| // SPDX-License-Identifier: GPL-2.0 | 
 | /* Copyright(c) 2013 - 2019 Intel Corporation. */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/module.h> | 
 | #include <net/ipv6.h> | 
 | #include <net/ip.h> | 
 | #include <net/tcp.h> | 
 | #include <linux/if_macvlan.h> | 
 | #include <linux/prefetch.h> | 
 |  | 
 | #include "fm10k.h" | 
 |  | 
 | #define DRV_VERSION	"0.26.1-k" | 
 | #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver" | 
 | const char fm10k_driver_version[] = DRV_VERSION; | 
 | char fm10k_driver_name[] = "fm10k"; | 
 | static const char fm10k_driver_string[] = DRV_SUMMARY; | 
 | static const char fm10k_copyright[] = | 
 | 	"Copyright(c) 2013 - 2019 Intel Corporation."; | 
 |  | 
 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
 | MODULE_DESCRIPTION(DRV_SUMMARY); | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_VERSION(DRV_VERSION); | 
 |  | 
 | /* single workqueue for entire fm10k driver */ | 
 | struct workqueue_struct *fm10k_workqueue; | 
 |  | 
 | /** | 
 |  * fm10k_init_module - Driver Registration Routine | 
 |  * | 
 |  * fm10k_init_module is the first routine called when the driver is | 
 |  * loaded.  All it does is register with the PCI subsystem. | 
 |  **/ | 
 | static int __init fm10k_init_module(void) | 
 | { | 
 | 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); | 
 | 	pr_info("%s\n", fm10k_copyright); | 
 |  | 
 | 	/* create driver workqueue */ | 
 | 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, | 
 | 					  fm10k_driver_name); | 
 | 	if (!fm10k_workqueue) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fm10k_dbg_init(); | 
 |  | 
 | 	return fm10k_register_pci_driver(); | 
 | } | 
 | module_init(fm10k_init_module); | 
 |  | 
 | /** | 
 |  * fm10k_exit_module - Driver Exit Cleanup Routine | 
 |  * | 
 |  * fm10k_exit_module is called just before the driver is removed | 
 |  * from memory. | 
 |  **/ | 
 | static void __exit fm10k_exit_module(void) | 
 | { | 
 | 	fm10k_unregister_pci_driver(); | 
 |  | 
 | 	fm10k_dbg_exit(); | 
 |  | 
 | 	/* destroy driver workqueue */ | 
 | 	destroy_workqueue(fm10k_workqueue); | 
 | } | 
 | module_exit(fm10k_exit_module); | 
 |  | 
 | static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, | 
 | 				    struct fm10k_rx_buffer *bi) | 
 | { | 
 | 	struct page *page = bi->page; | 
 | 	dma_addr_t dma; | 
 |  | 
 | 	/* Only page will be NULL if buffer was consumed */ | 
 | 	if (likely(page)) | 
 | 		return true; | 
 |  | 
 | 	/* alloc new page for storage */ | 
 | 	page = dev_alloc_page(); | 
 | 	if (unlikely(!page)) { | 
 | 		rx_ring->rx_stats.alloc_failed++; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* map page for use */ | 
 | 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); | 
 |  | 
 | 	/* if mapping failed free memory back to system since | 
 | 	 * there isn't much point in holding memory we can't use | 
 | 	 */ | 
 | 	if (dma_mapping_error(rx_ring->dev, dma)) { | 
 | 		__free_page(page); | 
 |  | 
 | 		rx_ring->rx_stats.alloc_failed++; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	bi->dma = dma; | 
 | 	bi->page = page; | 
 | 	bi->page_offset = 0; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_alloc_rx_buffers - Replace used receive buffers | 
 |  * @rx_ring: ring to place buffers on | 
 |  * @cleaned_count: number of buffers to replace | 
 |  **/ | 
 | void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) | 
 | { | 
 | 	union fm10k_rx_desc *rx_desc; | 
 | 	struct fm10k_rx_buffer *bi; | 
 | 	u16 i = rx_ring->next_to_use; | 
 |  | 
 | 	/* nothing to do */ | 
 | 	if (!cleaned_count) | 
 | 		return; | 
 |  | 
 | 	rx_desc = FM10K_RX_DESC(rx_ring, i); | 
 | 	bi = &rx_ring->rx_buffer[i]; | 
 | 	i -= rx_ring->count; | 
 |  | 
 | 	do { | 
 | 		if (!fm10k_alloc_mapped_page(rx_ring, bi)) | 
 | 			break; | 
 |  | 
 | 		/* Refresh the desc even if buffer_addrs didn't change | 
 | 		 * because each write-back erases this info. | 
 | 		 */ | 
 | 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); | 
 |  | 
 | 		rx_desc++; | 
 | 		bi++; | 
 | 		i++; | 
 | 		if (unlikely(!i)) { | 
 | 			rx_desc = FM10K_RX_DESC(rx_ring, 0); | 
 | 			bi = rx_ring->rx_buffer; | 
 | 			i -= rx_ring->count; | 
 | 		} | 
 |  | 
 | 		/* clear the status bits for the next_to_use descriptor */ | 
 | 		rx_desc->d.staterr = 0; | 
 |  | 
 | 		cleaned_count--; | 
 | 	} while (cleaned_count); | 
 |  | 
 | 	i += rx_ring->count; | 
 |  | 
 | 	if (rx_ring->next_to_use != i) { | 
 | 		/* record the next descriptor to use */ | 
 | 		rx_ring->next_to_use = i; | 
 |  | 
 | 		/* update next to alloc since we have filled the ring */ | 
 | 		rx_ring->next_to_alloc = i; | 
 |  | 
 | 		/* Force memory writes to complete before letting h/w | 
 | 		 * know there are new descriptors to fetch.  (Only | 
 | 		 * applicable for weak-ordered memory model archs, | 
 | 		 * such as IA-64). | 
 | 		 */ | 
 | 		wmb(); | 
 |  | 
 | 		/* notify hardware of new descriptors */ | 
 | 		writel(i, rx_ring->tail); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring | 
 |  * @rx_ring: rx descriptor ring to store buffers on | 
 |  * @old_buff: donor buffer to have page reused | 
 |  * | 
 |  * Synchronizes page for reuse by the interface | 
 |  **/ | 
 | static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, | 
 | 				struct fm10k_rx_buffer *old_buff) | 
 | { | 
 | 	struct fm10k_rx_buffer *new_buff; | 
 | 	u16 nta = rx_ring->next_to_alloc; | 
 |  | 
 | 	new_buff = &rx_ring->rx_buffer[nta]; | 
 |  | 
 | 	/* update, and store next to alloc */ | 
 | 	nta++; | 
 | 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; | 
 |  | 
 | 	/* transfer page from old buffer to new buffer */ | 
 | 	*new_buff = *old_buff; | 
 |  | 
 | 	/* sync the buffer for use by the device */ | 
 | 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, | 
 | 					 old_buff->page_offset, | 
 | 					 FM10K_RX_BUFSZ, | 
 | 					 DMA_FROM_DEVICE); | 
 | } | 
 |  | 
 | static inline bool fm10k_page_is_reserved(struct page *page) | 
 | { | 
 | 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); | 
 | } | 
 |  | 
 | static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, | 
 | 				    struct page *page, | 
 | 				    unsigned int __maybe_unused truesize) | 
 | { | 
 | 	/* avoid re-using remote pages */ | 
 | 	if (unlikely(fm10k_page_is_reserved(page))) | 
 | 		return false; | 
 |  | 
 | #if (PAGE_SIZE < 8192) | 
 | 	/* if we are only owner of page we can reuse it */ | 
 | 	if (unlikely(page_count(page) != 1)) | 
 | 		return false; | 
 |  | 
 | 	/* flip page offset to other buffer */ | 
 | 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ; | 
 | #else | 
 | 	/* move offset up to the next cache line */ | 
 | 	rx_buffer->page_offset += truesize; | 
 |  | 
 | 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) | 
 | 		return false; | 
 | #endif | 
 |  | 
 | 	/* Even if we own the page, we are not allowed to use atomic_set() | 
 | 	 * This would break get_page_unless_zero() users. | 
 | 	 */ | 
 | 	page_ref_inc(page); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff | 
 |  * @rx_buffer: buffer containing page to add | 
 |  * @size: packet size from rx_desc | 
 |  * @rx_desc: descriptor containing length of buffer written by hardware | 
 |  * @skb: sk_buff to place the data into | 
 |  * | 
 |  * This function will add the data contained in rx_buffer->page to the skb. | 
 |  * This is done either through a direct copy if the data in the buffer is | 
 |  * less than the skb header size, otherwise it will just attach the page as | 
 |  * a frag to the skb. | 
 |  * | 
 |  * The function will then update the page offset if necessary and return | 
 |  * true if the buffer can be reused by the interface. | 
 |  **/ | 
 | static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, | 
 | 			      unsigned int size, | 
 | 			      union fm10k_rx_desc *rx_desc, | 
 | 			      struct sk_buff *skb) | 
 | { | 
 | 	struct page *page = rx_buffer->page; | 
 | 	unsigned char *va = page_address(page) + rx_buffer->page_offset; | 
 | #if (PAGE_SIZE < 8192) | 
 | 	unsigned int truesize = FM10K_RX_BUFSZ; | 
 | #else | 
 | 	unsigned int truesize = ALIGN(size, 512); | 
