|  | /* | 
|  | * Copyright (c) 2014 Mellanox Technologies. All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/pid.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/interval_tree.h> | 
|  | #include <linux/pagemap.h> | 
|  |  | 
|  | #include <rdma/ib_verbs.h> | 
|  | #include <rdma/ib_umem.h> | 
|  | #include <rdma/ib_umem_odp.h> | 
|  |  | 
|  | #include "uverbs.h" | 
|  |  | 
|  | static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) | 
|  | { | 
|  | mutex_lock(&umem_odp->umem_mutex); | 
|  | if (umem_odp->notifiers_count++ == 0) | 
|  | /* | 
|  | * Initialize the completion object for waiting on | 
|  | * notifiers. Since notifier_count is zero, no one should be | 
|  | * waiting right now. | 
|  | */ | 
|  | reinit_completion(&umem_odp->notifier_completion); | 
|  | mutex_unlock(&umem_odp->umem_mutex); | 
|  | } | 
|  |  | 
|  | static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) | 
|  | { | 
|  | mutex_lock(&umem_odp->umem_mutex); | 
|  | /* | 
|  | * This sequence increase will notify the QP page fault that the page | 
|  | * that is going to be mapped in the spte could have been freed. | 
|  | */ | 
|  | ++umem_odp->notifiers_seq; | 
|  | if (--umem_odp->notifiers_count == 0) | 
|  | complete_all(&umem_odp->notifier_completion); | 
|  | mutex_unlock(&umem_odp->umem_mutex); | 
|  | } | 
|  |  | 
|  | static void ib_umem_notifier_release(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm = | 
|  | container_of(mn, struct ib_ucontext_per_mm, mn); | 
|  | struct rb_node *node; | 
|  |  | 
|  | down_read(&per_mm->umem_rwsem); | 
|  | if (!per_mm->mn.users) | 
|  | goto out; | 
|  |  | 
|  | for (node = rb_first_cached(&per_mm->umem_tree); node; | 
|  | node = rb_next(node)) { | 
|  | struct ib_umem_odp *umem_odp = | 
|  | rb_entry(node, struct ib_umem_odp, interval_tree.rb); | 
|  |  | 
|  | /* | 
|  | * Increase the number of notifiers running, to prevent any | 
|  | * further fault handling on this MR. | 
|  | */ | 
|  | ib_umem_notifier_start_account(umem_odp); | 
|  | complete_all(&umem_odp->notifier_completion); | 
|  | umem_odp->umem.ibdev->ops.invalidate_range( | 
|  | umem_odp, ib_umem_start(umem_odp), | 
|  | ib_umem_end(umem_odp)); | 
|  | } | 
|  |  | 
|  | out: | 
|  | up_read(&per_mm->umem_rwsem); | 
|  | } | 
|  |  | 
|  | static int invalidate_range_start_trampoline(struct ib_umem_odp *item, | 
|  | u64 start, u64 end, void *cookie) | 
|  | { | 
|  | ib_umem_notifier_start_account(item); | 
|  | item->umem.ibdev->ops.invalidate_range(item, start, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, | 
|  | const struct mmu_notifier_range *range) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm = | 
|  | container_of(mn, struct ib_ucontext_per_mm, mn); | 
|  | int rc; | 
|  |  | 
|  | if (mmu_notifier_range_blockable(range)) | 
|  | down_read(&per_mm->umem_rwsem); | 
|  | else if (!down_read_trylock(&per_mm->umem_rwsem)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (!per_mm->mn.users) { | 
|  | up_read(&per_mm->umem_rwsem); | 
|  | /* | 
|  | * At this point users is permanently zero and visible to this | 
|  | * CPU without a lock, that fact is relied on to skip the unlock | 
|  | * in range_end. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rc = rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, | 
|  | range->end, | 
|  | invalidate_range_start_trampoline, | 
|  | mmu_notifier_range_blockable(range), | 
|  | NULL); | 
|  | if (rc) | 
|  | up_read(&per_mm->umem_rwsem); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, | 
|  | u64 end, void *cookie) | 
|  | { | 
|  | ib_umem_notifier_end_account(item); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, | 
