_xattr_slot = -1; | 
|  | while (slot < nritems) { | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | /* we found a different objectid, there must not be acls */ | 
|  | if (found_key.objectid != objectid) | 
|  | return 0; | 
|  |  | 
|  | /* we found an xattr, assume we've got an acl */ | 
|  | if (found_key.type == BTRFS_XATTR_ITEM_KEY) { | 
|  | if (*first_xattr_slot == -1) | 
|  | *first_xattr_slot = slot; | 
|  | if (found_key.offset == xattr_access || | 
|  | found_key.offset == xattr_default) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we found a key greater than an xattr key, there can't | 
|  | * be any acls later on | 
|  | */ | 
|  | if (found_key.type > BTRFS_XATTR_ITEM_KEY) | 
|  | return 0; | 
|  |  | 
|  | slot++; | 
|  | scanned++; | 
|  |  | 
|  | /* | 
|  | * it goes inode, inode backrefs, xattrs, extents, | 
|  | * so if there are a ton of hard links to an inode there can | 
|  | * be a lot of backrefs.  Don't waste time searching too hard, | 
|  | * this is just an optimization | 
|  | */ | 
|  | if (scanned >= 8) | 
|  | break; | 
|  | } | 
|  | /* we hit the end of the leaf before we found an xattr or | 
|  | * something larger than an xattr.  We have to assume the inode | 
|  | * has acls | 
|  | */ | 
|  | if (*first_xattr_slot == -1) | 
|  | *first_xattr_slot = slot; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read an inode from the btree into the in-memory inode | 
|  | */ | 
|  | static int btrfs_read_locked_inode(struct inode *inode, | 
|  | struct btrfs_path *in_path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_path *path = in_path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_key location; | 
|  | unsigned long ptr; | 
|  | int maybe_acls; | 
|  | u32 rdev; | 
|  | int ret; | 
|  | bool filled = false; | 
|  | int first_xattr_slot; | 
|  |  | 
|  | ret = btrfs_fill_inode(inode, &rdev); | 
|  | if (!ret) | 
|  | filled = true; | 
|  |  | 
|  | if (!path) { | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); | 
|  |  | 
|  | ret = btrfs_lookup_inode(NULL, root, path, &location, 0); | 
|  | if (ret) { | 
|  | if (path != in_path) | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | if (filled) | 
|  | goto cache_index; | 
|  |  | 
|  | inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | inode->i_mode = btrfs_inode_mode(leaf, inode_item); | 
|  | set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); | 
|  | i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); | 
|  | i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); | 
|  | btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); | 
|  | btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, | 
|  | round_up(i_size_read(inode), fs_info->sectorsize)); | 
|  |  | 
|  | inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); | 
|  | inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); | 
|  |  | 
|  | inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); | 
|  | inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); | 
|  |  | 
|  | inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); | 
|  | inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); | 
|  |  | 
|  | BTRFS_I(inode)->i_otime.tv_sec = | 
|  | btrfs_timespec_sec(leaf, &inode_item->otime); | 
|  | BTRFS_I(inode)->i_otime.tv_nsec = | 
|  | btrfs_timespec_nsec(leaf, &inode_item->otime); | 
|  |  | 
|  | inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); | 
|  | BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); | 
|  | BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); | 
|  |  | 
|  | inode_set_iversion_queried(inode, | 
|  | btrfs_inode_sequence(leaf, inode_item)); | 
|  | inode->i_generation = BTRFS_I(inode)->generation; | 
|  | inode->i_rdev = 0; | 
|  | rdev = btrfs_inode_rdev(leaf, inode_item); | 
|  |  | 
|  | BTRFS_I(inode)->index_cnt = (u64)-1; | 
|  | btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), | 
|  | &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); | 
|  |  | 
|  | cache_index: | 
|  | /* | 
|  | * If we were modified in the current generation and evicted from memory | 
|  | * and then re-read we need to do a full sync since we don't have any | 
|  | * idea about which extents were modified before we were evicted from | 
|  | * cache. | 
|  | * | 
|  | * This is required for both inode re-read from disk and delayed inode | 
|  | * in delayed_nodes_tree. | 
|  | */ | 
|  | if (BTRFS_I(inode)->last_trans == fs_info->generation) | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | /* | 
|  | * We don't persist the id of the transaction where an unlink operation | 
|  | * against the inode was last made. So here we assume the inode might | 
|  | * have been evicted, and therefore the exact value of last_unlink_trans | 
|  | * lost, and set it to last_trans to avoid metadata inconsistencies | 
|  | * between the inode and its parent if the inode is fsync'ed and the log | 
|  | * replayed. For example, in the scenario: | 
|  | * | 
|  | * touch mydir/foo | 
|  | * ln mydir/foo mydir/bar | 
|  | * sync | 
|  | * unlink mydir/bar | 
|  | * echo 2 > /proc/sys/vm/drop_caches   # evicts inode | 
|  | * xfs_io -c fsync mydir/foo | 
|  | * <power failure> | 
|  | * mount fs, triggers fsync log replay | 
|  | * | 
|  | * We must make sure that when we fsync our inode foo we also log its | 
|  | * parent inode, otherwise after log replay the parent still has the | 
|  | * dentry with the "bar" name but our inode foo has a link count of 1 | 
|  | * and doesn't have an inode ref with the name "bar" anymore. | 
|  | * | 
|  | * Setting last_unlink_trans to last_trans is a pessimistic approach, | 
|  | * but it guarantees correctness at the expense of occasional full | 
|  | * transaction commits on fsync if our inode is a directory, or if our | 
|  | * inode is not a directory, logging its parent unnecessarily. | 
|  | */ | 
|  | BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; | 
|  |  | 
|  | /* | 
|  | * Same logic as for last_unlink_trans. We don't persist the generation | 
|  | * of the last transaction where this inode was used for a reflink | 
|  | * operation, so after eviction and reloading the inode we must be | 
|  | * pessimistic and assume the last transaction that modified the inode. | 
|  | */ | 
|  | BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; | 
|  |  | 
|  | path->slots[0]++; | 
|  | if (inode->i_nlink != 1 || | 
|  | path->slots[0] >= btrfs_header_nritems(leaf)) | 
|  | goto cache_acl; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); | 
|  | if (location.objectid != btrfs_ino(BTRFS_I(inode))) | 
|  | goto cache_acl; | 
|  |  | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | if (location.type == BTRFS_INODE_REF_KEY) { | 
|  | struct btrfs_inode_ref *ref; | 
|  |  | 
|  | ref = (struct btrfs_inode_ref *)ptr; | 
|  | BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); | 
|  | } else if (location.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)ptr; | 
|  | BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, | 
|  | extref); | 
|  | } | 
|  | cache_acl: | 
|  | /* | 
|  | * try to precache a NULL acl entry for files that don't have | 
|  | * any xattrs or acls | 
|  | */ | 
|  | maybe_acls = acls_after_inode_item(leaf, path->slots[0], | 
|  | btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); | 
|  | if (first_xattr_slot != -1) { | 
|  | path->slots[0] = first_xattr_slot; | 
|  | ret = btrfs_load_inode_props(inode, path); | 
|  | if (ret) | 
|  | btrfs_err(fs_info, | 
|  | "error loading props for ino %llu (root %llu): %d", | 
|  | btrfs_ino(BTRFS_I(inode)), | 
|  | root->root_key.objectid, ret); | 
|  | } | 
|  | if (path != in_path) | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | if (!maybe_acls) | 
|  | cache_no_acl(inode); | 
|  |  | 
|  | switch (inode->i_mode & S_IFMT) { | 
|  | case S_IFREG: | 
|  | inode->i_mapping->a_ops = &btrfs_aops; | 
|  | inode->i_fop = &btrfs_file_operations; | 
|  | inode->i_op = &btrfs_file_inode_operations; | 
|  | break; | 
|  | case S_IFDIR: | 
|  | inode->i_fop = &btrfs_dir_file_operations; | 
|  | inode->i_op = &btrfs_dir_inode_operations; | 
|  | break; | 
|  | case S_IFLNK: | 
|  | inode->i_op = &btrfs_symlink_inode_operations; | 
|  | inode_nohighmem(inode); | 
|  | inode->i_mapping->a_ops = &btrfs_aops; | 
|  | break; | 
|  | default: | 
|  | inode->i_op = &btrfs_special_inode_operations; | 
|  | init_special_inode(inode, inode->i_mode, rdev); | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_sync_inode_flags_to_i_flags(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a leaf and an inode, copy the inode fields into the leaf | 
|  | */ | 
|  | static void fill_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_inode_item *item, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_map_token token; | 
|  | u64 flags; | 
|  |  | 
|  | btrfs_init_map_token(&token, leaf); | 
|  |  | 
|  | btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); | 
|  | btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); | 
|  | btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); | 
|  | btrfs_set_token_inode_mode(&token, item, inode->i_mode); | 
|  | btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->atime, | 
|  | inode->i_atime.tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->atime, | 
|  | inode->i_atime.tv_nsec); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->mtime, | 
|  | inode->i_mtime.tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->mtime, | 
|  | inode->i_mtime.tv_nsec); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->ctime, | 
|  | inode->i_ctime.tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->ctime, | 
|  | inode->i_ctime.tv_nsec); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->otime, | 
|  | BTRFS_I(inode)->i_otime.tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->otime, | 
|  | BTRFS_I(inode)->i_otime.tv_nsec); | 
|  |  | 
|  | btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); | 
|  | btrfs_set_token_inode_generation(&token, item, | 
|  | BTRFS_I(inode)->generation); | 
|  | btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); | 
|  | btrfs_set_token_inode_transid(&token, item, trans->transid); | 
|  | btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); | 
|  | flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, | 
|  | BTRFS_I(inode)->ro_flags); | 
|  | btrfs_set_token_inode_flags(&token, item, flags); | 
|  | btrfs_set_token_inode_block_group(&token, item, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy everything in the in-memory inode into the btree. | 
|  | */ | 
|  | static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  |  | 
|  | fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_set_inode_last_trans(trans, inode); | 
|  | ret = 0; | 
|  | failed: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy everything in the in-memory inode into the btree. | 
|  | */ | 
|  | noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If the inode is a free space inode, we can deadlock during commit | 
|  | * if we put it into the delayed code. | 
|  | * | 
|  | * The data relocation inode should also be directly updated | 
|  | * without delay | 
|  | */ | 
|  | if (!btrfs_is_free_space_inode(inode) | 
|  | && !btrfs_is_data_reloc_root(root) | 
|  | && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { | 
|  | btrfs_update_root_times(trans, root); | 
|  |  | 
|  | ret = btrfs_delayed_update_inode(trans, root, inode); | 
|  | if (!ret) | 
|  | btrfs_set_inode_last_trans(trans, inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return btrfs_update_inode_item(trans, root, inode); | 
|  | } | 
|  |  | 
|  | int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_inode *inode) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | if (ret == -ENOSPC) | 
|  | return btrfs_update_inode_item(trans, root, inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unlink helper that gets used here in inode.c and in the tree logging | 
|  | * recovery code.  It remove a link in a directory with a given name, and | 
|  | * also drops the back refs in the inode to the directory | 
|  | */ | 
|  | static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_inode *inode, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | struct btrfs_root *root = dir->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | int ret = 0; | 
|  | struct btrfs_dir_item *di; | 
|  | u64 index; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | u64 dir_ino = btrfs_ino(dir); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | di = btrfs_lookup_dir_item(trans, root, path, dir_ino, | 
|  | name, name_len, -1); | 
|  | if (IS_ERR_OR_NULL(di)) { | 
|  | ret = di ? PTR_ERR(di) : -ENOENT; | 
|  | goto err; | 
|  | } | 
|  | ret = btrfs_delete_one_dir_name(trans, root, path, di); | 
|  | if (ret) | 
|  | goto err; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * If we don't have dir index, we have to get it by looking up | 
|  | * the inode ref, since we get the inode ref, remove it directly, | 
|  | * it is unnecessary to do delayed deletion. | 
|  | * | 
|  | * But if we have dir index, needn't search inode ref to get it. | 
|  | * Since the inode ref is close to the inode item, it is better | 
|  | * that we delay to delete it, and just do this deletion when | 
|  | * we update the inode item. | 
|  | */ | 
|  | if (inode->dir_index) { | 
|  | ret = btrfs_delayed_delete_inode_ref(inode); | 
|  | if (!ret) { | 
|  | index = inode->dir_index; | 
|  | goto skip_backref; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, | 
|  | dir_ino, &index); | 
|  | if (ret) { | 
|  | btrfs_info(fs_info, | 
|  | "failed to delete reference to %.*s, inode %llu parent %llu", | 
|  | name_len, name, ino, dir_ino); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto err; | 
|  | } | 
|  | skip_backref: | 
|  | ret = btrfs_delete_delayed_dir_index(trans, dir, index); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, | 
|  | dir_ino); | 
|  | if (ret != 0 && ret != -ENOENT) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, | 
|  | index); | 
|  | if (ret == -ENOENT) | 
|  | ret = 0; | 
|  | else if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  |  | 
|  | /* | 
|  | * If we have a pending delayed iput we could end up with the final iput | 
|  | * being run in btrfs-cleaner context.  If we have enough of these built | 
|  | * up we can end up burning a lot of time in btrfs-cleaner without any | 
|  | * way to throttle the unlinks.  Since we're currently holding a ref on | 
|  | * the inode we can run the delayed iput here without any issues as the | 
|  | * final iput won't be done until after we drop the ref we're currently | 
|  | * holding. | 
|  | */ | 
|  | btrfs_run_delayed_iput(fs_info, inode); | 
|  | err: | 
|  | btrfs_free_path(path); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); | 
|  | inode_inc_iversion(&inode->vfs_inode); | 
|  | inode_set_ctime_current(&inode->vfs_inode); | 
|  | inode_inc_iversion(&dir->vfs_inode); | 
|  | inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = | 
|  | dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); | 
|  | ret = btrfs_update_inode(trans, root, dir); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_unlink_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, struct btrfs_inode *inode, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | int ret; | 
|  | ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len); | 
|  | if (!ret) { | 
|  | drop_nlink(&inode->vfs_inode); | 
|  | ret = btrfs_update_inode(trans, inode->root, inode); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to start transaction for unlink and rmdir. | 
|  | * | 
|  | * unlink and rmdir are special in btrfs, they do not always free space, so | 
|  | * if we cannot make our reservations the normal way try and see if there is | 
|  | * plenty of slack room in the global reserve to migrate, otherwise we cannot | 
|  | * allow the unlink to occur. | 
|  | */ | 
|  | static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  |  | 
|  | /* | 
|  | * 1 for the possible orphan item | 
|  | * 1 for the dir item | 
|  | * 1 for the dir index | 
|  | * 1 for the inode ref | 
|  | * 1 for the inode | 
|  | */ | 
|  | return btrfs_start_transaction_fallback_global_rsv(root, 5); | 
|  | } | 
|  |  | 
|  | static int btrfs_unlink(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct inode *inode = d_inode(dentry); | 
|  | int ret; | 
|  |  | 
|  | trans = __unlink_start_trans(dir); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), | 
|  | 0); | 
|  |  | 
|  | ret = btrfs_unlink_inode(trans, BTRFS_I(dir), | 
|  | BTRFS_I(d_inode(dentry)), dentry->d_name.name, | 
|  | dentry->d_name.len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (inode->i_nlink == 0) { | 
|  | ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, | 
|  | struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key key; | 
|  | const char *name = dentry->d_name.name; | 
|  | int name_len = dentry->d_name.len; | 
|  | u64 index; | 
|  | int ret; | 
|  | u64 objectid; | 
|  | u64 dir_ino = btrfs_ino(BTRFS_I(dir)); | 
|  |  | 
|  | if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { | 
|  | objectid = inode->root->root_key.objectid; | 
|  | } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { | 
|  | objectid = inode->location.objectid; | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | di = btrfs_lookup_dir_item(trans, root, path, dir_ino, | 
|  | name, name_len, -1); | 
|  | if (IS_ERR_OR_NULL(di)) { | 
|  | ret = di ? PTR_ERR(di) : -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &key); | 
|  | WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); | 
|  | ret = btrfs_delete_one_dir_name(trans, root, path, di); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * This is a placeholder inode for a subvolume we didn't have a | 
|  | * reference to at the time of the snapshot creation.  In the meantime | 
|  | * we could have renamed the real subvol link into our snapshot, so | 
|  | * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. | 
|  | * Instead simply lookup the dir_index_item for this entry so we can | 
|  | * remove it.  Otherwise we know we have a ref to the root and we can | 
|  | * call btrfs_del_root_ref, and it _shouldn't_ fail. | 
|  | */ | 
|  | if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { | 
|  | di = btrfs_search_dir_index_item(root, path, dir_ino, | 
|  | name, name_len); | 
|  | if (IS_ERR_OR_NULL(di)) { | 
|  | if (!di) | 
|  | ret = -ENOENT; | 
|  | else | 
|  | ret = PTR_ERR(di); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | index = key.offset; | 
|  | btrfs_release_path(path); | 
|  | } else { | 
|  | ret = btrfs_del_root_ref(trans, objectid, | 
|  | root->root_key.objectid, dir_ino, | 
|  | &index, name, name_len); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); | 
|  | inode_inc_iversion(dir); | 
|  | dir->i_mtime = dir->i_ctime = current_time(dir); | 
|  | ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper to check if the subvolume references other subvolumes or if it's | 
|  | * default. | 
|  | */ | 
|  | static noinline int may_destroy_subvol(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key key; | 
|  | u64 dir_id; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Make sure this root isn't set as the default subvol */ | 
|  | dir_id = btrfs_super_root_dir(fs_info->super_copy); | 
|  | di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, | 
|  | dir_id, "default", 7, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); | 
|  | if (key.objectid == root->root_key.objectid) { | 
|  | ret = -EPERM; | 
|  | btrfs_err(fs_info, | 
|  | "deleting default subvolume %llu is not allowed", | 
|  | key.objectid); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | key.objectid = root->root_key.objectid; | 
|  | key.type = BTRFS_ROOT_REF_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * Key with offset -1 found, there would have to exist a root | 
|  | * with such id, but this is out of valid range. | 
|  | */ | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (path->slots[0] > 0) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid == root->root_key.objectid && | 
|  | key.type == BTRFS_ROOT_REF_KEY) | 
|  | ret = -ENOTEMPTY; | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Delete all dentries for inodes belonging to the root */ | 
|  | static void btrfs_prune_dentries(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct rb_node *node; | 
|  | struct rb_node *prev; | 
|  | struct btrfs_inode *entry; | 
|  | struct inode *inode; | 
|  | u64 objectid = 0; | 
|  |  | 
|  | if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | WARN_ON(btrfs_root_refs(&root->root_item) != 0); | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | again: | 
|  | node = root->inode_tree.rb_node; | 
|  | prev = NULL; | 
|  | while (node) { | 
|  | prev = node; | 
|  | entry = rb_entry(node, struct btrfs_inode, rb_node); | 
|  |  | 
|  | if (objectid < btrfs_ino(entry)) | 
|  | node = node->rb_left; | 
|  | else if (objectid > btrfs_ino(entry)) | 
|  | node = node->rb_right; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (!node) { | 
|  | while (prev) { | 
|  | entry = rb_entry(prev, struct btrfs_inode, rb_node); | 
|  | if (objectid <= btrfs_ino(entry)) { | 
|  | node = prev; | 
|  | break; | 
|  | } | 
|  | prev = rb_next(prev); | 
|  | } | 
|  | } | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct btrfs_inode, rb_node); | 
|  | objectid = btrfs_ino(entry) + 1; | 
|  | inode = igrab(&entry->vfs_inode); | 
|  | if (inode) { | 
|  | spin_unlock(&root->inode_lock); | 
|  | if (atomic_read(&inode->i_count) > 1) | 
|  | d_prune_aliases(inode); | 
|  | /* | 
|  | * btrfs_drop_inode will have it removed from the inode | 
|  | * cache when its usage count hits zero. | 
|  | */ | 
|  | iput(inode); | 
|  | cond_resched(); | 
|  | spin_lock(&root->inode_lock); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (cond_resched_lock(&root->inode_lock)) | 
|  | goto again; | 
|  |  | 
|  | node = rb_next(node); | 
|  | } | 
|  | spin_unlock(&root->inode_lock); | 
|  | } | 
|  |  | 
|  | int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct btrfs_root *dest = BTRFS_I(inode)->root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_block_rsv block_rsv; | 
|  | u64 root_flags; | 
|  | int ret; | 
|  |  | 
|  | down_write(&fs_info->subvol_sem); | 
|  |  | 
|  | /* | 
|  | * Don't allow to delete a subvolume with send in progress. This is | 
|  | * inside the inode lock so the error handling that has to drop the bit | 
|  | * again is not run concurrently. | 
|  | */ | 
|  | spin_lock(&dest->root_item_lock); | 
|  | if (dest->send_in_progress) { | 
|  | spin_unlock(&dest->root_item_lock); | 
|  | btrfs_warn(fs_info, | 
|  | "attempt to delete subvolume %llu during send", | 
|  | dest->root_key.objectid); | 
|  | ret = -EPERM; | 
|  | goto out_up_write; | 
|  | } | 
|  | if (atomic_read(&dest->nr_swapfiles)) { | 
|  | spin_unlock(&dest->root_item_lock); | 
|  | btrfs_warn(fs_info, | 
|  | "attempt to delete subvolume %llu with active swapfile", | 
|  | root->root_key.objectid); | 
|  | ret = -EPERM; | 
|  | goto out_up_write; | 
|  | } | 
|  | root_flags = btrfs_root_flags(&dest->root_item); | 
|  | btrfs_set_root_flags(&dest->root_item, | 
|  | root_flags | BTRFS_ROOT_SUBVOL_DEAD); | 
|  | spin_unlock(&dest->root_item_lock); | 
|  |  | 
|  | ret = may_destroy_subvol(dest); | 
|  | if (ret) | 
|  | goto out_undead; | 
|  |  | 
|  | btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); | 
|  | /* | 
|  | * One for dir inode, | 
|  | * two for dir entries, | 
|  | * two for root ref/backref. | 
|  | */ | 
|  | ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); | 
|  | if (ret) | 
|  | goto out_undead; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out_release; | 
|  | } | 
|  | trans->block_rsv = &block_rsv; | 
|  | trans->bytes_reserved = block_rsv.size; | 
|  |  | 
|  | btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); | 
|  |  | 
|  | ret = btrfs_unlink_subvol(trans, dir, dentry); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | ret = btrfs_record_root_in_trans(trans, dest); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | memset(&dest->root_item.drop_progress, 0, | 
|  | sizeof(dest->root_item.drop_progress)); | 
|  | btrfs_set_root_drop_level(&dest->root_item, 0); | 
|  | btrfs_set_root_refs(&dest->root_item, 0); | 
|  |  | 
|  | if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { | 
|  | ret = btrfs_insert_orphan_item(trans, | 
|  | fs_info->tree_root, | 
|  | dest->root_key.objectid); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_end_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, | 
|  | BTRFS_UUID_KEY_SUBVOL, | 
|  | dest->root_key.objectid); | 
|  | if (ret && ret != -ENOENT) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_end_trans; | 
|  | } | 
|  | if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { | 
|  | ret = btrfs_uuid_tree_remove(trans, | 
|  | dest->root_item.received_uuid, | 
|  | BTRFS_UUID_KEY_RECEIVED_SUBVOL, | 
|  | dest->root_key.objectid); | 
|  | if (ret && ret != -ENOENT) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_end_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | free_anon_bdev(dest->anon_dev); | 
|  | dest->anon_dev = 0; | 
|  | out_end_trans: | 
|  | trans->block_rsv = NULL; | 
|  | trans->bytes_reserved = 0; | 
|  | ret = btrfs_end_transaction(trans); | 
|  | inode->i_flags |= S_DEAD; | 
|  | out_release: | 
|  | btrfs_subvolume_release_metadata(root, &block_rsv); | 
|  | out_undead: | 
|  | if (ret) { | 
|  | spin_lock(&dest->root_item_lock); | 
|  | root_flags = btrfs_root_flags(&dest->root_item); | 
|  | btrfs_set_root_flags(&dest->root_item, | 
|  | root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); | 
|  | spin_unlock(&dest->root_item_lock); | 
|  | } | 
|  | out_up_write: | 
|  | up_write(&fs_info->subvol_sem); | 
|  | if (!ret) { | 
|  | d_invalidate(dentry); | 
|  | btrfs_prune_dentries(dest); | 
|  | ASSERT(dest->send_in_progress == 0); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | int err = 0; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 last_unlink_trans; | 
|  |  | 
|  | if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) | 
|  | return -ENOTEMPTY; | 
|  | if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) | 
|  | return btrfs_delete_subvolume(dir, dentry); | 
|  |  | 
|  | trans = __unlink_start_trans(dir); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { | 
|  | err = btrfs_unlink_subvol(trans, dir, dentry); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; | 
|  |  | 
|  | /* now the directory is empty */ | 
|  | err = btrfs_unlink_inode(trans, BTRFS_I(dir), | 
|  | BTRFS_I(d_inode(dentry)), dentry->d_name.name, | 
|  | dentry->d_name.len); | 
|  | if (!err) { | 
|  | btrfs_i_size_write(BTRFS_I(inode), 0); | 
|  | /* | 
|  | * Propagate the last_unlink_trans value of the deleted dir to | 
|  | * its parent directory. This is to prevent an unrecoverable | 
|  | * log tree in the case we do something like this: | 
|  | * 1) create dir foo | 
|  | * 2) create snapshot under dir foo | 
|  | * 3) delete the snapshot | 
|  | * 4) rmdir foo | 
|  | * 5) mkdir foo | 
|  | * 6) fsync foo or some file inside foo | 
|  | */ | 
|  | if (last_unlink_trans >= trans->transid) | 
|  | BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; | 
|  | } | 
|  | out: | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return this if we need to call truncate_block for the last bit of the | 
|  | * truncate. | 
|  | */ | 
|  | #define NEED_TRUNCATE_BLOCK 1 | 
|  |  | 
|  | /* | 
|  | * Remove inode items from a given root. | 
|  | * | 
|  | * @trans:		A transaction handle. | 
|  | * @root:		The root from which to remove items. | 
|  | * @inode:		The inode whose items we want to remove. | 
|  | * @new_size:		The new i_size for the inode. This is only applicable when | 