 | #endif | 
 | 	unsigned int pull_len; | 
 |  | 
 | 	if (unlikely(skb_is_nonlinear(skb))) | 
 | 		goto add_tail_frag; | 
 |  | 
 | 	if (likely(size <= FM10K_RX_HDR_LEN)) { | 
 | 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); | 
 |  | 
 | 		/* page is not reserved, we can reuse buffer as-is */ | 
 | 		if (likely(!fm10k_page_is_reserved(page))) | 
 | 			return true; | 
 |  | 
 | 		/* this page cannot be reused so discard it */ | 
 | 		__free_page(page); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* we need the header to contain the greater of either ETH_HLEN or | 
 | 	 * 60 bytes if the skb->len is less than 60 for skb_pad. | 
 | 	 */ | 
 | 	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); | 
 |  | 
 | 	/* align pull length to size of long to optimize memcpy performance */ | 
 | 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); | 
 |  | 
 | 	/* update all of the pointers */ | 
 | 	va += pull_len; | 
 | 	size -= pull_len; | 
 |  | 
 | add_tail_frag: | 
 | 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, | 
 | 			(unsigned long)va & ~PAGE_MASK, size, truesize); | 
 |  | 
 | 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); | 
 | } | 
 |  | 
 | static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, | 
 | 					     union fm10k_rx_desc *rx_desc, | 
 | 					     struct sk_buff *skb) | 
 | { | 
 | 	unsigned int size = le16_to_cpu(rx_desc->w.length); | 
 | 	struct fm10k_rx_buffer *rx_buffer; | 
 | 	struct page *page; | 
 |  | 
 | 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; | 
 | 	page = rx_buffer->page; | 
 | 	prefetchw(page); | 
 |  | 
 | 	if (likely(!skb)) { | 
 | 		void *page_addr = page_address(page) + | 
 | 				  rx_buffer->page_offset; | 
 |  | 
 | 		/* prefetch first cache line of first page */ | 
 | 		prefetch(page_addr); | 
 | #if L1_CACHE_BYTES < 128 | 
 | 		prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES)); | 
 | #endif | 
 |  | 
 | 		/* allocate a skb to store the frags */ | 
 | 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, | 
 | 				     FM10K_RX_HDR_LEN); | 
 | 		if (unlikely(!skb)) { | 
 | 			rx_ring->rx_stats.alloc_failed++; | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		/* we will be copying header into skb->data in | 
 | 		 * pskb_may_pull so it is in our interest to prefetch | 
 | 		 * it now to avoid a possible cache miss | 
 | 		 */ | 
 | 		prefetchw(skb->data); | 
 | 	} | 
 |  | 
 | 	/* we are reusing so sync this buffer for CPU use */ | 
 | 	dma_sync_single_range_for_cpu(rx_ring->dev, | 
 | 				      rx_buffer->dma, | 
 | 				      rx_buffer->page_offset, | 
 | 				      size, | 
 | 				      DMA_FROM_DEVICE); | 
 |  | 
 | 	/* pull page into skb */ | 
 | 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { | 
 | 		/* hand second half of page back to the ring */ | 
 | 		fm10k_reuse_rx_page(rx_ring, rx_buffer); | 
 | 	} else { | 
 | 		/* we are not reusing the buffer so unmap it */ | 
 | 		dma_unmap_page(rx_ring->dev, rx_buffer->dma, | 
 | 			       PAGE_SIZE, DMA_FROM_DEVICE); | 
 | 	} | 
 |  | 
 | 	/* clear contents of rx_buffer */ | 
 | 	rx_buffer->page = NULL; | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static inline void fm10k_rx_checksum(struct fm10k_ring *ring, | 
 | 				     union fm10k_rx_desc *rx_desc, | 
 | 				     struct sk_buff *skb) | 
 | { | 
 | 	skb_checksum_none_assert(skb); | 
 |  | 
 | 	/* Rx checksum disabled via ethtool */ | 
 | 	if (!(ring->netdev->features & NETIF_F_RXCSUM)) | 
 | 		return; | 
 |  | 
 | 	/* TCP/UDP checksum error bit is set */ | 
 | 	if (fm10k_test_staterr(rx_desc, | 
 | 			       FM10K_RXD_STATUS_L4E | | 
 | 			       FM10K_RXD_STATUS_L4E2 | | 
 | 			       FM10K_RXD_STATUS_IPE | | 
 | 			       FM10K_RXD_STATUS_IPE2)) { | 
 | 		ring->rx_stats.csum_err++; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* It must be a TCP or UDP packet with a valid checksum */ | 
 | 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) | 
 | 		skb->encapsulation = true; | 
 | 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) | 
 | 		return; | 
 |  | 
 | 	skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 |  | 
 | 	ring->rx_stats.csum_good++; | 
 | } | 
 |  | 
 | #define FM10K_RSS_L4_TYPES_MASK \ | 
 | 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \ | 
 | 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ | 
 | 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ | 
 | 	 BIT(FM10K_RSSTYPE_IPV6_UDP)) | 
 |  | 
 | static inline void fm10k_rx_hash(struct fm10k_ring *ring, | 
 | 				 union fm10k_rx_desc *rx_desc, | 
 | 				 struct sk_buff *skb) | 
 | { | 
 | 	u16 rss_type; | 
 |  | 
 | 	if (!(ring->netdev->features & NETIF_F_RXHASH)) | 
 | 		return; | 
 |  | 
 | 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; | 
 | 	if (!rss_type) | 
 | 		return; | 
 |  | 
 | 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), | 
 | 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? | 
 | 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); | 
 | } | 
 |  | 
 | static void fm10k_type_trans(struct fm10k_ring *rx_ring, | 
 | 			     union fm10k_rx_desc __maybe_unused *rx_desc, | 
 | 			     struct sk_buff *skb) | 
 | { | 
 | 	struct net_device *dev = rx_ring->netdev; | 
 | 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); | 
 |  | 
 | 	/* check to see if DGLORT belongs to a MACVLAN */ | 
 | 	if (l2_accel) { | 
 | 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; | 
 |  | 
 | 		idx -= l2_accel->dglort; | 
 | 		if (idx < l2_accel->size && l2_accel->macvlan[idx]) | 
 | 			dev = l2_accel->macvlan[idx]; | 
 | 		else | 
 | 			l2_accel = NULL; | 
 | 	} | 
 |  | 
 | 	/* Record Rx queue, or update macvlan statistics */ | 
 | 	if (!l2_accel) | 
 | 		skb_record_rx_queue(skb, rx_ring->queue_index); | 
 | 	else | 
 | 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, | 
 | 				 false); | 
 |  | 
 | 	skb->protocol = eth_type_trans(skb, dev); | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor | 
 |  * @rx_ring: rx descriptor ring packet is being transacted on | 
 |  * @rx_desc: pointer to the EOP Rx descriptor | 
 |  * @skb: pointer to current skb being populated | 
 |  * | 
 |  * This function checks the ring, descriptor, and packet information in | 
 |  * order to populate the hash, checksum, VLAN, timestamp, protocol, and | 
 |  * other fields within the skb. | 
 |  **/ | 
 | static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, | 
 | 					     union fm10k_rx_desc *rx_desc, | 
 | 					     struct sk_buff *skb) | 
 | { | 
 | 	unsigned int len = skb->len; | 
 |  | 
 | 	fm10k_rx_hash(rx_ring, rx_desc, skb); | 
 |  | 
 | 	fm10k_rx_checksum(rx_ring, rx_desc, skb); | 
 |  | 
 | 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; | 
 |  | 
 | 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; | 
 |  | 
 | 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; | 
 |  | 
 | 	if (rx_desc->w.vlan) { | 
 | 		u16 vid = le16_to_cpu(rx_desc->w.vlan); | 
 |  | 
 | 		if ((vid & VLAN_VID_MASK) != rx_ring->vid) | 
 | 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); | 
 | 		else if (vid & VLAN_PRIO_MASK) | 
 | 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), | 
 | 					       vid & VLAN_PRIO_MASK); | 
 | 	} | 
 |  | 
 | 	fm10k_type_trans(rx_ring, rx_desc, skb); | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_is_non_eop - process handling of non-EOP buffers | 
 |  * @rx_ring: Rx ring being processed | 
 |  * @rx_desc: Rx descriptor for current buffer | 
 |  * | 
 |  * This function updates next to clean.  If the buffer is an EOP buffer | 
 |  * this function exits returning false, otherwise it will place the | 
 |  * sk_buff in the next buffer to be chained and return true indicating | 
 |  * that this is in fact a non-EOP buffer. | 
 |  **/ | 
 | static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, | 
 | 			     union fm10k_rx_desc *rx_desc) | 
 | { | 
 | 	u32 ntc = rx_ring->next_to_clean + 1; | 
 |  | 
 | 	/* fetch, update, and store next to clean */ | 
 | 	ntc = (ntc < rx_ring->count) ? ntc : 0; | 
 | 	rx_ring->next_to_clean = ntc; | 
 |  | 
 | 	prefetch(FM10K_RX_DESC(rx_ring, ntc)); | 
 |  | 