|  | const struct mmu_notifier_range *range) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm = | 
|  | container_of(mn, struct ib_ucontext_per_mm, mn); | 
|  |  | 
|  | if (unlikely(!per_mm->mn.users)) | 
|  | return; | 
|  |  | 
|  | rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, | 
|  | range->end, | 
|  | invalidate_range_end_trampoline, true, NULL); | 
|  | up_read(&per_mm->umem_rwsem); | 
|  | } | 
|  |  | 
|  | static struct mmu_notifier *ib_umem_alloc_notifier(struct mm_struct *mm) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm; | 
|  |  | 
|  | per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); | 
|  | if (!per_mm) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | per_mm->umem_tree = RB_ROOT_CACHED; | 
|  | init_rwsem(&per_mm->umem_rwsem); | 
|  |  | 
|  | WARN_ON(mm != current->mm); | 
|  | rcu_read_lock(); | 
|  | per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); | 
|  | rcu_read_unlock(); | 
|  | return &per_mm->mn; | 
|  | } | 
|  |  | 
|  | static void ib_umem_free_notifier(struct mmu_notifier *mn) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm = | 
|  | container_of(mn, struct ib_ucontext_per_mm, mn); | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); | 
|  |  | 
|  | put_pid(per_mm->tgid); | 
|  | kfree(per_mm); | 
|  | } | 
|  |  | 
|  | static const struct mmu_notifier_ops ib_umem_notifiers = { | 
|  | .release                    = ib_umem_notifier_release, | 
|  | .invalidate_range_start     = ib_umem_notifier_invalidate_range_start, | 
|  | .invalidate_range_end       = ib_umem_notifier_invalidate_range_end, | 
|  | .alloc_notifier		    = ib_umem_alloc_notifier, | 
|  | .free_notifier		    = ib_umem_free_notifier, | 
|  | }; | 
|  |  | 
|  | static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm; | 
|  | struct mmu_notifier *mn; | 
|  | int ret; | 
|  |  | 
|  | umem_odp->umem.is_odp = 1; | 
|  | if (!umem_odp->is_implicit_odp) { | 
|  | size_t page_size = 1UL << umem_odp->page_shift; | 
|  | size_t pages; | 
|  |  | 
|  | umem_odp->interval_tree.start = | 
|  | ALIGN_DOWN(umem_odp->umem.address, page_size); | 
|  | if (check_add_overflow(umem_odp->umem.address, | 
|  | (unsigned long)umem_odp->umem.length, | 
|  | &umem_odp->interval_tree.last)) | 
|  | return -EOVERFLOW; | 
|  | umem_odp->interval_tree.last = | 
|  | ALIGN(umem_odp->interval_tree.last, page_size); | 
|  | if (unlikely(umem_odp->interval_tree.last < page_size)) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | pages = (umem_odp->interval_tree.last - | 
|  | umem_odp->interval_tree.start) >> | 
|  | umem_odp->page_shift; | 
|  | if (!pages) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Note that the representation of the intervals in the | 
|  | * interval tree considers the ending point as contained in | 
|  | * the interval. | 
|  | */ | 
|  | umem_odp->interval_tree.last--; | 
|  |  | 
|  | umem_odp->page_list = kvcalloc( | 
|  | pages, sizeof(*umem_odp->page_list), GFP_KERNEL); | 
|  | if (!umem_odp->page_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | umem_odp->dma_list = kvcalloc( | 
|  | pages, sizeof(*umem_odp->dma_list), GFP_KERNEL); | 
|  | if (!umem_odp->dma_list) { | 
|  | ret = -ENOMEM; | 
|  | goto out_page_list; | 
|  | } | 
|  | } | 
|  |  | 
|  | mn = mmu_notifier_get(&ib_umem_notifiers, umem_odp->umem.owning_mm); | 
|  | if (IS_ERR(mn)) { | 
|  | ret = PTR_ERR(mn); | 
|  | goto out_dma_list; | 
|  | } | 
|  | umem_odp->per_mm = per_mm = | 
|  | container_of(mn, struct ib_ucontext_per_mm, mn); | 
|  |  | 
|  | mutex_init(&umem_odp->umem_mutex); | 
|  | init_completion(&umem_odp->notifier_completion); | 
