|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * linux/fs/binfmt_elf.c | 
|  | * | 
|  | * These are the functions used to load ELF format executables as used | 
|  | * on SVr4 machines.  Information on the format may be found in the book | 
|  | * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | 
|  | * Tools". | 
|  | * | 
|  | * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elf-randomize.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/coredump.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/sched/cputime.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/param.h> | 
|  | #include <asm/page.h> | 
|  |  | 
|  | #ifndef ELF_COMPAT | 
|  | #define ELF_COMPAT 0 | 
|  | #endif | 
|  |  | 
|  | #ifndef user_long_t | 
|  | #define user_long_t long | 
|  | #endif | 
|  | #ifndef user_siginfo_t | 
|  | #define user_siginfo_t siginfo_t | 
|  | #endif | 
|  |  | 
|  | /* That's for binfmt_elf_fdpic to deal with */ | 
|  | #ifndef elf_check_fdpic | 
|  | #define elf_check_fdpic(ex) false | 
|  | #endif | 
|  |  | 
|  | static int load_elf_binary(struct linux_binprm *bprm); | 
|  |  | 
|  | #ifdef CONFIG_USELIB | 
|  | static int load_elf_library(struct file *); | 
|  | #else | 
|  | #define load_elf_library NULL | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If we don't support core dumping, then supply a NULL so we | 
|  | * don't even try. | 
|  | */ | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | static int elf_core_dump(struct coredump_params *cprm); | 
|  | #else | 
|  | #define elf_core_dump	NULL | 
|  | #endif | 
|  |  | 
|  | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | 
|  | #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE | 
|  | #else | 
|  | #define ELF_MIN_ALIGN	PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_CORE_EFLAGS | 
|  | #define ELF_CORE_EFLAGS	0 | 
|  | #endif | 
|  |  | 
|  | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | 
|  | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | 
|  | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | 
|  |  | 
|  | static struct linux_binfmt elf_format = { | 
|  | .module		= THIS_MODULE, | 
|  | .load_binary	= load_elf_binary, | 
|  | .load_shlib	= load_elf_library, | 
|  | .core_dump	= elf_core_dump, | 
|  | .min_coredump	= ELF_EXEC_PAGESIZE, | 
|  | }; | 
|  |  | 
|  | #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) | 
|  |  | 
|  | static int set_brk(unsigned long start, unsigned long end, int prot) | 
|  | { | 
|  | start = ELF_PAGEALIGN(start); | 
|  | end = ELF_PAGEALIGN(end); | 
|  | if (end > start) { | 
|  | /* | 
|  | * Map the last of the bss segment. | 
|  | * If the header is requesting these pages to be | 
|  | * executable, honour that (ppc32 needs this). | 
|  | */ | 
|  | int error = vm_brk_flags(start, end - start, | 
|  | prot & PROT_EXEC ? VM_EXEC : 0); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | current->mm->start_brk = current->mm->brk = end; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We need to explicitly zero any fractional pages | 
|  | after the data section (i.e. bss).  This would | 
|  | contain the junk from the file that should not | 
|  | be in memory | 
|  | */ | 
|  | static int padzero(unsigned long elf_bss) | 
|  | { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | nbyte = ELF_PAGEOFFSET(elf_bss); | 
|  | if (nbyte) { | 
|  | nbyte = ELF_MIN_ALIGN - nbyte; | 
|  | if (clear_user((void __user *) elf_bss, nbyte)) | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Let's use some macros to make this stack manipulation a little clearer */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | 
|  | #define STACK_ROUND(sp, items) \ | 
|  | ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | 
|  | #define STACK_ALLOC(sp, len) ({ \ | 
|  | elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | 
|  | old_sp; }) | 
|  | #else | 
|  | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | 
|  | #define STACK_ROUND(sp, items) \ | 
|  | (((unsigned long) (sp - items)) &~ 15UL) | 
|  | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_BASE_PLATFORM | 
|  | /* | 
|  | * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. | 
|  | * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value | 
|  | * will be copied to the user stack in the same manner as AT_PLATFORM. | 
|  | */ | 
|  | #define ELF_BASE_PLATFORM NULL | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, | 
|  | unsigned long interp_load_addr, | 
|  | unsigned long e_entry, unsigned long phdr_addr) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long p = bprm->p; | 
|  | int argc = bprm->argc; | 
|  | int envc = bprm->envc; | 
|  | elf_addr_t __user *sp; | 
|  | elf_addr_t __user *u_platform; | 
|  | elf_addr_t __user *u_base_platform; | 
|  | elf_addr_t __user *u_rand_bytes; | 
|  | const char *k_platform = ELF_PLATFORM; | 
|  | const char *k_base_platform = ELF_BASE_PLATFORM; | 
|  | unsigned char k_rand_bytes[16]; | 
|  | int items; | 
|  | elf_addr_t *elf_info; | 
|  | elf_addr_t flags = 0; | 
|  | int ei_index; | 
|  | const struct cred *cred = current_cred(); | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * In some cases (e.g. Hyper-Threading), we want to avoid L1 | 
|  | * evictions by the processes running on the same package. One | 
|  | * thing we can do is to shuffle the initial stack for them. | 
|  | */ | 
|  |  | 
|  | p = arch_align_stack(p); | 
|  |  | 
|  | /* | 
|  | * If this architecture has a platform capability string, copy it | 
|  | * to userspace.  In some cases (Sparc), this info is impossible | 
|  | * for userspace to get any other way, in others (i386) it is | 
|  | * merely difficult. | 
|  | */ | 
|  | u_platform = NULL; | 
|  | if (k_platform) { | 
|  | size_t len = strlen(k_platform) + 1; | 
|  |  | 
|  | u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
|  | if (copy_to_user(u_platform, k_platform, len)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this architecture has a "base" platform capability | 
|  | * string, copy it to userspace. | 
|  | */ | 
|  | u_base_platform = NULL; | 
|  | if (k_base_platform) { | 
|  | size_t len = strlen(k_base_platform) + 1; | 
|  |  | 
|  | u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
|  | if (copy_to_user(u_base_platform, k_base_platform, len)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate 16 random bytes for userspace PRNG seeding. | 
|  | */ | 
|  | get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); | 
|  | u_rand_bytes = (elf_addr_t __user *) | 
|  | STACK_ALLOC(p, sizeof(k_rand_bytes)); | 
|  | if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Create the ELF interpreter info */ | 
|  | elf_info = (elf_addr_t *)mm->saved_auxv; | 
|  | /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ | 
|  | #define NEW_AUX_ENT(id, val) \ | 
|  | do { \ | 
|  | *elf_info++ = id; \ | 
|  | *elf_info++ = val; \ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef ARCH_DLINFO | 
|  | /* | 
|  | * ARCH_DLINFO must come first so PPC can do its special alignment of | 
|  | * AUXV. | 
|  | * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in | 
|  | * ARCH_DLINFO changes | 
|  | */ | 
|  | ARCH_DLINFO; | 
|  | #endif | 
|  | NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | 
|  | NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | 
|  | NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | 
|  | NEW_AUX_ENT(AT_PHDR, phdr_addr); | 
|  | NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); | 
|  | NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); | 
|  | NEW_AUX_ENT(AT_BASE, interp_load_addr); | 
|  | if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) | 
|  | flags |= AT_FLAGS_PRESERVE_ARGV0; | 
|  | NEW_AUX_ENT(AT_FLAGS, flags); | 
|  | NEW_AUX_ENT(AT_ENTRY, e_entry); | 
|  | NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); | 
|  | NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); | 
|  | NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); | 
|  | NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); | 
|  | NEW_AUX_ENT(AT_SECURE, bprm->secureexec); | 
|  | NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); | 
|  | #ifdef ELF_HWCAP2 | 
|  | NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); | 
|  | #endif | 
|  | NEW_AUX_ENT(AT_EXECFN, bprm->exec); | 
|  | if (k_platform) { | 
|  | NEW_AUX_ENT(AT_PLATFORM, | 
|  | (elf_addr_t)(unsigned long)u_platform); | 
|  | } | 
|  | if (k_base_platform) { | 
|  | NEW_AUX_ENT(AT_BASE_PLATFORM, | 
|  | (elf_addr_t)(unsigned long)u_base_platform); | 
|  | } | 
|  | if (bprm->have_execfd) { | 
|  | NEW_AUX_ENT(AT_EXECFD, bprm->execfd); | 
|  | } | 
|  | #undef NEW_AUX_ENT | 
|  | /* AT_NULL is zero; clear the rest too */ | 
|  | memset(elf_info, 0, (char *)mm->saved_auxv + | 
|  | sizeof(mm->saved_auxv) - (char *)elf_info); | 
|  |  | 
|  | /* And advance past the AT_NULL entry.  */ | 
|  | elf_info += 2; | 
|  |  | 
|  | ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; | 
|  | sp = STACK_ADD(p, ei_index); | 
|  |  | 
|  | items = (argc + 1) + (envc + 1) + 1; | 