 | 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_cleanup_headers - Correct corrupted or empty headers | 
 |  * @rx_ring: rx descriptor ring packet is being transacted on | 
 |  * @rx_desc: pointer to the EOP Rx descriptor | 
 |  * @skb: pointer to current skb being fixed | 
 |  * | 
 |  * Address the case where we are pulling data in on pages only | 
 |  * and as such no data is present in the skb header. | 
 |  * | 
 |  * In addition if skb is not at least 60 bytes we need to pad it so that | 
 |  * it is large enough to qualify as a valid Ethernet frame. | 
 |  * | 
 |  * Returns true if an error was encountered and skb was freed. | 
 |  **/ | 
 | static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, | 
 | 				  union fm10k_rx_desc *rx_desc, | 
 | 				  struct sk_buff *skb) | 
 | { | 
 | 	if (unlikely((fm10k_test_staterr(rx_desc, | 
 | 					 FM10K_RXD_STATUS_RXE)))) { | 
 | #define FM10K_TEST_RXD_BIT(rxd, bit) \ | 
 | 	((rxd)->w.csum_err & cpu_to_le16(bit)) | 
 | 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) | 
 | 			rx_ring->rx_stats.switch_errors++; | 
 | 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) | 
 | 			rx_ring->rx_stats.drops++; | 
 | 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) | 
 | 			rx_ring->rx_stats.pp_errors++; | 
 | 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) | 
 | 			rx_ring->rx_stats.link_errors++; | 
 | 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) | 
 | 			rx_ring->rx_stats.length_errors++; | 
 | 		dev_kfree_skb_any(skb); | 
 | 		rx_ring->rx_stats.errors++; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* if eth_skb_pad returns an error the skb was freed */ | 
 | 	if (eth_skb_pad(skb)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_receive_skb - helper function to handle rx indications | 
 |  * @q_vector: structure containing interrupt and ring information | 
 |  * @skb: packet to send up | 
 |  **/ | 
 | static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, | 
 | 			      struct sk_buff *skb) | 
 | { | 
 | 	napi_gro_receive(&q_vector->napi, skb); | 
 | } | 
 |  | 
 | static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, | 
 | 			      struct fm10k_ring *rx_ring, | 
 | 			      int budget) | 
 | { | 
 | 	struct sk_buff *skb = rx_ring->skb; | 
 | 	unsigned int total_bytes = 0, total_packets = 0; | 
 | 	u16 cleaned_count = fm10k_desc_unused(rx_ring); | 
 |  | 
 | 	while (likely(total_packets < budget)) { | 
 | 		union fm10k_rx_desc *rx_desc; | 
 |  | 
 | 		/* return some buffers to hardware, one at a time is too slow */ | 
 | 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { | 
 | 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count); | 
 | 			cleaned_count = 0; | 
 | 		} | 
 |  | 
 | 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); | 
 |  | 
 | 		if (!rx_desc->d.staterr) | 
 | 			break; | 
 |  | 
 | 		/* This memory barrier is needed to keep us from reading | 
 | 		 * any other fields out of the rx_desc until we know the | 
 | 		 * descriptor has been written back | 
 | 		 */ | 
 | 		dma_rmb(); | 
 |  | 
 | 		/* retrieve a buffer from the ring */ | 
 | 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); | 
 |  | 
 | 		/* exit if we failed to retrieve a buffer */ | 
 | 		if (!skb) | 
 | 			break; | 
 |  | 
 | 		cleaned_count++; | 
 |  | 
 | 		/* fetch next buffer in frame if non-eop */ | 
 | 		if (fm10k_is_non_eop(rx_ring, rx_desc)) | 
 | 			continue; | 
 |  | 
 | 		/* verify the packet layout is correct */ | 
 | 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { | 
 | 			skb = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* populate checksum, timestamp, VLAN, and protocol */ | 
 | 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); | 
 |  | 
 | 		fm10k_receive_skb(q_vector, skb); | 
 |  | 
 | 		/* reset skb pointer */ | 
 | 		skb = NULL; | 
 |  | 
 | 		/* update budget accounting */ | 
 | 		total_packets++; | 
 | 	} | 
 |  | 
 | 	/* place incomplete frames back on ring for completion */ | 
 | 	rx_ring->skb = skb; | 
 |  | 
 | 	u64_stats_update_begin(&rx_ring->syncp); | 
 | 	rx_ring->stats.packets += total_packets; | 
 | 	rx_ring->stats.bytes += total_bytes; | 
 | 	u64_stats_update_end(&rx_ring->syncp); | 
 | 	q_vector->rx.total_packets += total_packets; | 
 | 	q_vector->rx.total_bytes += total_bytes; | 
 |  | 
 | 	return total_packets; | 
 | } | 
 |  | 
 | #define VXLAN_HLEN (sizeof(struct udphdr) + 8) | 
 | static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) | 
 | { | 
 | 	struct fm10k_intfc *interface = netdev_priv(skb->dev); | 
 | 	struct fm10k_udp_port *vxlan_port; | 
 |  | 
 | 	/* we can only offload a vxlan if we recognize it as such */ | 
 | 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port, | 
 | 					      struct fm10k_udp_port, list); | 
 |  | 
 | 	if (!vxlan_port) | 
 | 		return NULL; | 
 | 	if (vxlan_port->port != udp_hdr(skb)->dest) | 
 | 		return NULL; | 
 |  | 
 | 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */ | 
 | 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); | 
 | } | 
 |  | 
 | #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) | 
 | #define NVGRE_TNI htons(0x2000) | 
 | struct fm10k_nvgre_hdr { | 
 | 	__be16 flags; | 
 | 	__be16 proto; | 
 | 	__be32 tni; | 
 | }; | 
 |  | 
 | static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) | 
 | { | 
 | 	struct fm10k_nvgre_hdr *nvgre_hdr; | 
 | 	int hlen = ip_hdrlen(skb); | 
 |  | 
 | 	/* currently only IPv4 is supported due to hlen above */ | 
 | 	if (vlan_get_protocol(skb) != htons(ETH_P_IP)) | 
 | 		return NULL; | 
 |  | 
 | 	/* our transport header should be NVGRE */ | 
 | 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); | 
 |  | 
 | 	/* verify all reserved flags are 0 */ | 
 | 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) | 
 | 		return NULL; | 
 |  | 
 | 	/* report start of ethernet header */ | 
 | 	if (nvgre_hdr->flags & NVGRE_TNI) | 
 | 		return (struct ethhdr *)(nvgre_hdr + 1); | 
 |  | 
 | 	return (struct ethhdr *)(&nvgre_hdr->tni); | 
 | } | 
 |  | 
 | __be16 fm10k_tx_encap_offload(struct sk_buff *skb) | 
 | { | 
 | 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; | 
 | 	struct ethhdr *eth_hdr; | 
 |  | 
 | 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || | 
 | 	    skb->inner_protocol != htons(ETH_P_TEB)) | 
 | 		return 0; | 
 |  | 
 | 	switch (vlan_get_protocol(skb)) { | 
 | 	case htons(ETH_P_IP): | 
 | 		l4_hdr = ip_hdr(skb)->protocol; | 
 | 		break; | 
 | 	case htons(ETH_P_IPV6): | 
 | 		l4_hdr = ipv6_hdr(skb)->nexthdr; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	switch (l4_hdr) { | 
 | 	case IPPROTO_UDP: | 
 | 		eth_hdr = fm10k_port_is_vxlan(skb); | 
 | 		break; | 
 | 	case IPPROTO_GRE: | 
 | 		eth_hdr = fm10k_gre_is_nvgre(skb); | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!eth_hdr) | 
 | 		return 0; | 
 |  | 
 | 	switch (eth_hdr->h_proto) { | 
 | 	case htons(ETH_P_IP): | 
 | 		inner_l4_hdr = inner_ip_hdr(skb)->protocol; | 
 | 		break; | 
 | 	case htons(ETH_P_IPV6): | 
 | 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	switch (inner_l4_hdr) { | 
 | 	case IPPROTO_TCP: | 
 | 		inner_l4_hlen = inner_tcp_hdrlen(skb); | 
 | 		break; | 
 | 	case IPPROTO_UDP: | 
 | 		inner_l4_hlen = 8; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* The hardware allows tunnel offloads only if the combined inner and | 
 | 	 * outer header is 184 bytes or less | 
 | 	 */ | 
 | 	if (skb_inner_transport_header(skb) + inner_l4_hlen - | 
 | 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) | 
 | 		return 0; | 
 |  | 
 | 	return eth_hdr->h_proto; | 
 | } | 
 |  | 
 | static int fm10k_tso(struct fm10k_ring *tx_ring, | 
 | 		     struct fm10k_tx_buffer *first) | 
 | { | 
 | 	struct sk_buff *skb = first->skb; | 
 | 	struct fm10k_tx_desc *tx_desc; | 
 | 	unsigned char *th; | 
 | 	u8 hdrlen; | 
 |  | 
 | 	if (skb->ip_summed != CHECKSUM_PARTIAL) | 
 | 		return 0; | 
 |  | 
 | 	if (!skb_is_gso(skb)) | 
 | 		return 0; | 
 |  | 
 | 	/* compute header lengths */ | 
 | 	if (skb->encapsulation) { | 
 | 		if (!fm10k_tx_encap_offload(skb)) | 
 | 			goto err_vxlan; | 
 | 		th = skb_inner_transport_header(skb); | 
 | 	} else { | 