|  |  | 
|  | if (!umem_odp->is_implicit_odp) { | 
|  | down_write(&per_mm->umem_rwsem); | 
|  | interval_tree_insert(&umem_odp->interval_tree, | 
|  | &per_mm->umem_tree); | 
|  | up_write(&per_mm->umem_rwsem); | 
|  | } | 
|  | mmgrab(umem_odp->umem.owning_mm); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_dma_list: | 
|  | kvfree(umem_odp->dma_list); | 
|  | out_page_list: | 
|  | kvfree(umem_odp->page_list); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem | 
|  | * | 
|  | * Implicit ODP umems do not have a VA range and do not have any page lists. | 
|  | * They exist only to hold the per_mm reference to help the driver create | 
|  | * children umems. | 
|  | * | 
|  | * @udata: udata from the syscall being used to create the umem | 
|  | * @access: ib_reg_mr access flags | 
|  | */ | 
|  | struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_udata *udata, | 
|  | int access) | 
|  | { | 
|  | struct ib_ucontext *context = | 
|  | container_of(udata, struct uverbs_attr_bundle, driver_udata) | 
|  | ->context; | 
|  | struct ib_umem *umem; | 
|  | struct ib_umem_odp *umem_odp; | 
|  | int ret; | 
|  |  | 
|  | if (access & IB_ACCESS_HUGETLB) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (!context) | 
|  | return ERR_PTR(-EIO); | 
|  | if (WARN_ON_ONCE(!context->device->ops.invalidate_range)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL); | 
|  | if (!umem_odp) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | umem = &umem_odp->umem; | 
|  | umem->ibdev = context->device; | 
|  | umem->writable = ib_access_writable(access); | 
|  | umem->owning_mm = current->mm; | 
|  | umem_odp->is_implicit_odp = 1; | 
|  | umem_odp->page_shift = PAGE_SHIFT; | 
|  |  | 
|  | ret = ib_init_umem_odp(umem_odp); | 
|  | if (ret) { | 
|  | kfree(umem_odp); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return umem_odp; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_umem_odp_alloc_implicit); | 
|  |  | 
|  | /** | 
|  | * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit | 
|  | *                           parent ODP umem | 
|  | * | 
|  | * @root: The parent umem enclosing the child. This must be allocated using | 
|  | *        ib_alloc_implicit_odp_umem() | 
|  | * @addr: The starting userspace VA | 
|  | * @size: The length of the userspace VA | 
|  | */ | 
|  | struct ib_umem_odp *ib_umem_odp_alloc_child(struct ib_umem_odp *root, | 
|  | unsigned long addr, size_t size) | 
|  | { | 
|  | /* | 
|  | * Caller must ensure that root cannot be freed during the call to | 
|  | * ib_alloc_odp_umem. | 
|  | */ | 
|  | struct ib_umem_odp *odp_data; | 
|  | struct ib_umem *umem; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON(!root->is_implicit_odp)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); | 
|  | if (!odp_data) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | umem = &odp_data->umem; | 
|  | umem->ibdev = root->umem.ibdev; | 
|  | umem->length     = size; | 
|  | umem->address    = addr; | 
|  | umem->writable   = root->umem.writable; | 
|  | umem->owning_mm  = root->umem.owning_mm; | 
|  | odp_data->page_shift = PAGE_SHIFT; | 
|  |  | 
|  | ret = ib_init_umem_odp(odp_data); | 
|  | if (ret) { | 
|  | kfree(odp_data); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return odp_data; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_umem_odp_alloc_child); | 
|  |  | 
|  | /** | 
|  | * ib_umem_odp_get - Create a umem_odp for a userspace va | 
|  | * | 
|  | * @udata: userspace context to pin memory for | 
|  | * @addr: userspace virtual address to start at | 
|  | * @size: length of region to pin | 