|  | bprm->p = STACK_ROUND(sp, items); | 
|  |  | 
|  | /* Point sp at the lowest address on the stack */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | sp = (elf_addr_t __user *)bprm->p - items - ei_index; | 
|  | bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ | 
|  | #else | 
|  | sp = (elf_addr_t __user *)bprm->p; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Grow the stack manually; some architectures have a limit on how | 
|  | * far ahead a user-space access may be in order to grow the stack. | 
|  | */ | 
|  | if (mmap_read_lock_killable(mm)) | 
|  | return -EINTR; | 
|  | vma = find_extend_vma(mm, bprm->p); | 
|  | mmap_read_unlock(mm); | 
|  | if (!vma) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Now, let's put argc (and argv, envp if appropriate) on the stack */ | 
|  | if (put_user(argc, sp++)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Populate list of argv pointers back to argv strings. */ | 
|  | p = mm->arg_end = mm->arg_start; | 
|  | while (argc-- > 0) { | 
|  | size_t len; | 
|  | if (put_user((elf_addr_t)p, sp++)) | 
|  | return -EFAULT; | 
|  | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
|  | if (!len || len > MAX_ARG_STRLEN) | 
|  | return -EINVAL; | 
|  | p += len; | 
|  | } | 
|  | if (put_user(0, sp++)) | 
|  | return -EFAULT; | 
|  | mm->arg_end = p; | 
|  |  | 
|  | /* Populate list of envp pointers back to envp strings. */ | 
|  | mm->env_end = mm->env_start = p; | 
|  | while (envc-- > 0) { | 
|  | size_t len; | 
|  | if (put_user((elf_addr_t)p, sp++)) | 
|  | return -EFAULT; | 
|  | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
|  | if (!len || len > MAX_ARG_STRLEN) | 
|  | return -EINVAL; | 
|  | p += len; | 
|  | } | 
|  | if (put_user(0, sp++)) | 
|  | return -EFAULT; | 
|  | mm->env_end = p; | 
|  |  | 
|  | /* Put the elf_info on the stack in the right place.  */ | 
|  | if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long elf_map(struct file *filep, unsigned long addr, | 
|  | const struct elf_phdr *eppnt, int prot, int type, | 
|  | unsigned long total_size) | 
|  | { | 
|  | unsigned long map_addr; | 
|  | unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); | 
|  | unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | 
|  | addr = ELF_PAGESTART(addr); | 
|  | size = ELF_PAGEALIGN(size); | 
|  |  | 
|  | /* mmap() will return -EINVAL if given a zero size, but a | 
|  | * segment with zero filesize is perfectly valid */ | 
|  | if (!size) | 
|  | return addr; | 
|  |  | 
|  | /* | 
|  | * total_size is the size of the ELF (interpreter) image. | 
|  | * The _first_ mmap needs to know the full size, otherwise | 
|  | * randomization might put this image into an overlapping | 
|  | * position with the ELF binary image. (since size < total_size) | 
|  | * So we first map the 'big' image - and unmap the remainder at | 
|  | * the end. (which unmap is needed for ELF images with holes.) | 
|  | */ | 
|  | if (total_size) { | 
|  | total_size = ELF_PAGEALIGN(total_size); | 
|  | map_addr = vm_mmap(filep, addr, total_size, prot, type, off); | 
|  | if (!BAD_ADDR(map_addr)) | 
|  | vm_munmap(map_addr+size, total_size-size); | 
|  | } else | 
|  | map_addr = vm_mmap(filep, addr, size, prot, type, off); | 
|  |  | 
|  | if ((type & MAP_FIXED_NOREPLACE) && | 
|  | PTR_ERR((void *)map_addr) == -EEXIST) | 
|  | pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", | 
|  | task_pid_nr(current), current->comm, (void *)addr); | 
|  |  | 
|  | return(map_addr); | 
|  | } | 
|  |  | 
|  | static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr) | 
|  | { | 
|  | int i, first_idx = -1, last_idx = -1; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | if (cmds[i].p_type == PT_LOAD) { | 
|  | last_idx = i; | 
|  | if (first_idx == -1) | 
|  | first_idx = i; | 
|  | } | 
|  | } | 
|  | if (first_idx == -1) | 
|  | return 0; | 
|  |  | 
|  | return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - | 
|  | ELF_PAGESTART(cmds[first_idx].p_vaddr); | 
|  | } | 
|  |  | 
|  | static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) | 
|  | { | 
|  | ssize_t rv; | 
|  |  | 
|  | rv = kernel_read(file, buf, len, &pos); | 
|  | if (unlikely(rv != len)) { | 
|  | return (rv < 0) ? rv : -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) | 
|  | { | 
|  | unsigned long alignment = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | if (cmds[i].p_type == PT_LOAD) { | 
|  | unsigned long p_align = cmds[i].p_align; | 
|  |  | 
|  | /* skip non-power of two alignments as invalid */ | 
|  | if (!is_power_of_2(p_align)) | 
|  | continue; | 
|  | alignment = max(alignment, p_align); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ensure we align to at least one page */ | 
|  | return ELF_PAGEALIGN(alignment); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * load_elf_phdrs() - load ELF program headers | 
|  | * @elf_ex:   ELF header of the binary whose program headers should be loaded | 
|  | * @elf_file: the opened ELF binary file | 
|  | * | 
|  | * Loads ELF program headers from the binary file elf_file, which has the ELF | 
|  | * header pointed to by elf_ex, into a newly allocated array. The caller is | 
|  | * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. | 
|  | */ | 
|  | static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, | 
|  | struct file *elf_file) | 
|  | { | 
|  | struct elf_phdr *elf_phdata = NULL; | 
|  | int retval, err = -1; | 
|  | unsigned int size; | 
|  |  | 
|  | /* | 
|  | * If the size of this structure has changed, then punt, since | 
|  | * we will be doing the wrong thing. | 
|  | */ | 
|  | if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  |  | 
|  | /* Sanity check the number of program headers... */ | 
|  | /* ...and their total size. */ | 
|  | size = sizeof(struct elf_phdr) * elf_ex->e_phnum; | 
|  | if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) | 
|  | goto out; | 
|  |  | 
|  | elf_phdata = kmalloc(size, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | /* Read in the program headers */ | 
|  | retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); | 
|  | if (retval < 0) { | 
|  | err = retval; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Success! */ | 
|  | err = 0; | 
|  | out: | 
|  | if (err) { | 
|  | kfree(elf_phdata); | 
|  | elf_phdata = NULL; | 
|  | } | 
|  | return elf_phdata; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARCH_BINFMT_ELF_STATE | 
|  |  | 
|  | /** | 
|  | * struct arch_elf_state - arch-specific ELF loading state | 
|  | * | 
|  | * This structure is used to preserve architecture specific data during | 
|  | * the loading of an ELF file, throughout the checking of architecture | 
|  | * specific ELF headers & through to the point where the ELF load is | 
|  | * known to be proceeding (ie. SET_PERSONALITY). | 
|  | * | 
|  | * This implementation is a dummy for architectures which require no | 
|  | * specific state. | 
|  | */ | 
|  | struct arch_elf_state { | 
|  | }; | 
|  |  | 
|  | #define INIT_ARCH_ELF_STATE {} | 
|  |  | 
|  | /** | 
|  | * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header | 
|  | * @ehdr:	The main ELF header | 
|  | * @phdr:	The program header to check | 
|  | * @elf:	The open ELF file | 
|  | * @is_interp:	True if the phdr is from the interpreter of the ELF being | 
|  | *		loaded, else false. | 
|  | * @state:	Architecture-specific state preserved throughout the process | 
|  | *		of loading the ELF. | 
|  | * | 
|  | * Inspects the program header phdr to validate its correctness and/or | 
|  | * suitability for the system. Called once per ELF program header in the | 
|  | * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its | 
|  | * interpreter. | 
|  | * | 
|  | * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load | 
|  | *         with that return code. | 
|  | */ | 
|  | static inline int arch_elf_pt_proc(struct elfhdr *ehdr, | 
|  | struct elf_phdr *phdr, | 
|  | struct file *elf, bool is_interp, | 
|  | struct arch_elf_state *state) | 
|  | { | 
|  | /* Dummy implementation, always proceed */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arch_check_elf() - check an ELF executable | 
|  | * @ehdr:	The main ELF header | 
|  | * @has_interp:	True if the ELF has an interpreter, else false. | 
|  | * @interp_ehdr: The interpreter's ELF header | 
|  | * @state:	Architecture-specific state preserved throughout the process | 
|  | *		of loading the ELF. | 
|  | * | 
|  | * Provides a final opportunity for architecture code to reject the loading | 
|  | * of the ELF & cause an exec syscall to return an error. This is called after | 
|  | * all program headers to be checked by arch_elf_pt_proc have been. | 
|  | * | 
|  | * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load | 
|  | *         with that return code. | 
|  | */ | 
|  | static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, | 
|  | struct elfhdr *interp_ehdr, | 
|  | struct arch_elf_state *state) | 
|  | { | 
|  | /* Dummy implementation, always proceed */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ | 