|  | *			@min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise. | 
|  | * @min_type:		The minimum key type to remove. All keys with a type | 
|  | *			greater than this value are removed and all keys with | 
|  | *			this type are removed only if their offset is >= @new_size. | 
|  | * @extents_found:	Output parameter that will contain the number of file | 
|  | *			extent items that were removed or adjusted to the new | 
|  | *			inode i_size. The caller is responsible for initializing | 
|  | *			the counter. Also, it can be NULL if the caller does not | 
|  | *			need this counter. | 
|  | * | 
|  | * Remove all keys associated with the inode from the given root that have a key | 
|  | * with a type greater than or equals to @min_type. When @min_type has a value of | 
|  | * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value | 
|  | * greater than or equals to @new_size. If a file extent item that starts before | 
|  | * @new_size and ends after it is found, its length is adjusted. | 
|  | * | 
|  | * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is | 
|  | * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block. | 
|  | */ | 
|  | int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, | 
|  | u64 new_size, u32 min_type, | 
|  | u64 *extents_found) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u64 extent_start = 0; | 
|  | u64 extent_num_bytes = 0; | 
|  | u64 extent_offset = 0; | 
|  | u64 item_end = 0; | 
|  | u64 last_size = new_size; | 
|  | u32 found_type = (u8)-1; | 
|  | int found_extent; | 
|  | int del_item; | 
|  | int pending_del_nr = 0; | 
|  | int pending_del_slot = 0; | 
|  | int extent_type = -1; | 
|  | int ret; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | u64 bytes_deleted = 0; | 
|  | bool be_nice = false; | 
|  | bool should_throttle = false; | 
|  | const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); | 
|  |  | 
|  | /* | 
|  | * For non-free space inodes and non-shareable roots, we want to back | 
|  | * off from time to time.  This means all inodes in subvolume roots, | 
|  | * reloc roots, and data reloc roots. | 
|  | */ | 
|  | if (!btrfs_is_free_space_inode(inode) && | 
|  | test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
|  | be_nice = true; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_BACK; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, | 
|  | &cached_state); | 
|  |  | 
|  | /* | 
|  | * We want to drop from the next block forward in case this | 
|  | * new size is not block aligned since we will be keeping the | 
|  | * last block of the extent just the way it is. | 
|  | */ | 
|  | btrfs_drop_extent_cache(inode, ALIGN(new_size, | 
|  | fs_info->sectorsize), | 
|  | (u64)-1, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is also used to drop the items in the log tree before | 
|  | * we relog the inode, so if root != BTRFS_I(inode)->root, it means | 
|  | * it is used to drop the logged items. So we shouldn't kill the delayed | 
|  | * items. | 
|  | */ | 
|  | if (min_type == 0 && root == inode->root) | 
|  | btrfs_kill_delayed_inode_items(inode); | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.offset = (u64)-1; | 
|  | key.type = (u8)-1; | 
|  |  | 
|  | search_again: | 
|  | /* | 
|  | * with a 16K leaf size and 128MB extents, you can actually queue | 
|  | * up a huge file in a single leaf.  Most of the time that | 
|  | * bytes_deleted is > 0, it will be huge by the time we get here | 
|  | */ | 
|  | if (be_nice && bytes_deleted > SZ_32M && | 
|  | btrfs_should_end_transaction(trans)) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | /* there are no items in the tree for us to truncate, we're | 
|  | * done | 
|  | */ | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | u64 clear_start = 0, clear_len = 0; | 
|  |  | 
|  | fi = NULL; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | found_type = found_key.type; | 
|  |  | 
|  | if (found_key.objectid != ino) | 
|  | break; | 
|  |  | 
|  | if (found_type < min_type) | 
|  | break; | 
|  |  | 
|  | item_end = found_key.offset; | 
|  | if (found_type == BTRFS_EXTENT_DATA_KEY) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(leaf, fi); | 
|  | if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | 
|  | item_end += | 
|  | btrfs_file_extent_num_bytes(leaf, fi); | 
|  |  | 
|  | trace_btrfs_truncate_show_fi_regular( | 
|  | inode, leaf, fi, found_key.offset); | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | item_end += btrfs_file_extent_ram_bytes(leaf, | 
|  | fi); | 
|  |  | 
|  | trace_btrfs_truncate_show_fi_inline( | 
|  | inode, leaf, fi, path->slots[0], | 
|  | found_key.offset); | 
|  | } | 
|  | item_end--; | 
|  | } | 
|  | if (found_type > min_type) { | 
|  | del_item = 1; | 
|  | } else { | 
|  | if (item_end < new_size) | 
|  | break; | 
|  | if (found_key.offset >= new_size) | 
|  | del_item = 1; | 
|  | else | 
|  | del_item = 0; | 
|  | } | 
|  | found_extent = 0; | 
|  | /* FIXME, shrink the extent if the ref count is only 1 */ | 
|  | if (found_type != BTRFS_EXTENT_DATA_KEY) | 
|  | goto delete; | 
|  |  | 
|  | if (extents_found != NULL) | 
|  | (*extents_found)++; | 
|  |  | 
|  | if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | 
|  | u64 num_dec; | 
|  |  | 
|  | clear_start = found_key.offset; | 
|  | extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | if (!del_item) { | 
|  | u64 orig_num_bytes = | 
|  | btrfs_file_extent_num_bytes(leaf, fi); | 
|  | extent_num_bytes = ALIGN(new_size - | 
|  | found_key.offset, | 
|  | fs_info->sectorsize); | 
|  | clear_start = ALIGN(new_size, fs_info->sectorsize); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_num_bytes); | 
|  | num_dec = (orig_num_bytes - | 
|  | extent_num_bytes); | 
|  | if (test_bit(BTRFS_ROOT_SHAREABLE, | 
|  | &root->state) && | 
|  | extent_start != 0) | 
|  | inode_sub_bytes(&inode->vfs_inode, | 
|  | num_dec); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } else { | 
|  | extent_num_bytes = | 
|  | btrfs_file_extent_disk_num_bytes(leaf, | 
|  | fi); | 
|  | extent_offset = found_key.offset - | 
|  | btrfs_file_extent_offset(leaf, fi); | 
|  |  | 
|  | /* FIXME blocksize != 4096 */ | 
|  | num_dec = btrfs_file_extent_num_bytes(leaf, fi); | 
|  | if (extent_start != 0) { | 
|  | found_extent = 1; | 
|  | if (test_bit(BTRFS_ROOT_SHAREABLE, | 
|  | &root->state)) | 
|  | inode_sub_bytes(&inode->vfs_inode, | 
|  | num_dec); | 
|  | } | 
|  | } | 
|  | clear_len = num_dec; | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | /* | 
|  | * we can't truncate inline items that have had | 
|  | * special encodings | 
|  | */ | 
|  | if (!del_item && | 
|  | btrfs_file_extent_encryption(leaf, fi) == 0 && | 
|  | btrfs_file_extent_other_encoding(leaf, fi) == 0 && | 
|  | btrfs_file_extent_compression(leaf, fi) == 0) { | 
|  | u32 size = (u32)(new_size - found_key.offset); | 
|  |  | 
|  | btrfs_set_file_extent_ram_bytes(leaf, fi, size); | 
|  | size = btrfs_file_extent_calc_inline_size(size); | 
|  | btrfs_truncate_item(path, size, 1); | 
|  | } else if (!del_item) { | 
|  | /* | 
|  | * We have to bail so the last_size is set to | 
|  | * just before this extent. | 
|  | */ | 
|  | ret = NEED_TRUNCATE_BLOCK; | 
|  | break; | 
|  | } else { | 
|  | /* | 
|  | * Inline extents are special, we just treat | 
|  | * them as a full sector worth in the file | 
|  | * extent tree just for simplicity sake. | 
|  | */ | 
|  | clear_len = fs_info->sectorsize; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
|  | inode_sub_bytes(&inode->vfs_inode, | 
|  | item_end + 1 - new_size); | 
|  | } | 
|  | delete: | 
|  | /* | 
|  | * We use btrfs_truncate_inode_items() to clean up log trees for | 
|  | * multiple fsyncs, and in this case we don't want to clear the | 
|  | * file extent range because it's just the log. | 
|  | */ | 
|  | if (root == inode->root) { | 
|  | ret = btrfs_inode_clear_file_extent_range(inode, | 
|  | clear_start, clear_len); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (del_item) | 
|  | last_size = found_key.offset; | 
|  | else | 
|  | last_size = new_size; | 
|  | if (del_item) { | 
|  | if (!pending_del_nr) { | 
|  | /* no pending yet, add ourselves */ | 
|  | pending_del_slot = path->slots[0]; | 
|  | pending_del_nr = 1; | 
|  | } else if (pending_del_nr && | 
|  | path->slots[0] + 1 == pending_del_slot) { | 
|  | /* hop on the pending chunk */ | 
|  | pending_del_nr++; | 
|  | pending_del_slot = path->slots[0]; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | should_throttle = false; | 
|  |  | 
|  | if (found_extent && | 
|  | root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | struct btrfs_ref ref = { 0 }; | 
|  |  | 
|  | bytes_deleted += extent_num_bytes; | 
|  |  | 
|  | btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, | 
|  | extent_start, extent_num_bytes, 0); | 
|  | ref.real_root = root->root_key.objectid; | 
|  | btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), | 
|  | ino, extent_offset, | 
|  | root->root_key.objectid, false); | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | if (be_nice) { | 
|  | if (btrfs_should_throttle_delayed_refs(trans)) | 
|  | should_throttle = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found_type == BTRFS_INODE_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | if (path->slots[0] == 0 || | 
|  | path->slots[0] != pending_del_slot || | 
|  | should_throttle) { | 
|  | if (pending_del_nr) { | 
|  | ret = btrfs_del_items(trans, root, path, | 
|  | pending_del_slot, | 
|  | pending_del_nr); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | pending_del_nr = 0; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We can generate a lot of delayed refs, so we need to | 
|  | * throttle every once and a while and make sure we're | 
|  | * adding enough space to keep up with the work we are | 
|  | * generating.  Since we hold a transaction here we | 
|  | * can't flush, and we don't want to FLUSH_LIMIT because | 
|  | * we could have generated too many delayed refs to | 
|  | * actually allocate, so just bail if we're short and | 
|  | * let the normal reservation dance happen higher up. | 
|  | */ | 
|  | if (should_throttle) { | 
|  | ret = btrfs_delayed_refs_rsv_refill(fs_info, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | if (ret) { | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  | } | 
|  | goto search_again; | 
|  | } else { | 
|  | path->slots[0]--; | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (ret >= 0 && pending_del_nr) { | 
|  | int err; | 
|  |  | 
|  | err = btrfs_del_items(trans, root, path, pending_del_slot, | 
|  | pending_del_nr); | 
|  | if (err) { | 
|  | btrfs_abort_transaction(trans, err); | 
|  | ret = err; | 
|  | } | 
|  | } | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ASSERT(last_size >= new_size); | 
|  | if (!ret && last_size > new_size) | 
|  | last_size = new_size; | 
|  | btrfs_inode_safe_disk_i_size_write(inode, last_size); | 
|  | unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, | 
|  | &cached_state); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_truncate_block - read, zero a chunk and write a block | 
|  | * @inode - inode that we're zeroing | 
|  | * @from - the offset to start zeroing | 
|  | * @len - the length to zero, 0 to zero the entire range respective to the | 
|  | *	offset | 
|  | * @front - zero up to the offset instead of from the offset on | 
|  | * | 
|  | * This will find the block for the "from" offset and cow the block and zero the | 
|  | * part we want to zero.  This is used with truncate and hole punching. | 
|  | */ | 
|  | int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, | 
|  | int front) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct address_space *mapping = inode->vfs_inode.i_mapping; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | bool only_release_metadata = false; | 
|  | u32 blocksize = fs_info->sectorsize; | 
|  | pgoff_t index = from >> PAGE_SHIFT; | 
|  | unsigned offset = from & (blocksize - 1); | 
|  | struct page *page; | 
|  | gfp_t mask = btrfs_alloc_write_mask(mapping); | 
|  | size_t write_bytes = blocksize; | 
|  | int ret = 0; | 
|  | u64 block_start; | 
|  | u64 block_end; | 
|  |  | 
|  | if (IS_ALIGNED(offset, blocksize) && | 
|  | (!len || IS_ALIGNED(len, blocksize))) | 
|  | goto out; | 
|  |  | 
|  | block_start = round_down(from, blocksize); | 
|  | block_end = block_start + blocksize - 1; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, | 
|  | blocksize); | 
|  | if (ret < 0) { | 
|  | if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { | 
|  | /* For nocow case, no need to reserve data space */ | 
|  | only_release_metadata = true; | 
|  | } else { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = btrfs_delalloc_reserve_metadata(inode, blocksize); | 
|  | if (ret < 0) { | 
|  | if (!only_release_metadata) | 
|  | btrfs_free_reserved_data_space(inode, data_reserved, | 
|  | block_start, blocksize); | 
|  | goto out; | 
|  | } | 
|  | again: | 
|  | page = find_or_create_page(mapping, index, mask); | 
|  | if (!page) { | 
|  | btrfs_delalloc_release_space(inode, data_reserved, block_start, | 
|  | blocksize, true); | 
|  | btrfs_delalloc_release_extents(inode, blocksize); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ret = set_page_extent_mapped(page); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | ret = btrfs_readpage(NULL, page); | 
|  | lock_page(page); | 
|  | if (page->mapping != mapping) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto again; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | lock_extent_bits(io_tree, block_start, block_end, &cached_state); | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_extent(inode, block_start); | 
|  | if (ordered) { | 
|  | unlock_extent_cached(io_tree, block_start, block_end, | 
|  | &cached_state); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | clear_extent_bit(&inode->io_tree, block_start, block_end, | 
|  | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, | 
|  | 0, 0, &cached_state); | 
|  |  | 
|  | ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, | 
|  | &cached_state); | 
|  | if (ret) { | 
|  | unlock_extent_cached(io_tree, block_start, block_end, | 
|  | &cached_state); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (offset != blocksize) { | 
|  | if (!len) | 
|  | len = blocksize - offset; | 
|  | if (front) | 
|  | memzero_page(page, (block_start - page_offset(page)), | 
|  | offset); | 
|  | else | 
|  | memzero_page(page, (block_start - page_offset(page)) + offset, | 
|  | len); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | ClearPageChecked(page); | 
|  | btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); | 
|  | unlock_extent_cached(io_tree, block_start, block_end, &cached_state); | 
|  |  | 
|  | if (only_release_metadata) | 
|  | set_extent_bit(&inode->io_tree, block_start, block_end, | 
|  | EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); | 
|  |  | 
|  | out_unlock: | 
|  | if (ret) { | 
|  | if (only_release_metadata) | 
|  | btrfs_delalloc_release_metadata(inode, blocksize, true); | 
|  | else | 
|  | btrfs_delalloc_release_space(inode, data_reserved, | 
|  | block_start, blocksize, true); | 
|  | } | 
|  | btrfs_delalloc_release_extents(inode, blocksize); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | out: | 
|  | if (only_release_metadata) | 
|  | btrfs_check_nocow_unlock(inode); | 
|  | extent_changeset_free(data_reserved); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, | 
|  | u64 offset, u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If NO_HOLES is enabled, we don't need to do anything. | 
|  | * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() | 
|  | * or btrfs_update_inode() will be called, which guarantee that the next | 
|  | * fsync will know this inode was changed and needs to be logged. | 
|  | */ | 
|  | if (btrfs_fs_incompat(fs_info, NO_HOLES)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * 1 - for the one we're dropping | 
|  | * 1 - for the one we're adding | 
|  | * 1 - for updating the inode. | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 3); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | drop_args.start = offset; | 
|  | drop_args.end = offset + len; | 
|  | drop_args.drop_cache = true; | 
|  |  | 
|  | ret = btrfs_drop_extents(trans, root, inode, &drop_args); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), | 
|  | offset, 0, 0, len, 0, len, 0, 0, 0); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } else { | 
|  | btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | } | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function puts in dummy file extents for the area we're creating a hole | 
|  | * for.  So if we are truncating this file to a larger size we need to insert | 
|  | * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for | 
|  | * the range between oldsize and size | 
|  | */ | 
|  | int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  | struct extent_map *em = NULL; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); | 
|  | u64 block_end = ALIGN(size, fs_info->sectorsize); | 
|  | u64 last_byte; | 
|  | u64 cur_offset; | 
|  | u64 hole_size; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * If our size started in the middle of a block we need to zero out the | 
|  | * rest of the block before we expand the i_size, otherwise we could | 
|  | * expose stale data. | 
|  | */ | 
|  | err = btrfs_truncate_block(inode, oldsize, 0, 0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (size <= hole_start) | 
|  | return 0; | 
|  |  | 
|  | btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, | 
|  | &cached_state); | 
|  | cur_offset = hole_start; | 
|  | while (1) { | 
|  | em = btrfs_get_extent(inode, NULL, 0, cur_offset, | 
|  | block_end - cur_offset); | 
|  | if (IS_ERR(em)) { | 
|  | err = PTR_ERR(em); | 
|  | em = NULL; | 
|  | break; | 
|  | } | 
|  | last_byte = min(extent_map_end(em), block_end); | 
|  | last_byte = ALIGN(last_byte, fs_info->sectorsize); | 
|  | hole_size = last_byte - cur_offset; | 
|  |  | 
|  | if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { | 
|  | struct extent_map *hole_em; | 
|  |  | 
|  | err = maybe_insert_hole(root, inode, cur_offset, | 
|  | hole_size); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | err = btrfs_inode_set_file_extent_range(inode, | 
|  | cur_offset, hole_size); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | btrfs_drop_extent_cache(inode, cur_offset, | 
|  | cur_offset + hole_size - 1, 0); | 
|  | hole_em = alloc_extent_map(); | 
|  | if (!hole_em) { | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags); | 
|  | goto next; | 
|  | } | 
|  | hole_em->start = cur_offset; | 
|  | hole_em->len = hole_size; | 
|  | hole_em->orig_start = cur_offset; | 
|  |  | 
|  | hole_em->block_start = EXTENT_MAP_HOLE; | 
|  | hole_em->block_len = 0; | 
|  | hole_em->orig_block_len = 0; | 
|  | hole_em->ram_bytes = hole_size; | 
|  | hole_em->compress_type = BTRFS_COMPRESS_NONE; | 
|  | hole_em->generation = fs_info->generation; | 
|  |  | 
|  | while (1) { | 
|  | write_lock(&em_tree->lock); | 
|  | err = add_extent_mapping(em_tree, hole_em, 1); | 
|  | write_unlock(&em_tree->lock); | 
|  | if (err != -EEXIST) | 
|  | break; | 
|  | btrfs_drop_extent_cache(inode, cur_offset, | 
|  | cur_offset + | 
|  | hole_size - 1, 0); | 
|  | } | 
|  | free_extent_map(hole_em); | 
|  | } else { | 
|  | err = btrfs_inode_set_file_extent_range(inode, | 
|  | cur_offset, hole_size); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | next: | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  | cur_offset = last_byte; | 
|  | if (cur_offset >= block_end) | 
|  | break; | 
|  | } | 
|  | free_extent_map(em); | 
|  | unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btrfs_setsize(struct inode *inode, struct iattr *attr) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | loff_t oldsize = i_size_read(inode); | 
|  | loff_t newsize = attr->ia_size; | 
|  | int mask = attr->ia_valid; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a | 
|  | * special case where we need to update the times despite not having | 
|  | * these flags set.  For all other operations the VFS set these flags | 
|  | * explicitly if it wants a timestamp update. | 
|  | */ | 
|  | if (newsize != oldsize) { | 
|  | inode_inc_iversion(inode); | 
|  | if (!(mask & (ATTR_CTIME | ATTR_MTIME))) | 
|  | inode->i_ctime = inode->i_mtime = | 
|  | current_time(inode); | 
|  | } | 
|  |  | 
|  | if (newsize > oldsize) { | 
|  | /* | 
|  | * Don't do an expanding truncate while snapshotting is ongoing. | 
|  | * This is to ensure the snapshot captures a fully consistent | 
|  | * state of this file - if the snapshot captures this expanding | 
|  | * truncation, it must capture all writes that happened before | 
|  | * this truncation. | 
|  | */ | 
|  | btrfs_drew_write_lock(&root->snapshot_lock); | 
|  | ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); | 
|  | if (ret) { | 
|  | btrfs_drew_write_unlock(&root->snapshot_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_drew_write_unlock(&root->snapshot_lock); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | i_size_write(inode, newsize); | 
|  | btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); | 
|  | pagecache_isize_extended(inode, oldsize, newsize); | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | btrfs_drew_write_unlock(&root->snapshot_lock); | 
|  | btrfs_end_transaction(trans); | 
|  | } else { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  |  | 
|  | if (btrfs_is_zoned(fs_info)) { | 
|  | ret = btrfs_wait_ordered_range(inode, | 
|  | ALIGN(newsize, fs_info->sectorsize), | 
|  | (u64)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're truncating a file that used to have good data down to | 
|  | * zero. Make sure any new writes to the file get on disk | 
|  | * on close. | 
|  | */ | 
|  | if (newsize == 0) | 
|  | set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | truncate_setsize(inode, newsize); | 
|  |  | 
|  | inode_dio_wait(inode); | 
|  |  | 
|  | ret = btrfs_truncate(inode, newsize == oldsize); | 
|  | if (ret && inode->i_nlink) { | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Truncate failed, so fix up the in-memory size. We | 
|  | * adjusted disk_i_size down as we removed extents, so | 
|  | * wait for disk_i_size to be stable and then update the | 
|  | * in-memory size to match. | 
|  | */ | 
|  | err = btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
|  | if (err) | 
|  | return err; | 
|  | i_size_write(inode, BTRFS_I(inode)->disk_i_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, | 
|  | struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | int err; | 
|  |  | 
|  | if (btrfs_root_readonly(root)) | 
|  | return -EROFS; | 
|  |  | 
|  | err = setattr_prepare(mnt_userns, dentry, attr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { | 
|  | err = btrfs_setsize(inode, attr); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (attr->ia_valid) { | 
|  | setattr_copy(mnt_userns, inode, attr); | 
|  | inode_inc_iversion(inode); | 
|  | err = btrfs_dirty_inode(inode); | 
|  |  | 
|  | if (!err && attr->ia_valid & ATTR_MODE) | 
|  | err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While truncating the inode pages during eviction, we get the VFS calling | 
|  | * btrfs_invalidatepage() against each page of the inode. This is slow because | 
|  | * the calls to btrfs_invalidatepage() result in a huge amount of calls to | 
|  | * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting | 
|  | * extent_state structures over and over, wasting lots of time. | 
|  | * | 
|  | * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all | 
|  | * those expensive operations on a per page basis and do only the ordered io | 
|  | * finishing, while we release here the extent_map and extent_state structures, | 
|  | * without the excessive merging and splitting. | 
|  | */ | 
|  | static void evict_inode_truncate_pages(struct inode *inode) | 
|  | { | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; | 
|  | struct rb_node *node; | 
|  |  | 
|  | ASSERT(inode->i_state & I_FREEING); | 
|  | truncate_inode_pages_final(&inode->i_data); | 
|  |  | 
|  | write_lock(&map_tree->lock); | 
|  | while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { | 
|  | struct extent_map *em; | 
|  |  | 
|  | node = rb_first_cached(&map_tree->map); | 
|  | em = rb_entry(node, struct extent_map, rb_node); | 
|  | clear_bit(EXTENT_FLAG_PINNED, &em->flags); | 
|  | clear_bit(EXTENT_FLAG_LOGGING, &em->flags); | 
|  | remove_extent_mapping(map_tree, em); | 
|  | free_extent_map(em); | 
|  | if (need_resched()) { | 
|  | write_unlock(&map_tree->lock); | 
|  | cond_resched(); | 
|  | write_lock(&map_tree->lock); | 
|  | } | 
|  | } | 
|  | write_unlock(&map_tree->lock); | 
|  |  | 
|  | /* | 
|  | * Keep looping until we have no more ranges in the io tree. | 
|  | * We can have ongoing bios started by readahead that have | 
|  | * their endio callback (extent_io.c:end_bio_extent_readpage) | 
|  | * still in progress (unlocked the pages in the bio but did not yet | 
|  | * unlocked the ranges in the io tree). Therefore this means some | 
|  | * ranges can still be locked and eviction started because before | 
|  | * submitting those bios, which are executed by a separate task (work | 
|  | * queue kthread), inode references (inode->i_count) were not taken | 
|  | * (which would be dropped in the end io callback of each bio). | 
|  | * Therefore here we effectively end up waiting for those bios and | 
|  | * anyone else holding locked ranges without having bumped the inode's | 
|  | * reference count - if we don't do it, when they access the inode's | 
|  | * io_tree to unlock a range it may be too late, leading to an | 
|  | * use-after-free issue. | 
|  | */ | 
|  | spin_lock(&io_tree->lock); | 
|  | while (!RB_EMPTY_ROOT(&io_tree->state)) { | 
|  | struct extent_state *state; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start; | 
|  | u64 end; | 
|  | unsigned state_flags; | 
|  |  | 
|  | node = rb_first(&io_tree->state); | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | start = state->start; | 
|  | end = state->end; | 
|  | state_flags = state->state; | 
|  | spin_unlock(&io_tree->lock); | 
|  |  | 
|  | lock_extent_bits(io_tree, start, end, &cached_state); | 
|  |  | 
|  | /* | 
|  | * If still has DELALLOC flag, the extent didn't reach disk, | 
|  | * and its reserved space won't be freed by delayed_ref. | 
|  | * So we need to free its reserved space here. | 
|  | * (Refer to comment in btrfs_invalidatepage, case 2) | 
|  | * | 
|  | * Note, end is the bytenr of last byte, so we need + 1 here. | 
|  | */ | 
|  | if (state_flags & EXTENT_DELALLOC) | 
|  | btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, | 
|  | end - start + 1); | 
|  |  | 
|  | clear_extent_bit(io_tree, start, end, | 
|  | EXTENT_LOCKED | EXTENT_DELALLOC | | 
|  | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, | 
|  | &cached_state); | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&io_tree->lock); | 
|  | } | 
|  | spin_unlock(&io_tree->lock); | 
|  | } | 
|  |  | 
|  | static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Eviction should be taking place at some place safe because of our | 
|  | * delayed iputs.  However the normal flushing code will run delayed | 
|  | * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. | 
|  | * | 
|  | * We reserve the delayed_refs_extra here again because we can't use | 
|  | * btrfs_start_transaction(root, 0) for the same deadlocky reason as | 
|  | * above.  We reserve our extra bit here because we generate a ton of | 
|  | * delayed refs activity by truncating. | 
|  | * | 
|  | * If we cannot make our reservation we'll attempt to steal from the | 
|  | * global reserve, because we really want to be able to free up space. | 
|  | */ | 
|  | ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, | 
|  | BTRFS_RESERVE_FLUSH_EVICT); | 