|  | * @access: IB_ACCESS_xxx flags for memory being pinned | 
|  | * | 
|  | * The driver should use when the access flags indicate ODP memory. It avoids | 
|  | * pinning, instead, stores the mm for future page fault handling in | 
|  | * conjunction with MMU notifiers. | 
|  | */ | 
|  | struct ib_umem_odp *ib_umem_odp_get(struct ib_udata *udata, unsigned long addr, | 
|  | size_t size, int access) | 
|  | { | 
|  | struct ib_umem_odp *umem_odp; | 
|  | struct ib_ucontext *context; | 
|  | struct mm_struct *mm; | 
|  | int ret; | 
|  |  | 
|  | if (!udata) | 
|  | return ERR_PTR(-EIO); | 
|  |  | 
|  | context = container_of(udata, struct uverbs_attr_bundle, driver_udata) | 
|  | ->context; | 
|  | if (!context) | 
|  | return ERR_PTR(-EIO); | 
|  |  | 
|  | if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND)) || | 
|  | WARN_ON_ONCE(!context->device->ops.invalidate_range)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL); | 
|  | if (!umem_odp) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | umem_odp->umem.ibdev = context->device; | 
|  | umem_odp->umem.length = size; | 
|  | umem_odp->umem.address = addr; | 
|  | umem_odp->umem.writable = ib_access_writable(access); | 
|  | umem_odp->umem.owning_mm = mm = current->mm; | 
|  |  | 
|  | umem_odp->page_shift = PAGE_SHIFT; | 
|  | if (access & IB_ACCESS_HUGETLB) { | 
|  | struct vm_area_struct *vma; | 
|  | struct hstate *h; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | vma = find_vma(mm, ib_umem_start(umem_odp)); | 
|  | if (!vma || !is_vm_hugetlb_page(vma)) { | 
|  | up_read(&mm->mmap_sem); | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  | h = hstate_vma(vma); | 
|  | umem_odp->page_shift = huge_page_shift(h); | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | ret = ib_init_umem_odp(umem_odp); | 
|  | if (ret) | 
|  | goto err_free; | 
|  | return umem_odp; | 
|  |  | 
|  | err_free: | 
|  | kfree(umem_odp); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_umem_odp_get); | 
|  |  | 
|  | void ib_umem_odp_release(struct ib_umem_odp *umem_odp) | 
|  | { | 
|  | struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; | 
|  |  | 
|  | /* | 
|  | * Ensure that no more pages are mapped in the umem. | 
|  | * | 
|  | * It is the driver's responsibility to ensure, before calling us, | 
|  | * that the hardware will not attempt to access the MR any more. | 
|  | */ | 
|  | if (!umem_odp->is_implicit_odp) { | 
|  | mutex_lock(&umem_odp->umem_mutex); | 
|  | ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), | 
|  | ib_umem_end(umem_odp)); | 
|  | mutex_unlock(&umem_odp->umem_mutex); | 
|  | kvfree(umem_odp->dma_list); | 
|  | kvfree(umem_odp->page_list); | 
|  | } | 
|  |  | 
|  | down_write(&per_mm->umem_rwsem); | 
|  | if (!umem_odp->is_implicit_odp) { | 
|  | interval_tree_remove(&umem_odp->interval_tree, | 
|  | &per_mm->umem_tree); | 
|  | complete_all(&umem_odp->notifier_completion); | 
|  | } | 
|  | /* | 
|  | * NOTE! mmu_notifier_unregister() can happen between a start/end | 
|  | * callback, resulting in a missing end, and thus an unbalanced | 
|  | * lock. This doesn't really matter to us since we are about to kfree | 
|  | * the memory that holds the lock, however LOCKDEP doesn't like this. | 
|  | * Thus we call the mmu_notifier_put under the rwsem and test the | 
|  | * internal users count to reliably see if we are past this point. | 
|  | */ | 
|  | mmu_notifier_put(&per_mm->mn); | 
|  | up_write(&per_mm->umem_rwsem); | 
|  |  | 
|  | mmdrop(umem_odp->umem.owning_mm); | 
|  | kfree(umem_odp); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_umem_odp_release); | 
|  |  | 
|  | /* | 