 | 		th = skb_transport_header(skb); | 
 | 	} | 
 |  | 
 | 	/* compute offset from SOF to transport header and add header len */ | 
 | 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); | 
 |  | 
 | 	first->tx_flags |= FM10K_TX_FLAGS_CSUM; | 
 |  | 
 | 	/* update gso size and bytecount with header size */ | 
 | 	first->gso_segs = skb_shinfo(skb)->gso_segs; | 
 | 	first->bytecount += (first->gso_segs - 1) * hdrlen; | 
 |  | 
 | 	/* populate Tx descriptor header size and mss */ | 
 | 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); | 
 | 	tx_desc->hdrlen = hdrlen; | 
 | 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); | 
 |  | 
 | 	return 1; | 
 |  | 
 | err_vxlan: | 
 | 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; | 
 | 	if (net_ratelimit()) | 
 | 		netdev_err(tx_ring->netdev, | 
 | 			   "TSO requested for unsupported tunnel, disabling offload\n"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void fm10k_tx_csum(struct fm10k_ring *tx_ring, | 
 | 			  struct fm10k_tx_buffer *first) | 
 | { | 
 | 	struct sk_buff *skb = first->skb; | 
 | 	struct fm10k_tx_desc *tx_desc; | 
 | 	union { | 
 | 		struct iphdr *ipv4; | 
 | 		struct ipv6hdr *ipv6; | 
 | 		u8 *raw; | 
 | 	} network_hdr; | 
 | 	u8 *transport_hdr; | 
 | 	__be16 frag_off; | 
 | 	__be16 protocol; | 
 | 	u8 l4_hdr = 0; | 
 |  | 
 | 	if (skb->ip_summed != CHECKSUM_PARTIAL) | 
 | 		goto no_csum; | 
 |  | 
 | 	if (skb->encapsulation) { | 
 | 		protocol = fm10k_tx_encap_offload(skb); | 
 | 		if (!protocol) { | 
 | 			if (skb_checksum_help(skb)) { | 
 | 				dev_warn(tx_ring->dev, | 
 | 					 "failed to offload encap csum!\n"); | 
 | 				tx_ring->tx_stats.csum_err++; | 
 | 			} | 
 | 			goto no_csum; | 
 | 		} | 
 | 		network_hdr.raw = skb_inner_network_header(skb); | 
 | 		transport_hdr = skb_inner_transport_header(skb); | 
 | 	} else { | 
 | 		protocol = vlan_get_protocol(skb); | 
 | 		network_hdr.raw = skb_network_header(skb); | 
 | 		transport_hdr = skb_transport_header(skb); | 
 | 	} | 
 |  | 
 | 	switch (protocol) { | 
 | 	case htons(ETH_P_IP): | 
 | 		l4_hdr = network_hdr.ipv4->protocol; | 
 | 		break; | 
 | 	case htons(ETH_P_IPV6): | 
 | 		l4_hdr = network_hdr.ipv6->nexthdr; | 
 | 		if (likely((transport_hdr - network_hdr.raw) == | 
 | 			   sizeof(struct ipv6hdr))) | 
 | 			break; | 
 | 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + | 
 | 				      sizeof(struct ipv6hdr), | 
 | 				 &l4_hdr, &frag_off); | 
 | 		if (unlikely(frag_off)) | 
 | 			l4_hdr = NEXTHDR_FRAGMENT; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (l4_hdr) { | 
 | 	case IPPROTO_TCP: | 
 | 	case IPPROTO_UDP: | 
 | 		break; | 
 | 	case IPPROTO_GRE: | 
 | 		if (skb->encapsulation) | 
 | 			break; | 
 | 		/* fall through */ | 
 | 	default: | 
 | 		if (unlikely(net_ratelimit())) { | 
 | 			dev_warn(tx_ring->dev, | 
 | 				 "partial checksum, version=%d l4 proto=%x\n", | 
 | 				 protocol, l4_hdr); | 
 | 		} | 
 | 		skb_checksum_help(skb); | 
 | 		tx_ring->tx_stats.csum_err++; | 
 | 		goto no_csum; | 
 | 	} | 
 |  | 
 | 	/* update TX checksum flag */ | 
 | 	first->tx_flags |= FM10K_TX_FLAGS_CSUM; | 
 | 	tx_ring->tx_stats.csum_good++; | 
 |  | 
 | no_csum: | 
 | 	/* populate Tx descriptor header size and mss */ | 
 | 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); | 
 | 	tx_desc->hdrlen = 0; | 
 | 	tx_desc->mss = 0; | 
 | } | 
 |  | 
 | #define FM10K_SET_FLAG(_input, _flag, _result) \ | 
 | 	((_flag <= _result) ? \ | 
 | 	 ((u32)(_input & _flag) * (_result / _flag)) : \ | 
 | 	 ((u32)(_input & _flag) / (_flag / _result))) | 
 |  | 
 | static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) | 
 | { | 
 | 	/* set type for advanced descriptor with frame checksum insertion */ | 
 | 	u32 desc_flags = 0; | 
 |  | 
 | 	/* set checksum offload bits */ | 
 | 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, | 
 | 				     FM10K_TXD_FLAG_CSUM); | 
 |  | 
 | 	return desc_flags; | 
 | } | 
 |  | 
 | static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, | 
 | 			       struct fm10k_tx_desc *tx_desc, u16 i, | 
 | 			       dma_addr_t dma, unsigned int size, u8 desc_flags) | 
 | { | 
 | 	/* set RS and INT for last frame in a cache line */ | 
 | 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) | 
 | 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; | 
 |  | 
 | 	/* record values to descriptor */ | 
 | 	tx_desc->buffer_addr = cpu_to_le64(dma); | 
 | 	tx_desc->flags = desc_flags; | 
 | 	tx_desc->buflen = cpu_to_le16(size); | 
 |  | 
 | 	/* return true if we just wrapped the ring */ | 
 | 	return i == tx_ring->count; | 
 | } | 
 |  | 
 | static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) | 
 | { | 
 | 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); | 
 |  | 
 | 	/* Memory barrier before checking head and tail */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* Check again in a case another CPU has just made room available */ | 
 | 	if (likely(fm10k_desc_unused(tx_ring) < size)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* A reprieve! - use start_queue because it doesn't call schedule */ | 
 | 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); | 
 | 	++tx_ring->tx_stats.restart_queue; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) | 
 | { | 
 | 	if (likely(fm10k_desc_unused(tx_ring) >= size)) | 
 | 		return 0; | 
 | 	return __fm10k_maybe_stop_tx(tx_ring, size); | 
 | } | 
 |  | 
 | static void fm10k_tx_map(struct fm10k_ring *tx_ring, | 
 | 			 struct fm10k_tx_buffer *first) | 
 | { | 
 | 	struct sk_buff *skb = first->skb; | 
 | 	struct fm10k_tx_buffer *tx_buffer; | 
 | 	struct fm10k_tx_desc *tx_desc; | 
 | 	skb_frag_t *frag; | 
 | 	unsigned char *data; | 
 | 	dma_addr_t dma; | 
 | 	unsigned int data_len, size; | 
 | 	u32 tx_flags = first->tx_flags; | 
 | 	u16 i = tx_ring->next_to_use; | 
 | 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags); | 
 |  | 
 | 	tx_desc = FM10K_TX_DESC(tx_ring, i); | 
 |  | 
 | 	/* add HW VLAN tag */ | 
 | 	if (skb_vlan_tag_present(skb)) | 
 | 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); | 
 | 	else | 
 | 		tx_desc->vlan = 0; | 
 |  | 
 | 	size = skb_headlen(skb); | 
 | 	data = skb->data; | 
 |  | 
 | 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); | 
 |  | 
 | 	data_len = skb->data_len; | 
 | 	tx_buffer = first; | 
 |  | 
 | 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) { | 
 | 		if (dma_mapping_error(tx_ring->dev, dma)) | 
 | 			goto dma_error; | 
 |  | 
 | 		/* record length, and DMA address */ | 
 | 		dma_unmap_len_set(tx_buffer, len, size); | 
 | 		dma_unmap_addr_set(tx_buffer, dma, dma); | 
 |  | 
 | 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { | 
 | 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, | 
 | 					       FM10K_MAX_DATA_PER_TXD, flags)) { | 
 | 				tx_desc = FM10K_TX_DESC(tx_ring, 0); | 
 | 				i = 0; | 
 | 			} | 
 |  | 
 | 			dma += FM10K_MAX_DATA_PER_TXD; | 
 | 			size -= FM10K_MAX_DATA_PER_TXD; | 
 | 		} | 
 |  | 
 | 		if (likely(!data_len)) | 
 | 			break; | 
 |  | 
 | 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, | 
 | 				       dma, size, flags)) { | 
 | 			tx_desc = FM10K_TX_DESC(tx_ring, 0); | 
 | 			i = 0; | 
 | 		} | 
 |  | 
 | 		size = skb_frag_size(frag); | 
 | 		data_len -= size; | 
 |  | 
 | 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, | 
 | 				       DMA_TO_DEVICE); | 
 |  | 
 | 		tx_buffer = &tx_ring->tx_buffer[i]; | 
 | 	} | 
 |  | 
 | 	/* write last descriptor with LAST bit set */ | 
 | 	flags |= FM10K_TXD_FLAG_LAST; | 
 |  | 
 | 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) | 
 | 		i = 0; | 
 |  | 
 | 	/* record bytecount for BQL */ | 
 | 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); | 
 |  | 
 | 	/* record SW timestamp if HW timestamp is not available */ | 
 | 	skb_tx_timestamp(first->skb); | 
 |  | 
 | 	/* Force memory writes to complete before letting h/w know there | 
 | 	 * are new descriptors to fetch.  (Only applicable for weak-ordered | 
 | 	 * memory model archs, such as IA-64). | 
 | 	 * | 
 | 	 * We also need this memory barrier to make certain all of the | 
 | 	 * status bits have been updated before next_to_watch is written. | 