|  | if (ret) { | 
|  | /* | 
|  | * Try to steal from the global reserve if there is space for | 
|  | * it. | 
|  | */ | 
|  | if (btrfs_check_space_for_delayed_refs(fs_info) || | 
|  | btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { | 
|  | btrfs_warn(fs_info, | 
|  | "could not allocate space for delete; will truncate on mount"); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  | delayed_refs_extra = 0; | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return trans; | 
|  |  | 
|  | if (delayed_refs_extra) { | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | trans->bytes_reserved = delayed_refs_extra; | 
|  | btrfs_block_rsv_migrate(rsv, trans->block_rsv, | 
|  | delayed_refs_extra, 1); | 
|  | } | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | void btrfs_evict_inode(struct inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_block_rsv *rsv; | 
|  | int ret; | 
|  |  | 
|  | trace_btrfs_inode_evict(inode); | 
|  |  | 
|  | if (!root) { | 
|  | fsverity_cleanup_inode(inode); | 
|  | clear_inode(inode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | evict_inode_truncate_pages(inode); | 
|  |  | 
|  | if (inode->i_nlink && | 
|  | ((btrfs_root_refs(&root->root_item) != 0 && | 
|  | root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || | 
|  | btrfs_is_free_space_inode(BTRFS_I(inode)))) | 
|  | goto no_delete; | 
|  |  | 
|  | if (is_bad_inode(inode)) | 
|  | goto no_delete; | 
|  |  | 
|  | btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); | 
|  |  | 
|  | if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
|  | goto no_delete; | 
|  |  | 
|  | if (inode->i_nlink > 0) { | 
|  | BUG_ON(btrfs_root_refs(&root->root_item) != 0 && | 
|  | root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); | 
|  | goto no_delete; | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); | 
|  | if (ret) | 
|  | goto no_delete; | 
|  |  | 
|  | rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); | 
|  | if (!rsv) | 
|  | goto no_delete; | 
|  | rsv->size = btrfs_calc_metadata_size(fs_info, 1); | 
|  | rsv->failfast = 1; | 
|  |  | 
|  | btrfs_i_size_write(BTRFS_I(inode), 0); | 
|  |  | 
|  | while (1) { | 
|  | trans = evict_refill_and_join(root, rsv); | 
|  | if (IS_ERR(trans)) | 
|  | goto free_rsv; | 
|  |  | 
|  | trans->block_rsv = rsv; | 
|  |  | 
|  | ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), | 
|  | 0, 0, NULL); | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | if (ret && ret != -ENOSPC && ret != -EAGAIN) | 
|  | goto free_rsv; | 
|  | else if (!ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Errors here aren't a big deal, it just means we leave orphan items in | 
|  | * the tree. They will be cleaned up on the next mount. If the inode | 
|  | * number gets reused, cleanup deletes the orphan item without doing | 
|  | * anything, and unlink reuses the existing orphan item. | 
|  | * | 
|  | * If it turns out that we are dropping too many of these, we might want | 
|  | * to add a mechanism for retrying these after a commit. | 
|  | */ | 
|  | trans = evict_refill_and_join(root, rsv); | 
|  | if (!IS_ERR(trans)) { | 
|  | trans->block_rsv = rsv; | 
|  | btrfs_orphan_del(trans, BTRFS_I(inode)); | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | free_rsv: | 
|  | btrfs_free_block_rsv(fs_info, rsv); | 
|  | no_delete: | 
|  | /* | 
|  | * If we didn't successfully delete, the orphan item will still be in | 
|  | * the tree and we'll retry on the next mount. Again, we might also want | 
|  | * to retry these periodically in the future. | 
|  | */ | 
|  | btrfs_remove_delayed_node(BTRFS_I(inode)); | 
|  | fsverity_cleanup_inode(inode); | 
|  | clear_inode(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the key found in the dir entry in the location pointer, fill @type | 
|  | * with BTRFS_FT_*, and return 0. | 
|  | * | 
|  | * If no dir entries were found, returns -ENOENT. | 
|  | * If found a corrupted location in dir entry, returns -EUCLEAN. | 
|  | */ | 
|  | static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, | 
|  | struct btrfs_key *location, u8 *type) | 
|  | { | 
|  | const char *name = dentry->d_name.name; | 
|  | int namelen = dentry->d_name.len; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), | 
|  | name, namelen, 0); | 
|  | if (IS_ERR_OR_NULL(di)) { | 
|  | ret = di ? PTR_ERR(di) : -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); | 
|  | if (location->type != BTRFS_INODE_ITEM_KEY && | 
|  | location->type != BTRFS_ROOT_ITEM_KEY) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_warn(root->fs_info, | 
|  | "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", | 
|  | __func__, name, btrfs_ino(BTRFS_I(dir)), | 
|  | location->objectid, location->type, location->offset); | 
|  | } | 
|  | if (!ret) | 
|  | *type = btrfs_dir_type(path->nodes[0], di); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we hit a tree root in a directory, the btrfs part of the inode | 
|  | * needs to be changed to reflect the root directory of the tree root.  This | 
|  | * is kind of like crossing a mount point. | 
|  | */ | 
|  | static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, | 
|  | struct inode *dir, | 
|  | struct dentry *dentry, | 
|  | struct btrfs_key *location, | 
|  | struct btrfs_root **sub_root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *new_root; | 
|  | struct btrfs_root_ref *ref; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = -ENOENT; | 
|  | key.objectid = BTRFS_I(dir)->root->root_key.objectid; | 
|  | key.type = BTRFS_ROOT_REF_KEY; | 
|  | key.offset = location->objectid; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
|  | if (ret) { | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); | 
|  | if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || | 
|  | btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) | 
|  | goto out; | 
|  |  | 
|  | ret = memcmp_extent_buffer(leaf, dentry->d_name.name, | 
|  | (unsigned long)(ref + 1), | 
|  | dentry->d_name.len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | new_root = btrfs_get_fs_root(fs_info, location->objectid, true); | 
|  | if (IS_ERR(new_root)) { | 
|  | err = PTR_ERR(new_root); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *sub_root = new_root; | 
|  | location->objectid = btrfs_root_dirid(&new_root->root_item); | 
|  | location->type = BTRFS_INODE_ITEM_KEY; | 
|  | location->offset = 0; | 
|  | err = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void inode_tree_add(struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_inode *entry; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent; | 
|  | struct rb_node *new = &BTRFS_I(inode)->rb_node; | 
|  | u64 ino = btrfs_ino(BTRFS_I(inode)); | 
|  |  | 
|  | if (inode_unhashed(inode)) | 
|  | return; | 
|  | parent = NULL; | 
|  | spin_lock(&root->inode_lock); | 
|  | p = &root->inode_tree.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct btrfs_inode, rb_node); | 
|  |  | 
|  | if (ino < btrfs_ino(entry)) | 
|  | p = &parent->rb_left; | 
|  | else if (ino > btrfs_ino(entry)) | 
|  | p = &parent->rb_right; | 
|  | else { | 
|  | WARN_ON(!(entry->vfs_inode.i_state & | 
|  | (I_WILL_FREE | I_FREEING))); | 
|  | rb_replace_node(parent, new, &root->inode_tree); | 
|  | RB_CLEAR_NODE(parent); | 
|  | spin_unlock(&root->inode_lock); | 
|  | return; | 
|  | } | 
|  | } | 
|  | rb_link_node(new, parent, p); | 
|  | rb_insert_color(new, &root->inode_tree); | 
|  | spin_unlock(&root->inode_lock); | 
|  | } | 
|  |  | 
|  | static void inode_tree_del(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | int empty = 0; | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | if (!RB_EMPTY_NODE(&inode->rb_node)) { | 
|  | rb_erase(&inode->rb_node, &root->inode_tree); | 
|  | RB_CLEAR_NODE(&inode->rb_node); | 
|  | empty = RB_EMPTY_ROOT(&root->inode_tree); | 
|  | } | 
|  | spin_unlock(&root->inode_lock); | 
|  |  | 
|  | if (empty && btrfs_root_refs(&root->root_item) == 0) { | 
|  | spin_lock(&root->inode_lock); | 
|  | empty = RB_EMPTY_ROOT(&root->inode_tree); | 
|  | spin_unlock(&root->inode_lock); | 
|  | if (empty) | 
|  | btrfs_add_dead_root(root); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int btrfs_init_locked_inode(struct inode *inode, void *p) | 
|  | { | 
|  | struct btrfs_iget_args *args = p; | 
|  |  | 
|  | inode->i_ino = args->ino; | 
|  | BTRFS_I(inode)->location.objectid = args->ino; | 
|  | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | 
|  | BTRFS_I(inode)->location.offset = 0; | 
|  | BTRFS_I(inode)->root = btrfs_grab_root(args->root); | 
|  | BUG_ON(args->root && !BTRFS_I(inode)->root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_find_actor(struct inode *inode, void *opaque) | 
|  | { | 
|  | struct btrfs_iget_args *args = opaque; | 
|  |  | 
|  | return args->ino == BTRFS_I(inode)->location.objectid && | 
|  | args->root == BTRFS_I(inode)->root; | 
|  | } | 
|  |  | 
|  | static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct btrfs_iget_args args; | 
|  | unsigned long hashval = btrfs_inode_hash(ino, root); | 
|  |  | 
|  | args.ino = ino; | 
|  | args.root = root; | 
|  |  | 
|  | inode = iget5_locked(s, hashval, btrfs_find_actor, | 
|  | btrfs_init_locked_inode, | 
|  | (void *)&args); | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get an inode object given its inode number and corresponding root. | 
|  | * Path can be preallocated to prevent recursing back to iget through | 
|  | * allocator. NULL is also valid but may require an additional allocation | 
|  | * later. | 
|  | */ | 
|  | struct inode *btrfs_iget_path(struct super_block *s, u64 ino, | 
|  | struct btrfs_root *root, struct btrfs_path *path) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = btrfs_iget_locked(s, ino, root); | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (inode->i_state & I_NEW) { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_read_locked_inode(inode, path); | 
|  | if (!ret) { | 
|  | inode_tree_add(inode); | 
|  | unlock_new_inode(inode); | 
|  | } else { | 
|  | iget_failed(inode); | 
|  | /* | 
|  | * ret > 0 can come from btrfs_search_slot called by | 
|  | * btrfs_read_locked_inode, this means the inode item | 
|  | * was not found. | 
|  | */ | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | inode = ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) | 
|  | { | 
|  | return btrfs_iget_path(s, ino, root, NULL); | 
|  | } | 
|  |  | 
|  | static struct inode *new_simple_dir(struct super_block *s, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct inode *inode = new_inode(s); | 
|  |  | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | BTRFS_I(inode)->root = btrfs_grab_root(root); | 
|  | memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); | 
|  | set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; | 
|  | /* | 
|  | * We only need lookup, the rest is read-only and there's no inode | 
|  | * associated with the dentry | 
|  | */ | 
|  | inode->i_op = &simple_dir_inode_operations; | 
|  | inode->i_opflags &= ~IOP_XATTR; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; | 
|  | inode->i_mtime = current_time(inode); | 
|  | inode->i_atime = inode->i_mtime; | 
|  | inode->i_ctime = inode->i_mtime; | 
|  | BTRFS_I(inode)->i_otime = inode->i_mtime; | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | static inline u8 btrfs_inode_type(struct inode *inode) | 
|  | { | 
|  | /* | 
|  | * Compile-time asserts that generic FT_* types still match | 
|  | * BTRFS_FT_* types | 
|  | */ | 
|  | BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); | 
|  | BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); | 
|  | BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); | 
|  | BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); | 
|  | BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); | 
|  | BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); | 
|  | BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); | 
|  | BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); | 
|  |  | 
|  | return fs_umode_to_ftype(inode->i_mode); | 
|  | } | 
|  |  | 
|  | struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
|  | struct inode *inode; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct btrfs_root *sub_root = root; | 
|  | struct btrfs_key location = { 0 }; | 
|  | u8 di_type = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (dentry->d_name.len > BTRFS_NAME_LEN) | 
|  | return ERR_PTR(-ENAMETOOLONG); | 
|  |  | 
|  | ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (location.type == BTRFS_INODE_ITEM_KEY) { | 
|  | inode = btrfs_iget(dir->i_sb, location.objectid, root); | 
|  | if (IS_ERR(inode)) | 
|  | return inode; | 
|  |  | 
|  | /* Do extra check against inode mode with di_type */ | 
|  | if (btrfs_inode_type(inode) != di_type) { | 
|  | btrfs_crit(fs_info, | 
|  | "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", | 
|  | inode->i_mode, btrfs_inode_type(inode), | 
|  | di_type); | 
|  | iput(inode); | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | ret = fixup_tree_root_location(fs_info, dir, dentry, | 
|  | &location, &sub_root); | 
|  | if (ret < 0) { | 
|  | if (ret != -ENOENT) | 
|  | inode = ERR_PTR(ret); | 
|  | else | 
|  | inode = new_simple_dir(dir->i_sb, &location, sub_root); | 
|  | } else { | 
|  | inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); | 
|  | } | 
|  | if (root != sub_root) | 
|  | btrfs_put_root(sub_root); | 
|  |  | 
|  | if (!IS_ERR(inode) && root != sub_root) { | 
|  | down_read(&fs_info->cleanup_work_sem); | 
|  | if (!sb_rdonly(inode->i_sb)) | 
|  | ret = btrfs_orphan_cleanup(sub_root); | 
|  | up_read(&fs_info->cleanup_work_sem); | 
|  | if (ret) { | 
|  | iput(inode); | 
|  | inode = ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | static int btrfs_dentry_delete(const struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct inode *inode = d_inode(dentry); | 
|  |  | 
|  | if (!inode && !IS_ROOT(dentry)) | 
|  | inode = d_inode(dentry->d_parent); | 
|  |  | 
|  | if (inode) { | 
|  | root = BTRFS_I(inode)->root; | 
|  | if (btrfs_root_refs(&root->root_item) == 0) | 
|  | return 1; | 
|  |  | 
|  | if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct inode *inode = btrfs_lookup_dentry(dir, dentry); | 
|  |  | 
|  | if (inode == ERR_PTR(-ENOENT)) | 
|  | inode = NULL; | 
|  | return d_splice_alias(inode, dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the highest existing sequence number in a directory and then set the | 
|  | * in-memory index_cnt variable to the first free sequence number. | 
|  | */ | 
|  | static int btrfs_set_inode_index_count(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_key key, found_key; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* FIXME: we should be able to handle this */ | 
|  | if (ret == 0) | 
|  | goto out; | 
|  | ret = 0; | 
|  |  | 
|  | if (path->slots[0] == 0) { | 
|  | inode->index_cnt = BTRFS_DIR_START_INDEX; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | path->slots[0]--; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | if (found_key.objectid != btrfs_ino(inode) || | 
|  | found_key.type != BTRFS_DIR_INDEX_KEY) { | 
|  | inode->index_cnt = BTRFS_DIR_START_INDEX; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode->index_cnt = found_key.offset + 1; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | btrfs_inode_lock(&dir->vfs_inode, 0); | 
|  | if (dir->index_cnt == (u64)-1) { | 
|  | ret = btrfs_inode_delayed_dir_index_count(dir); | 
|  | if (ret) { | 
|  | ret = btrfs_set_inode_index_count(dir); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* index_cnt is the index number of next new entry, so decrement it. */ | 
|  | *index = dir->index_cnt - 1; | 
|  | out: | 
|  | btrfs_inode_unlock(&dir->vfs_inode, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All this infrastructure exists because dir_emit can fault, and we are holding | 
|  | * the tree lock when doing readdir.  For now just allocate a buffer and copy | 
|  | * our information into that, and then dir_emit from the buffer.  This is | 
|  | * similar to what NFS does, only we don't keep the buffer around in pagecache | 
|  | * because I'm afraid I'll mess that up.  Long term we need to make filldir do | 
|  | * copy_to_user_inatomic so we don't have to worry about page faulting under the | 
|  | * tree lock. | 
|  | */ | 
|  | static int btrfs_opendir(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct btrfs_file_private *private; | 
|  | u64 last_index; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); | 
|  | if (!private) | 
|  | return -ENOMEM; | 
|  | private->last_index = last_index; | 
|  | private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!private->filldir_buf) { | 
|  | kfree(private); | 
|  | return -ENOMEM; | 
|  | } | 
|  | file->private_data = private; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct btrfs_file_private *private = file->private_data; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), | 
|  | &private->last_index); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return generic_file_llseek(file, offset, whence); | 
|  | } | 
|  |  | 
|  | struct dir_entry { | 
|  | u64 ino; | 
|  | u64 offset; | 
|  | unsigned type; | 
|  | int name_len; | 
|  | }; | 
|  |  | 
|  | static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) | 
|  | { | 
|  | while (entries--) { | 
|  | struct dir_entry *entry = addr; | 
|  | char *name = (char *)(entry + 1); | 
|  |  | 
|  | ctx->pos = get_unaligned(&entry->offset); | 
|  | if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), | 
|  | get_unaligned(&entry->ino), | 
|  | get_unaligned(&entry->type))) | 
|  | return 1; | 
|  | addr += sizeof(struct dir_entry) + | 
|  | get_unaligned(&entry->name_len); | 
|  | ctx->pos++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_file_private *private = file->private_data; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *path; | 
|  | void *addr; | 
|  | struct list_head ins_list; | 
|  | struct list_head del_list; | 
|  | int ret; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  | char *name_ptr; | 
|  | int name_len; | 
|  | int entries = 0; | 
|  | int total_len = 0; | 
|  | bool put = false; | 
|  | struct btrfs_key location; | 
|  |  | 
|  | if (!dir_emit_dots(file, ctx)) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | addr = private->filldir_buf; | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | INIT_LIST_HEAD(&ins_list); | 
|  | INIT_LIST_HEAD(&del_list); | 
|  | put = btrfs_readdir_get_delayed_items(inode, private->last_index, | 
|  | &ins_list, &del_list); | 
|  |  | 
|  | again: | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = ctx->pos; | 
|  | key.objectid = btrfs_ino(BTRFS_I(inode)); | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | while (1) { | 
|  | struct dir_entry *entry; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid != key.objectid) | 
|  | break; | 
|  | if (found_key.type != BTRFS_DIR_INDEX_KEY) | 
|  | break; | 
|  | if (found_key.offset < ctx->pos) | 
|  | goto next; | 
|  | if (found_key.offset > private->last_index) | 
|  | break; | 
|  | if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) | 
|  | goto next; | 
|  | di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); | 
|  | name_len = btrfs_dir_name_len(leaf, di); | 
|  | if ((total_len + sizeof(struct dir_entry) + name_len) >= | 
|  | PAGE_SIZE) { | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_filldir(private->filldir_buf, entries, ctx); | 
|  | if (ret) | 
|  | goto nopos; | 
|  | addr = private->filldir_buf; | 
|  | entries = 0; | 
|  | total_len = 0; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | entry = addr; | 
|  | put_unaligned(name_len, &entry->name_len); | 
|  | name_ptr = (char *)(entry + 1); | 
|  | read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), | 
|  | name_len); | 
|  | put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), | 
|  | &entry->type); | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
|  | put_unaligned(location.objectid, &entry->ino); | 
|  | put_unaligned(found_key.offset, &entry->offset); | 
|  | entries++; | 
|  | addr += sizeof(struct dir_entry) + name_len; | 
|  | total_len += sizeof(struct dir_entry) + name_len; | 
|  | next: | 
|  | path->slots[0]++; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_filldir(private->filldir_buf, entries, ctx); | 
|  | if (ret) | 
|  | goto nopos; | 
|  |  | 
|  | ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); | 
|  | if (ret) | 
|  | goto nopos; | 
|  |  | 
|  | /* | 
|  | * Stop new entries from being returned after we return the last | 
|  | * entry. | 
|  | * | 
|  | * New directory entries are assigned a strictly increasing | 
|  | * offset.  This means that new entries created during readdir | 
|  | * are *guaranteed* to be seen in the future by that readdir. | 
|  | * This has broken buggy programs which operate on names as | 
|  | * they're returned by readdir.  Until we re-use freed offsets | 
|  | * we have this hack to stop new entries from being returned | 
|  | * under the assumption that they'll never reach this huge | 
|  | * offset. | 
|  | * | 
|  | * This is being careful not to overflow 32bit loff_t unless the | 
|  | * last entry requires it because doing so has broken 32bit apps | 
|  | * in the past. | 
|  | */ | 
|  | if (ctx->pos >= INT_MAX) | 
|  | ctx->pos = LLONG_MAX; | 
|  | else | 
|  | ctx->pos = INT_MAX; | 
|  | nopos: | 
|  | ret = 0; | 
|  | err: | 
|  | if (put) | 
|  | btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is somewhat expensive, updating the tree every time the | 
|  | * inode changes.  But, it is most likely to find the inode in cache. | 
|  | * FIXME, needs more benchmarking...there are no reasons other than performance | 
|  | * to keep or drop this code. | 
|  | */ | 
|  | static int btrfs_dirty_inode(struct inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret; | 
|  |  | 
|  | if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) | 
|  | return 0; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { | 
|  | /* whoops, lets try again with the full transaction */ | 
|  | btrfs_end_transaction(trans); | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | } | 
|  | btrfs_end_transaction(trans); | 
|  | if (BTRFS_I(inode)->delayed_node) | 
|  | btrfs_balance_delayed_items(fs_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a copy of file_update_time.  We need this so we can return error on | 
|  | * ENOSPC for updating the inode in the case of file write and mmap writes. | 
|  | */ | 
|  | static int btrfs_update_time(struct inode *inode, struct timespec64 *now, | 
|  | int flags) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | bool dirty = flags & ~S_VERSION; | 
|  |  | 
|  | if (btrfs_root_readonly(root)) | 
|  | return -EROFS; | 
|  |  | 
|  | if (flags & S_VERSION) | 
|  | dirty |= inode_maybe_inc_iversion(inode, dirty); | 
|  | if (flags & S_CTIME) | 
|  | inode->i_ctime = *now; | 
|  | if (flags & S_MTIME) | 
|  | inode->i_mtime = *now; | 
|  | if (flags & S_ATIME) | 
|  | inode->i_atime = *now; | 
|  | return dirty ? btrfs_dirty_inode(inode) : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find a free sequence number in a given directory.  This current | 
|  | * code is very simple, later versions will do smarter things in the btree | 
|  | */ | 
|  | int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (dir->index_cnt == (u64)-1) { | 
|  | ret = btrfs_inode_delayed_dir_index_count(dir); | 
|  | if (ret) { | 
|  | ret = btrfs_set_inode_index_count(dir); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | *index = dir->index_cnt; | 
|  | dir->index_cnt++; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_insert_inode_locked(struct inode *inode) | 
|  | { | 
|  | struct btrfs_iget_args args; | 
|  |  | 
|  | args.ino = BTRFS_I(inode)->location.objectid; | 
|  | args.root = BTRFS_I(inode)->root; | 
|  |  | 
|  | return insert_inode_locked4(inode, | 
|  | btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), | 
|  | btrfs_find_actor, &args); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inherit flags from the parent inode. | 
|  | * | 
|  | * Currently only the compression flags and the cow flags are inherited. | 
|  | */ | 
|  | static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) | 
|  | { | 
|  | unsigned int flags; | 
|  |  | 
|  | if (!dir) | 
|  | return; | 
|  |  | 
|  | flags = BTRFS_I(dir)->flags; | 
|  |  | 
|  | if (flags & BTRFS_INODE_NOCOMPRESS) { | 
|  | BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; | 
|  | } else if (flags & BTRFS_INODE_COMPRESS) { | 
|  | BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; | 
|  | } | 
|  |  | 
|  | if (flags & BTRFS_INODE_NODATACOW) { | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; | 
|  | } | 
|  |  | 
|  | btrfs_sync_inode_flags_to_i_flags(inode); | 
|  | } | 
|  |  | 
|  | static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct user_namespace *mnt_userns, | 
|  | struct inode *dir, | 
|  | const char *name, int name_len, | 
|  | u64 ref_objectid, u64 objectid, | 
|  | umode_t mode, u64 *index) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct inode *inode; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct btrfs_key *location; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_inode_ref *ref; | 
|  | struct btrfs_key key[2]; | 
|  | u32 sizes[2]; | 
|  | int nitems = name ? 2 : 1; | 
|  | unsigned long ptr; | 
|  | unsigned int nofs_flag; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | inode = new_inode(fs_info->sb); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (!inode) { | 
|  | btrfs_free_path(path); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * O_TMPFILE, set link count to 0, so that after this point, | 
|  | * we fill in an inode item with the correct link count. | 
|  | */ | 
|  | if (!name) | 
|  | set_nlink(inode, 0); | 
|  |  | 
|  | /* | 
|  | * we have to initialize this early, so we can reclaim the inode | 
|  | * number if we fail afterwards in this function. | 
|  | */ | 
|  | inode->i_ino = objectid; | 
|  |  | 
|  | if (dir && name) { | 
|  | trace_btrfs_inode_request(dir); | 
|  |  | 
|  | ret = btrfs_set_inode_index(BTRFS_I(dir), index); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | iput(inode); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } else if (dir) { | 
|  | *index = 0; | 
|  | } | 
|  | /* | 
|  | * index_cnt is ignored for everything but a dir, | 
|  | * btrfs_set_inode_index_count has an explanation for the magic | 
|  | * number | 
|  | */ | 
|  | BTRFS_I(inode)->index_cnt = 2; | 
|  | BTRFS_I(inode)->dir_index = *index; | 
|  | BTRFS_I(inode)->root = btrfs_grab_root(root); | 
|  | BTRFS_I(inode)->generation = trans->transid; | 
|  | inode->i_generation = BTRFS_I(inode)->generation; | 
|  |  | 
|  | /* | 
|  | * We could have gotten an inode number from somebody who was fsynced | 
|  | * and then removed in this same transaction, so let's just set full | 
|  | * sync since it will be a full sync anyway and this will blow away the | 
|  | * old info in the log. | 
|  | */ | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | key[0].objectid = objectid; | 
|  | key[0].type = BTRFS_INODE_ITEM_KEY; | 
|  | key[0].offset = 0; | 
|  |  | 
|  | sizes[0] = sizeof(struct btrfs_inode_item); | 
|  |  | 
|  | if (name) { | 
|  | /* | 
|  | * Start new inodes with an inode_ref. This is slightly more | 
|  | * efficient for small numbers of hard links since they will | 
|  | * be packed into one item. Extended refs will kick in if we | 
|  | * add more hard links than can fit in the ref item. | 
|  | */ | 
|  | key[1].objectid = objectid; | 
|  | key[1].type = BTRFS_INODE_REF_KEY; | 
|  | key[1].offset = ref_objectid; | 
|  |  | 
|  | sizes[1] = name_len + sizeof(*ref); | 
|  | } | 
|  |  | 
|  | location = &BTRFS_I(inode)->location; | 
|  | location->objectid = objectid; | 
|  | location->offset = 0; | 
|  | location->type = BTRFS_INODE_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_insert_inode_locked(inode); | 
|  | if (ret < 0) { | 
|  | iput(inode); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); | 
|  | if (ret != 0) | 
|  | goto fail_unlock; | 
|  |  | 
|  | inode_init_owner(mnt_userns, inode, dir, mode); | 
|  | inode_set_bytes(inode, 0); | 
|  |  | 
|  | inode->i_mtime = current_time(inode); | 
|  | inode->i_atime = inode->i_mtime; | 
|  | inode->i_ctime = inode->i_mtime; | 
|  | BTRFS_I(inode)->i_otime = inode->i_mtime; | 
|  |  | 
|  | inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, | 
|  | sizeof(*inode_item)); | 
|  | fill_inode_item(trans, path->nodes[0], inode_item, inode); | 
|  |  | 
|  | if (name) { | 
|  | ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, | 
|  | struct btrfs_inode_ref); | 
|  | btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); | 
|  | btrfs_set_inode_ref_index(path->nodes[0], ref, *index); | 
|  | ptr = (unsigned long)(ref + 1); | 
|  | write_extent_buffer(path->nodes[0], name, ptr, name_len); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | btrfs_inherit_iflags(inode, dir); | 
|  |  | 
|  | if (S_ISREG(mode)) { | 
|  | if (btrfs_test_opt(fs_info, NODATASUM)) | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; | 
|  | if (btrfs_test_opt(fs_info, NODATACOW)) | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | | 
|  | BTRFS_INODE_NODATASUM; | 
|  | } | 
|  |  | 
|  | inode_tree_add(inode); | 
|  |  | 
|  | trace_btrfs_inode_new(inode); | 
|  | btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); | 
|  |  | 
|  | btrfs_update_root_times(trans, root); | 
|  |  | 
|  | ret = btrfs_inode_inherit_props(trans, inode, dir); | 
|  | if (ret) | 
|  | btrfs_err(fs_info, | 
|  | "error inheriting props for ino %llu (root %llu): %d", | 
|  | btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); | 
|  |  | 
|  | return inode; | 
|  |  | 
|  | fail_unlock: | 
|  | discard_new_inode(inode); | 
|  | fail: | 
|  | if (dir && name) | 
|  | BTRFS_I(dir)->index_cnt--; | 
|  | btrfs_free_path(path); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * utility function to add 'inode' into 'parent_inode' with | 
|  | * a give name and a given sequence number. | 
|  | * if 'add_backref' is true, also insert a backref from the | 
|  | * inode to the parent directory. | 
|  | */ | 
|  | int btrfs_add_link(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *parent_inode, struct btrfs_inode *inode, | 
|  | const char *name, int name_len, int add_backref, u64 index) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *root = parent_inode->root; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | u64 parent_ino = btrfs_ino(parent_inode); | 
|  |  | 
|  | if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
|  | memcpy(&key, &inode->root->root_key, sizeof(key)); | 
|  | } else { | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
|  | ret = btrfs_add_root_ref(trans, key.objectid, | 
|  | root->root_key.objectid, parent_ino, | 
|  | index, name, name_len); | 
|  | } else if (add_backref) { | 
|  | ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, | 
|  | parent_ino, index); | 
|  | } | 
|  |  | 
|  | /* Nothing to clean up yet */ | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, | 
|  | btrfs_inode_type(&inode->vfs_inode), index); | 
|  | if (ret == -EEXIST || ret == -EOVERFLOW) | 
|  | goto fail_dir_item; | 
|  | else if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + | 
|  | name_len * 2); | 
|  | inode_inc_iversion(&parent_inode->vfs_inode); | 
|  | /* | 
|  | * If we are replaying a log tree, we do not want to update the mtime | 
|  | * and ctime of the parent directory with the current time, since the | 
|  | * log replay procedure is responsible for setting them to their correct | 
|  | * values (the ones it had when the fsync was done). | 
|  | */ | 
|  | if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { | 
|  | struct timespec64 now = current_time(&parent_inode->vfs_inode); | 
|  |  | 
|  | parent_inode->vfs_inode.i_mtime = now; | 
|  | parent_inode->vfs_inode.i_ctime = now; | 
|  | } | 
|  | ret = btrfs_update_inode(trans, root, parent_inode); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  |  | 
|  | fail_dir_item: | 
|  | if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
|  | u64 local_index; | 
|  | int err; | 
|  | err = btrfs_del_root_ref(trans, key.objectid, | 
|  | root->root_key.objectid, parent_ino, | 
|  | &local_index, name, name_len); | 
|  | if (err) | 
|  | btrfs_abort_transaction(trans, err); | 
|  | } else if (add_backref) { | 
|  | u64 local_index; | 
|  | int err; | 
|  |  | 
|  | err = btrfs_del_inode_ref(trans, root, name, name_len, | 
|  | ino, parent_ino, &local_index); | 
|  | if (err) | 
|  | btrfs_abort_transaction(trans, err); | 
|  | } | 
|  |  | 
|  | /* Return the original error code */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_add_nondir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, struct dentry *dentry, | 
|  | struct btrfs_inode *inode, int backref, u64 index) | 
|  | { | 
|  | int err = btrfs_add_link(trans, dir, inode, | 
|  | dentry->d_name.name, dentry->d_name.len, | 
|  | backref, index); | 
|  | if (err > 0) | 
|  | err = -EEXIST; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode, dev_t rdev) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct inode *inode = NULL; | 
|  | int err; | 
|  | u64 objectid; | 
|  | u64 index = 0; | 
|  |  | 
|  | /* | 
|  | * 2 for inode item and ref | 
|  | * 2 for dir items | 
|  | * 1 for xattr if selinux is on | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 5); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | err = btrfs_get_free_objectid(root, &objectid); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, root, mnt_userns, dir, | 
|  | dentry->d_name.name, dentry->d_name.len, | 
|  | btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); | 
|  | if (IS_ERR(inode)) { | 
|  | err = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the active LSM wants to access the inode during | 
|  | * d_instantiate it needs these. Smack checks to see | 
|  | * if the filesystem supports xattrs by looking at the | 
|  | * ops vector. | 
|  | */ | 
|  | inode->i_op = &btrfs_special_inode_operations; | 
|  | init_special_inode(inode, inode->i_mode, rdev); | 
|  |  | 
|  | err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), | 
|  | 0, index); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | d_instantiate_new(dentry, inode); | 
|  |  | 
|  | out_unlock: | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | if (err && inode) { | 
|  | inode_dec_link_count(inode); | 
|  | discard_new_inode(inode); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode, bool excl) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct inode *inode = NULL; | 
|  | int err; | 
|  | u64 objectid; | 
|  | u64 index = 0; | 
|  |  | 
|  | /* | 
|  | * 2 for inode item and ref | 
|  | * 2 for dir items | 
|  | * 1 for xattr if selinux is on | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 5); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | err = btrfs_get_free_objectid(root, &objectid); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, root, mnt_userns, dir, | 
|  | dentry->d_name.name, dentry->d_name.len, | 
|  | btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); | 
|  | if (IS_ERR(inode)) { | 
|  | err = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* | 
|  | * If the active LSM wants to access the inode during | 
|  | * d_instantiate it needs these. Smack checks to see | 
|  | * if the filesystem supports xattrs by looking at the | 
|  | * ops vector. | 
|  | */ | 
|  | inode->i_fop = &btrfs_file_operations; | 
|  | inode->i_op = &btrfs_file_inode_operations; | 
|  | inode->i_mapping->a_ops = &btrfs_aops; | 
|  |  | 
|  | err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), | 
|  | 0, index); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | d_instantiate_new(dentry, inode); | 
|  |  | 
|  | out_unlock: | 
|  | btrfs_end_transaction(trans); | 
|  | if (err && inode) { | 
|  | inode_dec_link_count(inode); | 
|  | discard_new_inode(inode); | 
|  | } | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btrfs_link(struct dentry *old_dentry, struct inode *dir, | 
|  | struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct inode *inode = d_inode(old_dentry); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 index; | 
|  | int err; | 
|  | int drop_inode = 0; | 
|  |  | 
|  | /* do not allow sys_link's with other subvols of the same device */ | 
|  | if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) | 
|  | return -EXDEV; | 
|  |  | 
|  | if (inode->i_nlink >= BTRFS_LINK_MAX) | 
|  | return -EMLINK; | 
|  |  | 
|  | err = btrfs_set_inode_index(BTRFS_I(dir), &index); | 
|  | if (err) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * 2 items for inode and inode ref | 
|  | * 2 items for dir items | 
|  | * 1 item for parent inode | 
|  | * 1 item for orphan item deletion if O_TMPFILE | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* There are several dir indexes for this inode, clear the cache. */ | 
|  | BTRFS_I(inode)->dir_index = 0ULL; | 
|  | inc_nlink(inode); | 
|  | inode_inc_iversion(inode); | 
|  | inode->i_ctime = current_time(inode); | 
|  | ihold(inode); | 
|  | set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), | 
|  | 1, index); | 
|  |  | 
|  | if (err) { | 
|  | drop_inode = 1; | 
|  | } else { | 
|  | struct dentry *parent = dentry->d_parent; | 
|  |  | 
|  | err = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (err) | 
|  | goto fail; | 
|  | if (inode->i_nlink == 1) { | 
|  | /* | 
|  | * If new hard link count is 1, it's a file created | 
|  | * with open(2) O_TMPFILE flag. | 
|  | */ | 
|  | err = btrfs_orphan_del(trans, BTRFS_I(inode)); | 
|  | if (err) | 
|  | goto fail; | 
|  | } | 
|  | d_instantiate(dentry, inode); | 
|  | btrfs_log_new_name(trans, old_dentry, NULL, parent); | 
|  | } | 
|  |  | 
|  | fail: | 
|  | if (trans) | 
|  | btrfs_end_transaction(trans); | 
|  | if (drop_inode) { | 
|  | inode_dec_link_count(inode); | 
|  | iput(inode); | 
|  | } | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
|  | struct inode *inode = NULL; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | int err = 0; | 
|  | u64 objectid = 0; | 
|  | u64 index = 0; | 
|  |  | 
|  | /* | 
|  | * 2 items for inode and ref | 
|  | * 2 items for dir items | 
|  | * 1 for xattr if selinux is on | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 5); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | err = btrfs_get_free_objectid(root, &objectid); | 
|  | if (err) | 
|  | goto out_fail; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, root, mnt_userns, dir, | 
|  | dentry->d_name.name, dentry->d_name.len, | 
|  | btrfs_ino(BTRFS_I(dir)), objectid, | 
|  | S_IFDIR | mode, &index); | 
|  | if (IS_ERR(inode)) { | 
|  | err = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | /* these must be set before we unlock the inode */ | 
|  | inode->i_op = &btrfs_dir_inode_operations; | 
|  | inode->i_fop = &btrfs_dir_file_operations; | 
|  |  | 
|  | err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
|  | if (err) | 
|  | goto out_fail; | 
|  |  | 
|  | btrfs_i_size_write(BTRFS_I(inode), 0); | 
|  | err = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (err) | 
|  | goto out_fail; | 
|  |  | 
|  | err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), | 
|  | dentry->d_name.name, | 
|  | dentry->d_name.len, 0, index); | 
|  | if (err) | 
|  | goto out_fail; | 
|  |  | 
|  | d_instantiate_new(dentry, inode); | 
|  |  | 
|  | out_fail: | 
|  | btrfs_end_transaction(trans); | 
|  | if (err && inode) { | 
|  | inode_dec_link_count(inode); | 
|  | discard_new_inode(inode); | 
|  | } | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline int uncompress_inline(struct btrfs_path *path, | 
|  | struct page *page, | 
|  | size_t pg_offset, u64 extent_offset, | 
|  | struct btrfs_file_extent_item *item) | 
|  | { | 
|  | int ret; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | char *tmp; | 
|  | size_t max_size; | 
|  | unsigned long inline_size; | 
|  | unsigned long ptr; | 
|  | int compress_type; | 
|  |  | 
|  | WARN_ON(pg_offset != 0); | 
|  | compress_type = btrfs_file_extent_compression(leaf, item); | 
|  | max_size = btrfs_file_extent_ram_bytes(leaf, item); | 
|  | inline_size = btrfs_file_extent_inline_item_len(leaf, | 
|  | btrfs_item_nr(path->slots[0])); | 
|  | tmp = kmalloc(inline_size, GFP_NOFS); | 
|  | if (!tmp) | 
|  | return -ENOMEM; | 
|  | ptr = btrfs_file_extent_inline_start(item); | 
|  |  | 
|  | read_extent_buffer(leaf, tmp, ptr, inline_size); | 
|  |  | 
|  | max_size = min_t(unsigned long, PAGE_SIZE, max_size); | 
|  | ret = btrfs_decompress(compress_type, tmp, page, | 
|  | extent_offset, inline_size, max_size); | 
|  |  | 
|  | /* | 
|  | * decompression code contains a memset to fill in any space between the end | 
|  | * of the uncompressed data and the end of max_size in case the decompressed | 
|  | * data ends up shorter than ram_bytes.  That doesn't cover the hole between | 
|  | * the end of an inline extent and the beginning of the next block, so we | 
|  | * cover that region here. | 
|  | */ | 
|  |  | 
|  | if (max_size + pg_offset < PAGE_SIZE) | 
|  | memzero_page(page,  pg_offset + max_size, | 
|  | PAGE_SIZE - max_size - pg_offset); | 
|  | kfree(tmp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_get_extent - Lookup the first extent overlapping a range in a file. | 
|  | * @inode:	file to search in | 
|  | * @page:	page to read extent data into if the extent is inline | 
|  | * @pg_offset:	offset into @page to copy to | 
|  | * @start:	file offset | 
|  | * @len:	length of range starting at @start | 
|  | * | 
|  | * This returns the first &struct extent_map which overlaps with the given | 
|  | * range, reading it from the B-tree and caching it if necessary. Note that | 
|  | * there may be more extents which overlap the given range after the returned | 
|  | * extent_map. | 
|  | * | 
|  | * If @page is not NULL and the extent is inline, this also reads the extent | 
|  | * data directly into the page and marks the extent up to date in the io_tree. | 
|  | * | 
|  | * Return: ERR_PTR on error, non-NULL extent_map on success. | 
|  | */ | 
|  | struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, | 
|  | struct page *page, size_t pg_offset, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | int ret = 0; | 
|  | u64 extent_start = 0; | 
|  | u64 extent_end = 0; | 
|  | u64 objectid = btrfs_ino(inode); | 
|  | int extent_type = -1; | 
|  | struct btrfs_path *path = NULL; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_map *em = NULL; | 
|  | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, start, len); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | if (em) { | 
|  | if (em->start > start || em->start + em->len <= start) | 
|  | free_extent_map(em); | 
|  | else if (em->block_start == EXTENT_MAP_INLINE && page) | 
|  | free_extent_map(em); | 
|  | else | 
|  | goto out; | 
|  | } | 
|  | em = alloc_extent_map(); | 
|  | if (!em) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | em->start = EXTENT_MAP_HOLE; | 
|  | em->orig_start = EXTENT_MAP_HOLE; | 
|  | em->len = (u64)-1; | 
|  | em->block_len = (u64)-1; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Chances are we'll be called again, so go ahead and do readahead */ | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | /* | 
|  | * The same explanation in load_free_space_cache applies here as well, | 
|  | * we only read when we're loading the free space cache, and at that | 
|  | * point the commit_root has everything we need. | 
|  | */ | 
|  | if (btrfs_is_free_space_inode(inode)) { | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | goto not_found; | 
|  | path->slots[0]--; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid != objectid || | 
|  | found_key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | /* | 
|  | * If we backup past the first extent we want to move forward | 
|  | * and see if there is an extent in front of us, otherwise we'll | 
|  | * say there is a hole for our whole search range which can | 
|  | * cause problems. | 
|  | */ | 
|  | extent_end = start; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | extent_type = btrfs_file_extent_type(leaf, item); | 
|  | extent_start = found_key.offset; | 
|  | extent_end = btrfs_file_extent_end(path); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_REG || | 
|  | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | /* Only regular file could have regular/prealloc extent */ | 
|  | if (!S_ISREG(inode->vfs_inode.i_mode)) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_crit(fs_info, | 
|  | "regular/prealloc extent found for non-regular inode %llu", | 
|  | btrfs_ino(inode)); | 
|  | goto out; | 
|  | } | 
|  | trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, | 
|  | extent_start); | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, | 
|  | path->slots[0], | 
|  | extent_start); | 
|  | } | 
|  | next: | 
|  | if (start >= extent_end) { | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) | 
|  | goto not_found; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid != objectid || | 
|  | found_key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | goto not_found; | 
|  | if (start + len <= found_key.offset) | 
|  | goto not_found; | 
|  | if (start > found_key.offset) | 
|  | goto next; | 
|  |  | 
|  | /* New extent overlaps with existing one */ | 
|  | em->start = start; | 
|  | em->orig_start = start; | 
|  | em->len = found_key.offset - start; | 
|  | em->block_start = EXTENT_MAP_HOLE; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | btrfs_extent_item_to_extent_map(inode, path, item, !page, em); | 
|  |  | 
|  | if (extent_type == BTRFS_FILE_EXTENT_REG || | 
|  | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | goto insert; | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | unsigned long ptr; | 
|  | char *map; | 
|  | size_t size; | 
|  | size_t extent_offset; | 
|  | size_t copy_size; | 
|  |  | 
|  | if (!page) | 
|  | goto out; | 
|  |  | 
|  | size = btrfs_file_extent_ram_bytes(leaf, item); | 
|  | extent_offset = page_offset(page) + pg_offset - extent_start; | 
|  | copy_size = min_t(u64, PAGE_SIZE - pg_offset, | 
|  | size - extent_offset); | 
|  | em->start = extent_start + extent_offset; | 
|  | em->len = ALIGN(copy_size, fs_info->sectorsize); | 
|  | em->orig_block_len = em->len; | 
|  | em->orig_start = em->start; | 
|  | ptr = btrfs_file_extent_inline_start(item) + extent_offset; | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | if (btrfs_file_extent_compression(leaf, item) != | 
|  | BTRFS_COMPRESS_NONE) { | 
|  | ret = uncompress_inline(path, page, pg_offset, | 
|  | extent_offset, item); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | map = kmap_local_page(page); | 
|  | read_extent_buffer(leaf, map + pg_offset, ptr, | 
|  | copy_size); | 
|  | if (pg_offset + copy_size < PAGE_SIZE) { | 
|  | memset(map + pg_offset + copy_size, 0, | 
|  | PAGE_SIZE - pg_offset - | 
|  | copy_size); | 
|  | } | 
|  | kunmap_local(map); | 
|  | } | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | set_extent_uptodate(io_tree, em->start, | 
|  | extent_map_end(em) - 1, NULL, GFP_NOFS); | 
|  | goto insert; | 
|  | } | 
|  | not_found: | 
|  | em->start = start; | 
|  | em->orig_start = start; | 
|  | em->len = len; | 
|  | em->block_start = EXTENT_MAP_HOLE; | 
|  | insert: | 
|  | ret = 0; | 
|  | btrfs_release_path(path); | 
|  | if (em->start > start || extent_map_end(em) <= start) { | 
|  | btrfs_err(fs_info, | 
|  | "bad extent! em: [%llu %llu] passed [%llu %llu]", | 
|  | em->start, em->len, start, len); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); | 
|  | write_unlock(&em_tree->lock); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | trace_btrfs_get_extent(root, inode, em); | 
|  |  | 
|  | if (ret) { | 
|  | free_extent_map(em); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return em; | 
|  | } | 
|  |  | 
|  | struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct extent_map *hole_em = NULL; | 
|  | u64 delalloc_start = start; | 
|  | u64 end; | 
|  | u64 delalloc_len; | 
|  | u64 delalloc_end; | 
|  | int err = 0; | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, 0, start, len); | 
|  | if (IS_ERR(em)) | 
|  | return em; | 
|  | /* | 
|  | * If our em maps to: | 
|  | * - a hole or | 
|  | * - a pre-alloc extent, | 
|  | * there might actually be delalloc bytes behind it. | 
|  | */ | 
|  | if (em->block_start != EXTENT_MAP_HOLE && | 
|  | !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | return em; | 
|  | else | 
|  | hole_em = em; | 
|  |  | 
|  | /* check to see if we've wrapped (len == -1 or similar) */ | 
|  | end = start + len; | 
|  | if (end < start) | 
|  | end = (u64)-1; | 
|  | else | 
|  | end -= 1; | 
|  |  | 
|  | em = NULL; | 
|  |  | 
|  | /* ok, we didn't find anything, lets look for delalloc */ | 
|  | delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, | 
|  | end, len, EXTENT_DELALLOC, 1); | 
|  | delalloc_end = delalloc_start + delalloc_len; | 
|  | if (delalloc_end < delalloc_start) | 
|  | delalloc_end = (u64)-1; | 
|  |  | 
|  | /* | 
|  | * We didn't find anything useful, return the original results from | 
|  | * get_extent() | 
|  | */ | 
|  | if (delalloc_start > end || delalloc_end <= start) { | 
|  | em = hole_em; | 
|  | hole_em = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the delalloc_start to make sure it doesn't go backwards from | 
|  | * the start they passed in | 
|  | */ | 
|  | delalloc_start = max(start, delalloc_start); | 
|  | delalloc_len = delalloc_end - delalloc_start; | 
|  |  | 
|  | if (delalloc_len > 0) { | 
|  | u64 hole_start; | 
|  | u64 hole_len; | 
|  | const u64 hole_end = extent_map_end(hole_em); | 
|  |  | 
|  | em = alloc_extent_map(); | 
|  | if (!em) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(hole_em); | 
|  | /* | 
|  | * When btrfs_get_extent can't find anything it returns one | 
|  | * huge hole | 
|  | * | 
|  | * Make sure what it found really fits our range, and adjust to | 
|  | * make sure it is based on the start from the caller | 
|  | */ | 
|  | if (hole_end <= start || hole_em->start > end) { | 
|  | free_extent_map(hole_em); | 
|  | hole_em = NULL; | 
|  | } else { | 
|  | hole_start = max(hole_em->start, start); | 
|  | hole_len = hole_end - hole_start; | 
|  | } | 
|  |  | 
|  | if (hole_em && delalloc_start > hole_start) { | 
|  | /* | 
|  | * Our hole starts before our delalloc, so we have to | 
|  | * return just the parts of the hole that go until the | 
|  | * delalloc starts | 
|  | */ | 
|  | em->len = min(hole_len, delalloc_start - hole_start); | 
|  | em->start = hole_start; | 
|  | em->orig_start = hole_start; | 
|  | /* | 
|  | * Don't adjust block start at all, it is fixed at | 
|  | * EXTENT_MAP_HOLE | 
|  | */ | 
|  | em->block_start = hole_em->block_start; | 
|  | em->block_len = hole_len; | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) | 
|  | set_bit(EXTENT_FLAG_PREALLOC, &em->flags); | 
|  | } else { | 
|  | /* | 
|  | * Hole is out of passed range or it starts after | 
|  | * delalloc range | 
|  | */ | 
|  | em->start = delalloc_start; | 
|  | em->len = delalloc_len; | 
|  | em->orig_start = delalloc_start; | 
|  | em->block_start = EXTENT_MAP_DELALLOC; | 
|  | em->block_len = delalloc_len; | 
|  | } | 
|  | } else { | 
|  | return hole_em; | 
|  | } | 
|  | out: | 
|  |  | 
|  | free_extent_map(hole_em); | 
|  | if (err) { | 
|  | free_extent_map(em); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | return em; | 
|  | } | 
|  |  | 
|  | static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, | 
|  | const u64 start, | 
|  | const u64 len, | 
|  | const u64 orig_start, | 
|  | const u64 block_start, | 
|  | const u64 block_len, | 
|  | const u64 orig_block_len, | 
|  | const u64 ram_bytes, | 
|  | const int type) | 
|  | { | 
|  | struct extent_map *em = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (type != BTRFS_ORDERED_NOCOW) { | 
|  | em = create_io_em(inode, start, len, orig_start, block_start, | 
|  | block_len, orig_block_len, ram_bytes, | 
|  | BTRFS_COMPRESS_NONE, /* compress_type */ | 
|  | type); | 
|  | if (IS_ERR(em)) | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, | 
|  | block_len, type); | 
|  | if (ret) { | 
|  | if (em) { | 
|  | free_extent_map(em); | 
|  | btrfs_drop_extent_cache(inode, start, start + len - 1, 0); | 
|  | } | 
|  | em = ERR_PTR(ret); | 
|  | } | 
|  | out: | 
|  |  | 
|  | return em; | 
|  | } | 
|  |  | 
|  | static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_map *em; | 
|  | struct btrfs_key ins; | 
|  | u64 alloc_hint; | 
|  | int ret; | 
|  |  | 
|  | alloc_hint = get_extent_allocation_hint(inode, start, len); | 
|  | ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, | 
|  | 0, alloc_hint, &ins, 1, 1); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | em = btrfs_create_dio_extent(inode, start, ins.offset, start, | 
|  | ins.objectid, ins.offset, ins.offset, | 
|  | ins.offset, BTRFS_ORDERED_REGULAR); | 
|  | btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
|  | if (IS_ERR(em)) | 
|  | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, | 
|  | 1); | 
|  |  | 
|  | return em; | 
|  | } | 
|  |  | 
|  | static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group *block_group; | 
|  | bool readonly = false; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | if (!block_group || block_group->ro) | 
|  | readonly = true; | 
|  | if (block_group) | 
|  | btrfs_put_block_group(block_group); | 
|  | return readonly; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we can do nocow write into the range [@offset, @offset + @len) | 
|  | * | 
|  | * @offset:	File offset | 
|  | * @len:	The length to write, will be updated to the nocow writeable | 
|  | *		range | 
|  | * @orig_start:	(optional) Return the original file offset of the file extent | 
|  | * @orig_len:	(optional) Return the original on-disk length of the file extent | 
|  | * @ram_bytes:	(optional) Return the ram_bytes of the file extent | 
|  | * @strict:	if true, omit optimizations that might force us into unnecessary | 
|  | *		cow. e.g., don't trust generation number. | 
|  | * | 
|  | * Return: | 
|  | * >0	and update @len if we can do nocow write | 
|  | *  0	if we can't do nocow write | 
|  | * <0	if error happened | 
|  | * | 
|  | * NOTE: This only checks the file extents, caller is responsible to wait for | 
|  | *	 any ordered extents. | 
|  | */ | 
|  | noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, | 
|  | u64 *orig_start, u64 *orig_block_len, | 
|  | u64 *ram_bytes, bool strict) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | u64 disk_bytenr; | 
|  | u64 backref_offset; | 
|  | u64 extent_end; | 
|  | u64 num_bytes; | 
|  | int slot; | 
|  | int found_type; | 
|  | bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, | 
|  | btrfs_ino(BTRFS_I(inode)), offset, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | if (ret == 1) { | 
|  | if (slot == 0) { | 
|  | /* can't find the item, must cow */ | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | slot--; | 
|  | } | 
|  | ret = 0; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != btrfs_ino(BTRFS_I(inode)) || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | /* not our file or wrong item type, must cow */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (key.offset > offset) { | 
|  | /* Wrong offset, must cow */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  | found_type = btrfs_file_extent_type(leaf, fi); | 
|  | if (found_type != BTRFS_FILE_EXTENT_REG && | 
|  | found_type != BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | /* not a regular extent, must cow */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) | 
|  | goto out; | 
|  |  | 
|  | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
|  | if (extent_end <= offset) | 
|  | goto out; | 
|  |  | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | if (disk_bytenr == 0) | 
|  | goto out; | 
|  |  | 
|  | if (btrfs_file_extent_compression(leaf, fi) || | 
|  | btrfs_file_extent_encryption(leaf, fi) || | 
|  | btrfs_file_extent_other_encoding(leaf, fi)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Do the same check as in btrfs_cross_ref_exist but without the | 
|  | * unnecessary search. | 
|  | */ | 
|  | if (!strict && | 
|  | (btrfs_file_extent_generation(leaf, fi) <= | 
|  | btrfs_root_last_snapshot(&root->root_item))) | 
|  | goto out; | 
|  |  | 
|  | backref_offset = btrfs_file_extent_offset(leaf, fi); | 
|  |  | 
|  | if (orig_start) { | 
|  | *orig_start = key.offset - backref_offset; | 
|  | *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | } | 
|  |  | 
|  | if (btrfs_extent_readonly(fs_info, disk_bytenr)) | 
|  | goto out; | 
|  |  | 
|  | num_bytes = min(offset + *len, extent_end) - offset; | 
|  | if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | u64 range_end; | 
|  |  | 
|  | range_end = round_up(offset + num_bytes, | 
|  | root->fs_info->sectorsize) - 1; | 
|  | ret = test_range_bit(io_tree, offset, range_end, | 
|  | EXTENT_DELALLOC, 0, NULL); | 
|  | if (ret) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * look for other files referencing this extent, if we | 
|  | * find any we must cow | 
|  | */ | 
|  |  | 
|  | ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), | 
|  | key.offset - backref_offset, disk_bytenr, | 
|  | strict); | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * adjust disk_bytenr and num_bytes to cover just the bytes | 
|  | * in this extent we are about to write.  If there | 
|  | * are any csums in that range we have to cow in order | 
|  | * to keep the csums correct | 
|  | */ | 
|  | disk_bytenr += backref_offset; | 
|  | disk_bytenr += offset - key.offset; | 
|  | if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) | 
|  | goto out; | 
|  | /* | 
|  | * all of the above have passed, it is safe to overwrite this extent | 
|  | * without cow | 
|  | */ | 
|  | *len = num_bytes; | 
|  | ret = 1; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, | 
|  | struct extent_state **cached_state, bool writing) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | int ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | cached_state); | 
|  | /* | 
|  | * We're concerned with the entire range that we're going to be | 
|  | * doing DIO to, so we need to make sure there's no ordered | 
|  | * extents in this range. | 
|  | */ | 
|  | ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, | 
|  | lockend - lockstart + 1); | 
|  |  | 
|  | /* | 
|  | * We need to make sure there are no buffered pages in this | 
|  | * range either, we could have raced between the invalidate in | 
|  | * generic_file_direct_write and locking the extent.  The | 
|  | * invalidate needs to happen so that reads after a write do not | 
|  | * get stale data. | 
|  | */ | 
|  | if (!ordered && | 
|  | (!writing || !filemap_range_has_page(inode->i_mapping, | 
|  | lockstart, lockend))) | 
|  | break; | 
|  |  | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | cached_state); | 
|  |  | 
|  | if (ordered) { | 
|  | /* | 
|  | * If we are doing a DIO read and the ordered extent we | 
|  | * found is for a buffered write, we can not wait for it | 
|  | * to complete and retry, because if we do so we can | 
|  | * deadlock with concurrent buffered writes on page | 
|  | * locks. This happens only if our DIO read covers more | 
|  | * than one extent map, if at this point has already | 
|  | * created an ordered extent for a previous extent map | 
|  | * and locked its range in the inode's io tree, and a | 
|  | * concurrent write against that previous extent map's | 
|  | * range and this range started (we unlock the ranges | 
|  | * in the io tree only when the bios complete and | 
|  | * buffered writes always lock pages before attempting | 
|  | * to lock range in the io tree). | 
|  | */ | 
|  | if (writing || | 
|  | test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | else | 
|  | ret = -ENOTBLK; | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } else { | 
|  | /* | 
|  | * We could trigger writeback for this range (and wait | 
|  | * for it to complete) and then invalidate the pages for | 
|  | * this range (through invalidate_inode_pages2_range()), | 
|  | * but that can lead us to a deadlock with a concurrent | 
|  | * call to readahead (a buffered read or a defrag call | 
|  | * triggered a readahead) on a page lock due to an | 
|  | * ordered dio extent we created before but did not have | 
|  | * yet a corresponding bio submitted (whence it can not | 
|  | * complete), which makes readahead wait for that | 
|  | * ordered extent to complete while holding a lock on | 
|  | * that page. | 
|  | */ | 
|  | ret = -ENOTBLK; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* The callers of this must take lock_extent() */ | 
|  | static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, | 
|  | u64 len, u64 orig_start, u64 block_start, | 
|  | u64 block_len, u64 orig_block_len, | 
|  | u64 ram_bytes, int compress_type, | 
|  | int type) | 
|  | { | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(type == BTRFS_ORDERED_PREALLOC || | 
|  | type == BTRFS_ORDERED_COMPRESSED || | 
|  | type == BTRFS_ORDERED_NOCOW || | 
|  | type == BTRFS_ORDERED_REGULAR); | 
|  |  | 
|  | em_tree = &inode->extent_tree; | 
|  | em = alloc_extent_map(); | 
|  | if (!em) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | em->start = start; | 
|  | em->orig_start = orig_start; | 
|  | em->len = len; | 
|  | em->block_len = block_len; | 
|  | em->block_start = block_start; | 
|  | em->orig_block_len = orig_block_len; | 
|  | em->ram_bytes = ram_bytes; | 
|  | em->generation = -1; | 
|  | set_bit(EXTENT_FLAG_PINNED, &em->flags); | 
|  | if (type == BTRFS_ORDERED_PREALLOC) { | 
|  | set_bit(EXTENT_FLAG_FILLING, &em->flags); | 
|  | } else if (type == BTRFS_ORDERED_COMPRESSED) { | 
|  | set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
|  | em->compress_type = compress_type; | 
|  | } | 
|  |  | 
|  | do { | 
|  | btrfs_drop_extent_cache(inode, em->start, | 
|  | em->start + em->len - 1, 0); | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, em, 1); | 
|  | write_unlock(&em_tree->lock); | 
|  | /* | 
|  | * The caller has taken lock_extent(), who could race with us | 
|  | * to add em? | 
|  | */ | 
|  | } while (ret == -EEXIST); | 
|  |  | 
|  | if (ret) { | 
|  | free_extent_map(em); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* em got 2 refs now, callers needs to do free_extent_map once. */ | 
|  | return em; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int btrfs_get_blocks_direct_write(struct extent_map **map, | 
|  | struct inode *inode, | 
|  | struct btrfs_dio_data *dio_data, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct extent_map *em = *map; | 
|  | int type; | 
|  | u64 block_start, orig_start, orig_block_len, ram_bytes; | 
|  | bool can_nocow = false; | 
|  | bool space_reserved = false; | 
|  | u64 prev_len; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We don't allocate a new extent in the following cases | 
|  | * | 
|  | * 1) The inode is marked as NODATACOW. In this case we'll just use the | 
|  | * existing extent. | 
|  | * 2) The extent is marked as PREALLOC. We're good to go here and can | 
|  | * just use the extent. | 
|  | * | 
|  | */ | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || | 
|  | ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && | 
|  | em->block_start != EXTENT_MAP_HOLE)) { | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | type = BTRFS_ORDERED_PREALLOC; | 
|  | else | 
|  | type = BTRFS_ORDERED_NOCOW; | 
|  | len = min(len, em->len - (start - em->start)); | 
|  | block_start = em->block_start + (start - em->start); | 
|  |  | 
|  | if (can_nocow_extent(inode, start, &len, &orig_start, | 
|  | &orig_block_len, &ram_bytes, false) == 1 && | 
|  | btrfs_inc_nocow_writers(fs_info, block_start)) | 
|  | can_nocow = true; | 
|  | } | 
|  |  | 
|  | prev_len = len; | 
|  | if (can_nocow) { | 
|  | struct extent_map *em2; | 
|  |  | 
|  | /* We can NOCOW, so only need to reserve metadata space. */ | 
|  | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); | 
|  | if (ret < 0) { | 
|  | /* Our caller expects us to free the input extent map. */ | 
|  | free_extent_map(em); | 
|  | *map = NULL; | 
|  | btrfs_dec_nocow_writers(fs_info, block_start); | 
|  | goto out; | 
|  | } | 
|  | space_reserved = true; | 
|  |  | 
|  | em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, | 
|  | orig_start, block_start, | 
|  | len, orig_block_len, | 
|  | ram_bytes, type); | 
|  | btrfs_dec_nocow_writers(fs_info, block_start); | 
|  | if (type == BTRFS_ORDERED_PREALLOC) { | 
|  | free_extent_map(em); | 
|  | *map = em = em2; | 
|  | } | 
|  |  | 
|  | if (IS_ERR(em2)) { | 
|  | ret = PTR_ERR(em2); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | /* Our caller expects us to free the input extent map. */ | 
|  | free_extent_map(em); | 
|  | *map = NULL; | 
|  |  | 
|  | /* We have to COW, so need to reserve metadata and data space. */ | 
|  | ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), | 
|  | &dio_data->data_reserved, | 
|  | start, len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | space_reserved = true; | 
|  |  | 
|  | em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  | *map = em; | 
|  | len = min(len, em->len - (start - em->start)); | 
|  | if (len < prev_len) | 
|  | btrfs_delalloc_release_space(BTRFS_I(inode), | 
|  | dio_data->data_reserved, | 
|  | start + len, prev_len - len, | 
|  | true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have created our ordered extent, so we can now release our reservation | 
|  | * for an outstanding extent. | 
|  | */ | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); | 
|  |  | 
|  | /* | 
|  | * Need to update the i_size under the extent lock so buffered | 
|  | * readers will get the updated i_size when we unlock. | 
|  | */ | 
|  | if (start + len > i_size_read(inode)) | 
|  | i_size_write(inode, start + len); | 
|  | out: | 
|  | if (ret && space_reserved) { | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), len); | 
|  | if (can_nocow) { | 
|  | btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); | 
|  | } else { | 
|  | btrfs_delalloc_release_space(BTRFS_I(inode), | 
|  | dio_data->data_reserved, | 
|  | start, len, true); | 
|  | extent_changeset_free(dio_data->data_reserved); | 
|  | dio_data->data_reserved = NULL; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, | 
|  | loff_t length, unsigned int flags, struct iomap *iomap, | 
|  | struct iomap *srcmap) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct extent_map *em; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_dio_data *dio_data = NULL; | 
|  | u64 lockstart, lockend; | 
|  | const bool write = !!(flags & IOMAP_WRITE); | 
|  | int ret = 0; | 
|  | u64 len = length; | 
|  | bool unlock_extents = false; | 
|  |  | 
|  | if (!write) | 
|  | len = min_t(u64, len, fs_info->sectorsize); | 
|  |  | 
|  | lockstart = start; | 
|  | lockend = start + len - 1; | 
|  |  | 
|  | /* | 
|  | * The generic stuff only does filemap_write_and_wait_range, which | 
|  | * isn't enough if we've written compressed pages to this area, so we | 
|  | * need to flush the dirty pages again to make absolutely sure that any | 
|  | * outstanding dirty pages are on disk. | 
|  | */ | 
|  | if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
|  | &BTRFS_I(inode)->runtime_flags)) { | 
|  | ret = filemap_fdatawrite_range(inode->i_mapping, start, | 
|  | start + length - 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); | 
|  | if (!dio_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | iomap->private = dio_data; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If this errors out it's because we couldn't invalidate pagecache for | 
|  | * this range and we need to fallback to buffered. | 
|  | */ | 
|  | if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { | 
|  | ret = -ENOTBLK; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto unlock_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok for INLINE and COMPRESSED extents we need to fallback on buffered | 
|  | * io.  INLINE is special, and we could probably kludge it in here, but | 
|  | * it's still buffered so for safety lets just fall back to the generic | 
|  | * buffered path. | 
|  | * | 
|  | * For COMPRESSED we _have_ to read the entire extent in so we can | 
|  | * decompress it, so there will be buffering required no matter what we | 
|  | * do, so go ahead and fallback to buffered. | 
|  | * | 
|  | * We return -ENOTBLK because that's what makes DIO go ahead and go back | 
|  | * to buffered IO.  Don't blame me, this is the price we pay for using | 
|  | * the generic code. | 
|  | */ | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || | 
|  | em->block_start == EXTENT_MAP_INLINE) { | 
|  | free_extent_map(em); | 
|  | /* | 
|  | * If we are in a NOWAIT context, return -EAGAIN in order to | 
|  | * fallback to buffered IO. This is not only because we can | 
|  | * block with buffered IO (no support for NOWAIT semantics at | 
|  | * the moment) but also to avoid returning short reads to user | 
|  | * space - this happens if we were able to read some data from | 
|  | * previous non-compressed extents and then when we fallback to | 
|  | * buffered IO, at btrfs_file_read_iter() by calling | 
|  | * filemap_read(), we fail to fault in pages for the read buffer, | 
|  | * in which case filemap_read() returns a short read (the number | 
|  | * of bytes previously read is > 0, so it does not return -EFAULT). | 
|  | */ | 
|  | ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; | 
|  | goto unlock_err; | 
|  | } | 
|  |  | 
|  | len = min(len, em->len - (start - em->start)); | 
|  |  | 
|  | /* | 
|  | * If we have a NOWAIT request and the range contains multiple extents | 
|  | * (or a mix of extents and holes), then we return -EAGAIN to make the | 
|  | * caller fallback to a context where it can do a blocking (without | 
|  | * NOWAIT) request. This way we avoid doing partial IO and returning | 
|  | * success to the caller, which is not optimal for writes and for reads | 
|  | * it can result in unexpected behaviour for an application. | 
|  | * | 
|  | * When doing a read, because we use IOMAP_DIO_PARTIAL when calling | 
|  | * iomap_dio_rw(), we can end up returning less data then what the caller | 
|  | * asked for, resulting in an unexpected, and incorrect, short read. | 
|  | * That is, the caller asked to read N bytes and we return less than that, | 
|  | * which is wrong unless we are crossing EOF. This happens if we get a | 
|  | * page fault error when trying to fault in pages for the buffer that is | 
|  | * associated to the struct iov_iter passed to iomap_dio_rw(), and we | 
|  | * have previously submitted bios for other extents in the range, in | 
|  | * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of | 
|  | * those bios have completed by the time we get the page fault error, | 
|  | * which we return back to our caller - we should only return EIOCBQUEUED | 
|  | * after we have submitted bios for all the extents in the range. | 
|  | */ | 
|  | if ((flags & IOMAP_NOWAIT) && len < length) { | 
|  | free_extent_map(em); | 
|  | ret = -EAGAIN; | 
|  | goto unlock_err; | 
|  | } | 
|  |  | 
|  | if (write) { | 
|  | ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, | 
|  | start, len); | 
|  | if (ret < 0) | 
|  | goto unlock_err; | 
|  | unlock_extents = true; | 
|  | /* Recalc len in case the new em is smaller than requested */ | 
|  | len = min(len, em->len - (start - em->start)); | 
|  | } else { | 
|  | /* | 
|  | * We need to unlock only the end area that we aren't using. | 
|  | * The rest is going to be unlocked by the endio routine. | 
|  | */ | 
|  | lockstart = start + len; | 
|  | if (lockstart < lockend) | 
|  | unlock_extents = true; | 
|  | } | 
|  |  | 
|  | if (unlock_extents) | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
|  | lockstart, lockend, &cached_state); | 
|  | else | 
|  | free_extent_state(cached_state); | 
|  |  | 
|  | /* | 
|  | * Translate extent map information to iomap. | 
|  | * We trim the extents (and move the addr) even though iomap code does | 
|  | * that, since we have locked only the parts we are performing I/O in. | 
|  | */ | 
|  | if ((em->block_start == EXTENT_MAP_HOLE) || | 
|  | (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { | 
|  | iomap->addr = IOMAP_NULL_ADDR; | 
|  | iomap->type = IOMAP_HOLE; | 
|  | } else { | 
|  | iomap->addr = em->block_start + (start - em->start); | 
|  | iomap->type = IOMAP_MAPPED; | 
|  | } | 
|  | iomap->offset = start; | 
|  | iomap->bdev = fs_info->fs_devices->latest_dev->bdev; | 
|  | iomap->length = len; | 
|  |  | 
|  | if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) | 
|  | iomap->flags |= IOMAP_F_ZONE_APPEND; | 
|  |  | 
|  | free_extent_map(em); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unlock_err: | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | &cached_state); | 
|  | err: | 
|  | kfree(dio_data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, | 
|  | ssize_t written, unsigned int flags, struct iomap *iomap) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_dio_data *dio_data = iomap->private; | 
|  | size_t submitted = dio_data->submitted; | 
|  | const bool write = !!(flags & IOMAP_WRITE); | 
|  |  | 
|  | if (!write && (iomap->type == IOMAP_HOLE)) { | 
|  | /* If reading from a hole, unlock and return */ | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (submitted < length) { | 
|  | pos += submitted; | 
|  | length -= submitted; | 
|  | if (write) | 
|  | __endio_write_update_ordered(BTRFS_I(inode), pos, | 
|  | length, false); | 
|  | else | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, pos, | 
|  | pos + length - 1); | 
|  | ret = -ENOTBLK; | 
|  | } | 
|  |  | 
|  | if (write) | 
|  | extent_changeset_free(dio_data->data_reserved); | 
|  | out: | 
|  | kfree(dio_data); | 
|  | iomap->private = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_dio_private_put(struct btrfs_dio_private *dip) | 
|  | { | 
|  | /* | 
|  | * This implies a barrier so that stores to dio_bio->bi_status before | 
|  | * this and loads of dio_bio->bi_status after this are fully ordered. | 
|  | */ | 
|  | if (!refcount_dec_and_test(&dip->refs)) | 
|  | return; | 
|  |  | 
|  | if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { | 
|  | __endio_write_update_ordered(BTRFS_I(dip->inode), | 
|  | dip->logical_offset, | 
|  | dip->bytes, | 
|  | !dip->dio_bio->bi_status); | 
|  | } else { | 
|  | unlock_extent(&BTRFS_I(dip->inode)->io_tree, | 
|  | dip->logical_offset, | 
|  | dip->logical_offset + dip->bytes - 1); | 
|  | } | 
|  |  | 
|  | bio_endio(dip->dio_bio); | 
|  | kfree(dip); | 
|  | } | 
|  |  | 
|  | static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, | 
|  | int mirror_num, | 
|  | unsigned long bio_flags) | 
|  | { | 
|  | struct btrfs_dio_private *dip = bio->bi_private; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | blk_status_t ret; | 
|  |  | 
|  | BUG_ON(bio_op(bio) == REQ_OP_WRITE); | 
|  |  | 
|  | ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | refcount_inc(&dip->refs); | 
|  | ret = btrfs_map_bio(fs_info, bio, mirror_num); | 
|  | if (ret) | 
|  | refcount_dec(&dip->refs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, | 
|  | struct btrfs_io_bio *io_bio, | 
|  | const bool uptodate) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); | 
|  | struct bio_vec bvec; | 
|  | struct bvec_iter iter; | 
|  | u64 start = io_bio->logical; | 
|  | u32 bio_offset = 0; | 
|  | blk_status_t err = BLK_STS_OK; | 
|  |  | 
|  | __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { | 
|  | unsigned int i, nr_sectors, pgoff; | 
|  |  | 
|  | nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); | 
|  | pgoff = bvec.bv_offset; | 
|  | for (i = 0; i < nr_sectors; i++) { | 
|  | ASSERT(pgoff < PAGE_SIZE); | 
|  | if (uptodate && | 
|  | (!csum || !check_data_csum(inode, io_bio, | 
|  | bio_offset, bvec.bv_page, | 
|  | pgoff, start))) { | 
|  | clean_io_failure(fs_info, failure_tree, io_tree, | 
|  | start, bvec.bv_page, | 
|  | btrfs_ino(BTRFS_I(inode)), | 
|  | pgoff); | 
|  | } else { | 
|  | int ret; | 
|  |  | 
|  | ASSERT((start - io_bio->logical) < UINT_MAX); | 
|  | ret = btrfs_repair_one_sector(inode, | 
|  | &io_bio->bio, | 
|  | start - io_bio->logical, | 
|  | bvec.bv_page, pgoff, | 
|  | start, io_bio->mirror_num, | 
|  | submit_dio_repair_bio); | 
|  | if (ret) | 
|  | err = errno_to_blk_status(ret); | 
|  | } | 
|  | start += sectorsize; | 
|  | ASSERT(bio_offset + sectorsize > bio_offset); | 
|  | bio_offset += sectorsize; | 
|  | pgoff += sectorsize; | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __endio_write_update_ordered(struct btrfs_inode *inode, | 
|  | const u64 offset, const u64 bytes, | 
|  | const bool uptodate) | 
|  | { | 
|  | btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, | 
|  | finish_ordered_fn, uptodate); | 
|  | } | 
|  |  | 
|  | static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, | 
|  | struct bio *bio, | 
|  | u64 dio_file_offset) | 
|  | { | 
|  | return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); | 
|  | } | 
|  |  | 
|  | static void btrfs_end_dio_bio(struct bio *bio) | 
|  | { | 
|  | struct btrfs_dio_private *dip = bio->bi_private; | 
|  | blk_status_t err = bio->bi_status; | 
|  |  | 
|  | if (err) | 
|  | btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, | 
|  | "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", | 
|  | btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), | 
|  | bio->bi_opf, bio->bi_iter.bi_sector, | 
|  | bio->bi_iter.bi_size, err); | 
|  |  | 
|  | if (bio_op(bio) == REQ_OP_READ) { | 
|  | err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), | 
|  | !err); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | dip->dio_bio->bi_status = err; | 
|  |  | 
|  | btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); | 
|  |  | 
|  | bio_put(bio); | 
|  | btrfs_dio_private_put(dip); | 
|  | } | 
|  |  | 
|  | static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, | 
|  | struct inode *inode, u64 file_offset, int async_submit) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_dio_private *dip = bio->bi_private; | 
|  | bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; | 
|  | blk_status_t ret; | 
|  |  | 
|  | /* Check btrfs_submit_bio_hook() for rules about async submit. */ | 
|  | if (async_submit) | 
|  | async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); | 
|  |  | 
|  | if (!write) { | 
|  | ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); | 
|  | if (ret) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
|  | goto map; | 
|  |  | 
|  | if (write && async_submit) { | 
|  | ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, | 
|  | btrfs_submit_bio_start_direct_io); | 
|  | goto err; | 
|  | } else if (write) { | 
|  | /* | 
|  | * If we aren't doing async submit, calculate the csum of the | 
|  | * bio now. | 
|  | */ | 
|  | ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); | 
|  | if (ret) | 
|  | goto err; | 
|  | } else { | 
|  | u64 csum_offset; | 
|  |  | 
|  | csum_offset = file_offset - dip->logical_offset; | 
|  | csum_offset >>= fs_info->sectorsize_bits; | 
|  | csum_offset *= fs_info->csum_size; | 
|  | btrfs_io_bio(bio)->csum = dip->csums + csum_offset; | 
|  | } | 
|  | map: | 
|  | ret = btrfs_map_bio(fs_info, bio, 0); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked | 
|  | * or ordered extents whether or not we submit any bios. | 
|  | */ | 
|  | static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, | 
|  | struct inode *inode, | 
|  | loff_t file_offset) | 
|  | { | 
|  | const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); | 
|  | const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); | 
|  | size_t dip_size; | 
|  | struct btrfs_dio_private *dip; | 
|  |  | 
|  | dip_size = sizeof(*dip); | 
|  | if (!write && csum) { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | size_t nblocks; | 
|  |  | 
|  | nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; | 
|  | dip_size += fs_info->csum_size * nblocks; | 
|  | } | 
|  |  | 
|  | dip = kzalloc(dip_size, GFP_NOFS); | 
|  | if (!dip) | 
|  | return NULL; | 
|  |  | 
|  | dip->inode = inode; | 
|  | dip->logical_offset = file_offset; | 
|  | dip->bytes = dio_bio->bi_iter.bi_size; | 
|  | dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; | 
|  | dip->dio_bio = dio_bio; | 
|  | refcount_set(&dip->refs, 1); | 
|  | return dip; | 
|  | } | 
|  |  | 
|  | static blk_qc_t btrfs_submit_direct(const struct iomap_iter *iter, | 
|  | struct bio *dio_bio, loff_t file_offset) | 
|  | { | 
|  | struct inode *inode = iter->inode; | 
|  | const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | const bool raid56 = (btrfs_data_alloc_profile(fs_info) & | 
|  | BTRFS_BLOCK_GROUP_RAID56_MASK); | 
|  | struct btrfs_dio_private *dip; | 
|  | struct bio *bio; | 
|  | u64 start_sector; | 
|  | int async_submit = 0; | 
|  | u64 submit_len; | 
|  | u64 clone_offset = 0; | 
|  | u64 clone_len; | 
|  | u64 logical; | 
|  | int ret; | 
|  | blk_status_t status; | 
|  | struct btrfs_io_geometry geom; | 
|  | struct btrfs_dio_data *dio_data = iter->iomap.private; | 
|  | struct extent_map *em = NULL; | 
|  |  | 
|  | dip = btrfs_create_dio_private(dio_bio, inode, file_offset); | 
|  | if (!dip) { | 
|  | if (!write) { | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, | 
|  | file_offset + dio_bio->bi_iter.bi_size - 1); | 
|  | } | 
|  | dio_bio->bi_status = BLK_STS_RESOURCE; | 
|  | bio_endio(dio_bio); | 
|  | return BLK_QC_T_NONE; | 
|  | } | 
|  |  | 
|  | if (!write) { | 
|  | /* | 
|  | * Load the csums up front to reduce csum tree searches and | 
|  | * contention when submitting bios. | 
|  | * | 
|  | * If we have csums disabled this will do nothing. | 
|  | */ | 
|  | status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); | 
|  | if (status != BLK_STS_OK) | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | start_sector = dio_bio->bi_iter.bi_sector; | 
|  | submit_len = dio_bio->bi_iter.bi_size; | 
|  |  | 
|  | do { | 
|  | logical = start_sector << 9; | 
|  | em = btrfs_get_chunk_map(fs_info, logical, submit_len); | 
|  | if (IS_ERR(em)) { | 
|  | status = errno_to_blk_status(PTR_ERR(em)); | 
|  | em = NULL; | 
|  | goto out_err_em; | 
|  | } | 
|  | ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), | 
|  | logical, &geom); | 
|  | if (ret) { | 
|  | status = errno_to_blk_status(ret); | 
|  | goto out_err_em; | 
|  | } | 
|  |  | 
|  | clone_len = min(submit_len, geom.len); | 
|  | ASSERT(clone_len <= UINT_MAX); | 
|  |  | 
|  | /* | 
|  | * This will never fail as it's passing GPF_NOFS and | 
|  | * the allocation is backed by btrfs_bioset. | 
|  | */ | 
|  | bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); | 
|  | bio->bi_private = dip; | 
|  | bio->bi_end_io = btrfs_end_dio_bio; | 
|  | btrfs_io_bio(bio)->logical = file_offset; | 
|  |  | 
|  | if (bio_op(bio) == REQ_OP_ZONE_APPEND) { | 
|  | status = extract_ordered_extent(BTRFS_I(inode), bio, | 
|  | file_offset); | 
|  | if (status) { | 
|  | bio_put(bio); | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ASSERT(submit_len >= clone_len); | 
|  | submit_len -= clone_len; | 
|  |  | 
|  | /* | 
|  | * Increase the count before we submit the bio so we know | 
|  | * the end IO handler won't happen before we increase the | 
|  | * count. Otherwise, the dip might get freed before we're | 
|  | * done setting it up. | 
|  | * | 
|  | * We transfer the initial reference to the last bio, so we | 
|  | * don't need to increment the reference count for the last one. | 
|  | */ | 
|  | if (submit_len > 0) { | 
|  | refcount_inc(&dip->refs); | 
|  | /* | 
|  | * If we are submitting more than one bio, submit them | 
|  | * all asynchronously. The exception is RAID 5 or 6, as | 
|  | * asynchronous checksums make it difficult to collect | 
|  | * full stripe writes. | 
|  | */ | 
|  | if (!raid56) | 
|  | async_submit = 1; | 
|  | } | 
|  |  | 
|  | status = btrfs_submit_dio_bio(bio, inode, file_offset, | 
|  | async_submit); | 
|  | if (status) { | 
|  | bio_put(bio); | 
|  | if (submit_len > 0) | 
|  | refcount_dec(&dip->refs); | 
|  | goto out_err_em; | 
|  | } | 
|  |  | 
|  | dio_data->submitted += clone_len; | 
|  | clone_offset += clone_len; | 
|  | start_sector += clone_len >> 9; | 
|  | file_offset += clone_len; | 
|  |  | 
|  | free_extent_map(em); | 
|  | } while (submit_len > 0); | 
|  | return BLK_QC_T_NONE; | 
|  |  | 
|  | out_err_em: | 
|  | free_extent_map(em); | 
|  | out_err: | 
|  | dip->dio_bio->bi_status = status; | 
|  | btrfs_dio_private_put(dip); | 
|  |  | 
|  | return BLK_QC_T_NONE; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops btrfs_dio_iomap_ops = { | 
|  | .iomap_begin            = btrfs_dio_iomap_begin, | 
|  | .iomap_end              = btrfs_dio_iomap_end, | 
|  | }; | 
|  |  | 
|  | const struct iomap_dio_ops btrfs_dio_ops = { | 
|  | .submit_io		= btrfs_submit_direct, | 
|  | }; | 
|  |  | 
|  | static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | int	ret; | 
|  |  | 
|  | ret = fiemap_prep(inode, fieinfo, start, &len, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); | 
|  | } | 
|  |  | 
|  | int btrfs_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { 0 }; | 
|  | int ret; | 
|  |  | 
|  | btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); | 
|  |  | 
|  | ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); | 
|  | if (bio_ctrl.bio) | 
|  | ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | int ret; | 
|  |  | 
|  | if (current->flags & PF_MEMALLOC) { | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are under memory pressure we will call this directly from the | 
|  | * VM, we need to make sure we have the inode referenced for the ordered | 
|  | * extent.  If not just return like we didn't do anything. | 
|  | */ | 
|  | if (!igrab(inode)) { | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | return AOP_WRITEPAGE_ACTIVATE; | 
|  | } | 
|  | ret = extent_write_full_page(page, wbc); | 
|  | btrfs_add_delayed_iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | return extent_writepages(mapping, wbc); | 
|  | } | 
|  |  | 
|  | static void btrfs_readahead(struct readahead_control *rac) | 
|  | { | 
|  | extent_readahead(rac); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For releasepage() and invalidatepage() we have a race window where | 
|  | * end_page_writeback() is called but the subpage spinlock is not yet released. | 
|  | * If we continue to release/invalidate the page, we could cause use-after-free | 
|  | * for subpage spinlock.  So this function is to spin and wait for subpage | 
|  | * spinlock. | 
|  | */ | 
|  | static void wait_subpage_spinlock(struct page *page) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
|  | struct btrfs_subpage *subpage; | 
|  |  | 
|  | if (fs_info->sectorsize == PAGE_SIZE) | 
|  | return; | 
|  |  | 
|  | ASSERT(PagePrivate(page) && page->private); | 
|  | subpage = (struct btrfs_subpage *)page->private; | 
|  |  | 
|  | /* | 
|  | * This may look insane as we just acquire the spinlock and release it, | 
|  | * without doing anything.  But we just want to make sure no one is | 
|  | * still holding the subpage spinlock. | 
|  | * And since the page is not dirty nor writeback, and we have page | 
|  | * locked, the only possible way to hold a spinlock is from the endio | 
|  | * function to clear page writeback. | 
|  | * | 
|  | * Here we just acquire the spinlock so that all existing callers | 
|  | * should exit and we're safe to release/invalidate the page. | 
|  | */ | 
|  | spin_lock_irq(&subpage->lock); | 
|  | spin_unlock_irq(&subpage->lock); | 
|  | } | 
|  |  | 
|  | static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) | 
|  | { | 
|  | int ret = try_release_extent_mapping(page, gfp_flags); | 
|  |  | 
|  | if (ret == 1) { | 
|  | wait_subpage_spinlock(page); | 
|  | clear_page_extent_mapped(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) | 
|  | { | 
|  | if (PageWriteback(page) || PageDirty(page)) | 
|  | return 0; | 
|  | return __btrfs_releasepage(page, gfp_flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  | static int btrfs_migratepage(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = migrate_page_move_mapping(mapping, newpage, page, 0); | 
|  | if (ret != MIGRATEPAGE_SUCCESS) | 
|  | return ret; | 
|  |  | 
|  | if (page_has_private(page)) | 
|  | attach_page_private(newpage, detach_page_private(page)); | 
|  |  | 
|  | if (PageOrdered(page)) { | 
|  | ClearPageOrdered(page); | 
|  | SetPageOrdered(newpage); | 
|  | } | 
|  |  | 
|  | if (mode != MIGRATE_SYNC_NO_COPY) | 
|  | migrate_page_copy(newpage, page); | 
|  | else | 
|  | migrate_page_states(newpage, page); | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void btrfs_invalidatepage(struct page *page, unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct extent_io_tree *tree = &inode->io_tree; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 page_start = page_offset(page); | 
|  | u64 page_end = page_start + PAGE_SIZE - 1; | 
|  | u64 cur; | 
|  | int inode_evicting = inode->vfs_inode.i_state & I_FREEING; | 
|  |  | 
|  | /* | 
|  | * We have page locked so no new ordered extent can be created on this | 
|  | * page, nor bio can be submitted for this page. | 
|  | * | 
|  | * But already submitted bio can still be finished on this page. | 
|  | * Furthermore, endio function won't skip page which has Ordered | 
|  | * (Private2) already cleared, so it's possible for endio and | 
|  | * invalidatepage to do the same ordered extent accounting twice | 
|  | * on one page. | 
|  | * | 
|  | * So here we wait for any submitted bios to finish, so that we won't | 
|  | * do double ordered extent accounting on the same page. | 
|  | */ | 
|  | wait_on_page_writeback(page); | 
|  | wait_subpage_spinlock(page); | 
|  |  | 
|  | /* | 
|  | * For subpage case, we have call sites like | 
|  | * btrfs_punch_hole_lock_range() which passes range not aligned to | 
|  | * sectorsize. | 
|  | * If the range doesn't cover the full page, we don't need to and | 
|  | * shouldn't clear page extent mapped, as page->private can still | 
|  | * record subpage dirty bits for other part of the range. | 
|  | * | 
|  | * For cases that can invalidate the full even the range doesn't | 
|  | * cover the full page, like invalidating the last page, we're | 
|  | * still safe to wait for ordered extent to finish. | 
|  | */ | 
|  | if (!(offset == 0 && length == PAGE_SIZE)) { | 
|  | btrfs_releasepage(page, GFP_NOFS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!inode_evicting) | 
|  | lock_extent_bits(tree, page_start, page_end, &cached_state); | 
|  |  | 
|  | cur = page_start; | 
|  | while (cur < page_end) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | bool delete_states; | 
|  | u64 range_end; | 
|  | u32 range_len; | 
|  |  | 
|  | ordered = btrfs_lookup_first_ordered_range(inode, cur, | 
|  | page_end + 1 - cur); | 
|  | if (!ordered) { | 
|  | range_end = page_end; | 
|  | /* | 
|  | * No ordered extent covering this range, we are safe | 
|  | * to delete all extent states in the range. | 
|  | */ | 
|  | delete_states = true; | 
|  | goto next; | 
|  | } | 
|  | if (ordered->file_offset > cur) { | 
|  | /* | 
|  | * There is a range between [cur, oe->file_offset) not | 
|  | * covered by any ordered extent. | 
|  | * We are safe to delete all extent states, and handle | 
|  | * the ordered extent in the next iteration. | 
|  | */ | 
|  | range_end = ordered->file_offset - 1; | 
|  | delete_states = true; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | range_end = min(ordered->file_offset + ordered->num_bytes - 1, | 
|  | page_end); | 
|  | ASSERT(range_end + 1 - cur < U32_MAX); | 
|  | range_len = range_end + 1 - cur; | 
|  | if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) { | 
|  | /* | 
|  | * If Ordered (Private2) is cleared, it means endio has | 
|  | * already been executed for the range. | 
|  | * We can't delete the extent states as | 
|  | * btrfs_finish_ordered_io() may still use some of them. | 
|  | */ | 
|  | delete_states = false; | 
|  | goto next; | 
|  | } | 
|  | btrfs_page_clear_ordered(fs_info, page, cur, range_len); | 
|  |  | 
|  | /* | 
|  | * IO on this page will never be started, so we need to account | 
|  | * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW | 
|  | * here, must leave that up for the ordered extent completion. | 
|  | * | 
|  | * This will also unlock the range for incoming | 
|  | * btrfs_finish_ordered_io(). | 
|  | */ | 
|  | if (!inode_evicting) | 
|  | clear_extent_bit(tree, cur, range_end, | 
|  | EXTENT_DELALLOC | | 
|  | EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | | 
|  | EXTENT_DEFRAG, 1, 0, &cached_state); | 
|  |  | 
|  | spin_lock_irq(&inode->ordered_tree.lock); | 
|  | set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); | 
|  | ordered->truncated_len = min(ordered->truncated_len, | 
|  | cur - ordered->file_offset); | 
|  | spin_unlock_irq(&inode->ordered_tree.lock); | 
|  |  | 
|  | if (btrfs_dec_test_ordered_pending(inode, &ordered, | 
|  | cur, range_end + 1 - cur)) { | 
|  | btrfs_finish_ordered_io(ordered); | 
|  | /* | 
|  | * The ordered extent has finished, now we're again | 
|  | * safe to delete all extent states of the range. | 
|  | */ | 
|  | delete_states = true; | 
|  | } else { | 
|  | /* | 
|  | * btrfs_finish_ordered_io() will get executed by endio | 
|  | * of other pages, thus we can't delete extent states | 
|  | * anymore | 
|  | */ | 
|  | delete_states = false; | 
|  | } | 
|  | next: | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | /* | 
|  | * Qgroup reserved space handler | 
|  | * Sector(s) here will be either: | 
|  | * | 
|  | * 1) Already written to disk or bio already finished | 
|  | *    Then its QGROUP_RESERVED bit in io_tree is already cleared. | 
|  | *    Qgroup will be handled by its qgroup_record then. | 
|  | *    btrfs_qgroup_free_data() call will do nothing here. | 
|  | * | 
|  | * 2) Not written to disk yet | 
|  | *    Then btrfs_qgroup_free_data() call will clear the | 
|  | *    QGROUP_RESERVED bit of its io_tree, and free the qgroup | 
|  | *    reserved data space. | 
|  | *    Since the IO will never happen for this page. | 
|  | */ | 
|  | btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); | 
|  | if (!inode_evicting) { | 
|  | clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | | 
|  | EXTENT_DELALLOC | EXTENT_UPTODATE | | 
|  | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, | 
|  | delete_states, &cached_state); | 
|  | } | 
|  | cur = range_end + 1; | 
|  | } | 
|  | /* | 
|  | * We have iterated through all ordered extents of the page, the page | 
|  | * should not have Ordered (Private2) anymore, or the above iteration | 
|  | * did something wrong. | 
|  | */ | 
|  | ASSERT(!PageOrdered(page)); | 
|  | if (!inode_evicting) | 
|  | __btrfs_releasepage(page, GFP_NOFS); | 
|  | ClearPageChecked(page); | 
|  | clear_page_extent_mapped(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_page_mkwrite() is not allowed to change the file size as it gets | 
|  | * called from a page fault handler when a page is first dirtied. Hence we must | 
|  | * be careful to check for EOF conditions here. We set the page up correctly | 
|  | * for a written page which means we get ENOSPC checking when writing into | 
|  | * holes and correct delalloc and unwritten extent mapping on filesystems that | 
|  | * support these features. | 
|  | * | 
|  | * We are not allowed to take the i_mutex here so we have to play games to | 
|  | * protect against truncate races as the page could now be beyond EOF.  Because | 
|  | * truncate_setsize() writes the inode size before removing pages, once we have | 
|  | * the page lock we can determine safely if the page is beyond EOF. If it is not | 
|  | * beyond EOF, then the page is guaranteed safe against truncation until we | 
|  | * unlock the page. | 
|  | */ | 
|  | vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | struct page *page = vmf->page; | 
|  | struct inode *inode = file_inode(vmf->vma->vm_file); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | unsigned long zero_start; | 
|  | loff_t size; | 
|  | vm_fault_t ret; | 
|  | int ret2; | 
|  | int reserved = 0; | 
|  | u64 reserved_space; | 
|  | u64 page_start; | 
|  | u64 page_end; | 
|  | u64 end; | 
|  |  | 
|  | reserved_space = PAGE_SIZE; | 
|  |  | 
|  | sb_start_pagefault(inode->i_sb); | 
|  | page_start = page_offset(page); | 
|  | page_end = page_start + PAGE_SIZE - 1; | 
|  | end = page_end; | 
|  |  | 
|  | /* | 
|  | * Reserving delalloc space after obtaining the page lock can lead to | 
|  | * deadlock. For example, if a dirty page is locked by this function | 
|  | * and the call to btrfs_delalloc_reserve_space() ends up triggering | 
|  | * dirty page write out, then the btrfs_writepage() function could | 
|  | * end up waiting indefinitely to get a lock on the page currently | 
|  | * being processed by btrfs_page_mkwrite() function. | 
|  | */ | 
|  | ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, | 
|  | page_start, reserved_space); | 
|  | if (!ret2) { | 
|  | ret2 = file_update_time(vmf->vma->vm_file); | 
|  | reserved = 1; | 
|  | } | 
|  | if (ret2) { | 
|  | ret = vmf_error(ret2); | 
|  | if (reserved) | 
|  | goto out; | 
|  | goto out_noreserve; | 
|  | } | 
|  |  | 
|  | ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ | 
|  | again: | 
|  | down_read(&BTRFS_I(inode)->i_mmap_lock); | 
|  | lock_page(page); | 
|  | size = i_size_read(inode); | 
|  |  | 
|  | if ((page->mapping != inode->i_mapping) || | 
|  | (page_start >= size)) { | 
|  | /* page got truncated out from underneath us */ | 
|  | goto out_unlock; | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | lock_extent_bits(io_tree, page_start, page_end, &cached_state); | 
|  | ret2 = set_page_extent_mapped(page); | 
|  | if (ret2 < 0) { | 
|  | ret = vmf_error(ret2); | 
|  | unlock_extent_cached(io_tree, page_start, page_end, &cached_state); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we can't set the delalloc bits if there are pending ordered | 
|  | * extents.  Drop our locks and wait for them to finish | 
|  | */ | 
|  | ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, | 
|  | PAGE_SIZE); | 
|  | if (ordered) { | 
|  | unlock_extent_cached(io_tree, page_start, page_end, | 
|  | &cached_state); | 
|  | unlock_page(page); | 
|  | up_read(&BTRFS_I(inode)->i_mmap_lock); | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (page->index == ((size - 1) >> PAGE_SHIFT)) { | 
|  | reserved_space = round_up(size - page_start, | 
|  | fs_info->sectorsize); | 
|  | if (reserved_space < PAGE_SIZE) { | 
|  | end = page_start + reserved_space - 1; | 
|  | btrfs_delalloc_release_space(BTRFS_I(inode), | 
|  | data_reserved, page_start, | 
|  | PAGE_SIZE - reserved_space, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * page_mkwrite gets called when the page is firstly dirtied after it's | 
|  | * faulted in, but write(2) could also dirty a page and set delalloc | 
|  | * bits, thus in this case for space account reason, we still need to | 
|  | * clear any delalloc bits within this page range since we have to | 
|  | * reserve data&meta space before lock_page() (see above comments). | 
|  | */ | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, | 
|  | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | | 
|  | EXTENT_DEFRAG, 0, 0, &cached_state); | 
|  |  | 
|  | ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, | 
|  | &cached_state); | 
|  | if (ret2) { | 
|  | unlock_extent_cached(io_tree, page_start, page_end, | 
|  | &cached_state); | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* page is wholly or partially inside EOF */ | 
|  | if (page_start + PAGE_SIZE > size) | 
|  | zero_start = offset_in_page(size); | 
|  | else | 
|  | zero_start = PAGE_SIZE; | 
|  |  | 
|  | if (zero_start != PAGE_SIZE) { | 
|  | memzero_page(page, zero_start, PAGE_SIZE - zero_start); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | ClearPageChecked(page); | 
|  | btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); | 
|  | btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); | 
|  |  | 
|  | btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); | 
|  |  | 
|  | unlock_extent_cached(io_tree, page_start, page_end, &cached_state); | 
|  | up_read(&BTRFS_I(inode)->i_mmap_lock); | 
|  |  | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); | 
|  | sb_end_pagefault(inode->i_sb); | 
|  | extent_changeset_free(data_reserved); | 
|  | return VM_FAULT_LOCKED; | 
|  |  | 
|  | out_unlock: | 
|  | unlock_page(page); | 
|  | up_read(&BTRFS_I(inode)->i_mmap_lock); | 
|  | out: | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); | 
|  | btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, | 
|  | reserved_space, (ret != 0)); | 
|  | out_noreserve: | 
|  | sb_end_pagefault(inode->i_sb); | 
|  | extent_changeset_free(data_reserved); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_truncate(struct inode *inode, bool skip_writeback) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_block_rsv *rsv; | 
|  | int ret; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 mask = fs_info->sectorsize - 1; | 
|  | u64 min_size = btrfs_calc_metadata_size(fs_info, 1); | 
|  | u64 extents_found = 0; | 
|  |  | 
|  | if (!skip_writeback) { | 
|  | ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), | 
|  | (u64)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of | 
|  | * things going on here: | 
|  | * | 
|  | * 1) We need to reserve space to update our inode. | 
|  | * | 
|  | * 2) We need to have something to cache all the space that is going to | 
|  | * be free'd up by the truncate operation, but also have some slack | 
|  | * space reserved in case it uses space during the truncate (thank you | 
|  | * very much snapshotting). | 
|  | * | 
|  | * And we need these to be separate.  The fact is we can use a lot of | 
|  | * space doing the truncate, and we have no earthly idea how much space | 
|  | * we will use, so we need the truncate reservation to be separate so it | 
|  | * doesn't end up using space reserved for updating the inode.  We also | 
|  | * need to be able to stop the transaction and start a new one, which | 
|  | * means we need to be able to update the inode several times, and we | 
|  | * have no idea of knowing how many times that will be, so we can't just | 
|  | * reserve 1 item for the entirety of the operation, so that has to be | 
|  | * done separately as well. | 
|  | * | 
|  | * So that leaves us with | 
|  | * | 
|  | * 1) rsv - for the truncate reservation, which we will steal from the | 
|  | * transaction reservation. | 
|  | * 2) fs_info->trans_block_rsv - this will have 1 items worth left for | 
|  | * updating the inode. | 
|  | */ | 
|  | rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); | 
|  | if (!rsv) | 
|  | return -ENOMEM; | 
|  | rsv->size = min_size; | 
|  | rsv->failfast = 1; | 
|  |  | 
|  | /* | 
|  | * 1 for the truncate slack space | 
|  | * 1 for updating the inode. | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 2); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Migrate the slack space for the truncate to our reserve */ | 
|  | ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, | 
|  | min_size, false); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | trans->block_rsv = rsv; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), | 
|  | inode->i_size, | 
|  | BTRFS_EXTENT_DATA_KEY, | 
|  | &extents_found); | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | if (ret != -ENOSPC && ret != -EAGAIN) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 2); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_block_rsv_release(fs_info, rsv, -1, NULL); | 
|  | ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, | 
|  | rsv, min_size, false); | 
|  | BUG_ON(ret);	/* shouldn't happen */ | 
|  | trans->block_rsv = rsv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't call btrfs_truncate_block inside a trans handle as we could | 
|  | * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know | 
|  | * we've truncated everything except the last little bit, and can do | 
|  | * btrfs_truncate_block and then update the disk_i_size. | 
|  | */ | 
|  | if (ret == NEED_TRUNCATE_BLOCK) { | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  | btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); | 
|  | } | 
|  |  | 
|  | if (trans) { | 
|  | int ret2; | 
|  |  | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (ret2 && !ret) | 
|  | ret = ret2; | 
|  |  | 
|  | ret2 = btrfs_end_transaction(trans); | 
|  | if (ret2 && !ret) | 
|  | ret = ret2; | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | } | 
|  | out: | 
|  | btrfs_free_block_rsv(fs_info, rsv); | 
|  | /* | 
|  | * So if we truncate and then write and fsync we normally would just | 
|  | * write the extents that changed, which is a problem if we need to | 
|  | * first truncate that entire inode.  So set this flag so we write out | 
|  | * all of the extents in the inode to the sync log so we're completely | 
|  | * safe. | 
|  | * | 
|  | * If no extents were dropped or trimmed we don't need to force the next | 
|  | * fsync to truncate all the inode's items from the log and re-log them | 
|  | * all. This means the truncate operation did not change the file size, | 
|  | * or changed it to a smaller size but there was only an implicit hole | 
|  | * between the old i_size and the new i_size, and there were no prealloc | 
|  | * extents beyond i_size to drop. | 
|  | */ | 
|  | if (extents_found > 0) | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create a new subvolume directory/inode (helper for the ioctl). | 
|  | */ | 
|  | int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *new_root, | 
|  | struct btrfs_root *parent_root, | 
|  | struct user_namespace *mnt_userns) | 
|  | { | 
|  | struct inode *inode; | 
|  | int err; | 
|  | u64 index = 0; | 
|  | u64 ino; | 
|  |  | 
|  | err = btrfs_get_free_objectid(new_root, &ino); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2, | 
|  | ino, ino, | 
|  | S_IFDIR | (~current_umask() & S_IRWXUGO), | 
|  | &index); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  | inode->i_op = &btrfs_dir_inode_operations; | 
|  | inode->i_fop = &btrfs_dir_file_operations; | 
|  |  | 
|  | set_nlink(inode, 1); | 
|  | btrfs_i_size_write(BTRFS_I(inode), 0); | 
|  | unlock_new_inode(inode); | 
|  |  | 
|  | err = btrfs_subvol_inherit_props(trans, new_root, parent_root); | 
|  | if (err) | 
|  | btrfs_err(new_root->fs_info, | 
|  | "error inheriting subvolume %llu properties: %d", | 
|  | new_root->root_key.objectid, err); | 
|  |  | 
|  | err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); | 
|  |  | 
|  | iput(inode); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct inode *btrfs_alloc_inode(struct super_block *sb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | struct btrfs_inode *ei; | 
|  | struct inode *inode; | 
|  |  | 
|  | ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); | 
|  | if (!ei) | 
|  | return NULL; | 
|  |  | 
|  | ei->root = NULL; | 
|  | ei->generation = 0; | 
|  | ei->last_trans = 0; | 
|  | ei->last_sub_trans = 0; | 
|  | ei->logged_trans = 0; | 
|  | ei->delalloc_bytes = 0; | 
|  | ei->new_delalloc_bytes = 0; | 
|  | ei->defrag_bytes = 0; | 
|  | ei->disk_i_size = 0; | 
|  | ei->flags = 0; | 
|  | ei->ro_flags = 0; | 
|  | ei->csum_bytes = 0; | 
|  | ei->index_cnt = (u64)-1; | 
|  | ei->dir_index = 0; | 
|  | ei->last_unlink_trans = 0; | 
|  | ei->last_reflink_trans = 0; | 
|  | ei->last_log_commit = 0; | 
|  |  | 
|  | spin_lock_init(&ei->lock); | 
|  | ei->outstanding_extents = 0; | 
|  | if (sb->s_magic != BTRFS_TEST_MAGIC) | 
|  | btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, | 
|  | BTRFS_BLOCK_RSV_DELALLOC); | 
|  | ei->runtime_flags = 0; | 
|  | ei->prop_compress = BTRFS_COMPRESS_NONE; | 
|  | ei->defrag_compress = BTRFS_COMPRESS_NONE; | 
|  |  | 
|  | ei->delayed_node = NULL; | 
|  |  | 
|  | ei->i_otime.tv_sec = 0; | 
|  | ei->i_otime.tv_nsec = 0; | 
|  |  | 
|  | inode = &ei->vfs_inode; | 
|  | extent_map_tree_init(&ei->extent_tree); | 
|  | extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); | 
|  | extent_io_tree_init(fs_info, &ei->io_failure_tree, | 
|  | IO_TREE_INODE_IO_FAILURE, inode); | 
|  | extent_io_tree_init(fs_info, &ei->file_extent_tree, | 
|  | IO_TREE_INODE_FILE_EXTENT, inode); | 
|  | ei->io_tree.track_uptodate = true; | 
|  | ei->io_failure_tree.track_uptodate = true; | 
|  | atomic_set(&ei->sync_writers, 0); | 
|  | mutex_init(&ei->log_mutex); | 
|  | btrfs_ordered_inode_tree_init(&ei->ordered_tree); | 
|  | INIT_LIST_HEAD(&ei->delalloc_inodes); | 
|  | INIT_LIST_HEAD(&ei->delayed_iput); | 
|  | RB_CLEAR_NODE(&ei->rb_node); | 
|  | init_rwsem(&ei->i_mmap_lock); | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | void btrfs_test_destroy_inode(struct inode *inode) | 
|  | { | 
|  | btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); | 
|  | kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void btrfs_free_inode(struct inode *inode) | 
|  | { | 
|  | kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); | 
|  | } | 
|  |  | 
|  | void btrfs_destroy_inode(struct inode *vfs_inode) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct btrfs_inode *inode = BTRFS_I(vfs_inode); | 
|  | struct btrfs_root *root = inode->root; | 
|  |  | 
|  | WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); | 
|  | WARN_ON(vfs_inode->i_data.nrpages); | 
|  | WARN_ON(inode->block_rsv.reserved); | 
|  | WARN_ON(inode->block_rsv.size); | 
|  | WARN_ON(inode->outstanding_extents); | 
|  | WARN_ON(inode->delalloc_bytes); | 
|  | WARN_ON(inode->new_delalloc_bytes); | 
|  | WARN_ON(inode->csum_bytes); | 
|  | WARN_ON(inode->defrag_bytes); | 
|  |  | 
|  | /* | 
|  | * This can happen where we create an inode, but somebody else also | 
|  | * created the same inode and we need to destroy the one we already | 
|  | * created. | 
|  | */ | 
|  | if (!root) | 
|  | return; | 
|  |  | 
|  | while (1) { | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); | 
|  | if (!ordered) | 
|  | break; | 
|  | else { | 
|  | btrfs_err(root->fs_info, | 
|  | "found ordered extent %llu %llu on inode cleanup", | 
|  | ordered->file_offset, ordered->num_bytes); | 
|  | btrfs_remove_ordered_extent(inode, ordered); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } | 
|  | } | 
|  | btrfs_qgroup_check_reserved_leak(inode); | 
|  | inode_tree_del(inode); | 
|  | btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); | 
|  | btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); | 
|  | btrfs_put_root(inode->root); | 
|  | } | 
|  |  | 
|  | int btrfs_drop_inode(struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  |  | 
|  | if (root == NULL) | 
|  | return 1; | 
|  |  | 
|  | /* the snap/subvol tree is on deleting */ | 
|  | if (btrfs_root_refs(&root->root_item) == 0) | 
|  | return 1; | 
|  | else | 
|  | return generic_drop_inode(inode); | 
|  | } | 
|  |  | 
|  | static void init_once(void *foo) | 
|  | { | 
|  | struct btrfs_inode *ei = (struct btrfs_inode *) foo; | 
|  |  | 
|  | inode_init_once(&ei->vfs_inode); | 
|  | } | 
|  |  | 
|  | void __cold btrfs_destroy_cachep(void) | 
|  | { | 
|  | /* | 
|  | * Make sure all delayed rcu free inodes are flushed before we | 
|  | * destroy cache. | 
|  | */ | 
|  | rcu_barrier(); | 
|  | kmem_cache_destroy(btrfs_inode_cachep); | 
|  | kmem_cache_destroy(btrfs_trans_handle_cachep); | 
|  | kmem_cache_destroy(btrfs_path_cachep); | 
|  | kmem_cache_destroy(btrfs_free_space_cachep); | 
|  | kmem_cache_destroy(btrfs_free_space_bitmap_cachep); | 
|  | } | 
|  |  | 
|  | int __init btrfs_init_cachep(void) | 
|  | { | 
|  | btrfs_inode_cachep = kmem_cache_create("btrfs_inode", | 
|  | sizeof(struct btrfs_inode), 0, | 
|  | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, | 
|  | init_once); | 
|  | if (!btrfs_inode_cachep) | 
|  | goto fail; | 
|  |  | 
|  | btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", | 
|  | sizeof(struct btrfs_trans_handle), 0, | 
|  | SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); | 
|  | if (!btrfs_trans_handle_cachep) | 
|  | goto fail; | 
|  |  | 
|  | btrfs_path_cachep = kmem_cache_create("btrfs_path", | 
|  | sizeof(struct btrfs_path), 0, | 
|  | SLAB_MEM_SPREAD, NULL); | 
|  | if (!btrfs_path_cachep) | 
|  | goto fail; | 
|  |  | 
|  | btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", | 
|  | sizeof(struct btrfs_free_space), 0, | 
|  | SLAB_MEM_SPREAD, NULL); | 
|  | if (!btrfs_free_space_cachep) | 
|  | goto fail; | 
|  |  | 
|  | btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", | 
|  | PAGE_SIZE, PAGE_SIZE, | 
|  | SLAB_MEM_SPREAD, NULL); | 
|  | if (!btrfs_free_space_bitmap_cachep) | 
|  | goto fail; | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | btrfs_destroy_cachep(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int btrfs_getattr(struct user_namespace *mnt_userns, | 
|  | const struct path *path, struct kstat *stat, | 
|  | u32 request_mask, unsigned int flags) | 
|  | { | 
|  | u64 delalloc_bytes; | 
|  | u64 inode_bytes; | 
|  | struct inode *inode = d_inode(path->dentry); | 
|  | u32 blocksize = inode->i_sb->s_blocksize; | 
|  | u32 bi_flags = BTRFS_I(inode)->flags; | 
|  | u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; | 
|  |  | 
|  | stat->result_mask |= STATX_BTIME; | 
|  | stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; | 
|  | stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; | 
|  | if (bi_flags & BTRFS_INODE_APPEND) | 
|  | stat->attributes |= STATX_ATTR_APPEND; | 
|  | if (bi_flags & BTRFS_INODE_COMPRESS) | 
|  | stat->attributes |= STATX_ATTR_COMPRESSED; | 
|  | if (bi_flags & BTRFS_INODE_IMMUTABLE) | 
|  | stat->attributes |= STATX_ATTR_IMMUTABLE; | 
|  | if (bi_flags & BTRFS_INODE_NODUMP) | 
|  | stat->attributes |= STATX_ATTR_NODUMP; | 
|  | if (bi_ro_flags & BTRFS_INODE_RO_VERITY) | 
|  | stat->attributes |= STATX_ATTR_VERITY; | 
|  |  | 
|  | stat->attributes_mask |= (STATX_ATTR_APPEND | | 
|  | STATX_ATTR_COMPRESSED | | 
|  | STATX_ATTR_IMMUTABLE | | 
|  | STATX_ATTR_NODUMP); | 
|  |  | 
|  | generic_fillattr(mnt_userns, inode, stat); | 
|  | stat->dev = BTRFS_I(inode)->root->anon_dev; | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; | 
|  | inode_bytes = inode_get_bytes(inode); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | stat->blocks = (ALIGN(inode_bytes, blocksize) + | 
|  | ALIGN(delalloc_bytes, blocksize)) >> 9; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_rename_exchange(struct inode *old_dir, | 
|  | struct dentry *old_dentry, | 
|  | struct inode *new_dir, | 
|  | struct dentry *new_dentry) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(old_dir)->root; | 
|  | struct btrfs_root *dest = BTRFS_I(new_dir)->root; | 
|  | struct inode *new_inode = new_dentry->d_inode; | 
|  | struct inode *old_inode = old_dentry->d_inode; | 
|  | struct timespec64 ctime = current_time(old_inode); | 
|  | u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); | 
|  | u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); | 
|  | u64 old_idx = 0; | 
|  | u64 new_idx = 0; | 
|  | int ret; | 
|  | int ret2; | 
|  | bool root_log_pinned = false; | 
|  | bool dest_log_pinned = false; | 
|  | bool need_abort = false; | 
|  |  | 
|  | /* | 
|  | * For non-subvolumes allow exchange only within one subvolume, in the | 
|  | * same inode namespace. Two subvolumes (represented as directory) can | 
|  | * be exchanged as they're a logical link and have a fixed inode number. | 
|  | */ | 
|  | if (root != dest && | 
|  | (old_ino != BTRFS_FIRST_FREE_OBJECTID || | 
|  | new_ino != BTRFS_FIRST_FREE_OBJECTID)) | 
|  | return -EXDEV; | 
|  |  | 
|  | /* close the race window with snapshot create/destroy ioctl */ | 
|  | if (old_ino == BTRFS_FIRST_FREE_OBJECTID || | 
|  | new_ino == BTRFS_FIRST_FREE_OBJECTID) | 
|  | down_read(&fs_info->subvol_sem); | 
|  |  | 
|  | /* | 
|  | * We want to reserve the absolute worst case amount of items.  So if | 
|  | * both inodes are subvols and we need to unlink them then that would | 
|  | * require 4 item modifications, but if they are both normal inodes it | 
|  | * would require 5 item modifications, so we'll assume their normal | 
|  | * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items | 
|  | * should cover the worst case number of items we'll modify. | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 12); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out_notrans; | 
|  | } | 
|  |  | 
|  | if (dest != root) { | 
|  | ret = btrfs_record_root_in_trans(trans, dest); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to find a free sequence number both in the source and | 
|  | * in the destination directory for the exchange. | 
|  | */ | 
|  | ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  | ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  |  | 
|  | BTRFS_I(old_inode)->dir_index = 0ULL; | 
|  | BTRFS_I(new_inode)->dir_index = 0ULL; | 
|  |  | 
|  | /* Reference for the source. */ | 
|  | if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
|  | /* force full log commit if subvolume involved. */ | 
|  | btrfs_set_log_full_commit(trans); | 
|  | } else { | 
|  | ret = btrfs_insert_inode_ref(trans, dest, | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len, | 
|  | old_ino, | 
|  | btrfs_ino(BTRFS_I(new_dir)), | 
|  | old_idx); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  | need_abort = true; | 
|  | } | 
|  |  | 
|  | /* And now for the dest. */ | 
|  | if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
|  | /* force full log commit if subvolume involved. */ | 
|  | btrfs_set_log_full_commit(trans); | 
|  | } else { | 
|  | ret = btrfs_insert_inode_ref(trans, root, | 
|  | old_dentry->d_name.name, | 
|  | old_dentry->d_name.len, | 
|  | new_ino, | 
|  | btrfs_ino(BTRFS_I(old_dir)), | 
|  | new_idx); | 
|  | if (ret) { | 
|  | if (need_abort) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update inode version and ctime/mtime. */ | 
|  | inode_inc_iversion(old_dir); | 
|  | inode_inc_iversion(new_dir); | 
|  | inode_inc_iversion(old_inode); | 
|  | inode_inc_iversion(new_inode); | 
|  | old_dir->i_ctime = old_dir->i_mtime = ctime; | 
|  | new_dir->i_ctime = new_dir->i_mtime = ctime; | 
|  | old_inode->i_ctime = ctime; | 
|  | new_inode->i_ctime = ctime; | 
|  |  | 
|  | if (old_dentry->d_parent != new_dentry->d_parent) { | 
|  | btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), | 
|  | BTRFS_I(old_inode), 1); | 
|  | btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), | 
|  | BTRFS_I(new_inode), 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now pin the logs of the roots. We do it to ensure that no other task | 
|  | * can sync the logs while we are in progress with the rename, because | 
|  | * that could result in an inconsistency in case any of the inodes that | 
|  | * are part of this rename operation were logged before. | 
|  | * | 
|  | * We pin the logs even if at this precise moment none of the inodes was | 
|  | * logged before. This is because right after we checked for that, some | 
|  | * other task fsyncing some other inode not involved with this rename | 
|  | * operation could log that one of our inodes exists. | 
|  | * | 
|  | * We don't need to pin the logs before the above calls to | 
|  | * btrfs_insert_inode_ref(), since those don't ever need to change a log. | 
|  | */ | 
|  | if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { | 
|  | btrfs_pin_log_trans(root); | 
|  | root_log_pinned = true; | 
|  | } | 
|  | if (new_ino != BTRFS_FIRST_FREE_OBJECTID) { | 
|  | btrfs_pin_log_trans(dest); | 
|  | dest_log_pinned = true; | 
|  | } | 
|  |  | 
|  | /* src is a subvolume */ | 
|  | if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); | 
|  | } else { /* src is an inode */ | 
|  | ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), | 
|  | BTRFS_I(old_dentry->d_inode), | 
|  | old_dentry->d_name.name, | 
|  | old_dentry->d_name.len); | 
|  | if (!ret) | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | /* dest is a subvolume */ | 
|  | if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); | 
|  | } else { /* dest is an inode */ | 
|  | ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), | 
|  | BTRFS_I(new_dentry->d_inode), | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len); | 
|  | if (!ret) | 
|  | ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len, 0, old_idx); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), | 
|  | old_dentry->d_name.name, | 
|  | old_dentry->d_name.len, 0, new_idx); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | if (old_inode->i_nlink == 1) | 
|  | BTRFS_I(old_inode)->dir_index = old_idx; | 
|  | if (new_inode->i_nlink == 1) | 
|  | BTRFS_I(new_inode)->dir_index = new_idx; | 
|  |  | 
|  | if (root_log_pinned) { | 
|  | btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), | 
|  | new_dentry->d_parent); | 
|  | btrfs_end_log_trans(root); | 
|  | root_log_pinned = false; | 
|  | } | 
|  | if (dest_log_pinned) { | 
|  | btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), | 
|  | old_dentry->d_parent); | 
|  | btrfs_end_log_trans(dest); | 
|  | dest_log_pinned = false; | 
|  | } | 
|  | out_fail: | 
|  | /* | 
|  | * If we have pinned a log and an error happened, we unpin tasks | 
|  | * trying to sync the log and force them to fallback to a transaction | 
|  | * commit if the log currently contains any of the inodes involved in | 
|  | * this rename operation (to ensure we do not persist a log with an | 
|  | * inconsistent state for any of these inodes or leading to any | 
|  | * inconsistencies when replayed). If the transaction was aborted, the | 
|  | * abortion reason is propagated to userspace when attempting to commit | 
|  | * the transaction. If the log does not contain any of these inodes, we | 
|  | * allow the tasks to sync it. | 
|  | */ | 
|  | if (ret && (root_log_pinned || dest_log_pinned)) { | 
|  | if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || | 
|  | btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || | 
|  | btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || | 
|  | btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)) | 
|  | btrfs_set_log_full_commit(trans); | 
|  |  | 
|  | if (root_log_pinned) { | 
|  | btrfs_end_log_trans(root); | 
|  | root_log_pinned = false; | 
|  | } | 
|  | if (dest_log_pinned) { | 
|  | btrfs_end_log_trans(dest); | 
|  | dest_log_pinned = false; | 
|  | } | 
|  | } | 
|  | ret2 = btrfs_end_transaction(trans); | 
|  | ret = ret ? ret : ret2; | 
|  | out_notrans: | 
|  | if (new_ino == BTRFS_FIRST_FREE_OBJECTID || | 
|  | old_ino == BTRFS_FIRST_FREE_OBJECTID) | 
|  | up_read(&fs_info->subvol_sem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct user_namespace *mnt_userns, | 
|  | struct inode *dir, | 
|  | struct dentry *dentry) | 
|  | { | 
|  | int ret; | 
|  | struct inode *inode; | 
|  | u64 objectid; | 
|  | u64 index; | 
|  |  | 
|  | ret = btrfs_get_free_objectid(root, &objectid); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, root, mnt_userns, dir, | 
|  | dentry->d_name.name, | 
|  | dentry->d_name.len, | 
|  | btrfs_ino(BTRFS_I(dir)), | 
|  | objectid, | 
|  | S_IFCHR | WHITEOUT_MODE, | 
|  | &index); | 
|  |  | 
|  | if (IS_ERR(inode)) { | 
|  | ret = PTR_ERR(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | inode->i_op = &btrfs_special_inode_operations; | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | WHITEOUT_DEV); | 
|  |  | 
|  | ret = btrfs_init_inode_security(trans, inode, dir, | 
|  | &dentry->d_name); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, | 
|  | BTRFS_I(inode), 0, index); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | out: | 
|  | unlock_new_inode(inode); | 
|  | if (ret) | 
|  | inode_dec_link_count(inode); | 
|  | iput(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_rename(struct user_namespace *mnt_userns, | 
|  | struct inode *old_dir, struct dentry *old_dentry, | 
|  | struct inode *new_dir, struct dentry *new_dentry, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | unsigned int trans_num_items; | 
|  | struct btrfs_root *root = BTRFS_I(old_dir)->root; | 
|  | struct btrfs_root *dest = BTRFS_I(new_dir)->root; | 
|  | struct inode *new_inode = d_inode(new_dentry); | 
|  | struct inode *old_inode = d_inode(old_dentry); | 
|  | u64 index = 0; | 
|  | int ret; | 
|  | int ret2; | 
|  | u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); | 
|  | bool log_pinned = false; | 
|  |  | 
|  | if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) | 
|  | return -EPERM; | 
|  |  | 
|  | /* we only allow rename subvolume link between subvolumes */ | 
|  | if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) | 
|  | return -EXDEV; | 
|  |  | 
|  | if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || | 
|  | (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  | if (S_ISDIR(old_inode->i_mode) && new_inode && | 
|  | new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  |  | 
|  | /* check for collisions, even if the  name isn't there */ | 
|  | ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len); | 
|  |  | 
|  | if (ret) { | 
|  | if (ret == -EEXIST) { | 
|  | /* we shouldn't get | 
|  | * eexist without a new_inode */ | 
|  | if (WARN_ON(!new_inode)) { | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | /* maybe -EOVERFLOW */ | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * we're using rename to replace one file with another.  Start IO on it | 
|  | * now so  we don't add too much work to the end of the transaction | 
|  | */ | 
|  | if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) | 
|  | filemap_flush(old_inode->i_mapping); | 
|  |  | 
|  | /* close the racy window with snapshot create/destroy ioctl */ | 
|  | if (old_ino == BTRFS_FIRST_FREE_OBJECTID) | 
|  | down_read(&fs_info->subvol_sem); | 
|  | /* | 
|  | * We want to reserve the absolute worst case amount of items.  So if | 
|  | * both inodes are subvols and we need to unlink them then that would | 
|  | * require 4 item modifications, but if they are both normal inodes it | 
|  | * would require 5 item modifications, so we'll assume they are normal | 
|  | * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items | 
|  | * should cover the worst case number of items we'll modify. | 
|  | * If our rename has the whiteout flag, we need more 5 units for the | 
|  | * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item | 
|  | * when selinux is enabled). | 
|  | */ | 
|  | trans_num_items = 11; | 
|  | if (flags & RENAME_WHITEOUT) | 
|  | trans_num_items += 5; | 
|  | trans = btrfs_start_transaction(root, trans_num_items); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out_notrans; | 
|  | } | 
|  |  | 
|  | if (dest != root) { | 
|  | ret = btrfs_record_root_in_trans(trans, dest); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  |  | 
|  | BTRFS_I(old_inode)->dir_index = 0ULL; | 
|  | if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
|  | /* force full log commit if subvolume involved. */ | 
|  | btrfs_set_log_full_commit(trans); | 
|  | } else { | 
|  | ret = btrfs_insert_inode_ref(trans, dest, | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len, | 
|  | old_ino, | 
|  | btrfs_ino(BTRFS_I(new_dir)), index); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | inode_inc_iversion(old_dir); | 
|  | inode_inc_iversion(new_dir); | 
|  | inode_inc_iversion(old_inode); | 
|  | old_dir->i_ctime = old_dir->i_mtime = | 
|  | new_dir->i_ctime = new_dir->i_mtime = | 
|  | old_inode->i_ctime = current_time(old_dir); | 
|  |  | 
|  | if (old_dentry->d_parent != new_dentry->d_parent) | 
|  | btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), | 
|  | BTRFS_I(old_inode), 1); | 
|  |  | 
|  | if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
|  | ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); | 
|  | } else { | 
|  | /* | 
|  | * Now pin the log. We do it to ensure that no other task can | 
|  | * sync the log while we are in progress with the rename, as | 
|  | * that could result in an inconsistency in case any of the | 
|  | * inodes that are part of this rename operation were logged | 
|  | * before. | 
|  | * | 
|  | * We pin the log even if at this precise moment none of the | 
|  | * inodes was logged before. This is because right after we | 
|  | * checked for that, some other task fsyncing some other inode | 
|  | * not involved with this rename operation could log that one of | 
|  | * our inodes exists. | 
|  | * | 
|  | * We don't need to pin the logs before the above call to | 
|  | * btrfs_insert_inode_ref(), since that does not need to change | 
|  | * a log. | 
|  | */ | 
|  | btrfs_pin_log_trans(root); | 
|  | log_pinned = true; | 
|  | ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), | 
|  | BTRFS_I(d_inode(old_dentry)), | 
|  | old_dentry->d_name.name, | 
|  | old_dentry->d_name.len); | 
|  | if (!ret) | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | if (new_inode) { | 
|  | inode_inc_iversion(new_inode); | 
|  | new_inode->i_ctime = current_time(new_inode); | 
|  | if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == | 
|  | BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { | 
|  | ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); | 
|  | BUG_ON(new_inode->i_nlink == 0); | 
|  | } else { | 
|  | ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), | 
|  | BTRFS_I(d_inode(new_dentry)), | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len); | 
|  | } | 
|  | if (!ret && new_inode->i_nlink == 0) | 
|  | ret = btrfs_orphan_add(trans, | 
|  | BTRFS_I(d_inode(new_dentry))); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), | 
|  | new_dentry->d_name.name, | 
|  | new_dentry->d_name.len, 0, index); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | if (old_inode->i_nlink == 1) | 
|  | BTRFS_I(old_inode)->dir_index = index; | 
|  |  | 
|  | if (log_pinned) { | 
|  | btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), | 
|  | new_dentry->d_parent); | 
|  | btrfs_end_log_trans(root); | 
|  | log_pinned = false; | 
|  | } | 
|  |  | 
|  | if (flags & RENAME_WHITEOUT) { | 
|  | ret = btrfs_whiteout_for_rename(trans, root, mnt_userns, | 
|  | old_dir, old_dentry); | 
|  |  | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_fail; | 
|  | } | 
|  | } | 
|  | out_fail: | 
|  | /* | 
|  | * If we have pinned the log and an error happened, we unpin tasks | 
|  | * trying to sync the log and force them to fallback to a transaction | 
|  | * commit if the log currently contains any of the inodes involved in | 
|  | * this rename operation (to ensure we do not persist a log with an | 
|  | * inconsistent state for any of these inodes or leading to any | 
|  | * inconsistencies when replayed). If the transaction was aborted, the | 
|  | * abortion reason is propagated to userspace when attempting to commit | 
|  | * the transaction. If the log does not contain any of these inodes, we | 
|  | * allow the tasks to sync it. | 
|  | */ | 
|  | if (ret && log_pinned) { | 
|  | if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || | 
|  | btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || | 
|  | btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || | 
|  | (new_inode && | 
|  | btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) | 
|  | btrfs_set_log_full_commit(trans); | 
|  |  | 
|  | btrfs_end_log_trans(root); | 
|  | log_pinned = false; | 
|  | } | 
|  | ret2 = btrfs_end_transaction(trans); | 
|  | ret = ret ? ret : ret2; | 
|  | out_notrans: | 
|  | if (old_ino == BTRFS_FIRST_FREE_OBJECTID) | 
|  | up_read(&fs_info->subvol_sem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, | 
|  | struct dentry *old_dentry, struct inode *new_dir, | 
|  | struct dentry *new_dentry, unsigned int flags) | 
|  | { | 
|  | if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & RENAME_EXCHANGE) | 
|  | return btrfs_rename_exchange(old_dir, old_dentry, new_dir, | 
|  | new_dentry); | 
|  |  | 
|  | return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, | 
|  | new_dentry, flags); | 
|  | } | 
|  |  | 
|  | struct btrfs_delalloc_work { | 
|  | struct inode *inode; | 
|  | struct completion completion; | 
|  | struct list_head list; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | static void btrfs_run_delalloc_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_delalloc_work *delalloc_work; | 
|  | struct inode *inode; | 
|  |  | 
|  | delalloc_work = container_of(work, struct btrfs_delalloc_work, | 
|  | work); | 
|  | inode = delalloc_work->inode; | 
|  | filemap_flush(inode->i_mapping); | 
|  | if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | filemap_flush(inode->i_mapping); | 
|  |  | 
|  | iput(inode); | 
|  | complete(&delalloc_work->completion); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) | 
|  | { | 
|  | struct btrfs_delalloc_work *work; | 
|  |  | 
|  | work = kmalloc(sizeof(*work), GFP_NOFS); | 
|  | if (!work) | 
|  | return NULL; | 
|  |  | 
|  | init_completion(&work->completion); | 
|  | INIT_LIST_HEAD(&work->list); | 
|  | work->inode = inode; | 
|  | btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); | 
|  |  | 
|  | return work; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * some fairly slow code that needs optimization. This walks the list | 
|  | * of all the inodes with pending delalloc and forces them to disk. | 
|  | */ | 
|  | static int start_delalloc_inodes(struct btrfs_root *root, | 
|  | struct writeback_control *wbc, bool snapshot, | 
|  | bool in_reclaim_context) | 
|  | { | 
|  | struct btrfs_inode *binode; | 
|  | struct inode *inode; | 
|  | struct btrfs_delalloc_work *work, *next; | 
|  | struct list_head works; | 
|  | struct list_head splice; | 
|  | int ret = 0; | 
|  | bool full_flush = wbc->nr_to_write == LONG_MAX; | 
|  |  | 
|  | INIT_LIST_HEAD(&works); | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | mutex_lock(&root->delalloc_mutex); | 
|  | spin_lock(&root->delalloc_lock); | 
|  | list_splice_init(&root->delalloc_inodes, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | binode = list_entry(splice.next, struct btrfs_inode, | 
|  | delalloc_inodes); | 
|  |  | 
|  | list_move_tail(&binode->delalloc_inodes, | 
|  | &root->delalloc_inodes); | 
|  |  | 
|  | if (in_reclaim_context && | 
|  | test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) | 
|  | continue; | 
|  |  | 
|  | inode = igrab(&binode->vfs_inode); | 
|  | if (!inode) { | 
|  | cond_resched_lock(&root->delalloc_lock); | 
|  | continue; | 
|  | } | 
|  | spin_unlock(&root->delalloc_lock); | 
|  |  | 
|  | if (snapshot) | 
|  | set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
|  | &binode->runtime_flags); | 
|  | if (full_flush) { | 
|  | work = btrfs_alloc_delalloc_work(inode); | 
|  | if (!work) { | 
|  | iput(inode); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | list_add_tail(&work->list, &works); | 
|  | btrfs_queue_work(root->fs_info->flush_workers, | 
|  | &work->work); | 
|  | } else { | 
|  | ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); | 
|  | btrfs_add_delayed_iput(inode); | 
|  | if (ret || wbc->nr_to_write <= 0) | 
|  | goto out; | 
|  | } | 
|  | cond_resched(); | 
|  | spin_lock(&root->delalloc_lock); | 
|  | } | 
|  | spin_unlock(&root->delalloc_lock); | 
|  |  | 
|  | out: | 
|  | list_for_each_entry_safe(work, next, &works, list) { | 
|  | list_del_init(&work->list); | 
|  | wait_for_completion(&work->completion); | 
|  | kfree(work); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&splice)) { | 
|  | spin_lock(&root->delalloc_lock); | 
|  | list_splice_tail(&splice, &root->delalloc_inodes); | 
|  | spin_unlock(&root->delalloc_lock); | 
|  | } | 
|  | mutex_unlock(&root->delalloc_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .nr_to_write = LONG_MAX, | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | .range_start = 0, | 
|  | .range_end = LLONG_MAX, | 
|  | }; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | return -EROFS; | 
|  |  | 
|  | return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); | 
|  | } | 
|  |  | 
|  | int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, | 
|  | bool in_reclaim_context) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .nr_to_write = nr, | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | .range_start = 0, | 
|  | .range_end = LLONG_MAX, | 
|  | }; | 
|  | struct btrfs_root *root; | 
|  | struct list_head splice; | 
|  | int ret; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | return -EROFS; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | mutex_lock(&fs_info->delalloc_root_mutex); | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | list_splice_init(&fs_info->delalloc_roots, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | /* | 
|  | * Reset nr_to_write here so we know that we're doing a full | 
|  | * flush. | 
|  | */ | 
|  | if (nr == LONG_MAX) | 
|  | wbc.nr_to_write = LONG_MAX; | 
|  |  | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | delalloc_root); | 
|  | root = btrfs_grab_root(root); | 
|  | BUG_ON(!root); | 
|  | list_move_tail(&root->delalloc_root, | 
|  | &fs_info->delalloc_roots); | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  |  | 
|  | ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); | 
|  | btrfs_put_root(root); | 
|  | if (ret < 0 || wbc.nr_to_write <= 0) | 
|  | goto out; | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | if (!list_empty(&splice)) { | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | list_splice_tail(&splice, &fs_info->delalloc_roots); | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  | mutex_unlock(&fs_info->delalloc_root_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, | 
|  | struct dentry *dentry, const char *symname) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode = NULL; | 
|  | int err; | 
|  | u64 objectid; | 
|  | u64 index = 0; | 
|  | int name_len; | 
|  | int datasize; | 
|  | unsigned long ptr; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | name_len = strlen(symname); | 
|  | if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) | 
|  | return -ENAMETOOLONG; | 
|  |  | 
|  | /* | 
|  | * 2 items for inode item and ref | 
|  | * 2 items for dir items | 
|  | * 1 item for updating parent inode item | 
|  | * 1 item for the inline extent item | 
|  | * 1 item for xattr if selinux is on | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 7); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | err = btrfs_get_free_objectid(root, &objectid); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, root, mnt_userns, dir, | 
|  | dentry->d_name.name, dentry->d_name.len, | 
|  | btrfs_ino(BTRFS_I(dir)), objectid, | 
|  | S_IFLNK | S_IRWXUGO, &index); | 
|  | if (IS_ERR(inode)) { | 
|  | err = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the active LSM wants to access the inode during | 
|  | * d_instantiate it needs these. Smack checks to see | 
|  | * if the filesystem supports xattrs by looking at the | 
|  | * ops vector. | 
|  | */ | 
|  | inode->i_fop = &btrfs_file_operations; | 
|  | inode->i_op = &btrfs_file_inode_operations; | 
|  | inode->i_mapping->a_ops = &btrfs_aops; | 
|  |  | 
|  | err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | key.objectid = btrfs_ino(BTRFS_I(inode)); | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | datasize = btrfs_file_extent_calc_inline_size(name_len); | 
|  | err = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | datasize); | 
|  | if (err) { | 
|  | btrfs_free_path(path); | 
|  | goto out_unlock; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, ei, trans->transid); | 
|  | btrfs_set_file_extent_type(leaf, ei, | 
|  | BTRFS_FILE_EXTENT_INLINE); | 
|  | btrfs_set_file_extent_encryption(leaf, ei, 0); | 
|  | btrfs_set_file_extent_compression(leaf, ei, 0); | 
|  | btrfs_set_file_extent_other_encoding(leaf, ei, 0); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); | 
|  |  | 
|  | ptr = btrfs_file_extent_inline_start(ei); | 
|  | write_extent_buffer(leaf, symname, ptr, name_len); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | inode->i_op = &btrfs_symlink_inode_operations; | 
|  | inode_nohighmem(inode); | 
|  | inode_set_bytes(inode, name_len); | 
|  | btrfs_i_size_write(BTRFS_I(inode), name_len); | 
|  | err = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | /* | 
|  | * Last step, add directory indexes for our symlink inode. This is the | 
|  | * last step to avoid extra cleanup of these indexes if an error happens | 
|  | * elsewhere above. | 
|  | */ | 
|  | if (!err) | 
|  | err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, | 
|  | BTRFS_I(inode), 0, index); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | d_instantiate_new(dentry, inode); | 
|  |  | 
|  | out_unlock: | 
|  | btrfs_end_transaction(trans); | 
|  | if (err && inode) { | 
|  | inode_dec_link_count(inode); | 
|  | discard_new_inode(inode); | 
|  | } | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct btrfs_trans_handle *insert_prealloc_file_extent( | 
|  | struct btrfs_trans_handle *trans_in, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_key *ins, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct btrfs_file_extent_item stack_fi; | 
|  | struct btrfs_replace_extent_info extent_info; | 
|  | struct btrfs_trans_handle *trans = trans_in; | 
|  | struct btrfs_path *path; | 
|  | u64 start = ins->objectid; | 
|  | u64 len = ins->offset; | 
|  | int qgroup_released; | 
|  | int ret; | 
|  |  | 
|  | memset(&stack_fi, 0, sizeof(stack_fi)); | 
|  |  | 
|  | btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); | 
|  | btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); | 
|  | btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); | 
|  | btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); | 
|  | btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); | 
|  | btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); | 
|  | /* Encryption and other encoding is reserved and all 0 */ | 
|  |  | 
|  | qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); | 
|  | if (qgroup_released < 0) | 
|  | return ERR_PTR(qgroup_released); | 
|  |  | 
|  | if (trans) { | 
|  | ret = insert_reserved_file_extent(trans, inode, | 
|  | file_offset, &stack_fi, | 
|  | true, qgroup_released); | 
|  | if (ret) | 
|  | goto free_qgroup; | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | extent_info.disk_offset = start; | 
|  | extent_info.disk_len = len; | 
|  | extent_info.data_offset = 0; | 
|  | extent_info.data_len = len; | 
|  | extent_info.file_offset = file_offset; | 
|  | extent_info.extent_buf = (char *)&stack_fi; | 
|  | extent_info.is_new_extent = true; | 
|  | extent_info.qgroup_reserved = qgroup_released; | 
|  | extent_info.insertions = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto free_qgroup; | 
|  | } | 
|  |  | 
|  | ret = btrfs_replace_file_extents(inode, path, file_offset, | 
|  | file_offset + len - 1, &extent_info, | 
|  | &trans); | 
|  | btrfs_free_path(path); | 
|  | if (ret) | 
|  | goto free_qgroup; | 
|  | return trans; | 
|  |  | 
|  | free_qgroup: | 
|  | /* | 
|  | * We have released qgroup data range at the beginning of the function, | 
|  | * and normally qgroup_released bytes will be freed when committing | 
|  | * transaction. | 
|  | * But if we error out early, we have to free what we have released | 
|  | * or we leak qgroup data reservation. | 
|  | */ | 
|  | btrfs_qgroup_free_refroot(inode->root->fs_info, | 
|  | inode->root->root_key.objectid, qgroup_released, | 
|  | BTRFS_QGROUP_RSV_DATA); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static int __btrfs_prealloc_file_range(struct inode *inode, int mode, | 
|  | u64 start, u64 num_bytes, u64 min_size, | 
|  | loff_t actual_len, u64 *alloc_hint, | 
|  | struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
|  | struct extent_map *em; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_key ins; | 
|  | u64 cur_offset = start; | 
|  | u64 clear_offset = start; | 
|  | u64 i_size; | 
|  | u64 cur_bytes; | 
|  | u64 last_alloc = (u64)-1; | 
|  | int ret = 0; | 
|  | bool own_trans = true; | 
|  | u64 end = start + num_bytes - 1; | 
|  |  | 
|  | if (trans) | 
|  | own_trans = false; | 
|  | while (num_bytes > 0) { | 
|  | cur_bytes = min_t(u64, num_bytes, SZ_256M); | 
|  | cur_bytes = max(cur_bytes, min_size); | 
|  | /* | 
|  | * If we are severely fragmented we could end up with really | 
|  | * small allocations, so if the allocator is returning small | 
|  | * chunks lets make its job easier by only searching for those | 
|  | * sized chunks. | 
|  | */ | 
|  | cur_bytes = min(cur_bytes, last_alloc); | 
|  | ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, | 
|  | min_size, 0, *alloc_hint, &ins, 1, 0); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We've reserved this space, and thus converted it from | 
|  | * ->bytes_may_use to ->bytes_reserved.  Any error that happens | 
|  | * from here on out we will only need to clear our reservation | 
|  | * for the remaining unreserved area, so advance our | 
|  | * clear_offset by our extent size. | 
|  | */ | 
|  | clear_offset += ins.offset; | 
|  |  | 
|  | last_alloc = ins.offset; | 
|  | trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), | 
|  | &ins, cur_offset); | 
|  | /* | 
|  | * Now that we inserted the prealloc extent we can finally | 
|  | * decrement the number of reservations in the block group. | 
|  | * If we did it before, we could race with relocation and have | 
|  | * relocation miss the reserved extent, making it fail later. | 
|  | */ | 
|  | btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | btrfs_free_reserved_extent(fs_info, ins.objectid, | 
|  | ins.offset, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, | 
|  | cur_offset + ins.offset -1, 0); | 
|  |  | 
|  | em = alloc_extent_map(); | 
|  | if (!em) { | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | em->start = cur_offset; | 
|  | em->orig_start = cur_offset; | 
|  | em->len = ins.offset; | 
|  | em->block_start = ins.objectid; | 
|  | em->block_len = ins.offset; | 
|  | em->orig_block_len = ins.offset; | 
|  | em->ram_bytes = ins.offset; | 
|  | set_bit(EXTENT_FLAG_PREALLOC, &em->flags); | 
|  | em->generation = trans->transid; | 
|  |  | 
|  | while (1) { | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, em, 1); | 
|  | write_unlock(&em_tree->lock); | 
|  | if (ret != -EEXIST) | 
|  | break; | 
|  | btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, | 
|  | cur_offset + ins.offset - 1, | 
|  | 0); | 
|  | } | 
|  | free_extent_map(em); | 
|  | next: | 
|  | num_bytes -= ins.offset; | 
|  | cur_offset += ins.offset; | 
|  | *alloc_hint = ins.objectid + ins.offset; | 
|  |  | 
|  | inode_inc_iversion(inode); | 
|  | inode->i_ctime = current_time(inode); | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
|  | (actual_len > inode->i_size) && | 
|  | (cur_offset > inode->i_size)) { | 
|  | if (cur_offset > actual_len) | 
|  | i_size = actual_len; | 
|  | else | 
|  | i_size = cur_offset; | 
|  | i_size_write(inode, i_size); | 
|  | btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); | 
|  | } | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  |  | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | if (own_trans) | 
|  | btrfs_end_transaction(trans); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (own_trans) { | 
|  | btrfs_end_transaction(trans); | 
|  | trans = NULL; | 
|  | } | 
|  | } | 
|  | if (clear_offset < end) | 
|  | btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, | 
|  | end - clear_offset + 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_prealloc_file_range(struct inode *inode, int mode, | 
|  | u64 start, u64 num_bytes, u64 min_size, | 
|  | loff_t actual_len, u64 *alloc_hint) | 
|  | { | 
|  | return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, | 
|  | min_size, actual_len, alloc_hint, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | int btrfs_prealloc_file_range_trans(struct inode *inode, | 
|  | struct btrfs_trans_handle *trans, int mode, | 
|  | u64 start, u64 num_bytes, u64 min_size, | 
|  | loff_t actual_len, u64 *alloc_hint) | 
|  | { | 
|  | return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, | 
|  | min_size, actual_len, alloc_hint, trans); | 
|  | } | 
|  |  | 
|  | static int btrfs_set_page_dirty(struct page *page) | 
|  | { | 
|  | return __set_page_dirty_nobuffers(page); | 
|  | } | 
|  |  | 
|  | static int btrfs_permission(struct user_namespace *mnt_userns, | 
|  | struct inode *inode, int mask) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | umode_t mode = inode->i_mode; | 
|  |  | 
|  | if (mask & MAY_WRITE && | 
|  | (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { | 
|  | if (btrfs_root_readonly(root)) | 
|  | return -EROFS; | 
|  | if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) | 
|  | return -EACCES; | 
|  | } | 
|  | return generic_permission(mnt_userns, inode, mask); | 
|  | } | 
|  |  | 
|  | static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | struct inode *inode = NULL; | 
|  | u64 objectid; | 
|  | u64 index; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * 5 units required for adding orphan entry | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 5); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_get_free_objectid(root, &objectid); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0, | 
|  | btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); | 
|  | if (IS_ERR(inode)) { | 
|  | ret = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode->i_fop = &btrfs_file_operations; | 
|  | inode->i_op = &btrfs_file_inode_operations; | 
|  |  | 
|  | inode->i_mapping->a_ops = &btrfs_aops; | 
|  |  | 
|  | ret = btrfs_init_inode_security(trans, inode, dir, NULL); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We set number of links to 0 in btrfs_new_inode(), and here we set | 
|  | * it to 1 because d_tmpfile() will issue a warning if the count is 0, | 
|  | * through: | 
|  | * | 
|  | *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink() | 
|  | */ | 
|  | set_nlink(inode, 1); | 
|  | d_tmpfile(dentry, inode); | 
|  | unlock_new_inode(inode); | 
|  | mark_inode_dirty(inode); | 
|  | out: | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret && inode) | 
|  | discard_new_inode(inode); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  | u32 len; | 
|  |  | 
|  | ASSERT(end + 1 - start <= U32_MAX); | 
|  | len = end + 1 - start; | 
|  | while (index <= end_index) { | 
|  | page = find_get_page(inode->vfs_inode.i_mapping, index); | 
|  | ASSERT(page); /* Pages should be in the extent_io_tree */ | 
|  |  | 
|  | btrfs_page_set_writeback(fs_info, page, start, len); | 
|  | put_page(page); | 
|  | index++; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SWAP | 
|  | /* | 
|  | * Add an entry indicating a block group or device which is pinned by a | 
|  | * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a | 
|  | * negative errno on failure. | 
|  | */ | 
|  | static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, | 
|  | bool is_block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; | 
|  | struct btrfs_swapfile_pin *sp, *entry; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  |  | 
|  | sp = kmalloc(sizeof(*sp), GFP_NOFS); | 
|  | if (!sp) | 
|  | return -ENOMEM; | 
|  | sp->ptr = ptr; | 
|  | sp->inode = inode; | 
|  | sp->is_block_group = is_block_group; | 
|  | sp->bg_extent_count = 1; | 
|  |  | 
|  | spin_lock(&fs_info->swapfile_pins_lock); | 
|  | p = &fs_info->swapfile_pins.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct btrfs_swapfile_pin, node); | 
|  | if (sp->ptr < entry->ptr || | 
|  | (sp->ptr == entry->ptr && sp->inode < entry->inode)) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (sp->ptr > entry->ptr || | 
|  | (sp->ptr == entry->ptr && sp->inode > entry->inode)) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | if (is_block_group) | 
|  | entry->bg_extent_count++; | 
|  | spin_unlock(&fs_info->swapfile_pins_lock); | 
|  | kfree(sp); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | rb_link_node(&sp->node, parent, p); | 
|  | rb_insert_color(&sp->node, &fs_info->swapfile_pins); | 
|  | spin_unlock(&fs_info->swapfile_pins_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free all of the entries pinned by this swapfile. */ | 
|  | static void btrfs_free_swapfile_pins(struct inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; | 
|  | struct btrfs_swapfile_pin *sp; | 
|  | struct rb_node *node, *next; | 
|  |  | 
|  | spin_lock(&fs_info->swapfile_pins_lock); | 
|  | node = rb_first(&fs_info->swapfile_pins); | 
|  | while (node) { | 
|  | next = rb_next(node); | 
|  | sp = rb_entry(node, struct btrfs_swapfile_pin, node); | 
|  | if (sp->inode == inode) { | 
|  | rb_erase(&sp->node, &fs_info->swapfile_pins); | 
|  | if (sp->is_block_group) { | 
|  | btrfs_dec_block_group_swap_extents(sp->ptr, | 
|  | sp->bg_extent_count); | 
|  | btrfs_put_block_group(sp->ptr); | 
|  | } | 
|  | kfree(sp); | 
|  | } | 
|  | node = next; | 
|  | } | 
|  | spin_unlock(&fs_info->swapfile_pins_lock); | 
|  | } | 
|  |  | 
|  | struct btrfs_swap_info { | 
|  | u64 start; | 
|  | u64 block_start; | 
|  | u64 block_len; | 
|  | u64 lowest_ppage; | 
|  | u64 highest_ppage; | 
|  | unsigned long nr_pages; | 
|  | int nr_extents; | 
|  | }; | 
|  |  | 
|  | static int btrfs_add_swap_extent(struct swap_info_struct *sis, | 
|  | struct btrfs_swap_info *bsi) | 
|  | { | 
|  | unsigned long nr_pages; | 
|  | unsigned long max_pages; | 
|  | u64 first_ppage, first_ppage_reported, next_ppage; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Our swapfile may have had its size extended after the swap header was | 
|  | * written. In that case activating the swapfile should not go beyond | 
|  | * the max size set in the swap header. | 
|  | */ | 
|  | if (bsi->nr_pages >= sis->max) | 
|  | return 0; | 
|  |  | 
|  | max_pages = sis->max - bsi->nr_pages; | 
|  | first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; | 
|  | next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, | 
|  | PAGE_SIZE) >> PAGE_SHIFT; | 
|  |  | 
|  | if (first_ppage >= next_ppage) | 
|  | return 0; | 
|  | nr_pages = next_ppage - first_ppage; | 
|  | nr_pages = min(nr_pages, max_pages); | 
|  |  | 
|  | first_ppage_reported = first_ppage; | 
|  | if (bsi->start == 0) | 
|  | first_ppage_reported++; | 
|  | if (bsi->lowest_ppage > first_ppage_reported) | 
|  | bsi->lowest_ppage = first_ppage_reported; | 
|  | if (bsi->highest_ppage < (next_ppage - 1)) | 
|  | bsi->highest_ppage = next_ppage - 1; | 
|  |  | 
|  | ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | bsi->nr_extents += ret; | 
|  | bsi->nr_pages += nr_pages; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_swap_deactivate(struct file *file) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  |  | 
|  | btrfs_free_swapfile_pins(inode); | 
|  | atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); | 
|  | } | 
|  |  | 
|  | static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, | 
|  | sector_t *span) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_map *em = NULL; | 
|  | struct btrfs_device *device = NULL; | 
|  | struct btrfs_swap_info bsi = { | 
|  | .lowest_ppage = (sector_t)-1ULL, | 
|  | }; | 
|  | int ret = 0; | 
|  | u64 isize; | 
|  | u64 start; | 
|  |  | 
|  | /* | 
|  | * If the swap file was just created, make sure delalloc is done. If the | 
|  | * file changes again after this, the user is doing something stupid and | 
|  | * we don't really care. | 
|  | */ | 
|  | ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * The inode is locked, so these flags won't change after we check them. | 
|  | */ | 
|  | if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { | 
|  | btrfs_warn(fs_info, "swapfile must not be compressed"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { | 
|  | btrfs_warn(fs_info, "swapfile must not be copy-on-write"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
|  | btrfs_warn(fs_info, "swapfile must not be checksummed"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Balance or device remove/replace/resize can move stuff around from | 
|  | * under us. The exclop protection makes sure they aren't running/won't | 
|  | * run concurrently while we are mapping the swap extents, and | 
|  | * fs_info->swapfile_pins prevents them from running while the swap | 
|  | * file is active and moving the extents. Note that this also prevents | 
|  | * a concurrent device add which isn't actually necessary, but it's not | 
|  | * really worth the trouble to allow it. | 
|  | */ | 
|  | if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { | 
|  | btrfs_warn(fs_info, | 
|  | "cannot activate swapfile while exclusive operation is running"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent snapshot creation while we are activating the swap file. | 
|  | * We do not want to race with snapshot creation. If snapshot creation | 
|  | * already started before we bumped nr_swapfiles from 0 to 1 and | 
|  | * completes before the first write into the swap file after it is | 
|  | * activated, than that write would fallback to COW. | 
|  | */ | 
|  | if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { | 
|  | btrfs_exclop_finish(fs_info); | 
|  | btrfs_warn(fs_info, | 
|  | "cannot activate swapfile because snapshot creation is in progress"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* | 
|  | * Snapshots can create extents which require COW even if NODATACOW is | 
|  | * set. We use this counter to prevent snapshots. We must increment it | 
|  | * before walking the extents because we don't want a concurrent | 
|  | * snapshot to run after we've already checked the extents. | 
|  | * | 
|  | * It is possible that subvolume is marked for deletion but still not | 
|  | * removed yet. To prevent this race, we check the root status before | 
|  | * activating the swapfile. | 
|  | */ | 
|  | spin_lock(&root->root_item_lock); | 
|  | if (btrfs_root_dead(root)) { | 
|  | spin_unlock(&root->root_item_lock); | 
|  |  | 
|  | btrfs_exclop_finish(fs_info); | 
|  | btrfs_warn(fs_info, | 
|  | "cannot activate swapfile because subvolume %llu is being deleted", | 
|  | root->root_key.objectid); | 
|  | return -EPERM; | 
|  | } | 
|  | atomic_inc(&root->nr_swapfiles); | 
|  | spin_unlock(&root->root_item_lock); | 
|  |  | 
|  | isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); | 
|  |  | 
|  | lock_extent_bits(io_tree, 0, isize - 1, &cached_state); | 
|  | start = 0; | 
|  | while (start < isize) { | 
|  | u64 logical_block_start, physical_block_start; | 
|  | struct btrfs_block_group *bg; | 
|  | u64 len = isize - start; | 
|  |  | 
|  | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (em->block_start == EXTENT_MAP_HOLE) { | 
|  | btrfs_warn(fs_info, "swapfile must not have holes"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (em->block_start == EXTENT_MAP_INLINE) { | 
|  | /* | 
|  | * It's unlikely we'll ever actually find ourselves | 
|  | * here, as a file small enough to fit inline won't be | 
|  | * big enough to store more than the swap header, but in | 
|  | * case something changes in the future, let's catch it | 
|  | * here rather than later. | 
|  | */ | 
|  | btrfs_warn(fs_info, "swapfile must not be inline"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
|  | btrfs_warn(fs_info, "swapfile must not be compressed"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | logical_block_start = em->block_start + (start - em->start); | 
|  | len = min(len, em->len - (start - em->start)); | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret) { | 
|  | ret = 0; | 
|  | } else { | 
|  | btrfs_warn(fs_info, | 
|  | "swapfile must not be copy-on-write"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | em = btrfs_get_chunk_map(fs_info, logical_block_start, len); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { | 
|  | btrfs_warn(fs_info, | 
|  | "swapfile must have single data profile"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (device == NULL) { | 
|  | device = em->map_lookup->stripes[0].dev; | 
|  | ret = btrfs_add_swapfile_pin(inode, device, false); | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | else if (ret) | 
|  | goto out; | 
|  | } else if (device != em->map_lookup->stripes[0].dev) { | 
|  | btrfs_warn(fs_info, "swapfile must be on one device"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | physical_block_start = (em->map_lookup->stripes[0].physical + | 
|  | (logical_block_start - em->start)); | 
|  | len = min(len, em->len - (logical_block_start - em->start)); | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, logical_block_start); | 
|  | if (!bg) { | 
|  | btrfs_warn(fs_info, | 
|  | "could not find block group containing swapfile"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!btrfs_inc_block_group_swap_extents(bg)) { | 
|  | btrfs_warn(fs_info, | 
|  | "block group for swapfile at %llu is read-only%s", | 
|  | bg->start, | 
|  | atomic_read(&fs_info->scrubs_running) ? | 
|  | " (scrub running)" : ""); | 
|  | btrfs_put_block_group(bg); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_swapfile_pin(inode, bg, true); | 
|  | if (ret) { | 
|  | btrfs_put_block_group(bg); | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | else | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (bsi.block_len && | 
|  | bsi.block_start + bsi.block_len == physical_block_start) { | 
|  | bsi.block_len += len; | 
|  | } else { | 
|  | if (bsi.block_len) { | 
|  | ret = btrfs_add_swap_extent(sis, &bsi); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | bsi.start = start; | 
|  | bsi.block_start = physical_block_start; | 
|  | bsi.block_len = len; | 
|  | } | 
|  |  | 
|  | start += len; | 
|  | } | 
|  |  | 
|  | if (bsi.block_len) | 
|  | ret = btrfs_add_swap_extent(sis, &bsi); | 
|  |  | 
|  | out: | 
|  | if (!IS_ERR_OR_NULL(em)) | 
|  | free_extent_map(em); | 
|  |  | 
|  | unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); | 
|  |  | 
|  | if (ret) | 
|  | btrfs_swap_deactivate(file); | 
|  |  | 
|  | btrfs_drew_write_unlock(&root->snapshot_lock); | 
|  |  | 
|  | btrfs_exclop_finish(fs_info); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (device) | 
|  | sis->bdev = device->bdev; | 
|  | *span = bsi.highest_ppage - bsi.lowest_ppage + 1; | 
|  | sis->max = bsi.nr_pages; | 
|  | sis->pages = bsi.nr_pages - 1; | 
|  | sis->highest_bit = bsi.nr_pages - 1; | 
|  | return bsi.nr_extents; | 
|  | } | 
|  | #else | 
|  | static void btrfs_swap_deactivate(struct file *file) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, | 
|  | sector_t *span) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Update the number of bytes used in the VFS' inode. When we replace extents in | 
|  | * a range (clone, dedupe, fallocate's zero range), we must update the number of | 
|  | * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls | 
|  | * always get a correct value. | 
|  | */ | 
|  | void btrfs_update_inode_bytes(struct btrfs_inode *inode, | 
|  | const u64 add_bytes, | 
|  | const u64 del_bytes) | 
|  | { | 
|  | if (add_bytes == del_bytes) | 
|  | return; | 
|  |  | 
|  | spin_lock(&inode->lock); | 
|  | if (del_bytes > 0) | 
|  | inode_sub_bytes(&inode->vfs_inode, del_bytes); | 
|  | if (add_bytes > 0) | 
|  | inode_add_bytes(&inode->vfs_inode, add_bytes); | 
|  | spin_unlock(&inode->lock); | 
|  | } | 
|  |  | 
|  | static const struct inode_operations btrfs_dir_inode_operations = { | 
|  | .getattr	= btrfs_getattr, | 
|  | .lookup		= btrfs_lookup, | 
|  | .create		= btrfs_create, | 
|  | .unlink		= btrfs_unlink, | 
|  | .link		= btrfs_link, | 
|  | .mkdir		= btrfs_mkdir, | 
|  | .rmdir		= btrfs_rmdir, | 
|  | .rename		= btrfs_rename2, | 
|  | .symlink	= btrfs_symlink, | 
|  | .setattr	= btrfs_setattr, | 
|  | .mknod		= btrfs_mknod, | 
|  | .listxattr	= btrfs_listxattr, | 
|  | .permission	= btrfs_permission, | 
|  | .get_acl	= btrfs_get_acl, | 
|  | .set_acl	= btrfs_set_acl, | 
|  | .update_time	= btrfs_update_time, | 
|  | .tmpfile        = btrfs_tmpfile, | 
|  | .fileattr_get	= btrfs_fileattr_get, | 
|  | .fileattr_set	= btrfs_fileattr_set, | 
|  | }; | 
|  |  | 
|  | static const struct file_operations btrfs_dir_file_operations = { | 
|  | .llseek		= btrfs_dir_llseek, | 
|  | .read		= generic_read_dir, | 
|  | .iterate_shared	= btrfs_real_readdir, | 
|  | .open		= btrfs_opendir, | 
|  | .unlocked_ioctl	= btrfs_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= btrfs_compat_ioctl, | 
|  | #endif | 
|  | .release        = btrfs_release_file, | 
|  | .fsync		= btrfs_sync_file, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * btrfs doesn't support the bmap operation because swapfiles | 
|  | * use bmap to make a mapping of extents in the file.  They assume | 
|  | * these extents won't change over the life of the file and they | 
|  | * use the bmap result to do IO directly to the drive. | 
|  | * | 
|  | * the btrfs bmap call would return logical addresses that aren't | 
|  | * suitable for IO and they also will change frequently as COW | 
|  | * operations happen.  So, swapfile + btrfs == corruption. | 
|  | * | 
|  | * For now we're avoiding this by dropping bmap. | 
|  | */ | 
|  | static const struct address_space_operations btrfs_aops = { | 
|  | .readpage	= btrfs_readpage, | 
|  | .writepage	= btrfs_writepage, | 
|  | .writepages	= btrfs_writepages, | 
|  | .readahead	= btrfs_readahead, | 
|  | .direct_IO	= noop_direct_IO, | 
|  | .invalidatepage = btrfs_invalidatepage, | 
|  | .releasepage	= btrfs_releasepage, | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migratepage	= btrfs_migratepage, | 
|  | #endif | 
|  | .set_page_dirty	= btrfs_set_page_dirty, | 
|  | .error_remove_page = generic_error_remove_page, | 
|  | .swap_activate	= btrfs_swap_activate, | 
|  | .swap_deactivate = btrfs_swap_deactivate, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations btrfs_file_inode_operations = { | 
|  | .getattr	= btrfs_getattr, | 
|  | .setattr	= btrfs_setattr, | 
|  | .listxattr      = btrfs_listxattr, | 
|  | .permission	= btrfs_permission, | 
|  | .fiemap		= btrfs_fiemap, | 
|  | .get_acl	= btrfs_get_acl, | 
|  | .set_acl	= btrfs_set_acl, | 
|  | .update_time	= btrfs_update_time, | 
|  | .fileattr_get	= btrfs_fileattr_get, | 
|  | .fileattr_set	= btrfs_fileattr_set, | 
|  | }; | 
|  | static const struct inode_operations btrfs_special_inode_operations = { | 
|  | .getattr	= btrfs_getattr, | 
|  | .setattr	= btrfs_setattr, | 
|  | .permission	= btrfs_permission, | 
|  | .listxattr	= btrfs_listxattr, | 
|  | .get_acl	= btrfs_get_acl, | 
|  | .set_acl	= btrfs_set_acl, | 
|  | .update_time	= btrfs_update_time, | 
|  | }; | 
|  | static const struct inode_operations btrfs_symlink_inode_operations = { | 
|  | .get_link	= page_get_link, | 
|  | .getattr	= btrfs_getattr, | 
|  | .setattr	= btrfs_setattr, | 
|  | .permission	= btrfs_permission, | 
|  | .listxattr	= btrfs_listxattr, | 
|  | .update_time	= btrfs_update_time, | 
|  | }; | 
|  |  | 
|  | const struct dentry_operations btrfs_dentry_operations = { | 
|  | .d_delete	= btrfs_dentry_delete, | 
|  | }; |