|  | * Map for DMA and insert a single page into the on-demand paging page tables. | 
|  | * | 
|  | * @umem: the umem to insert the page to. | 
|  | * @page_index: index in the umem to add the page to. | 
|  | * @page: the page struct to map and add. | 
|  | * @access_mask: access permissions needed for this page. | 
|  | * @current_seq: sequence number for synchronization with invalidations. | 
|  | *               the sequence number is taken from | 
|  | *               umem_odp->notifiers_seq. | 
|  | * | 
|  | * The function returns -EFAULT if the DMA mapping operation fails. It returns | 
|  | * -EAGAIN if a concurrent invalidation prevents us from updating the page. | 
|  | * | 
|  | * The page is released via put_user_page even if the operation failed. For | 
|  | * on-demand pinning, the page is released whenever it isn't stored in the | 
|  | * umem. | 
|  | */ | 
|  | static int ib_umem_odp_map_dma_single_page( | 
|  | struct ib_umem_odp *umem_odp, | 
|  | int page_index, | 
|  | struct page *page, | 
|  | u64 access_mask, | 
|  | unsigned long current_seq) | 
|  | { | 
|  | struct ib_device *dev = umem_odp->umem.ibdev; | 
|  | dma_addr_t dma_addr; | 
|  | int remove_existing_mapping = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Note: we avoid writing if seq is different from the initial seq, to | 
|  | * handle case of a racing notifier. This check also allows us to bail | 
|  | * early if we have a notifier running in parallel with us. | 
|  | */ | 
|  | if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | if (!(umem_odp->dma_list[page_index])) { | 
|  | dma_addr = | 
|  | ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift), | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ib_dma_mapping_error(dev, dma_addr)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | umem_odp->dma_list[page_index] = dma_addr | access_mask; | 
|  | umem_odp->page_list[page_index] = page; | 
|  | umem_odp->npages++; | 
|  | } else if (umem_odp->page_list[page_index] == page) { | 
|  | umem_odp->dma_list[page_index] |= access_mask; | 
|  | } else { | 
|  | pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", | 
|  | umem_odp->page_list[page_index], page); | 
|  | /* Better remove the mapping now, to prevent any further | 
|  | * damage. */ | 
|  | remove_existing_mapping = 1; | 
|  | } | 
|  |  | 
|  | out: | 
|  | put_user_page(page); | 
|  |  | 
|  | if (remove_existing_mapping) { | 
|  | ib_umem_notifier_start_account(umem_odp); | 
|  | dev->ops.invalidate_range( | 
|  | umem_odp, | 
|  | ib_umem_start(umem_odp) + | 
|  | (page_index << umem_odp->page_shift), | 
|  | ib_umem_start(umem_odp) + | 
|  | ((page_index + 1) << umem_odp->page_shift)); | 
|  | ib_umem_notifier_end_account(umem_odp); | 
|  | ret = -EAGAIN; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. | 
|  | * | 
|  | * Pins the range of pages passed in the argument, and maps them to | 
|  | * DMA addresses. The DMA addresses of the mapped pages is updated in | 
|  | * umem_odp->dma_list. | 
|  | * | 
|  | * Returns the number of pages mapped in success, negative error code | 
|  | * for failure. | 
|  | * An -EAGAIN error code is returned when a concurrent mmu notifier prevents | 
|  | * the function from completing its task. | 
|  | * An -ENOENT error code indicates that userspace process is being terminated | 
|  | * and mm was already destroyed. | 
|  | * @umem_odp: the umem to map and pin | 
|  | * @user_virt: the address from which we need to map. | 
|  | * @bcnt: the minimal number of bytes to pin and map. The mapping might be | 
|  | *        bigger due to alignment, and may also be smaller in case of an error | 