|  |  | 
|  | static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, | 
|  | bool has_interp, bool is_interp) | 
|  | { | 
|  | int prot = 0; | 
|  |  | 
|  | if (p_flags & PF_R) | 
|  | prot |= PROT_READ; | 
|  | if (p_flags & PF_W) | 
|  | prot |= PROT_WRITE; | 
|  | if (p_flags & PF_X) | 
|  | prot |= PROT_EXEC; | 
|  |  | 
|  | return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); | 
|  | } | 
|  |  | 
|  | /* This is much more generalized than the library routine read function, | 
|  | so we keep this separate.  Technically the library read function | 
|  | is only provided so that we can read a.out libraries that have | 
|  | an ELF header */ | 
|  |  | 
|  | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, | 
|  | struct file *interpreter, | 
|  | unsigned long no_base, struct elf_phdr *interp_elf_phdata, | 
|  | struct arch_elf_state *arch_state) | 
|  | { | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned long load_addr = 0; | 
|  | int load_addr_set = 0; | 
|  | unsigned long last_bss = 0, elf_bss = 0; | 
|  | int bss_prot = 0; | 
|  | unsigned long error = ~0UL; | 
|  | unsigned long total_size; | 
|  | int i; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (interp_elf_ex->e_type != ET_EXEC && | 
|  | interp_elf_ex->e_type != ET_DYN) | 
|  | goto out; | 
|  | if (!elf_check_arch(interp_elf_ex) || | 
|  | elf_check_fdpic(interp_elf_ex)) | 
|  | goto out; | 
|  | if (!interpreter->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | total_size = total_mapping_size(interp_elf_phdata, | 
|  | interp_elf_ex->e_phnum); | 
|  | if (!total_size) { | 
|  | error = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | eppnt = interp_elf_phdata; | 
|  | for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { | 
|  | if (eppnt->p_type == PT_LOAD) { | 
|  | int elf_type = MAP_PRIVATE; | 
|  | int elf_prot = make_prot(eppnt->p_flags, arch_state, | 
|  | true, true); | 
|  | unsigned long vaddr = 0; | 
|  | unsigned long k, map_addr; | 
|  |  | 
|  | vaddr = eppnt->p_vaddr; | 
|  | if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | 
|  | elf_type |= MAP_FIXED; | 
|  | else if (no_base && interp_elf_ex->e_type == ET_DYN) | 
|  | load_addr = -vaddr; | 
|  |  | 
|  | map_addr = elf_map(interpreter, load_addr + vaddr, | 
|  | eppnt, elf_prot, elf_type, total_size); | 
|  | total_size = 0; | 
|  | error = map_addr; | 
|  | if (BAD_ADDR(map_addr)) | 
|  | goto out; | 
|  |  | 
|  | if (!load_addr_set && | 
|  | interp_elf_ex->e_type == ET_DYN) { | 
|  | load_addr = map_addr - ELF_PAGESTART(vaddr); | 
|  | load_addr_set = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if the section's size will overflow the | 
|  | * allowed task size. Note that p_filesz must always be | 
|  | * <= p_memsize so it's only necessary to check p_memsz. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr; | 
|  | if (BAD_ADDR(k) || | 
|  | eppnt->p_filesz > eppnt->p_memsz || | 
|  | eppnt->p_memsz > TASK_SIZE || | 
|  | TASK_SIZE - eppnt->p_memsz < k) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the end of the file mapping for this phdr, and | 
|  | * keep track of the largest address we see for this. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if (k > elf_bss) | 
|  | elf_bss = k; | 
|  |  | 
|  | /* | 
|  | * Do the same thing for the memory mapping - between | 
|  | * elf_bss and last_bss is the bss section. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; | 
|  | if (k > last_bss) { | 
|  | last_bss = k; | 
|  | bss_prot = elf_prot; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now fill out the bss section: first pad the last page from | 
|  | * the file up to the page boundary, and zero it from elf_bss | 
|  | * up to the end of the page. | 
|  | */ | 
|  | if (padzero(elf_bss)) { | 
|  | error = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Next, align both the file and mem bss up to the page size, | 
|  | * since this is where elf_bss was just zeroed up to, and where | 
|  | * last_bss will end after the vm_brk_flags() below. | 
|  | */ | 
|  | elf_bss = ELF_PAGEALIGN(elf_bss); | 
|  | last_bss = ELF_PAGEALIGN(last_bss); | 
|  | /* Finally, if there is still more bss to allocate, do it. */ | 
|  | if (last_bss > elf_bss) { | 
|  | error = vm_brk_flags(elf_bss, last_bss - elf_bss, | 
|  | bss_prot & PROT_EXEC ? VM_EXEC : 0); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | error = load_addr; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the functions used to load ELF style executables and shared | 
|  | * libraries.  There is no binary dependent code anywhere else. | 
|  | */ | 
|  |  | 
|  | static int parse_elf_property(const char *data, size_t *off, size_t datasz, | 
|  | struct arch_elf_state *arch, | 
|  | bool have_prev_type, u32 *prev_type) | 
|  | { | 
|  | size_t o, step; | 
|  | const struct gnu_property *pr; | 
|  | int ret; | 
|  |  | 
|  | if (*off == datasz) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) | 
|  | return -EIO; | 
|  | o = *off; | 
|  | datasz -= *off; | 
|  |  | 
|  | if (datasz < sizeof(*pr)) | 
|  | return -ENOEXEC; | 
|  | pr = (const struct gnu_property *)(data + o); | 
|  | o += sizeof(*pr); | 
|  | datasz -= sizeof(*pr); | 
|  |  | 
|  | if (pr->pr_datasz > datasz) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); | 
|  | step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); | 
|  | if (step > datasz) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | /* Properties are supposed to be unique and sorted on pr_type: */ | 
|  | if (have_prev_type && pr->pr_type <= *prev_type) | 
|  | return -ENOEXEC; | 
|  | *prev_type = pr->pr_type; | 
|  |  | 
|  | ret = arch_parse_elf_property(pr->pr_type, data + o, | 
|  | pr->pr_datasz, ELF_COMPAT, arch); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *off = o + step; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define NOTE_DATA_SZ SZ_1K | 
|  | #define GNU_PROPERTY_TYPE_0_NAME "GNU" | 
|  | #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) | 
|  |  | 
|  | static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, | 
|  | struct arch_elf_state *arch) | 
|  | { | 
|  | union { | 
|  | struct elf_note nhdr; | 
|  | char data[NOTE_DATA_SZ]; | 
|  | } note; | 
|  | loff_t pos; | 
|  | ssize_t n; | 
|  | size_t off, datasz; | 
|  | int ret; | 
|  | bool have_prev_type; | 
|  | u32 prev_type; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) | 
|  | return 0; | 
|  |  | 
|  | /* load_elf_binary() shouldn't call us unless this is true... */ | 
|  | if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | /* If the properties are crazy large, that's too bad (for now): */ | 
|  | if (phdr->p_filesz > sizeof(note)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | pos = phdr->p_offset; | 
|  | n = kernel_read(f, ¬e, phdr->p_filesz, &pos); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); | 
|  | if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) | 
|  | return -EIO; | 
|  |  | 
|  | if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || | 
|  | note.nhdr.n_namesz != NOTE_NAME_SZ || | 
|  | strncmp(note.data + sizeof(note.nhdr), | 
|  | GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, | 
|  | ELF_GNU_PROPERTY_ALIGN); | 
|  | if (off > n) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (note.nhdr.n_descsz > n - off) | 
|  | return -ENOEXEC; | 
|  | datasz = off + note.nhdr.n_descsz; | 
|  |  | 
|  | have_prev_type = false; | 
|  | do { | 
|  | ret = parse_elf_property(note.data, &off, datasz, arch, | 
|  | have_prev_type, &prev_type); | 
|  | have_prev_type = true; | 
|  | } while (!ret); | 
|  |  | 
|  | return ret == -ENOENT ? 0 : ret; | 
|  | } | 
|  |  | 
|  | static int load_elf_binary(struct linux_binprm *bprm) | 
|  | { | 
|  | struct file *interpreter = NULL; /* to shut gcc up */ | 
|  | unsigned long load_addr, load_bias = 0, phdr_addr = 0; | 
|  | int load_addr_set = 0; | 
|  | unsigned long error; | 
|  | struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; | 
|  | struct elf_phdr *elf_property_phdata = NULL; | 
|  | unsigned long elf_bss, elf_brk; | 
|  | int bss_prot = 0; | 
|  | int retval, i; | 
|  | unsigned long elf_entry; | 
|  | unsigned long e_entry; | 
|  | unsigned long interp_load_addr = 0; | 
|  | unsigned long start_code, end_code, start_data, end_data; | 
|  | unsigned long reloc_func_desc __maybe_unused = 0; | 
|  | int executable_stack = EXSTACK_DEFAULT; | 
|  | struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; | 
|  | struct elfhdr *interp_elf_ex = NULL; | 
|  | struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; | 
|  | struct mm_struct *mm; | 
|  | struct pt_regs *regs; | 
|  |  | 
|  | retval = -ENOEXEC; | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out; | 
|  |  | 
|  | if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) | 
|  | goto out; | 
|  | if (!elf_check_arch(elf_ex)) | 
|  | goto out; | 
|  | if (elf_check_fdpic(elf_ex)) | 
|  | goto out; | 
|  | if (!bprm->file->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | elf_phdata = load_elf_phdrs(elf_ex, bprm->file); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | elf_ppnt = elf_phdata; | 
|  | for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { | 
|  | char *elf_interpreter; | 
|  |  | 
|  | if (elf_ppnt->p_type == PT_GNU_PROPERTY) { | 
|  | elf_property_phdata = elf_ppnt; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (elf_ppnt->p_type != PT_INTERP) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * This is the program interpreter used for shared libraries - | 
|  | * for now assume that this is an a.out format binary. | 
|  | */ | 
|  | retval = -ENOEXEC; | 
|  | if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) | 
|  | goto out_free_ph; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); | 
|  | if (!elf_interpreter) | 
|  | goto out_free_ph; | 
|  |  | 
|  | retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, | 
|  | elf_ppnt->p_offset); | 
|  | if (retval < 0) | 
|  | goto out_free_interp; | 
|  | /* make sure path is NULL terminated */ | 
|  | retval = -ENOEXEC; | 
|  | if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | 
|  | goto out_free_interp; | 
|  |  | 
|  | interpreter = open_exec(elf_interpreter); | 
|  | kfree(elf_interpreter); | 
|  | retval = PTR_ERR(interpreter); | 
|  | if (IS_ERR(interpreter)) | 
|  | goto out_free_ph; | 
|  |  | 
|  | /* | 
|  | * If the binary is not readable then enforce mm->dumpable = 0 | 
|  | * regardless of the interpreter's permissions. | 
|  | */ | 
|  | would_dump(bprm, interpreter); | 
|  |  | 
|  | interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); | 
|  | if (!interp_elf_ex) { | 
|  | retval = -ENOMEM; | 
|  | goto out_free_file; | 
|  | } | 
|  |  | 
|  | /* Get the exec headers */ | 
|  | retval = elf_read(interpreter, interp_elf_ex, | 
|  | sizeof(*interp_elf_ex), 0); | 
|  | if (retval < 0) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | break; | 
|  |  | 
|  | out_free_interp: | 
|  | kfree(elf_interpreter); | 
|  | goto out_free_ph; | 
|  | } | 
|  |  | 
|  | elf_ppnt = elf_phdata; | 
|  | for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) | 
|  | switch (elf_ppnt->p_type) { | 
|  | case PT_GNU_STACK: | 
|  | if (elf_ppnt->p_flags & PF_X) | 
|  | executable_stack = EXSTACK_ENABLE_X; | 
|  | else | 
|  | executable_stack = EXSTACK_DISABLE_X; | 
|  | break; | 
|  |  | 
|  | case PT_LOPROC ... PT_HIPROC: | 
|  | retval = arch_elf_pt_proc(elf_ex, elf_ppnt, | 
|  | bprm->file, false, | 
|  | &arch_state); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Some simple consistency checks for the interpreter */ | 
|  | if (interpreter) { | 
|  | retval = -ELIBBAD; | 
|  | /* Not an ELF interpreter */ | 
|  | if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out_free_dentry; | 
|  | /* Verify the interpreter has a valid arch */ | 
|  | if (!elf_check_arch(interp_elf_ex) || | 
|  | elf_check_fdpic(interp_elf_ex)) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* Load the interpreter program headers */ | 
|  | interp_elf_phdata = load_elf_phdrs(interp_elf_ex, | 
|  | interpreter); | 
|  | if (!interp_elf_phdata) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ | 
|  | elf_property_phdata = NULL; | 
|  | elf_ppnt = interp_elf_phdata; | 
|  | for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) | 
|  | switch (elf_ppnt->p_type) { | 
|  | case PT_GNU_PROPERTY: | 
|  | elf_property_phdata = elf_ppnt; | 
|  | break; | 
|  |  | 
|  | case PT_LOPROC ... PT_HIPROC: | 
|  | retval = arch_elf_pt_proc(interp_elf_ex, | 
|  | elf_ppnt, interpreter, | 
|  | true, &arch_state); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | retval = parse_elf_properties(interpreter ?: bprm->file, | 
|  | elf_property_phdata, &arch_state); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* | 
|  | * Allow arch code to reject the ELF at this point, whilst it's | 
|  | * still possible to return an error to the code that invoked | 
|  | * the exec syscall. | 
|  | */ | 
|  | retval = arch_check_elf(elf_ex, | 
|  | !!interpreter, interp_elf_ex, | 
|  | &arch_state); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* Flush all traces of the currently running executable */ | 
|  | retval = begin_new_exec(bprm); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* Do this immediately, since STACK_TOP as used in setup_arg_pages | 
|  | may depend on the personality.  */ | 
|  | SET_PERSONALITY2(*elf_ex, &arch_state); | 
|  | if (elf_read_implies_exec(*elf_ex, executable_stack)) | 
|  | current->personality |= READ_IMPLIES_EXEC; | 
|  |  | 
|  | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
|  | current->flags |= PF_RANDOMIZE; | 
|  |  | 
|  | setup_new_exec(bprm); | 
|  |  | 
|  | /* Do this so that we can load the interpreter, if need be.  We will | 
|  | change some of these later */ | 
|  | retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), | 
|  | executable_stack); | 
|  | if (retval < 0) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | elf_bss = 0; | 
|  | elf_brk = 0; | 
|  |  | 
|  | start_code = ~0UL; | 
|  | end_code = 0; | 
|  | start_data = 0; | 
|  | end_data = 0; | 
|  |  | 
|  | /* Now we do a little grungy work by mmapping the ELF image into | 
|  | the correct location in memory. */ | 
|  | for(i = 0, elf_ppnt = elf_phdata; | 
|  | i < elf_ex->e_phnum; i++, elf_ppnt++) { | 
|  | int elf_prot, elf_flags; | 
|  | unsigned long k, vaddr; | 
|  | unsigned long total_size = 0; | 
|  | unsigned long alignment; | 
|  |  | 
|  | if (elf_ppnt->p_type != PT_LOAD) | 
|  | continue; | 
|  |  | 
|  | if (unlikely (elf_brk > elf_bss)) { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | /* There was a PT_LOAD segment with p_memsz > p_filesz | 
|  | before this one. Map anonymous pages, if needed, | 
|  | and clear the area.  */ | 
|  | retval = set_brk(elf_bss + load_bias, | 
|  | elf_brk + load_bias, | 
|  | bss_prot); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  | nbyte = ELF_PAGEOFFSET(elf_bss); | 
|  | if (nbyte) { | 
|  | nbyte = ELF_MIN_ALIGN - nbyte; | 
|  | if (nbyte > elf_brk - elf_bss) | 
|  | nbyte = elf_brk - elf_bss; | 
|  | if (clear_user((void __user *)elf_bss + | 
|  | load_bias, nbyte)) { | 
|  | /* | 
|  | * This bss-zeroing can fail if the ELF | 
|  | * file specifies odd protections. So | 
|  | * we don't check the return value | 
|  | */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, | 
|  | !!interpreter, false); | 
|  |  | 
|  | elf_flags = MAP_PRIVATE; | 
|  |  | 
|  | vaddr = elf_ppnt->p_vaddr; | 
|  | /* | 
|  | * If we are loading ET_EXEC or we have already performed | 
|  | * the ET_DYN load_addr calculations, proceed normally. | 
|  | */ | 
|  | if (elf_ex->e_type == ET_EXEC || load_addr_set) { | 
|  | elf_flags |= MAP_FIXED; | 
|  | } else if (elf_ex->e_type == ET_DYN) { | 
|  | /* | 
|  | * This logic is run once for the first LOAD Program | 
|  | * Header for ET_DYN binaries to calculate the | 
|  | * randomization (load_bias) for all the LOAD | 
|  | * Program Headers, and to calculate the entire | 
|  | * size of the ELF mapping (total_size). (Note that | 
|  | * load_addr_set is set to true later once the | 
|  | * initial mapping is performed.) | 
|  | * | 
|  | * There are effectively two types of ET_DYN | 
|  | * binaries: programs (i.e. PIE: ET_DYN with INTERP) | 
|  | * and loaders (ET_DYN without INTERP, since they | 
|  | * _are_ the ELF interpreter). The loaders must | 
|  | * be loaded away from programs since the program | 
|  | * may otherwise collide with the loader (especially | 
|  | * for ET_EXEC which does not have a randomized | 
|  | * position). For example to handle invocations of | 
|  | * "./ld.so someprog" to test out a new version of | 
|  | * the loader, the subsequent program that the | 
|  | * loader loads must avoid the loader itself, so | 
|  | * they cannot share the same load range. Sufficient | 
|  | * room for the brk must be allocated with the | 
|  | * loader as well, since brk must be available with | 
|  | * the loader. | 
|  | * | 
|  | * Therefore, programs are loaded offset from | 
|  | * ELF_ET_DYN_BASE and loaders are loaded into the | 
|  | * independently randomized mmap region (0 load_bias | 
|  | * without MAP_FIXED). | 
|  | */ | 
|  | if (interpreter) { | 
|  | load_bias = ELF_ET_DYN_BASE; | 
|  | if (current->flags & PF_RANDOMIZE) | 
|  | load_bias += arch_mmap_rnd(); | 
|  | alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); | 
|  | if (alignment) | 
|  | load_bias &= ~(alignment - 1); | 
|  | elf_flags |= MAP_FIXED; | 
|  | } else | 
|  | load_bias = 0; | 
|  |  | 
|  | /* | 
|  | * Since load_bias is used for all subsequent loading | 
|  | * calculations, we must lower it by the first vaddr | 
|  | * so that the remaining calculations based on the | 
|  | * ELF vaddrs will be correctly offset. The result | 
|  | * is then page aligned. | 
|  | */ | 
|  | load_bias = ELF_PAGESTART(load_bias - vaddr); | 
|  |  | 
|  | total_size = total_mapping_size(elf_phdata, | 
|  | elf_ex->e_phnum); | 
|  | if (!total_size) { | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, | 
|  | elf_prot, elf_flags, total_size); | 
|  | if (BAD_ADDR(error)) { | 
|  | retval = IS_ERR((void *)error) ? | 
|  | PTR_ERR((void*)error) : -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | if (!load_addr_set) { | 
|  | load_addr_set = 1; | 
|  | load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | 
|  | if (elf_ex->e_type == ET_DYN) { | 
|  | load_bias += error - | 
|  | ELF_PAGESTART(load_bias + vaddr); | 
|  | load_addr += load_bias; | 
|  | reloc_func_desc = load_bias; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out which segment in the file contains the Program | 
|  | * Header table, and map to the associated memory address. | 
|  | */ | 
|  | if (elf_ppnt->p_offset <= elf_ex->e_phoff && | 
|  | elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { | 
|  | phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + | 
|  | elf_ppnt->p_vaddr; | 
|  | } | 
|  |  | 
|  | k = elf_ppnt->p_vaddr; | 
|  | if ((elf_ppnt->p_flags & PF_X) && k < start_code) | 
|  | start_code = k; | 
|  | if (start_data < k) | 
|  | start_data = k; | 
|  |  | 
|  | /* | 
|  | * Check to see if the section's size will overflow the | 
|  | * allowed task size. Note that p_filesz must always be | 
|  | * <= p_memsz so it is only necessary to check p_memsz. | 
|  | */ | 
|  | if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || | 
|  | elf_ppnt->p_memsz > TASK_SIZE || | 
|  | TASK_SIZE - elf_ppnt->p_memsz < k) { | 
|  | /* set_brk can never work. Avoid overflows. */ | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | 
|  |  | 
|  | if (k > elf_bss) | 
|  | elf_bss = k; | 
|  | if ((elf_ppnt->p_flags & PF_X) && end_code < k) | 
|  | end_code = k; | 
|  | if (end_data < k) | 
|  | end_data = k; | 
|  | k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | 
|  | if (k > elf_brk) { | 
|  | bss_prot = elf_prot; | 
|  | elf_brk = k; | 
|  | } | 
|  | } | 
|  |  | 
|  | e_entry = elf_ex->e_entry + load_bias; | 
|  | phdr_addr += load_bias; | 
|  | elf_bss += load_bias; | 
|  | elf_brk += load_bias; | 
|  | start_code += load_bias; | 
|  | end_code += load_bias; | 
|  | start_data += load_bias; | 
|  | end_data += load_bias; | 
|  |  | 
|  | /* Calling set_brk effectively mmaps the pages that we need | 
|  | * for the bss and break sections.  We must do this before | 
|  | * mapping in the interpreter, to make sure it doesn't wind | 
|  | * up getting placed where the bss needs to go. | 
|  | */ | 
|  | retval = set_brk(elf_bss, elf_brk, bss_prot); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  | if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { | 
|  | retval = -EFAULT; /* Nobody gets to see this, but.. */ | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | if (interpreter) { | 
|  | elf_entry = load_elf_interp(interp_elf_ex, | 
|  | interpreter, | 
|  | load_bias, interp_elf_phdata, | 
|  | &arch_state); | 
|  | if (!IS_ERR((void *)elf_entry)) { | 
|  | /* | 
|  | * load_elf_interp() returns relocation | 
|  | * adjustment | 
|  | */ | 
|  | interp_load_addr = elf_entry; | 
|  | elf_entry += interp_elf_ex->e_entry; | 
|  | } | 
|  | if (BAD_ADDR(elf_entry)) { | 
|  | retval = IS_ERR((void *)elf_entry) ? | 
|  | (int)elf_entry : -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | reloc_func_desc = interp_load_addr; | 
|  |  | 
|  | allow_write_access(interpreter); | 
|  | fput(interpreter); | 
|  |  | 
|  | kfree(interp_elf_ex); | 
|  | kfree(interp_elf_phdata); | 
|  | } else { | 
|  | elf_entry = e_entry; | 
|  | if (BAD_ADDR(elf_entry)) { | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(elf_phdata); | 
|  |  | 
|  | set_binfmt(&elf_format); | 
|  |  | 
|  | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES | 
|  | retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | 
|  |  | 
|  | retval = create_elf_tables(bprm, elf_ex, interp_load_addr, | 
|  | e_entry, phdr_addr); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | mm = current->mm; | 
|  | mm->end_code = end_code; | 
|  | mm->start_code = start_code; | 
|  | mm->start_data = start_data; | 
|  | mm->end_data = end_data; | 
|  | mm->start_stack = bprm->p; | 
|  |  | 
|  | if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { | 
|  | /* | 
|  | * For architectures with ELF randomization, when executing | 
|  | * a loader directly (i.e. no interpreter listed in ELF | 
|  | * headers), move the brk area out of the mmap region | 
|  | * (since it grows up, and may collide early with the stack | 
|  | * growing down), and into the unused ELF_ET_DYN_BASE region. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && | 
|  | elf_ex->e_type == ET_DYN && !interpreter) { | 
|  | mm->brk = mm->start_brk = ELF_ET_DYN_BASE; | 
|  | } | 
|  |  | 
|  | mm->brk = mm->start_brk = arch_randomize_brk(mm); | 
|  | #ifdef compat_brk_randomized | 
|  | current->brk_randomized = 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (current->personality & MMAP_PAGE_ZERO) { | 
|  | /* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
|  | and some applications "depend" upon this behavior. | 
|  | Since we do not have the power to recompile these, we | 
|  | emulate the SVr4 behavior. Sigh. */ | 
|  | error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE, 0); | 
|  | } | 
|  |  | 
|  | regs = current_pt_regs(); | 
|  | #ifdef ELF_PLAT_INIT | 
|  | /* | 
|  | * The ABI may specify that certain registers be set up in special | 
|  | * ways (on i386 %edx is the address of a DT_FINI function, for | 
|  | * example.  In addition, it may also specify (eg, PowerPC64 ELF) | 
|  | * that the e_entry field is the address of the function descriptor | 
|  | * for the startup routine, rather than the address of the startup | 
|  | * routine itself.  This macro performs whatever initialization to | 
|  | * the regs structure is required as well as any relocations to the | 
|  | * function descriptor entries when executing dynamically links apps. | 
|  | */ | 
|  | ELF_PLAT_INIT(regs, reloc_func_desc); | 
|  | #endif | 
|  |  | 
|  | finalize_exec(bprm); | 
|  | START_THREAD(elf_ex, regs, elf_entry, bprm->p); | 
|  | retval = 0; | 
|  | out: | 
|  | return retval; | 
|  |  | 
|  | /* error cleanup */ | 
|  | out_free_dentry: | 
|  | kfree(interp_elf_ex); | 
|  | kfree(interp_elf_phdata); | 
|  | out_free_file: | 
|  | allow_write_access(interpreter); | 
|  | if (interpreter) | 
|  | fput(interpreter); | 
|  | out_free_ph: | 
|  | kfree(elf_phdata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USELIB | 
|  | /* This is really simpleminded and specialized - we are loading an | 
|  | a.out library that is given an ELF header. */ | 
|  | static int load_elf_library(struct file *file) | 
|  | { | 
|  | struct elf_phdr *elf_phdata; | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned long elf_bss, bss, len; | 
|  | int retval, error, i, j; | 
|  | struct elfhdr elf_ex; | 
|  |  | 
|  | error = -ENOEXEC; | 
|  | retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | 
|  | !elf_check_arch(&elf_ex) || !file->f_op->mmap) | 
|  | goto out; | 
|  | if (elf_check_fdpic(&elf_ex)) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  |  | 
|  | j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | 
|  | /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | 
|  |  | 
|  | error = -ENOMEM; | 
|  | elf_phdata = kmalloc(j, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | eppnt = elf_phdata; | 
|  | error = -ENOEXEC; | 
|  | retval = elf_read(file, eppnt, j, elf_ex.e_phoff); | 
|  | if (retval < 0) | 
|  | goto out_free_ph; | 
|  |  | 
|  | for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | 
|  | if ((eppnt + i)->p_type == PT_LOAD) | 
|  | j++; | 
|  | if (j != 1) | 
|  | goto out_free_ph; | 
|  |  | 
|  | while (eppnt->p_type != PT_LOAD) | 
|  | eppnt++; | 
|  |  | 
|  | /* Now use mmap to map the library into memory. */ | 
|  | error = vm_mmap(file, | 
|  | ELF_PAGESTART(eppnt->p_vaddr), | 
|  | (eppnt->p_filesz + | 
|  | ELF_PAGEOFFSET(eppnt->p_vaddr)), | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_FIXED_NOREPLACE | MAP_PRIVATE, | 
|  | (eppnt->p_offset - | 
|  | ELF_PAGEOFFSET(eppnt->p_vaddr))); | 
|  | if (error != ELF_PAGESTART(eppnt->p_vaddr)) | 
|  | goto out_free_ph; | 
|  |  | 
|  | elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if (padzero(elf_bss)) { | 
|  | error = -EFAULT; | 
|  | goto out_free_ph; | 
|  | } | 
|  |  | 
|  | len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); | 
|  | bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); | 
|  | if (bss > len) { | 
|  | error = vm_brk(len, bss - len); | 
|  | if (error) | 
|  | goto out_free_ph; | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | out_free_ph: | 
|  | kfree(elf_phdata); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | #endif /* #ifdef CONFIG_USELIB */ | 
|  |  | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | /* | 
|  | * ELF core dumper | 
|  | * | 
|  | * Modelled on fs/exec.c:aout_core_dump() | 
|  | * Jeremy Fitzhardinge <jeremy@sw.oz.au> | 
|  | */ | 
|  |  | 
|  | /* An ELF note in memory */ | 
|  | struct memelfnote | 
|  | { | 
|  | const char *name; | 
|  | int type; | 
|  | unsigned int datasz; | 
|  | void *data; | 
|  | }; | 
|  |  | 
|  | static int notesize(struct memelfnote *en) | 
|  | { | 
|  | int sz; | 
|  |  | 
|  | sz = sizeof(struct elf_note); | 
|  | sz += roundup(strlen(en->name) + 1, 4); | 
|  | sz += roundup(en->datasz, 4); | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static int writenote(struct memelfnote *men, struct coredump_params *cprm) | 
|  | { | 
|  | struct elf_note en; | 
|  | en.n_namesz = strlen(men->name) + 1; | 
|  | en.n_descsz = men->datasz; | 
|  | en.n_type = men->type; | 
|  |  | 
|  | return dump_emit(cprm, &en, sizeof(en)) && | 
|  | dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && | 
|  | dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); | 
|  | } | 
|  |  | 
|  | static void fill_elf_header(struct elfhdr *elf, int segs, | 
|  | u16 machine, u32 flags) | 
|  | { | 
|  | memset(elf, 0, sizeof(*elf)); | 
|  |  | 
|  | memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  |  | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = machine; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_flags = flags; | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = segs; | 
|  | } | 
|  |  | 
|  | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) | 
|  | { | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = offset; | 
|  | phdr->p_vaddr = 0; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = sz; | 
|  | phdr->p_memsz = 0; | 
|  | phdr->p_flags = 0; | 
|  | phdr->p_align = 0; | 
|  | } | 
|  |  | 
|  | static void fill_note(struct memelfnote *note, const char *name, int type, | 
|  | unsigned int sz, void *data) | 
|  | { | 
|  | note->name = name; | 
|  | note->type = type; | 
|  | note->datasz = sz; | 
|  | note->data = data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fill up all the fields in prstatus from the given task struct, except | 
|  | * registers which need to be filled up separately. | 
|  | */ | 
|  | static void fill_prstatus(struct elf_prstatus_common *prstatus, | 
|  | struct task_struct *p, long signr) | 
|  | { | 
|  | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | 
|  | prstatus->pr_sigpend = p->pending.signal.sig[0]; | 
|  | prstatus->pr_sighold = p->blocked.sig[0]; | 
|  | rcu_read_lock(); | 
|  | prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
|  | rcu_read_unlock(); | 
|  | prstatus->pr_pid = task_pid_vnr(p); | 
|  | prstatus->pr_pgrp = task_pgrp_vnr(p); | 
|  | prstatus->pr_sid = task_session_vnr(p); | 
|  | if (thread_group_leader(p)) { | 
|  | struct task_cputime cputime; | 
|  |  | 
|  | /* | 
|  | * This is the record for the group leader.  It shows the | 
|  | * group-wide total, not its individual thread total. | 
|  | */ | 
|  | thread_group_cputime(p, &cputime); | 
|  | prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); | 
|  | prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); | 
|  | } else { | 
|  | u64 utime, stime; | 
|  |  | 
|  | task_cputime(p, &utime, &stime); | 
|  | prstatus->pr_utime = ns_to_kernel_old_timeval(utime); | 
|  | prstatus->pr_stime = ns_to_kernel_old_timeval(stime); | 
|  | } | 
|  |  | 
|  | prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); | 
|  | prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); | 
|  | } | 
|  |  | 
|  | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | const struct cred *cred; | 
|  | unsigned int i, len; | 
|  | unsigned int state; | 
|  |  | 
|  | /* first copy the parameters from user space */ | 
|  | memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | 
|  |  | 
|  | len = mm->arg_end - mm->arg_start; | 
|  | if (len >= ELF_PRARGSZ) | 
|  | len = ELF_PRARGSZ-1; | 
|  | if (copy_from_user(&psinfo->pr_psargs, | 
|  | (const char __user *)mm->arg_start, len)) | 
|  | return -EFAULT; | 
|  | for(i = 0; i < len; i++) | 
|  | if (psinfo->pr_psargs[i] == 0) | 
|  | psinfo->pr_psargs[i] = ' '; | 
|  | psinfo->pr_psargs[len] = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
|  | rcu_read_unlock(); | 
|  | psinfo->pr_pid = task_pid_vnr(p); | 
|  | psinfo->pr_pgrp = task_pgrp_vnr(p); | 
|  | psinfo->pr_sid = task_session_vnr(p); | 
|  |  | 
|  | state = READ_ONCE(p->__state); | 
|  | i = state ? ffz(~state) + 1 : 0; | 
|  | psinfo->pr_state = i; | 
|  | psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; | 
|  | psinfo->pr_zomb = psinfo->pr_sname == 'Z'; | 
|  | psinfo->pr_nice = task_nice(p); | 
|  | psinfo->pr_flag = p->flags; | 
|  | rcu_read_lock(); | 
|  | cred = __task_cred(p); | 
|  | SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); | 
|  | SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); | 
|  | rcu_read_unlock(); | 
|  | strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) | 
|  | { | 
|  | elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; | 
|  | int i = 0; | 
|  | do | 
|  | i += 2; | 
|  | while (auxv[i - 2] != AT_NULL); | 
|  | fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); | 
|  | } | 
|  |  | 
|  | static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, | 
|  | const kernel_siginfo_t *siginfo) | 
|  | { | 
|  | copy_siginfo_to_external(csigdata, siginfo); | 
|  | fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); | 
|  | } | 
|  |  | 
|  | #define MAX_FILE_NOTE_SIZE (4*1024*1024) | 
|  | /* | 
|  | * Format of NT_FILE note: | 
|  | * | 
|  | * long count     -- how many files are mapped | 
|  | * long page_size -- units for file_ofs | 
|  | * array of [COUNT] elements of | 
|  | *   long start | 
|  | *   long end | 
|  | *   long file_ofs | 
|  | * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... | 
|  | */ | 
|  | static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) | 
|  | { | 
|  | unsigned count, size, names_ofs, remaining, n; | 
|  | user_long_t *data; | 
|  | user_long_t *start_end_ofs; | 
|  | char *name_base, *name_curpos; | 
|  | int i; | 
|  |  | 
|  | /* *Estimated* file count and total data size needed */ | 
|  | count = cprm->vma_count; | 
|  | if (count > UINT_MAX / 64) | 
|  | return -EINVAL; | 
|  | size = count * 64; | 
|  |  | 
|  | names_ofs = (2 + 3 * count) * sizeof(data[0]); | 
|  | alloc: | 
|  | if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ | 
|  | return -EINVAL; | 
|  | size = round_up(size, PAGE_SIZE); | 
|  | /* | 
|  | * "size" can be 0 here legitimately. | 
|  | * Let it ENOMEM and omit NT_FILE section which will be empty anyway. | 
|  | */ | 
|  | data = kvmalloc(size, GFP_KERNEL); | 
|  | if (ZERO_OR_NULL_PTR(data)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | start_end_ofs = data + 2; | 
|  | name_base = name_curpos = ((char *)data) + names_ofs; | 
|  | remaining = size - names_ofs; | 
|  | count = 0; | 
|  | for (i = 0; i < cprm->vma_count; i++) { | 
|  | struct core_vma_metadata *m = &cprm->vma_meta[i]; | 
|  | struct file *file; | 
|  | const char *filename; | 
|  |  | 
|  | file = m->file; | 
|  | if (!file) | 
|  | continue; | 
|  | filename = file_path(file, name_curpos, remaining); | 
|  | if (IS_ERR(filename)) { | 
|  | if (PTR_ERR(filename) == -ENAMETOOLONG) { | 
|  | kvfree(data); | 
|  | size = size * 5 / 4; | 
|  | goto alloc; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* file_path() fills at the end, move name down */ | 
|  | /* n = strlen(filename) + 1: */ | 
|  | n = (name_curpos + remaining) - filename; | 
|  | remaining = filename - name_curpos; | 
|  | memmove(name_curpos, filename, n); | 
|  | name_curpos += n; | 
|  |  | 
|  | *start_end_ofs++ = m->start; | 
|  | *start_end_ofs++ = m->end; | 
|  | *start_end_ofs++ = m->pgoff; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | /* Now we know exact count of files, can store it */ | 
|  | data[0] = count; | 
|  | data[1] = PAGE_SIZE; | 
|  | /* | 
|  | * Count usually is less than mm->map_count, | 
|  | * we need to move filenames down. | 
|  | */ | 
|  | n = cprm->vma_count - count; | 
|  | if (n != 0) { | 
|  | unsigned shift_bytes = n * 3 * sizeof(data[0]); | 
|  | memmove(name_base - shift_bytes, name_base, | 
|  | name_curpos - name_base); | 
|  | name_curpos -= shift_bytes; | 
|  | } | 
|  |  | 
|  | size = name_curpos - (char *)data; | 
|  | fill_note(note, "CORE", NT_FILE, size, data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CORE_DUMP_USE_REGSET | 
|  | #include <linux/regset.h> | 
|  |  | 
|  | struct elf_thread_core_info { | 
|  | struct elf_thread_core_info *next; | 
|  | struct task_struct *task; | 
|  | struct elf_prstatus prstatus; | 
|  | struct memelfnote notes[]; | 
|  | }; | 
|  |  | 
|  | struct elf_note_info { | 
|  | struct elf_thread_core_info *thread; | 
|  | struct memelfnote psinfo; | 
|  | struct memelfnote signote; | 
|  | struct memelfnote auxv; | 
|  | struct memelfnote files; | 
|  | user_siginfo_t csigdata; | 
|  | size_t size; | 
|  | int thread_notes; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * When a regset has a writeback hook, we call it on each thread before | 
|  | * dumping user memory.  On register window machines, this makes sure the | 
|  | * user memory backing the register data is up to date before we read it. | 
|  | */ | 
|  | static void do_thread_regset_writeback(struct task_struct *task, | 
|  | const struct user_regset *regset) | 
|  | { | 
|  | if (regset->writeback) | 
|  | regset->writeback(task, regset, 1); | 
|  | } | 
|  |  | 
|  | #ifndef PRSTATUS_SIZE | 
|  | #define PRSTATUS_SIZE sizeof(struct elf_prstatus) | 
|  | #endif | 
|  |  | 
|  | #ifndef SET_PR_FPVALID | 
|  | #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) | 
|  | #endif | 
|  |  | 
|  | static int fill_thread_core_info(struct elf_thread_core_info *t, | 
|  | const struct user_regset_view *view, | 
|  | long signr, size_t *total) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * NT_PRSTATUS is the one special case, because the regset data | 
|  | * goes into the pr_reg field inside the note contents, rather | 
|  | * than being the whole note contents.  We fill the reset in here. | 
|  | * We assume that regset 0 is NT_PRSTATUS. | 
|  | */ | 
|  | fill_prstatus(&t->prstatus.common, t->task, signr); | 
|  | regset_get(t->task, &view->regsets[0], | 
|  | sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); | 
|  |  | 
|  | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, | 
|  | PRSTATUS_SIZE, &t->prstatus); | 
|  | *total += notesize(&t->notes[0]); | 
|  |  | 
|  | do_thread_regset_writeback(t->task, &view->regsets[0]); | 
|  |  | 
|  | /* | 
|  | * Each other regset might generate a note too.  For each regset | 
|  | * that has no core_note_type or is inactive, we leave t->notes[i] | 
|  | * all zero and we'll know to skip writing it later. | 
|  | */ | 
|  | for (i = 1; i < view->n; ++i) { | 
|  | const struct user_regset *regset = &view->regsets[i]; | 
|  | int note_type = regset->core_note_type; | 
|  | bool is_fpreg = note_type == NT_PRFPREG; | 
|  | void *data; | 
|  | int ret; | 
|  |  | 
|  | do_thread_regset_writeback(t->task, regset); | 
|  | if (!note_type) // not for coredumps | 
|  | continue; | 
|  | if (regset->active && regset->active(t->task, regset) <= 0) | 
|  | continue; | 
|  |  | 
|  | ret = regset_get_alloc(t->task, regset, ~0U, &data); | 
|  | if (ret < 0) | 
|  | continue; | 
|  |  | 
|  | if (is_fpreg) | 
|  | SET_PR_FPVALID(&t->prstatus); | 
|  |  | 
|  | fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX", | 
|  | note_type, ret, data); | 
|  |  | 
|  | *total += notesize(&t->notes[i]); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
|  | struct elf_note_info *info, | 
|  | struct coredump_params *cprm) | 
|  | { | 
|  | struct task_struct *dump_task = current; | 
|  | const struct user_regset_view *view = task_user_regset_view(dump_task); | 
|  | struct elf_thread_core_info *t; | 
|  | struct elf_prpsinfo *psinfo; | 
|  | struct core_thread *ct; | 
|  | unsigned int i; | 
|  |  | 
|  | info->size = 0; | 
|  | info->thread = NULL; | 
|  |  | 
|  | psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | 
|  | if (psinfo == NULL) { | 
|  | info->psinfo.data = NULL; /* So we don't free this wrongly */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); | 
|  |  | 
|  | /* | 
|  | * Figure out how many notes we're going to need for each thread. | 
|  | */ | 
|  | info->thread_notes = 0; | 
|  | for (i = 0; i < view->n; ++i) | 
|  | if (view->regsets[i].core_note_type != 0) | 
|  | ++info->thread_notes; | 
|  |  | 
|  | /* | 
|  | * Sanity check.  We rely on regset 0 being in NT_PRSTATUS, | 
|  | * since it is our one special case. | 
|  | */ | 
|  | if (unlikely(info->thread_notes == 0) || | 
|  | unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the ELF file header. | 
|  | */ | 
|  | fill_elf_header(elf, phdrs, | 
|  | view->e_machine, view->e_flags); | 
|  |  | 
|  | /* | 
|  | * Allocate a structure for each thread. | 
|  | */ | 
|  | for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { | 
|  | t = kzalloc(offsetof(struct elf_thread_core_info, | 
|  | notes[info->thread_notes]), | 
|  | GFP_KERNEL); | 
|  | if (unlikely(!t)) | 
|  | return 0; | 
|  |  | 
|  | t->task = ct->task; | 
|  | if (ct->task == dump_task || !info->thread) { | 
|  | t->next = info->thread; | 
|  | info->thread = t; | 
|  | } else { | 
|  | /* | 
|  | * Make sure to keep the original task at | 
|  | * the head of the list. | 
|  | */ | 
|  | t->next = info->thread->next; | 
|  | info->thread->next = t; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now fill in each thread's information. | 
|  | */ | 
|  | for (t = info->thread; t != NULL; t = t->next) | 
|  | if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, &info->size)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Fill in the two process-wide notes. | 
|  | */ | 
|  | fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); | 
|  | info->size += notesize(&info->psinfo); | 
|  |  | 
|  | fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); | 
|  | info->size += notesize(&info->signote); | 
|  |  | 
|  | fill_auxv_note(&info->auxv, current->mm); | 
|  | info->size += notesize(&info->auxv); | 
|  |  | 
|  | if (fill_files_note(&info->files, cprm) == 0) | 
|  | info->size += notesize(&info->files); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static size_t get_note_info_size(struct elf_note_info *info) | 
|  | { | 
|  | return info->size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write all the notes for each thread.  When writing the first thread, the | 
|  | * process-wide notes are interleaved after the first thread-specific note. | 
|  | */ | 
|  | static int write_note_info(struct elf_note_info *info, | 
|  | struct coredump_params *cprm) | 
|  | { | 
|  | bool first = true; | 
|  | struct elf_thread_core_info *t = info->thread; | 
|  |  | 
|  | do { | 
|  | int i; | 
|  |  | 
|  | if (!writenote(&t->notes[0], cprm)) | 
|  | return 0; | 
|  |  | 
|  | if (first && !writenote(&info->psinfo, cprm)) | 
|  | return 0; | 
|  | if (first && !writenote(&info->signote, cprm)) | 
|  | return 0; | 
|  | if (first && !writenote(&info->auxv, cprm)) | 
|  | return 0; | 
|  | if (first && info->files.data && | 
|  | !writenote(&info->files, cprm)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 1; i < info->thread_notes; ++i) | 
|  | if (t->notes[i].data && | 
|  | !writenote(&t->notes[i], cprm)) | 
|  | return 0; | 
|  |  | 
|  | first = false; | 
|  | t = t->next; | 
|  | } while (t); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void free_note_info(struct elf_note_info *info) | 
|  | { | 
|  | struct elf_thread_core_info *threads = info->thread; | 
|  | while (threads) { | 
|  | unsigned int i; | 
|  | struct elf_thread_core_info *t = threads; | 
|  | threads = t->next; | 
|  | WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); | 
|  | for (i = 1; i < info->thread_notes; ++i) | 
|  | kfree(t->notes[i].data); | 
|  | kfree(t); | 
|  | } | 
|  | kfree(info->psinfo.data); | 
|  | kvfree(info->files.data); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* Here is the structure in which status of each thread is captured. */ | 
|  | struct elf_thread_status | 
|  | { | 
|  | struct list_head list; | 
|  | struct elf_prstatus prstatus;	/* NT_PRSTATUS */ | 
|  | elf_fpregset_t fpu;		/* NT_PRFPREG */ | 
|  | struct task_struct *thread; | 
|  | struct memelfnote notes[3]; | 
|  | int num_notes; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In order to add the specific thread information for the elf file format, | 
|  | * we need to keep a linked list of every threads pr_status and then create | 
|  | * a single section for them in the final core file. | 
|  | */ | 
|  | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | 
|  | { | 
|  | int sz = 0; | 
|  | struct task_struct *p = t->thread; | 
|  | t->num_notes = 0; | 
|  |  | 
|  | fill_prstatus(&t->prstatus.common, p, signr); | 
|  | elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | 
|  |  | 
|  | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), | 
|  | &(t->prstatus)); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[0]); | 
|  |  | 
|  | if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, | 
|  | &t->fpu))) { | 
|  | fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), | 
|  | &(t->fpu)); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[1]); | 
|  | } | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | struct elf_note_info { | 
|  | struct memelfnote *notes; | 
|  | struct memelfnote *notes_files; | 
|  | struct elf_prstatus *prstatus;	/* NT_PRSTATUS */ | 
|  | struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */ | 
|  | struct list_head thread_list; | 
|  | elf_fpregset_t *fpu; | 
|  | user_siginfo_t csigdata; | 
|  | int thread_status_size; | 
|  | int numnote; | 
|  | }; | 
|  |  | 
|  | static int elf_note_info_init(struct elf_note_info *info) | 
|  | { | 
|  | memset(info, 0, sizeof(*info)); | 
|  | INIT_LIST_HEAD(&info->thread_list); | 
|  |  | 
|  | /* Allocate space for ELF notes */ | 
|  | info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); | 
|  | if (!info->notes) | 
|  | return 0; | 
|  | info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); | 
|  | if (!info->psinfo) | 
|  | return 0; | 
|  | info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); | 
|  | if (!info->prstatus) | 
|  | return 0; | 
|  | info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); | 
|  | if (!info->fpu) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
|  | struct elf_note_info *info, | 
|  | struct coredump_params *cprm) | 
|  | { | 
|  | struct core_thread *ct; | 
|  | struct elf_thread_status *ets; | 
|  |  | 
|  | if (!elf_note_info_init(info)) | 
|  | return 0; | 
|  |  | 
|  | for (ct = current->mm->core_state->dumper.next; | 
|  | ct; ct = ct->next) { | 
|  | ets = kzalloc(sizeof(*ets), GFP_KERNEL); | 
|  | if (!ets) | 
|  | return 0; | 
|  |  | 
|  | ets->thread = ct->task; | 
|  | list_add(&ets->list, &info->thread_list); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(ets, &info->thread_list, list) { | 
|  | int sz; | 
|  |  | 
|  | sz = elf_dump_thread_status(cprm->siginfo->si_signo, ets); | 
|  | info->thread_status_size += sz; | 
|  | } | 
|  | /* now collect the dump for the current */ | 
|  | memset(info->prstatus, 0, sizeof(*info->prstatus)); | 
|  | fill_prstatus(&info->prstatus->common, current, cprm->siginfo->si_signo); | 
|  | elf_core_copy_regs(&info->prstatus->pr_reg, cprm->regs); | 
|  |  | 
|  | /* Set up header */ | 
|  | fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); | 
|  |  | 
|  | /* | 
|  | * Set up the notes in similar form to SVR4 core dumps made | 
|  | * with info from their /proc. | 
|  | */ | 
|  |  | 
|  | fill_note(info->notes + 0, "CORE", NT_PRSTATUS, | 
|  | sizeof(*info->prstatus), info->prstatus); | 
|  | fill_psinfo(info->psinfo, current->group_leader, current->mm); | 
|  | fill_note(info->notes + 1, "CORE", NT_PRPSINFO, | 
|  | sizeof(*info->psinfo), info->psinfo); | 
|  |  | 
|  | fill_siginfo_note(info->notes + 2, &info->csigdata, cprm->siginfo); | 
|  | fill_auxv_note(info->notes + 3, current->mm); | 
|  | info->numnote = 4; | 
|  |  | 
|  | if (fill_files_note(info->notes + info->numnote, cprm) == 0) { | 
|  | info->notes_files = info->notes + info->numnote; | 
|  | info->numnote++; | 
|  | } | 
|  |  | 
|  | /* Try to dump the FPU. */ | 
|  | info->prstatus->pr_fpvalid = | 
|  | elf_core_copy_task_fpregs(current, cprm->regs, info->fpu); | 
|  | if (info->prstatus->pr_fpvalid) | 
|  | fill_note(info->notes + info->numnote++, | 
|  | "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static size_t get_note_info_size(struct elf_note_info *info) | 
|  | { | 
|  | int sz = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < info->numnote; i++) | 
|  | sz += notesize(info->notes + i); | 
|  |  | 
|  | sz += info->thread_status_size; | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static int write_note_info(struct elf_note_info *info, | 
|  | struct coredump_params *cprm) | 
|  | { | 
|  | struct elf_thread_status *ets; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < info->numnote; i++) | 
|  | if (!writenote(info->notes + i, cprm)) | 
|  | return 0; | 
|  |  | 
|  | /* write out the thread status notes section */ | 
|  | list_for_each_entry(ets, &info->thread_list, list) { | 
|  | for (i = 0; i < ets->num_notes; i++) | 
|  | if (!writenote(&ets->notes[i], cprm)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void free_note_info(struct elf_note_info *info) | 
|  | { | 
|  | while (!list_empty(&info->thread_list)) { | 
|  | struct list_head *tmp = info->thread_list.next; | 
|  | list_del(tmp); | 
|  | kfree(list_entry(tmp, struct elf_thread_status, list)); | 
|  | } | 
|  |  | 
|  | /* Free data possibly allocated by fill_files_note(): */ | 
|  | if (info->notes_files) | 
|  | kvfree(info->notes_files->data); | 
|  |  | 
|  | kfree(info->prstatus); | 
|  | kfree(info->psinfo); | 
|  | kfree(info->notes); | 
|  | kfree(info->fpu); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, | 
|  | elf_addr_t e_shoff, int segs) | 
|  | { | 
|  | elf->e_shoff = e_shoff; | 
|  | elf->e_shentsize = sizeof(*shdr4extnum); | 
|  | elf->e_shnum = 1; | 
|  | elf->e_shstrndx = SHN_UNDEF; | 
|  |  | 
|  | memset(shdr4extnum, 0, sizeof(*shdr4extnum)); | 
|  |  | 
|  | shdr4extnum->sh_type = SHT_NULL; | 
|  | shdr4extnum->sh_size = elf->e_shnum; | 
|  | shdr4extnum->sh_link = elf->e_shstrndx; | 
|  | shdr4extnum->sh_info = segs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Actual dumper | 
|  | * | 
|  | * This is a two-pass process; first we find the offsets of the bits, | 
|  | * and then they are actually written out.  If we run out of core limit | 
|  | * we just truncate. | 
|  | */ | 
|  | static int elf_core_dump(struct coredump_params *cprm) | 
|  | { | 
|  | int has_dumped = 0; | 
|  | int segs, i; | 
|  | struct elfhdr elf; | 
|  | loff_t offset = 0, dataoff; | 
|  | struct elf_note_info info = { }; | 
|  | struct elf_phdr *phdr4note = NULL; | 
|  | struct elf_shdr *shdr4extnum = NULL; | 
|  | Elf_Half e_phnum; | 
|  | elf_addr_t e_shoff; | 
|  |  | 
|  | /* | 
|  | * The number of segs are recored into ELF header as 16bit value. | 
|  | * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. | 
|  | */ | 
|  | segs = cprm->vma_count + elf_core_extra_phdrs(); | 
|  |  | 
|  | /* for notes section */ | 
|  | segs++; | 
|  |  | 
|  | /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid | 
|  | * this, kernel supports extended numbering. Have a look at | 
|  | * include/linux/elf.h for further information. */ | 
|  | e_phnum = segs > PN_XNUM ? PN_XNUM : segs; | 
|  |  | 
|  | /* | 
|  | * Collect all the non-memory information about the process for the | 
|  | * notes.  This also sets up the file header. | 
|  | */ | 
|  | if (!fill_note_info(&elf, e_phnum, &info, cprm)) | 
|  | goto end_coredump; | 
|  |  | 
|  | has_dumped = 1; | 
|  |  | 
|  | offset += sizeof(elf);				/* Elf header */ | 
|  | offset += segs * sizeof(struct elf_phdr);	/* Program headers */ | 
|  |  | 
|  | /* Write notes phdr entry */ | 
|  | { | 
|  | size_t sz = get_note_info_size(&info); | 
|  |  | 
|  | /* For cell spufs */ | 
|  | sz += elf_coredump_extra_notes_size(); | 
|  |  | 
|  | phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); | 
|  | if (!phdr4note) | 
|  | goto end_coredump; | 
|  |  | 
|  | fill_elf_note_phdr(phdr4note, sz, offset); | 
|  | offset += sz; | 
|  | } | 
|  |  | 
|  | dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); | 
|  |  | 
|  | offset += cprm->vma_data_size; | 
|  | offset += elf_core_extra_data_size(); | 
|  | e_shoff = offset; | 
|  |  | 
|  | if (e_phnum == PN_XNUM) { | 
|  | shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); | 
|  | if (!shdr4extnum) | 
|  | goto end_coredump; | 
|  | fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); | 
|  | } | 
|  |  | 
|  | offset = dataoff; | 
|  |  | 
|  | if (!dump_emit(cprm, &elf, sizeof(elf))) | 
|  | goto end_coredump; | 
|  |  | 
|  | if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* Write program headers for segments dump */ | 
|  | for (i = 0; i < cprm->vma_count; i++) { | 
|  | struct core_vma_metadata *meta = cprm->vma_meta + i; | 
|  | struct elf_phdr phdr; | 
|  |  | 
|  | phdr.p_type = PT_LOAD; | 
|  | phdr.p_offset = offset; | 
|  | phdr.p_vaddr = meta->start; | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = meta->dump_size; | 
|  | phdr.p_memsz = meta->end - meta->start; | 
|  | offset += phdr.p_filesz; | 
|  | phdr.p_flags = 0; | 
|  | if (meta->flags & VM_READ) | 
|  | phdr.p_flags |= PF_R; | 
|  | if (meta->flags & VM_WRITE) | 
|  | phdr.p_flags |= PF_W; | 
|  | if (meta->flags & VM_EXEC) | 
|  | phdr.p_flags |= PF_X; | 
|  | phdr.p_align = ELF_EXEC_PAGESIZE; | 
|  |  | 
|  | if (!dump_emit(cprm, &phdr, sizeof(phdr))) | 
|  | goto end_coredump; | 
|  | } | 
|  |  | 
|  | if (!elf_core_write_extra_phdrs(cprm, offset)) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* write out the notes section */ | 
|  | if (!write_note_info(&info, cprm)) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* For cell spufs */ | 
|  | if (elf_coredump_extra_notes_write(cprm)) | 
|  | goto end_coredump; | 
|  |  | 
|  | /* Align to page */ | 
|  | dump_skip_to(cprm, dataoff); | 
|  |  | 
|  | for (i = 0; i < cprm->vma_count; i++) { | 
|  | struct core_vma_metadata *meta = cprm->vma_meta + i; | 
|  |  | 
|  | if (!dump_user_range(cprm, meta->start, meta->dump_size)) | 
|  | goto end_coredump; | 
|  | } | 
|  |  | 
|  | if (!elf_core_write_extra_data(cprm)) | 
|  | goto end_coredump; | 
|  |  | 
|  | if (e_phnum == PN_XNUM) { | 
|  | if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) | 
|  | goto end_coredump; | 
|  | } | 
|  |  | 
|  | end_coredump: | 
|  | free_note_info(&info); | 
|  | kfree(shdr4extnum); | 
|  | kfree(phdr4note); | 
|  | return has_dumped; | 
|  | } | 
|  |  | 
|  | #endif		/* CONFIG_ELF_CORE */ | 
|  |  | 
|  | static int __init init_elf_binfmt(void) | 
|  | { | 
|  | register_binfmt(&elf_format); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit exit_elf_binfmt(void) | 
|  | { | 
|  | /* Remove the COFF and ELF loaders. */ | 
|  | unregister_binfmt(&elf_format); | 
|  | } | 
|  |  | 
|  | core_initcall(init_elf_binfmt); | 
|  | module_exit(exit_elf_binfmt); | 
|  | MODULE_LICENSE("GPL"); |