 | 	 */ | 
 | 	wmb(); | 
 |  | 
 | 	/* set next_to_watch value indicating a packet is present */ | 
 | 	first->next_to_watch = tx_desc; | 
 |  | 
 | 	tx_ring->next_to_use = i; | 
 |  | 
 | 	/* Make sure there is space in the ring for the next send. */ | 
 | 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); | 
 |  | 
 | 	/* notify HW of packet */ | 
 | 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { | 
 | 		writel(i, tx_ring->tail); | 
 | 	} | 
 |  | 
 | 	return; | 
 | dma_error: | 
 | 	dev_err(tx_ring->dev, "TX DMA map failed\n"); | 
 |  | 
 | 	/* clear dma mappings for failed tx_buffer map */ | 
 | 	for (;;) { | 
 | 		tx_buffer = &tx_ring->tx_buffer[i]; | 
 | 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); | 
 | 		if (tx_buffer == first) | 
 | 			break; | 
 | 		if (i == 0) | 
 | 			i = tx_ring->count; | 
 | 		i--; | 
 | 	} | 
 |  | 
 | 	tx_ring->next_to_use = i; | 
 | } | 
 |  | 
 | netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, | 
 | 				  struct fm10k_ring *tx_ring) | 
 | { | 
 | 	u16 count = TXD_USE_COUNT(skb_headlen(skb)); | 
 | 	struct fm10k_tx_buffer *first; | 
 | 	unsigned short f; | 
 | 	u32 tx_flags = 0; | 
 | 	int tso; | 
 |  | 
 | 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, | 
 | 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, | 
 | 	 *       + 2 desc gap to keep tail from touching head | 
 | 	 * otherwise try next time | 
 | 	 */ | 
 | 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | 
 | 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; | 
 |  | 
 | 		count += TXD_USE_COUNT(skb_frag_size(frag)); | 
 | 	} | 
 |  | 
 | 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { | 
 | 		tx_ring->tx_stats.tx_busy++; | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	/* record the location of the first descriptor for this packet */ | 
 | 	first = &tx_ring->tx_buffer[tx_ring->next_to_use]; | 
 | 	first->skb = skb; | 
 | 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); | 
 | 	first->gso_segs = 1; | 
 |  | 
 | 	/* record initial flags and protocol */ | 
 | 	first->tx_flags = tx_flags; | 
 |  | 
 | 	tso = fm10k_tso(tx_ring, first); | 
 | 	if (tso < 0) | 
 | 		goto out_drop; | 
 | 	else if (!tso) | 
 | 		fm10k_tx_csum(tx_ring, first); | 
 |  | 
 | 	fm10k_tx_map(tx_ring, first); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 |  | 
 | out_drop: | 
 | 	dev_kfree_skb_any(first->skb); | 
 | 	first->skb = NULL; | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) | 
 | { | 
 | 	return ring->stats.packets; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_get_tx_pending - how many Tx descriptors not processed | 
 |  * @ring: the ring structure | 
 |  * @in_sw: is tx_pending being checked in SW or in HW? | 
 |  */ | 
 | u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) | 
 | { | 
 | 	struct fm10k_intfc *interface = ring->q_vector->interface; | 
 | 	struct fm10k_hw *hw = &interface->hw; | 
 | 	u32 head, tail; | 
 |  | 
 | 	if (likely(in_sw)) { | 
 | 		head = ring->next_to_clean; | 
 | 		tail = ring->next_to_use; | 
 | 	} else { | 
 | 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); | 
 | 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); | 
 | 	} | 
 |  | 
 | 	return ((head <= tail) ? tail : tail + ring->count) - head; | 
 | } | 
 |  | 
 | bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) | 
 | { | 
 | 	u32 tx_done = fm10k_get_tx_completed(tx_ring); | 
 | 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old; | 
 | 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); | 
 |  | 
 | 	clear_check_for_tx_hang(tx_ring); | 
 |  | 
 | 	/* Check for a hung queue, but be thorough. This verifies | 
 | 	 * that a transmit has been completed since the previous | 
 | 	 * check AND there is at least one packet pending. By | 
 | 	 * requiring this to fail twice we avoid races with | 
 | 	 * clearing the ARMED bit and conditions where we | 
 | 	 * run the check_tx_hang logic with a transmit completion | 
 | 	 * pending but without time to complete it yet. | 
 | 	 */ | 
 | 	if (!tx_pending || (tx_done_old != tx_done)) { | 
 | 		/* update completed stats and continue */ | 
 | 		tx_ring->tx_stats.tx_done_old = tx_done; | 
 | 		/* reset the countdown */ | 
 | 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); | 
 |  | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* make sure it is true for two checks in a row */ | 
 | 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout | 
 |  * @interface: driver private struct | 
 |  **/ | 
 | void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) | 
 | { | 
 | 	/* Do the reset outside of interrupt context */ | 
 | 	if (!test_bit(__FM10K_DOWN, interface->state)) { | 
 | 		interface->tx_timeout_count++; | 
 | 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); | 
 | 		fm10k_service_event_schedule(interface); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_clean_tx_irq - Reclaim resources after transmit completes | 
 |  * @q_vector: structure containing interrupt and ring information | 
 |  * @tx_ring: tx ring to clean | 
 |  * @napi_budget: Used to determine if we are in netpoll | 
 |  **/ | 
 | static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, | 
 | 			       struct fm10k_ring *tx_ring, int napi_budget) | 
 | { | 
 | 	struct fm10k_intfc *interface = q_vector->interface; | 
 | 	struct fm10k_tx_buffer *tx_buffer; | 
 | 	struct fm10k_tx_desc *tx_desc; | 
 | 	unsigned int total_bytes = 0, total_packets = 0; | 
 | 	unsigned int budget = q_vector->tx.work_limit; | 
 | 	unsigned int i = tx_ring->next_to_clean; | 
 |  | 
 | 	if (test_bit(__FM10K_DOWN, interface->state)) | 
 | 		return true; | 
 |  | 
 | 	tx_buffer = &tx_ring->tx_buffer[i]; | 
 | 	tx_desc = FM10K_TX_DESC(tx_ring, i); | 
 | 	i -= tx_ring->count; | 
 |  | 
 | 	do { | 
 | 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; | 
 |  | 
 | 		/* if next_to_watch is not set then there is no work pending */ | 
 | 		if (!eop_desc) | 
 | 			break; | 
 |  | 
 | 		/* prevent any other reads prior to eop_desc */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		/* if DD is not set pending work has not been completed */ | 
 | 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) | 
 | 			break; | 
 |  | 
 | 		/* clear next_to_watch to prevent false hangs */ | 
 | 		tx_buffer->next_to_watch = NULL; | 
 |  | 
 | 		/* update the statistics for this packet */ | 
 | 		total_bytes += tx_buffer->bytecount; | 
 | 		total_packets += tx_buffer->gso_segs; | 
 |  | 
 | 		/* free the skb */ | 
 | 		napi_consume_skb(tx_buffer->skb, napi_budget); | 
 |  | 
 | 		/* unmap skb header data */ | 
 | 		dma_unmap_single(tx_ring->dev, | 
 | 				 dma_unmap_addr(tx_buffer, dma), | 
 | 				 dma_unmap_len(tx_buffer, len), | 
 | 				 DMA_TO_DEVICE); | 
 |  | 
 | 		/* clear tx_buffer data */ | 
 | 		tx_buffer->skb = NULL; | 
 | 		dma_unmap_len_set(tx_buffer, len, 0); | 
 |  | 
 | 		/* unmap remaining buffers */ | 
 | 		while (tx_desc != eop_desc) { | 
 | 			tx_buffer++; | 
 | 			tx_desc++; | 
 | 			i++; | 
 | 			if (unlikely(!i)) { | 
 | 				i -= tx_ring->count; | 
 | 				tx_buffer = tx_ring->tx_buffer; | 
 | 				tx_desc = FM10K_TX_DESC(tx_ring, 0); | 
 | 			} | 
 |  | 
 | 			/* unmap any remaining paged data */ | 
 | 			if (dma_unmap_len(tx_buffer, len)) { | 
 | 				dma_unmap_page(tx_ring->dev, | 
 | 					       dma_unmap_addr(tx_buffer, dma), | 
 | 					       dma_unmap_len(tx_buffer, len), | 
 | 					       DMA_TO_DEVICE); | 
 | 				dma_unmap_len_set(tx_buffer, len, 0); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* move us one more past the eop_desc for start of next pkt */ | 
 | 		tx_buffer++; | 
 | 		tx_desc++; | 
 | 		i++; | 
 | 		if (unlikely(!i)) { | 
 | 			i -= tx_ring->count; | 
 | 			tx_buffer = tx_ring->tx_buffer; | 
 | 			tx_desc = FM10K_TX_DESC(tx_ring, 0); | 
 | 		} | 
 |  | 
 | 		/* issue prefetch for next Tx descriptor */ | 
 | 		prefetch(tx_desc); | 
 |  | 
 | 		/* update budget accounting */ | 
 | 		budget--; | 
 | 	} while (likely(budget)); | 
 |  | 
 | 	i += tx_ring->count; | 
 | 	tx_ring->next_to_clean = i; | 
 | 	u64_stats_update_begin(&tx_ring->syncp); | 
 | 	tx_ring->stats.bytes += total_bytes; | 
 | 	tx_ring->stats.packets += total_packets; | 
 | 	u64_stats_update_end(&tx_ring->syncp); | 
 | 	q_vector->tx.total_bytes += total_bytes; | 
 | 	q_vector->tx.total_packets += total_packets; | 
 |  | 
 | 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { | 
 | 		/* schedule immediate reset if we believe we hung */ | 
 | 		struct fm10k_hw *hw = &interface->hw; | 
 |  | 
 | 		netif_err(interface, drv, tx_ring->netdev, | 
 | 			  "Detected Tx Unit Hang\n" | 
 | 			  "  Tx Queue             <%d>\n" | 
 | 			  "  TDH, TDT             <%x>, <%x>\n" | 
 | 			  "  next_to_use          <%x>\n" | 
 | 			  "  next_to_clean        <%x>\n", | 
 | 			  tx_ring->queue_index, | 
 | 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), | 
 | 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), | 
 | 			  tx_ring->next_to_use, i); | 
 |  | 
 | 		netif_stop_subqueue(tx_ring->netdev, | 
 | 				    tx_ring->queue_index); | 
 |  | 
 | 		netif_info(interface, probe, tx_ring->netdev, | 
 | 			   "tx hang %d detected on queue %d, resetting interface\n", | 
 | 			   interface->tx_timeout_count + 1, | 
 | 			   tx_ring->queue_index); | 
 |  | 
 | 		fm10k_tx_timeout_reset(interface); | 
 |  | 
 | 		/* the netdev is about to reset, no point in enabling stuff */ | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* notify netdev of completed buffers */ | 
 | 	netdev_tx_completed_queue(txring_txq(tx_ring), | 
 | 				  total_packets, total_bytes); | 
 |  | 
 | #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) | 
 | 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && | 
 | 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { | 
 | 		/* Make sure that anybody stopping the queue after this | 
 | 		 * sees the new next_to_clean. | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		if (__netif_subqueue_stopped(tx_ring->netdev, | 
 | 					     tx_ring->queue_index) && | 
 | 		    !test_bit(__FM10K_DOWN, interface->state)) { | 
 | 			netif_wake_subqueue(tx_ring->netdev, | 
 | 					    tx_ring->queue_index); | 
 | 			++tx_ring->tx_stats.restart_queue; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return !!budget; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_update_itr - update the dynamic ITR value based on packet size | 
 |  * | 
 |  *      Stores a new ITR value based on strictly on packet size.  The | 
 |  *      divisors and thresholds used by this function were determined based | 
 |  *      on theoretical maximum wire speed and testing data, in order to | 
 |  *      minimize response time while increasing bulk throughput. | 
 |  * | 
 |  * @ring_container: Container for rings to have ITR updated | 
 |  **/ | 
 | static void fm10k_update_itr(struct fm10k_ring_container *ring_container) | 
 | { | 
 | 	unsigned int avg_wire_size, packets, itr_round; | 
 |  | 
 | 	/* Only update ITR if we are using adaptive setting */ | 
 | 	if (!ITR_IS_ADAPTIVE(ring_container->itr)) | 
 | 		goto clear_counts; | 
 |  | 
 | 	packets = ring_container->total_packets; | 
 | 	if (!packets) | 
 | 		goto clear_counts; | 
 |  | 
 | 	avg_wire_size = ring_container->total_bytes / packets; | 
 |  | 
 | 	/* The following is a crude approximation of: | 
 | 	 *  wmem_default / (size + overhead) = desired_pkts_per_int | 
 | 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate | 
 | 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value | 
 | 	 * | 
 | 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per | 
 | 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the | 
 | 	 * formula down to | 
 | 	 * | 
 | 	 *  (34 * (size + 24)) / (size + 640) = ITR | 
 | 	 * | 
 | 	 * We first do some math on the packet size and then finally bitshift | 
 | 	 * by 8 after rounding up. We also have to account for PCIe link speed | 
 | 	 * difference as ITR scales based on this. | 
 | 	 */ | 
 | 	if (avg_wire_size <= 360) { | 
 | 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */ | 
 | 		avg_wire_size *= 8; | 
 | 		avg_wire_size += 376; | 
 | 	} else if (avg_wire_size <= 1152) { | 
 | 		/* 77K ints/sec to 45K ints/sec */ | 
 | 		avg_wire_size *= 3; | 
 | 		avg_wire_size += 2176; | 
 | 	} else if (avg_wire_size <= 1920) { | 
 | 		/* 45K ints/sec to 38K ints/sec */ | 
 | 		avg_wire_size += 4480; | 
 | 	} else { | 
 | 		/* plateau at a limit of 38K ints/sec */ | 
 | 		avg_wire_size = 6656; | 
 | 	} | 
 |  | 
 | 	/* Perform final bitshift for division after rounding up to ensure | 
 | 	 * that the calculation will never get below a 1. The bit shift | 
 | 	 * accounts for changes in the ITR due to PCIe link speed. | 
 | 	 */ | 
 | 	itr_round = READ_ONCE(ring_container->itr_scale) + 8; | 
 | 	avg_wire_size += BIT(itr_round) - 1; | 
 | 	avg_wire_size >>= itr_round; | 
 |  | 
 | 	/* write back value and retain adaptive flag */ | 
 | 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; | 
 |  | 
 | clear_counts: | 
 | 	ring_container->total_bytes = 0; | 
 | 	ring_container->total_packets = 0; | 
 | } | 
 |  | 
 | static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) | 
 | { | 
 | 	/* Enable auto-mask and clear the current mask */ | 
 | 	u32 itr = FM10K_ITR_ENABLE; | 
 |  | 
 | 	/* Update Tx ITR */ | 
 | 	fm10k_update_itr(&q_vector->tx); | 
 |  | 
 | 	/* Update Rx ITR */ | 
 | 	fm10k_update_itr(&q_vector->rx); | 
 |  | 
 | 	/* Store Tx itr in timer slot 0 */ | 
 | 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX); | 
 |  | 
 | 	/* Shift Rx itr to timer slot 1 */ | 
 | 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; | 
 |  | 
 | 	/* Write the final value to the ITR register */ | 
 | 	writel(itr, q_vector->itr); | 
 | } | 
 |  | 
 | static int fm10k_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct fm10k_q_vector *q_vector = | 
 | 			       container_of(napi, struct fm10k_q_vector, napi); | 
 | 	struct fm10k_ring *ring; | 
 | 	int per_ring_budget, work_done = 0; | 
 | 	bool clean_complete = true; | 
 |  | 
 | 	fm10k_for_each_ring(ring, q_vector->tx) { | 
 | 		if (!fm10k_clean_tx_irq(q_vector, ring, budget)) | 
 | 			clean_complete = false; | 
 | 	} | 
 |  | 
 | 	/* Handle case where we are called by netpoll with a budget of 0 */ | 
 | 	if (budget <= 0) | 
 | 		return budget; | 
 |  | 
 | 	/* attempt to distribute budget to each queue fairly, but don't | 
 | 	 * allow the budget to go below 1 because we'll exit polling | 
 | 	 */ | 
 | 	if (q_vector->rx.count > 1) | 
 | 		per_ring_budget = max(budget / q_vector->rx.count, 1); | 
 | 	else | 
 | 		per_ring_budget = budget; | 
 |  | 
 | 	fm10k_for_each_ring(ring, q_vector->rx) { | 
 | 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); | 
 |  | 
 | 		work_done += work; | 
 | 		if (work >= per_ring_budget) | 
 | 			clean_complete = false; | 
 | 	} | 
 |  | 
 | 	/* If all work not completed, return budget and keep polling */ | 
 | 	if (!clean_complete) | 
 | 		return budget; | 
 |  | 
 | 	/* Exit the polling mode, but don't re-enable interrupts if stack might | 
 | 	 * poll us due to busy-polling | 
 | 	 */ | 
 | 	if (likely(napi_complete_done(napi, work_done))) | 
 | 		fm10k_qv_enable(q_vector); | 
 |  | 
 | 	return min(work_done, budget - 1); | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * When QoS (Quality of Service) is enabled, allocate queues for | 
 |  * each traffic class.  If multiqueue isn't available,then abort QoS | 
 |  * initialization. | 
 |  * | 
 |  * This function handles all combinations of Qos and RSS. | 
 |  * | 
 |  **/ | 
 | static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) | 
 | { | 
 | 	struct net_device *dev = interface->netdev; | 
 | 	struct fm10k_ring_feature *f; | 
 | 	int rss_i, i; | 
 | 	int pcs; | 
 |  | 
 | 	/* Map queue offset and counts onto allocated tx queues */ | 
 | 	pcs = netdev_get_num_tc(dev); | 
 |  | 
 | 	if (pcs <= 1) | 
 | 		return false; | 
 |  | 
 | 	/* set QoS mask and indices */ | 
 | 	f = &interface->ring_feature[RING_F_QOS]; | 
 | 	f->indices = pcs; | 
 | 	f->mask = BIT(fls(pcs - 1)) - 1; | 
 |  | 
 | 	/* determine the upper limit for our current DCB mode */ | 
 | 	rss_i = interface->hw.mac.max_queues / pcs; | 
 | 	rss_i = BIT(fls(rss_i) - 1); | 
 |  | 
 | 	/* set RSS mask and indices */ | 
 | 	f = &interface->ring_feature[RING_F_RSS]; | 
 | 	rss_i = min_t(u16, rss_i, f->limit); | 
 | 	f->indices = rss_i; | 
 | 	f->mask = BIT(fls(rss_i - 1)) - 1; | 
 |  | 
 | 	/* configure pause class to queue mapping */ | 
 | 	for (i = 0; i < pcs; i++) | 
 | 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i); | 
 |  | 
 | 	interface->num_rx_queues = rss_i * pcs; | 
 | 	interface->num_tx_queues = rss_i * pcs; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_set_rss_queues: Allocate queues for RSS | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try | 
 |  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. | 
 |  * | 
 |  **/ | 
 | static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) | 
 | { | 
 | 	struct fm10k_ring_feature *f; | 
 | 	u16 rss_i; | 
 |  | 
 | 	f = &interface->ring_feature[RING_F_RSS]; | 
 | 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); | 
 |  | 
 | 	/* record indices and power of 2 mask for RSS */ | 
 | 	f->indices = rss_i; | 
 | 	f->mask = BIT(fls(rss_i - 1)) - 1; | 
 |  | 
 | 	interface->num_rx_queues = rss_i; | 
 | 	interface->num_tx_queues = rss_i; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_set_num_queues: Allocate queues for device, feature dependent | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * This is the top level queue allocation routine.  The order here is very | 
 |  * important, starting with the "most" number of features turned on at once, | 
 |  * and ending with the smallest set of features.  This way large combinations | 
 |  * can be allocated if they're turned on, and smaller combinations are the | 
 |  * fallthrough conditions. | 
 |  * | 
 |  **/ | 
 | static void fm10k_set_num_queues(struct fm10k_intfc *interface) | 
 | { | 
 | 	/* Attempt to setup QoS and RSS first */ | 
 | 	if (fm10k_set_qos_queues(interface)) | 
 | 		return; | 
 |  | 
 | 	/* If we don't have QoS, just fallback to only RSS. */ | 
 | 	fm10k_set_rss_queues(interface); | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_reset_num_queues - Reset the number of queues to zero | 
 |  * @interface: board private structure | 
 |  * | 
 |  * This function should be called whenever we need to reset the number of | 
 |  * queues after an error condition. | 
 |  */ | 
 | static void fm10k_reset_num_queues(struct fm10k_intfc *interface) | 
 | { | 
 | 	interface->num_tx_queues = 0; | 
 | 	interface->num_rx_queues = 0; | 
 | 	interface->num_q_vectors = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector | 
 |  * @interface: board private structure to initialize | 
 |  * @v_count: q_vectors allocated on interface, used for ring interleaving | 
 |  * @v_idx: index of vector in interface struct | 
 |  * @txr_count: total number of Tx rings to allocate | 
 |  * @txr_idx: index of first Tx ring to allocate | 
 |  * @rxr_count: total number of Rx rings to allocate | 
 |  * @rxr_idx: index of first Rx ring to allocate | 
 |  * | 
 |  * We allocate one q_vector.  If allocation fails we return -ENOMEM. | 
 |  **/ | 
 | static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, | 
 | 				unsigned int v_count, unsigned int v_idx, | 
 | 				unsigned int txr_count, unsigned int txr_idx, | 
 | 				unsigned int rxr_count, unsigned int rxr_idx) | 
 | { | 
 | 	struct fm10k_q_vector *q_vector; | 
 | 	struct fm10k_ring *ring; | 
 | 	int ring_count; | 
 |  | 
 | 	ring_count = txr_count + rxr_count; | 
 |  | 
 | 	/* allocate q_vector and rings */ | 
 | 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); | 
 | 	if (!q_vector) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* initialize NAPI */ | 
 | 	netif_napi_add(interface->netdev, &q_vector->napi, | 
 | 		       fm10k_poll, NAPI_POLL_WEIGHT); | 
 |  | 
 | 	/* tie q_vector and interface together */ | 
 | 	interface->q_vector[v_idx] = q_vector; | 
 | 	q_vector->interface = interface; | 
 | 	q_vector->v_idx = v_idx; | 
 |  | 
 | 	/* initialize pointer to rings */ | 
 | 	ring = q_vector->ring; | 
 |  | 
 | 	/* save Tx ring container info */ | 
 | 	q_vector->tx.ring = ring; | 
 | 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; | 
 | 	q_vector->tx.itr = interface->tx_itr; | 
 | 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale; | 
 | 	q_vector->tx.count = txr_count; | 
 |  | 
 | 	while (txr_count) { | 
 | 		/* assign generic ring traits */ | 
 | 		ring->dev = &interface->pdev->dev; | 
 | 		ring->netdev = interface->netdev; | 
 |  | 
 | 		/* configure backlink on ring */ | 
 | 		ring->q_vector = q_vector; | 
 |  | 
 | 		/* apply Tx specific ring traits */ | 
 | 		ring->count = interface->tx_ring_count; | 
 | 		ring->queue_index = txr_idx; | 
 |  | 
 | 		/* assign ring to interface */ | 
 | 		interface->tx_ring[txr_idx] = ring; | 
 |  | 
 | 		/* update count and index */ | 
 | 		txr_count--; | 
 | 		txr_idx += v_count; | 
 |  | 
 | 		/* push pointer to next ring */ | 
 | 		ring++; | 
 | 	} | 
 |  | 
 | 	/* save Rx ring container info */ | 
 | 	q_vector->rx.ring = ring; | 
 | 	q_vector->rx.itr = interface->rx_itr; | 
 | 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale; | 
 | 	q_vector->rx.count = rxr_count; | 
 |  | 
 | 	while (rxr_count) { | 
 | 		/* assign generic ring traits */ | 
 | 		ring->dev = &interface->pdev->dev; | 
 | 		ring->netdev = interface->netdev; | 
 | 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel); | 
 |  | 
 | 		/* configure backlink on ring */ | 
 | 		ring->q_vector = q_vector; | 
 |  | 
 | 		/* apply Rx specific ring traits */ | 
 | 		ring->count = interface->rx_ring_count; | 
 | 		ring->queue_index = rxr_idx; | 
 |  | 
 | 		/* assign ring to interface */ | 
 | 		interface->rx_ring[rxr_idx] = ring; | 
 |  | 
 | 		/* update count and index */ | 
 | 		rxr_count--; | 
 | 		rxr_idx += v_count; | 
 |  | 
 | 		/* push pointer to next ring */ | 
 | 		ring++; | 
 | 	} | 
 |  | 
 | 	fm10k_dbg_q_vector_init(q_vector); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector | 
 |  * @interface: board private structure to initialize | 
 |  * @v_idx: Index of vector to be freed | 
 |  * | 
 |  * This function frees the memory allocated to the q_vector.  In addition if | 
 |  * NAPI is enabled it will delete any references to the NAPI struct prior | 
 |  * to freeing the q_vector. | 
 |  **/ | 
 | static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) | 
 | { | 
 | 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; | 
 | 	struct fm10k_ring *ring; | 
 |  | 
 | 	fm10k_dbg_q_vector_exit(q_vector); | 
 |  | 
 | 	fm10k_for_each_ring(ring, q_vector->tx) | 
 | 		interface->tx_ring[ring->queue_index] = NULL; | 
 |  | 
 | 	fm10k_for_each_ring(ring, q_vector->rx) | 
 | 		interface->rx_ring[ring->queue_index] = NULL; | 
 |  | 
 | 	interface->q_vector[v_idx] = NULL; | 
 | 	netif_napi_del(&q_vector->napi); | 
 | 	kfree_rcu(q_vector, rcu); | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * We allocate one q_vector per queue interrupt.  If allocation fails we | 
 |  * return -ENOMEM. | 
 |  **/ | 
 | static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) | 
 | { | 
 | 	unsigned int q_vectors = interface->num_q_vectors; | 
 | 	unsigned int rxr_remaining = interface->num_rx_queues; | 
 | 	unsigned int txr_remaining = interface->num_tx_queues; | 
 | 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; | 
 | 	int err; | 
 |  | 
 | 	if (q_vectors >= (rxr_remaining + txr_remaining)) { | 
 | 		for (; rxr_remaining; v_idx++) { | 
 | 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, | 
 | 						   0, 0, 1, rxr_idx); | 
 | 			if (err) | 
 | 				goto err_out; | 
 |  | 
 | 			/* update counts and index */ | 
 | 			rxr_remaining--; | 
 | 			rxr_idx++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (; v_idx < q_vectors; v_idx++) { | 
 | 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); | 
 | 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); | 
 |  | 
 | 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, | 
 | 					   tqpv, txr_idx, | 
 | 					   rqpv, rxr_idx); | 
 |  | 
 | 		if (err) | 
 | 			goto err_out; | 
 |  | 
 | 		/* update counts and index */ | 
 | 		rxr_remaining -= rqpv; | 
 | 		txr_remaining -= tqpv; | 
 | 		rxr_idx++; | 
 | 		txr_idx++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out: | 
 | 	fm10k_reset_num_queues(interface); | 
 |  | 
 | 	while (v_idx--) | 
 | 		fm10k_free_q_vector(interface, v_idx); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * This function frees the memory allocated to the q_vectors.  In addition if | 
 |  * NAPI is enabled it will delete any references to the NAPI struct prior | 
 |  * to freeing the q_vector. | 
 |  **/ | 
 | static void fm10k_free_q_vectors(struct fm10k_intfc *interface) | 
 | { | 
 | 	int v_idx = interface->num_q_vectors; | 
 |  | 
 | 	fm10k_reset_num_queues(interface); | 
 |  | 
 | 	while (v_idx--) | 
 | 		fm10k_free_q_vector(interface, v_idx); | 
 | } | 
 |  | 
 | /** | 
 |  * f10k_reset_msix_capability - reset MSI-X capability | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * Reset the MSI-X capability back to its starting state | 
 |  **/ | 
 | static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) | 
 | { | 
 | 	pci_disable_msix(interface->pdev); | 
 | 	kfree(interface->msix_entries); | 
 | 	interface->msix_entries = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * f10k_init_msix_capability - configure MSI-X capability | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * Attempt to configure the interrupts using the best available | 
 |  * capabilities of the hardware and the kernel. | 
 |  **/ | 
 | static int fm10k_init_msix_capability(struct fm10k_intfc *interface) | 
 | { | 
 | 	struct fm10k_hw *hw = &interface->hw; | 
 | 	int v_budget, vector; | 
 |  | 
 | 	/* It's easy to be greedy for MSI-X vectors, but it really | 
 | 	 * doesn't do us much good if we have a lot more vectors | 
 | 	 * than CPU's.  So let's be conservative and only ask for | 
 | 	 * (roughly) the same number of vectors as there are CPU's. | 
 | 	 * the default is to use pairs of vectors | 
 | 	 */ | 
 | 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues); | 
 | 	v_budget = min_t(u16, v_budget, num_online_cpus()); | 
 |  | 
 | 	/* account for vectors not related to queues */ | 
 | 	v_budget += NON_Q_VECTORS; | 
 |  | 
 | 	/* At the same time, hardware can only support a maximum of | 
 | 	 * hw.mac->max_msix_vectors vectors.  With features | 
 | 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx | 
 | 	 * descriptor queues supported by our device.  Thus, we cap it off in | 
 | 	 * those rare cases where the cpu count also exceeds our vector limit. | 
 | 	 */ | 
 | 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); | 
 |  | 
 | 	/* A failure in MSI-X entry allocation is fatal. */ | 
 | 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), | 
 | 					  GFP_KERNEL); | 
 | 	if (!interface->msix_entries) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* populate entry values */ | 
 | 	for (vector = 0; vector < v_budget; vector++) | 
 | 		interface->msix_entries[vector].entry = vector; | 
 |  | 
 | 	/* Attempt to enable MSI-X with requested value */ | 
 | 	v_budget = pci_enable_msix_range(interface->pdev, | 
 | 					 interface->msix_entries, | 
 | 					 MIN_MSIX_COUNT(hw), | 
 | 					 v_budget); | 
 | 	if (v_budget < 0) { | 
 | 		kfree(interface->msix_entries); | 
 | 		interface->msix_entries = NULL; | 
 | 		return v_budget; | 
 | 	} | 
 |  | 
 | 	/* record the number of queues available for q_vectors */ | 
 | 	interface->num_q_vectors = v_budget - NON_Q_VECTORS; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS | 
 |  * @interface: Interface structure continaining rings and devices | 
 |  * | 
 |  * Cache the descriptor ring offsets for Qos | 
 |  **/ | 
 | static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) | 
 | { | 
 | 	struct net_device *dev = interface->netdev; | 
 | 	int pc, offset, rss_i, i; | 
 | 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; | 
 | 	u8 num_pcs = netdev_get_num_tc(dev); | 
 |  | 
 | 	if (num_pcs <= 1) | 
 | 		return false; | 
 |  | 
 | 	rss_i = interface->ring_feature[RING_F_RSS].indices; | 
 |  | 
 | 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { | 
 | 		int q_idx = pc; | 
 |  | 
 | 		for (i = 0; i < rss_i; i++) { | 
 | 			interface->tx_ring[offset + i]->reg_idx = q_idx; | 
 | 			interface->tx_ring[offset + i]->qos_pc = pc; | 
 | 			interface->rx_ring[offset + i]->reg_idx = q_idx; | 
 | 			interface->rx_ring[offset + i]->qos_pc = pc; | 
 | 			q_idx += pc_stride; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS | 
 |  * @interface: Interface structure continaining rings and devices | 
 |  * | 
 |  * Cache the descriptor ring offsets for RSS | 
 |  **/ | 
 | static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < interface->num_rx_queues; i++) | 
 | 		interface->rx_ring[i]->reg_idx = i; | 
 |  | 
 | 	for (i = 0; i < interface->num_tx_queues; i++) | 
 | 		interface->tx_ring[i]->reg_idx = i; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_assign_rings - Map rings to network devices | 
 |  * @interface: Interface structure containing rings and devices | 
 |  * | 
 |  * This function is meant to go though and configure both the network | 
 |  * devices so that they contain rings, and configure the rings so that | 
 |  * they function with their network devices. | 
 |  **/ | 
 | static void fm10k_assign_rings(struct fm10k_intfc *interface) | 
 | { | 
 | 	if (fm10k_cache_ring_qos(interface)) | 
 | 		return; | 
 |  | 
 | 	fm10k_cache_ring_rss(interface); | 
 | } | 
 |  | 
 | static void fm10k_init_reta(struct fm10k_intfc *interface) | 
 | { | 
 | 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; | 
 | 	u32 reta; | 
 |  | 
 | 	/* If the Rx flow indirection table has been configured manually, we | 
 | 	 * need to maintain it when possible. | 
 | 	 */ | 
 | 	if (netif_is_rxfh_configured(interface->netdev)) { | 
 | 		for (i = FM10K_RETA_SIZE; i--;) { | 
 | 			reta = interface->reta[i]; | 
 | 			if ((((reta << 24) >> 24) < rss_i) && | 
 | 			    (((reta << 16) >> 24) < rss_i) && | 
 | 			    (((reta <<  8) >> 24) < rss_i) && | 
 | 			    (((reta)       >> 24) < rss_i)) | 
 | 				continue; | 
 |  | 
 | 			/* this should never happen */ | 
 | 			dev_err(&interface->pdev->dev, | 
 | 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); | 
 | 			goto repopulate_reta; | 
 | 		} | 
 |  | 
 | 		/* do nothing if all of the elements are in bounds */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | repopulate_reta: | 
 | 	fm10k_write_reta(interface, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_init_queueing_scheme - Determine proper queueing scheme | 
 |  * @interface: board private structure to initialize | 
 |  * | 
 |  * We determine which queueing scheme to use based on... | 
 |  * - Hardware queue count (num_*_queues) | 
 |  *   - defined by miscellaneous hardware support/features (RSS, etc.) | 
 |  **/ | 
 | int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* Number of supported queues */ | 
 | 	fm10k_set_num_queues(interface); | 
 |  | 
 | 	/* Configure MSI-X capability */ | 
 | 	err = fm10k_init_msix_capability(interface); | 
 | 	if (err) { | 
 | 		dev_err(&interface->pdev->dev, | 
 | 			"Unable to initialize MSI-X capability\n"); | 
 | 		goto err_init_msix; | 
 | 	} | 
 |  | 
 | 	/* Allocate memory for queues */ | 
 | 	err = fm10k_alloc_q_vectors(interface); | 
 | 	if (err) { | 
 | 		dev_err(&interface->pdev->dev, | 
 | 			"Unable to allocate queue vectors\n"); | 
 | 		goto err_alloc_q_vectors; | 
 | 	} | 
 |  | 
 | 	/* Map rings to devices, and map devices to physical queues */ | 
 | 	fm10k_assign_rings(interface); | 
 |  | 
 | 	/* Initialize RSS redirection table */ | 
 | 	fm10k_init_reta(interface); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_alloc_q_vectors: | 
 | 	fm10k_reset_msix_capability(interface); | 
 | err_init_msix: | 
 | 	fm10k_reset_num_queues(interface); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings | 
 |  * @interface: board private structure to clear queueing scheme on | 
 |  * | 
 |  * We go through and clear queueing specific resources and reset the structure | 
 |  * to pre-load conditions | 
 |  **/ | 
 | void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) | 
 | { | 
 | 	fm10k_free_q_vectors(interface); | 
 | 	fm10k_reset_msix_capability(interface); | 
 | } |