|  | *        pinning or mapping a page. The actual pages mapped is returned in | 
|  | *        the return value. | 
|  | * @access_mask: bit mask of the requested access permissions for the given | 
|  | *               range. | 
|  | * @current_seq: the MMU notifiers sequance value for synchronization with | 
|  | *               invalidations. the sequance number is read from | 
|  | *               umem_odp->notifiers_seq before calling this function | 
|  | */ | 
|  | int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, | 
|  | u64 bcnt, u64 access_mask, | 
|  | unsigned long current_seq) | 
|  | { | 
|  | struct task_struct *owning_process  = NULL; | 
|  | struct mm_struct *owning_mm = umem_odp->umem.owning_mm; | 
|  | struct page       **local_page_list = NULL; | 
|  | u64 page_mask, off; | 
|  | int j, k, ret = 0, start_idx, npages = 0; | 
|  | unsigned int flags = 0, page_shift; | 
|  | phys_addr_t p = 0; | 
|  |  | 
|  | if (access_mask == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (user_virt < ib_umem_start(umem_odp) || | 
|  | user_virt + bcnt > ib_umem_end(umem_odp)) | 
|  | return -EFAULT; | 
|  |  | 
|  | local_page_list = (struct page **)__get_free_page(GFP_KERNEL); | 
|  | if (!local_page_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | page_shift = umem_odp->page_shift; | 
|  | page_mask = ~(BIT(page_shift) - 1); | 
|  | off = user_virt & (~page_mask); | 
|  | user_virt = user_virt & page_mask; | 
|  | bcnt += off; /* Charge for the first page offset as well. */ | 
|  |  | 
|  | /* | 
|  | * owning_process is allowed to be NULL, this means somehow the mm is | 
|  | * existing beyond the lifetime of the originating process.. Presumably | 
|  | * mmget_not_zero will fail in this case. | 
|  | */ | 
|  | owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); | 
|  | if (!owning_process || !mmget_not_zero(owning_mm)) { | 
|  | ret = -EINVAL; | 
|  | goto out_put_task; | 
|  | } | 
|  |  | 
|  | if (access_mask & ODP_WRITE_ALLOWED_BIT) | 
|  | flags |= FOLL_WRITE; | 
|  |  | 
|  | start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift; | 
|  | k = start_idx; | 
|  |  | 
|  | while (bcnt > 0) { | 
|  | const size_t gup_num_pages = min_t(size_t, | 
|  | ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE, | 
|  | PAGE_SIZE / sizeof(struct page *)); | 
|  |  | 
|  | down_read(&owning_mm->mmap_sem); | 
|  | /* | 
|  | * Note: this might result in redundent page getting. We can | 
|  | * avoid this by checking dma_list to be 0 before calling | 
|  | * get_user_pages. However, this make the code much more | 
|  | * complex (and doesn't gain us much performance in most use | 
|  | * cases). | 
|  | */ | 
|  | npages = get_user_pages_remote(owning_process, owning_mm, | 
|  | user_virt, gup_num_pages, | 
|  | flags, local_page_list, NULL, NULL); | 
|  | up_read(&owning_mm->mmap_sem); | 
|  |  | 
|  | if (npages < 0) { | 
|  | if (npages != -EAGAIN) | 
|  | pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); | 
|  | else | 
|  | pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); | 
|  | mutex_lock(&umem_odp->umem_mutex); | 
|  | for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { | 
|  | if (user_virt & ~page_mask) { | 
|  | p += PAGE_SIZE; | 
|  | if (page_to_phys(local_page_list[j]) != p) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  | put_user_page(local_page_list[j]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = ib_umem_odp_map_dma_single_page( | 
|  | umem_odp, k, local_page_list[j], | 
|  | access_mask, current_seq); | 
|  | if (ret < 0) { | 
|  | if (ret != -EAGAIN) | 
|  | pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); | 
|  | else | 
|  | pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | p = page_to_phys(local_page_list[j]); | 
|  | k++; | 
|  | } | 
|  | mutex_unlock(&umem_odp->umem_mutex); | 
|  |  | 
|  | if (ret < 0) { | 
|  | /* | 
|  | * Release pages, remembering that the first page | 
|  | * to hit an error was already released by | 
|  | * ib_umem_odp_map_dma_single_page(). | 
|  | */ | 
|  | if (npages - (j + 1) > 0) | 
|  | put_user_pages(&local_page_list[j+1], | 
|  | npages - (j + 1)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret >= 0) { | 
|  | if (npages < 0 && k == start_idx) | 
|  | ret = npages; | 
|  | else | 
|  | ret = k - start_idx; | 
|  | } | 
|  |  | 
|  | mmput(owning_mm); | 
|  | out_put_task: | 
|  | if (owning_process) | 
|  | put_task_struct(owning_process); | 
|  | free_page((unsigned long)local_page_list); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); | 
|  |  | 
|  | void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, | 
|  | u64 bound) | 
|  | { | 
|  | int idx; | 
|  | u64 addr; | 
|  | struct ib_device *dev = umem_odp->umem.ibdev; | 
|  |  | 
|  | lockdep_assert_held(&umem_odp->umem_mutex); | 
|  |  | 
|  | virt = max_t(u64, virt, ib_umem_start(umem_odp)); | 
|  | bound = min_t(u64, bound, ib_umem_end(umem_odp)); | 
|  | /* Note that during the run of this function, the | 
|  | * notifiers_count of the MR is > 0, preventing any racing | 
|  | * faults from completion. We might be racing with other | 
|  | * invalidations, so we must make sure we free each page only | 
|  | * once. */ | 
|  | for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { | 
|  | idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; | 
|  | if (umem_odp->page_list[idx]) { | 
|  | struct page *page = umem_odp->page_list[idx]; | 
|  | dma_addr_t dma = umem_odp->dma_list[idx]; | 
|  | dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; | 
|  |  | 
|  | WARN_ON(!dma_addr); | 
|  |  | 
|  | ib_dma_unmap_page(dev, dma_addr, | 
|  | BIT(umem_odp->page_shift), | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (dma & ODP_WRITE_ALLOWED_BIT) { | 
|  | struct page *head_page = compound_head(page); | 
|  | /* | 
|  | * set_page_dirty prefers being called with | 
|  | * the page lock. However, MMU notifiers are | 
|  | * called sometimes with and sometimes without | 
|  | * the lock. We rely on the umem_mutex instead | 
|  | * to prevent other mmu notifiers from | 
|  | * continuing and allowing the page mapping to | 
|  | * be removed. | 
|  | */ | 
|  | set_page_dirty(head_page); | 
|  | } | 
|  | umem_odp->page_list[idx] = NULL; | 
|  | umem_odp->dma_list[idx] = 0; | 
|  | umem_odp->npages--; | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); | 
|  |  | 
|  | /* @last is not a part of the interval. See comment for function | 
|  | * node_last. | 
|  | */ | 
|  | int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, | 
|  | u64 start, u64 last, | 
|  | umem_call_back cb, | 
|  | bool blockable, | 
|  | void *cookie) | 
|  | { | 
|  | int ret_val = 0; | 
|  | struct interval_tree_node *node, *next; | 
|  | struct ib_umem_odp *umem; | 
|  |  | 
|  | if (unlikely(start == last)) | 
|  | return ret_val; | 
|  |  | 
|  | for (node = interval_tree_iter_first(root, start, last - 1); | 
|  | node; node = next) { | 
|  | /* TODO move the blockable decision up to the callback */ | 
|  | if (!blockable) | 
|  | return -EAGAIN; | 
|  | next = interval_tree_iter_next(node, start, last - 1); | 
|  | umem = container_of(node, struct ib_umem_odp, interval_tree); | 
|  | ret_val = cb(umem, start, last, cookie) || ret_val; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } |