|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * Maple Tree implementation | 
|  | * Copyright (c) 2018-2022 Oracle Corporation | 
|  | * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> | 
|  | *	    Matthew Wilcox <willy@infradead.org> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * DOC: Interesting implementation details of the Maple Tree | 
|  | * | 
|  | * Each node type has a number of slots for entries and a number of slots for | 
|  | * pivots.  In the case of dense nodes, the pivots are implied by the position | 
|  | * and are simply the slot index + the minimum of the node. | 
|  | * | 
|  | * In regular B-Tree terms, pivots are called keys.  The term pivot is used to | 
|  | * indicate that the tree is specifying ranges,  Pivots may appear in the | 
|  | * subtree with an entry attached to the value where as keys are unique to a | 
|  | * specific position of a B-tree.  Pivot values are inclusive of the slot with | 
|  | * the same index. | 
|  | * | 
|  | * | 
|  | * The following illustrates the layout of a range64 nodes slots and pivots. | 
|  | * | 
|  | * | 
|  | *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | | 
|  | *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬ | 
|  | *           │   │   │   │     │    │    │    │    └─ Implied maximum | 
|  | *           │   │   │   │     │    │    │    └─ Pivot 14 | 
|  | *           │   │   │   │     │    │    └─ Pivot 13 | 
|  | *           │   │   │   │     │    └─ Pivot 12 | 
|  | *           │   │   │   │     └─ Pivot 11 | 
|  | *           │   │   │   └─ Pivot 2 | 
|  | *           │   │   └─ Pivot 1 | 
|  | *           │   └─ Pivot 0 | 
|  | *           └─  Implied minimum | 
|  | * | 
|  | * Slot contents: | 
|  | *  Internal (non-leaf) nodes contain pointers to other nodes. | 
|  | *  Leaf nodes contain entries. | 
|  | * | 
|  | * The location of interest is often referred to as an offset.  All offsets have | 
|  | * a slot, but the last offset has an implied pivot from the node above (or | 
|  | * UINT_MAX for the root node. | 
|  | * | 
|  | * Ranges complicate certain write activities.  When modifying any of | 
|  | * the B-tree variants, it is known that one entry will either be added or | 
|  | * deleted.  When modifying the Maple Tree, one store operation may overwrite | 
|  | * the entire data set, or one half of the tree, or the middle half of the tree. | 
|  | * | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/maple_tree.h> | 
|  | #include <linux/xarray.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/limits.h> | 
|  | #include <asm/barrier.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/maple_tree.h> | 
|  |  | 
|  | #define MA_ROOT_PARENT 1 | 
|  |  | 
|  | /* | 
|  | * Maple state flags | 
|  | * * MA_STATE_BULK		- Bulk insert mode | 
|  | * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert | 
|  | * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation | 
|  | */ | 
|  | #define MA_STATE_BULK		1 | 
|  | #define MA_STATE_REBALANCE	2 | 
|  | #define MA_STATE_PREALLOC	4 | 
|  |  | 
|  | #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) | 
|  | #define ma_mnode_ptr(x) ((struct maple_node *)(x)) | 
|  | #define ma_enode_ptr(x) ((struct maple_enode *)(x)) | 
|  | static struct kmem_cache *maple_node_cache; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | static const unsigned long mt_max[] = { | 
|  | [maple_dense]		= MAPLE_NODE_SLOTS, | 
|  | [maple_leaf_64]		= ULONG_MAX, | 
|  | [maple_range_64]	= ULONG_MAX, | 
|  | [maple_arange_64]	= ULONG_MAX, | 
|  | }; | 
|  | #define mt_node_max(x) mt_max[mte_node_type(x)] | 
|  | #endif | 
|  |  | 
|  | static const unsigned char mt_slots[] = { | 
|  | [maple_dense]		= MAPLE_NODE_SLOTS, | 
|  | [maple_leaf_64]		= MAPLE_RANGE64_SLOTS, | 
|  | [maple_range_64]	= MAPLE_RANGE64_SLOTS, | 
|  | [maple_arange_64]	= MAPLE_ARANGE64_SLOTS, | 
|  | }; | 
|  | #define mt_slot_count(x) mt_slots[mte_node_type(x)] | 
|  |  | 
|  | static const unsigned char mt_pivots[] = { | 
|  | [maple_dense]		= 0, | 
|  | [maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1, | 
|  | [maple_range_64]	= MAPLE_RANGE64_SLOTS - 1, | 
|  | [maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1, | 
|  | }; | 
|  | #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] | 
|  |  | 
|  | static const unsigned char mt_min_slots[] = { | 
|  | [maple_dense]		= MAPLE_NODE_SLOTS / 2, | 
|  | [maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2, | 
|  | [maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2, | 
|  | [maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1, | 
|  | }; | 
|  | #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] | 
|  |  | 
|  | #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2) | 
|  | #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1) | 
|  |  | 
|  | struct maple_big_node { | 
|  | struct maple_pnode *parent; | 
|  | unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; | 
|  | union { | 
|  | struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; | 
|  | struct { | 
|  | unsigned long padding[MAPLE_BIG_NODE_GAPS]; | 
|  | unsigned long gap[MAPLE_BIG_NODE_GAPS]; | 
|  | }; | 
|  | }; | 
|  | unsigned char b_end; | 
|  | enum maple_type type; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The maple_subtree_state is used to build a tree to replace a segment of an | 
|  | * existing tree in a more atomic way.  Any walkers of the older tree will hit a | 
|  | * dead node and restart on updates. | 
|  | */ | 
|  | struct maple_subtree_state { | 
|  | struct ma_state *orig_l;	/* Original left side of subtree */ | 
|  | struct ma_state *orig_r;	/* Original right side of subtree */ | 
|  | struct ma_state *l;		/* New left side of subtree */ | 
|  | struct ma_state *m;		/* New middle of subtree (rare) */ | 
|  | struct ma_state *r;		/* New right side of subtree */ | 
|  | struct ma_topiary *free;	/* nodes to be freed */ | 
|  | struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */ | 
|  | struct maple_big_node *bn; | 
|  | }; | 
|  |  | 
|  | /* Functions */ | 
|  | static inline struct maple_node *mt_alloc_one(gfp_t gfp) | 
|  | { | 
|  | return kmem_cache_alloc(maple_node_cache, gfp); | 
|  | } | 
|  |  | 
|  | static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) | 
|  | { | 
|  | return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); | 
|  | } | 
|  |  | 
|  | static inline void mt_free_bulk(size_t size, void __rcu **nodes) | 
|  | { | 
|  | kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); | 
|  | } | 
|  |  | 
|  | static void mt_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct maple_node *node = container_of(head, struct maple_node, rcu); | 
|  |  | 
|  | kmem_cache_free(maple_node_cache, node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_free_rcu() - Use rcu callback to free a maple node | 
|  | * @node: The node to free | 
|  | * | 
|  | * The maple tree uses the parent pointer to indicate this node is no longer in | 
|  | * use and will be freed. | 
|  | */ | 
|  | static void ma_free_rcu(struct maple_node *node) | 
|  | { | 
|  | WARN_ON(node->parent != ma_parent_ptr(node)); | 
|  | call_rcu(&node->rcu, mt_free_rcu); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mas_set_height(struct ma_state *mas) | 
|  | { | 
|  | unsigned int new_flags = mas->tree->ma_flags; | 
|  |  | 
|  | new_flags &= ~MT_FLAGS_HEIGHT_MASK; | 
|  | BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); | 
|  | new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; | 
|  | mas->tree->ma_flags = new_flags; | 
|  | } | 
|  |  | 
|  | static unsigned int mas_mt_height(struct ma_state *mas) | 
|  | { | 
|  | return mt_height(mas->tree); | 
|  | } | 
|  |  | 
|  | static inline enum maple_type mte_node_type(const struct maple_enode *entry) | 
|  | { | 
|  | return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & | 
|  | MAPLE_NODE_TYPE_MASK; | 
|  | } | 
|  |  | 
|  | static inline bool ma_is_dense(const enum maple_type type) | 
|  | { | 
|  | return type < maple_leaf_64; | 
|  | } | 
|  |  | 
|  | static inline bool ma_is_leaf(const enum maple_type type) | 
|  | { | 
|  | return type < maple_range_64; | 
|  | } | 
|  |  | 
|  | static inline bool mte_is_leaf(const struct maple_enode *entry) | 
|  | { | 
|  | return ma_is_leaf(mte_node_type(entry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We also reserve values with the bottom two bits set to '10' which are | 
|  | * below 4096 | 
|  | */ | 
|  | static inline bool mt_is_reserved(const void *entry) | 
|  | { | 
|  | return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && | 
|  | xa_is_internal(entry); | 
|  | } | 
|  |  | 
|  | static inline void mas_set_err(struct ma_state *mas, long err) | 
|  | { | 
|  | mas->node = MA_ERROR(err); | 
|  | } | 
|  |  | 
|  | static inline bool mas_is_ptr(struct ma_state *mas) | 
|  | { | 
|  | return mas->node == MAS_ROOT; | 
|  | } | 
|  |  | 
|  | static inline bool mas_is_start(struct ma_state *mas) | 
|  | { | 
|  | return mas->node == MAS_START; | 
|  | } | 
|  |  | 
|  | bool mas_is_err(struct ma_state *mas) | 
|  | { | 
|  | return xa_is_err(mas->node); | 
|  | } | 
|  |  | 
|  | static inline bool mas_searchable(struct ma_state *mas) | 
|  | { | 
|  | if (mas_is_none(mas)) | 
|  | return false; | 
|  |  | 
|  | if (mas_is_ptr(mas)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline struct maple_node *mte_to_node(const struct maple_enode *entry) | 
|  | { | 
|  | return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_to_mat() - Convert a maple encoded node to a maple topiary node. | 
|  | * @entry: The maple encoded node | 
|  | * | 
|  | * Return: a maple topiary pointer | 
|  | */ | 
|  | static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) | 
|  | { | 
|  | return (struct maple_topiary *) | 
|  | ((unsigned long)entry & ~MAPLE_NODE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mn() - Get the maple state node. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Return: the maple node (not encoded - bare pointer). | 
|  | */ | 
|  | static inline struct maple_node *mas_mn(const struct ma_state *mas) | 
|  | { | 
|  | return mte_to_node(mas->node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_set_node_dead() - Set a maple encoded node as dead. | 
|  | * @mn: The maple encoded node. | 
|  | */ | 
|  | static inline void mte_set_node_dead(struct maple_enode *mn) | 
|  | { | 
|  | mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); | 
|  | smp_wmb(); /* Needed for RCU */ | 
|  | } | 
|  |  | 
|  | /* Bit 1 indicates the root is a node */ | 
|  | #define MAPLE_ROOT_NODE			0x02 | 
|  | /* maple_type stored bit 3-6 */ | 
|  | #define MAPLE_ENODE_TYPE_SHIFT		0x03 | 
|  | /* Bit 2 means a NULL somewhere below */ | 
|  | #define MAPLE_ENODE_NULL		0x04 | 
|  |  | 
|  | static inline struct maple_enode *mt_mk_node(const struct maple_node *node, | 
|  | enum maple_type type) | 
|  | { | 
|  | return (void *)((unsigned long)node | | 
|  | (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); | 
|  | } | 
|  |  | 
|  | static inline void *mte_mk_root(const struct maple_enode *node) | 
|  | { | 
|  | return (void *)((unsigned long)node | MAPLE_ROOT_NODE); | 
|  | } | 
|  |  | 
|  | static inline void *mte_safe_root(const struct maple_enode *node) | 
|  | { | 
|  | return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); | 
|  | } | 
|  |  | 
|  | static inline void mte_set_full(const struct maple_enode *node) | 
|  | { | 
|  | node = (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); | 
|  | } | 
|  |  | 
|  | static inline void mte_clear_full(const struct maple_enode *node) | 
|  | { | 
|  | node = (void *)((unsigned long)node | MAPLE_ENODE_NULL); | 
|  | } | 
|  |  | 
|  | static inline bool ma_is_root(struct maple_node *node) | 
|  | { | 
|  | return ((unsigned long)node->parent & MA_ROOT_PARENT); | 
|  | } | 
|  |  | 
|  | static inline bool mte_is_root(const struct maple_enode *node) | 
|  | { | 
|  | return ma_is_root(mte_to_node(node)); | 
|  | } | 
|  |  | 
|  | static inline bool mas_is_root_limits(const struct ma_state *mas) | 
|  | { | 
|  | return !mas->min && mas->max == ULONG_MAX; | 
|  | } | 
|  |  | 
|  | static inline bool mt_is_alloc(struct maple_tree *mt) | 
|  | { | 
|  | return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The Parent Pointer | 
|  | * Excluding root, the parent pointer is 256B aligned like all other tree nodes. | 
|  | * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16 | 
|  | * bit values need an extra bit to store the offset.  This extra bit comes from | 
|  | * a reuse of the last bit in the node type.  This is possible by using bit 1 to | 
|  | * indicate if bit 2 is part of the type or the slot. | 
|  | * | 
|  | * Note types: | 
|  | *  0x??1 = Root | 
|  | *  0x?00 = 16 bit nodes | 
|  | *  0x010 = 32 bit nodes | 
|  | *  0x110 = 64 bit nodes | 
|  | * | 
|  | * Slot size and alignment | 
|  | *  0b??1 : Root | 
|  | *  0b?00 : 16 bit values, type in 0-1, slot in 2-7 | 
|  | *  0b010 : 32 bit values, type in 0-2, slot in 3-7 | 
|  | *  0b110 : 64 bit values, type in 0-2, slot in 3-7 | 
|  | */ | 
|  |  | 
|  | #define MAPLE_PARENT_ROOT		0x01 | 
|  |  | 
|  | #define MAPLE_PARENT_SLOT_SHIFT		0x03 | 
|  | #define MAPLE_PARENT_SLOT_MASK		0xF8 | 
|  |  | 
|  | #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02 | 
|  | #define MAPLE_PARENT_16B_SLOT_MASK	0xFC | 
|  |  | 
|  | #define MAPLE_PARENT_RANGE64		0x06 | 
|  | #define MAPLE_PARENT_RANGE32		0x04 | 
|  | #define MAPLE_PARENT_NOT_RANGE16	0x02 | 
|  |  | 
|  | /* | 
|  | * mte_parent_shift() - Get the parent shift for the slot storage. | 
|  | * @parent: The parent pointer cast as an unsigned long | 
|  | * Return: The shift into that pointer to the star to of the slot | 
|  | */ | 
|  | static inline unsigned long mte_parent_shift(unsigned long parent) | 
|  | { | 
|  | /* Note bit 1 == 0 means 16B */ | 
|  | if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) | 
|  | return MAPLE_PARENT_SLOT_SHIFT; | 
|  |  | 
|  | return MAPLE_PARENT_16B_SLOT_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_parent_slot_mask() - Get the slot mask for the parent. | 
|  | * @parent: The parent pointer cast as an unsigned long. | 
|  | * Return: The slot mask for that parent. | 
|  | */ | 
|  | static inline unsigned long mte_parent_slot_mask(unsigned long parent) | 
|  | { | 
|  | /* Note bit 1 == 0 means 16B */ | 
|  | if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) | 
|  | return MAPLE_PARENT_SLOT_MASK; | 
|  |  | 
|  | return MAPLE_PARENT_16B_SLOT_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_parent_enum() - Return the maple_type of the parent from the stored | 
|  | * parent type. | 
|  | * @mas: The maple state | 
|  | * @node: The maple_enode to extract the parent's enum | 
|  | * Return: The node->parent maple_type | 
|  | */ | 
|  | static inline | 
|  | enum maple_type mte_parent_enum(struct maple_enode *p_enode, | 
|  | struct maple_tree *mt) | 
|  | { | 
|  | unsigned long p_type; | 
|  |  | 
|  | p_type = (unsigned long)p_enode; | 
|  | if (p_type & MAPLE_PARENT_ROOT) | 
|  | return 0; /* Validated in the caller. */ | 
|  |  | 
|  | p_type &= MAPLE_NODE_MASK; | 
|  | p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); | 
|  |  | 
|  | switch (p_type) { | 
|  | case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ | 
|  | if (mt_is_alloc(mt)) | 
|  | return maple_arange_64; | 
|  | return maple_range_64; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) | 
|  | { | 
|  | return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_set_parent() - Set the parent node and encode the slot | 
|  | * @enode: The encoded maple node. | 
|  | * @parent: The encoded maple node that is the parent of @enode. | 
|  | * @slot: The slot that @enode resides in @parent. | 
|  | * | 
|  | * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the | 
|  | * parent type. | 
|  | */ | 
|  | static inline | 
|  | void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, | 
|  | unsigned char slot) | 
|  | { | 
|  | unsigned long val = (unsigned long) parent; | 
|  | unsigned long shift; | 
|  | unsigned long type; | 
|  | enum maple_type p_type = mte_node_type(parent); | 
|  |  | 
|  | BUG_ON(p_type == maple_dense); | 
|  | BUG_ON(p_type == maple_leaf_64); | 
|  |  | 
|  | switch (p_type) { | 
|  | case maple_range_64: | 
|  | case maple_arange_64: | 
|  | shift = MAPLE_PARENT_SLOT_SHIFT; | 
|  | type = MAPLE_PARENT_RANGE64; | 
|  | break; | 
|  | default: | 
|  | case maple_dense: | 
|  | case maple_leaf_64: | 
|  | shift = type = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ | 
|  | val |= (slot << shift) | type; | 
|  | mte_to_node(enode)->parent = ma_parent_ptr(val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_parent_slot() - get the parent slot of @enode. | 
|  | * @enode: The encoded maple node. | 
|  | * | 
|  | * Return: The slot in the parent node where @enode resides. | 
|  | */ | 
|  | static inline unsigned int mte_parent_slot(const struct maple_enode *enode) | 
|  | { | 
|  | unsigned long val = (unsigned long) mte_to_node(enode)->parent; | 
|  |  | 
|  | /* Root. */ | 
|  | if (val & 1) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost | 
|  | * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT | 
|  | */ | 
|  | return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_parent() - Get the parent of @node. | 
|  | * @node: The encoded maple node. | 
|  | * | 
|  | * Return: The parent maple node. | 
|  | */ | 
|  | static inline struct maple_node *mte_parent(const struct maple_enode *enode) | 
|  | { | 
|  | return (void *)((unsigned long) | 
|  | (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_dead_node() - check if the @enode is dead. | 
|  | * @enode: The encoded maple node | 
|  | * | 
|  | * Return: true if dead, false otherwise. | 
|  | */ | 
|  | static inline bool ma_dead_node(const struct maple_node *node) | 
|  | { | 
|  | struct maple_node *parent; | 
|  |  | 
|  | /* Do not reorder reads from the node prior to the parent check */ | 
|  | smp_rmb(); | 
|  | parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); | 
|  | return (parent == node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_dead_node() - check if the @enode is dead. | 
|  | * @enode: The encoded maple node | 
|  | * | 
|  | * Return: true if dead, false otherwise. | 
|  | */ | 
|  | static inline bool mte_dead_node(const struct maple_enode *enode) | 
|  | { | 
|  | struct maple_node *parent, *node; | 
|  |  | 
|  | node = mte_to_node(enode); | 
|  | /* Do not reorder reads from the node prior to the parent check */ | 
|  | smp_rmb(); | 
|  | parent = mte_parent(enode); | 
|  | return (parent == node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_allocated() - Get the number of nodes allocated in a maple state. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * The ma_state alloc member is overloaded to hold a pointer to the first | 
|  | * allocated node or to the number of requested nodes to allocate.  If bit 0 is | 
|  | * set, then the alloc contains the number of requested nodes.  If there is an | 
|  | * allocated node, then the total allocated nodes is in that node. | 
|  | * | 
|  | * Return: The total number of nodes allocated | 
|  | */ | 
|  | static inline unsigned long mas_allocated(const struct ma_state *mas) | 
|  | { | 
|  | if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) | 
|  | return 0; | 
|  |  | 
|  | return mas->alloc->total; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_set_alloc_req() - Set the requested number of allocations. | 
|  | * @mas: the maple state | 
|  | * @count: the number of allocations. | 
|  | * | 
|  | * The requested number of allocations is either in the first allocated node, | 
|  | * located in @mas->alloc->request_count, or directly in @mas->alloc if there is | 
|  | * no allocated node.  Set the request either in the node or do the necessary | 
|  | * encoding to store in @mas->alloc directly. | 
|  | */ | 
|  | static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) | 
|  | { | 
|  | if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { | 
|  | if (!count) | 
|  | mas->alloc = NULL; | 
|  | else | 
|  | mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mas->alloc->request_count = count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_alloc_req() - get the requested number of allocations. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * The alloc count is either stored directly in @mas, or in | 
|  | * @mas->alloc->request_count if there is at least one node allocated.  Decode | 
|  | * the request count if it's stored directly in @mas->alloc. | 
|  | * | 
|  | * Return: The allocation request count. | 
|  | */ | 
|  | static inline unsigned int mas_alloc_req(const struct ma_state *mas) | 
|  | { | 
|  | if ((unsigned long)mas->alloc & 0x1) | 
|  | return (unsigned long)(mas->alloc) >> 1; | 
|  | else if (mas->alloc) | 
|  | return mas->alloc->request_count; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_pivots() - Get a pointer to the maple node pivots. | 
|  | * @node - the maple node | 
|  | * @type - the node type | 
|  | * | 
|  | * In the event of a dead node, this array may be %NULL | 
|  | * | 
|  | * Return: A pointer to the maple node pivots | 
|  | */ | 
|  | static inline unsigned long *ma_pivots(struct maple_node *node, | 
|  | enum maple_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case maple_arange_64: | 
|  | return node->ma64.pivot; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | return node->mr64.pivot; | 
|  | case maple_dense: | 
|  | return NULL; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_gaps() - Get a pointer to the maple node gaps. | 
|  | * @node - the maple node | 
|  | * @type - the node type | 
|  | * | 
|  | * Return: A pointer to the maple node gaps | 
|  | */ | 
|  | static inline unsigned long *ma_gaps(struct maple_node *node, | 
|  | enum maple_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case maple_arange_64: | 
|  | return node->ma64.gap; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | case maple_dense: | 
|  | return NULL; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_pivot() - Get the pivot at @piv of the maple encoded node. | 
|  | * @mn: The maple encoded node. | 
|  | * @piv: The pivot. | 
|  | * | 
|  | * Return: the pivot at @piv of @mn. | 
|  | */ | 
|  | static inline unsigned long mte_pivot(const struct maple_enode *mn, | 
|  | unsigned char piv) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(mn); | 
|  | enum maple_type type = mte_node_type(mn); | 
|  |  | 
|  | if (piv >= mt_pivots[type]) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  | switch (type) { | 
|  | case maple_arange_64: | 
|  | return node->ma64.pivot[piv]; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | return node->mr64.pivot[piv]; | 
|  | case maple_dense: | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_safe_pivot() - get the pivot at @piv or mas->max. | 
|  | * @mas: The maple state | 
|  | * @pivots: The pointer to the maple node pivots | 
|  | * @piv: The pivot to fetch | 
|  | * @type: The maple node type | 
|  | * | 
|  | * Return: The pivot at @piv within the limit of the @pivots array, @mas->max | 
|  | * otherwise. | 
|  | */ | 
|  | static inline unsigned long | 
|  | mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, | 
|  | unsigned char piv, enum maple_type type) | 
|  | { | 
|  | if (piv >= mt_pivots[type]) | 
|  | return mas->max; | 
|  |  | 
|  | return pivots[piv]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_safe_min() - Return the minimum for a given offset. | 
|  | * @mas: The maple state | 
|  | * @pivots: The pointer to the maple node pivots | 
|  | * @offset: The offset into the pivot array | 
|  | * | 
|  | * Return: The minimum range value that is contained in @offset. | 
|  | */ | 
|  | static inline unsigned long | 
|  | mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) | 
|  | { | 
|  | if (likely(offset)) | 
|  | return pivots[offset - 1] + 1; | 
|  |  | 
|  | return mas->min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_logical_pivot() - Get the logical pivot of a given offset. | 
|  | * @mas: The maple state | 
|  | * @pivots: The pointer to the maple node pivots | 
|  | * @offset: The offset into the pivot array | 
|  | * @type: The maple node type | 
|  | * | 
|  | * When there is no value at a pivot (beyond the end of the data), then the | 
|  | * pivot is actually @mas->max. | 
|  | * | 
|  | * Return: the logical pivot of a given @offset. | 
|  | */ | 
|  | static inline unsigned long | 
|  | mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, | 
|  | unsigned char offset, enum maple_type type) | 
|  | { | 
|  | unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); | 
|  |  | 
|  | if (likely(lpiv)) | 
|  | return lpiv; | 
|  |  | 
|  | if (likely(offset)) | 
|  | return mas->max; | 
|  |  | 
|  | return lpiv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_set_pivot() - Set a pivot to a value in an encoded maple node. | 
|  | * @mn: The encoded maple node | 
|  | * @piv: The pivot offset | 
|  | * @val: The value of the pivot | 
|  | */ | 
|  | static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, | 
|  | unsigned long val) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(mn); | 
|  | enum maple_type type = mte_node_type(mn); | 
|  |  | 
|  | BUG_ON(piv >= mt_pivots[type]); | 
|  | switch (type) { | 
|  | default: | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | node->mr64.pivot[piv] = val; | 
|  | break; | 
|  | case maple_arange_64: | 
|  | node->ma64.pivot[piv] = val; | 
|  | break; | 
|  | case maple_dense: | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_slots() - Get a pointer to the maple node slots. | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | * | 
|  | * Return: A pointer to the maple node slots | 
|  | */ | 
|  | static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) | 
|  | { | 
|  | switch (mt) { | 
|  | default: | 
|  | case maple_arange_64: | 
|  | return mn->ma64.slot; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | return mn->mr64.slot; | 
|  | case maple_dense: | 
|  | return mn->slot; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool mt_locked(const struct maple_tree *mt) | 
|  | { | 
|  | return mt_external_lock(mt) ? mt_lock_is_held(mt) : | 
|  | lockdep_is_held(&mt->ma_lock); | 
|  | } | 
|  |  | 
|  | static inline void *mt_slot(const struct maple_tree *mt, | 
|  | void __rcu **slots, unsigned char offset) | 
|  | { | 
|  | return rcu_dereference_check(slots[offset], mt_locked(mt)); | 
|  | } | 
|  |  | 
|  | static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, | 
|  | unsigned char offset) | 
|  | { | 
|  | return rcu_dereference_protected(slots[offset], mt_locked(mt)); | 
|  | } | 
|  | /* | 
|  | * mas_slot_locked() - Get the slot value when holding the maple tree lock. | 
|  | * @mas: The maple state | 
|  | * @slots: The pointer to the slots | 
|  | * @offset: The offset into the slots array to fetch | 
|  | * | 
|  | * Return: The entry stored in @slots at the @offset. | 
|  | */ | 
|  | static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, | 
|  | unsigned char offset) | 
|  | { | 
|  | return mt_slot_locked(mas->tree, slots, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_slot() - Get the slot value when not holding the maple tree lock. | 
|  | * @mas: The maple state | 
|  | * @slots: The pointer to the slots | 
|  | * @offset: The offset into the slots array to fetch | 
|  | * | 
|  | * Return: The entry stored in @slots at the @offset | 
|  | */ | 
|  | static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, | 
|  | unsigned char offset) | 
|  | { | 
|  | return mt_slot(mas->tree, slots, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_root() - Get the maple tree root. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: The pointer to the root of the tree | 
|  | */ | 
|  | static inline void *mas_root(struct ma_state *mas) | 
|  | { | 
|  | return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); | 
|  | } | 
|  |  | 
|  | static inline void *mt_root_locked(struct maple_tree *mt) | 
|  | { | 
|  | return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_root_locked() - Get the maple tree root when holding the maple tree lock. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: The pointer to the root of the tree | 
|  | */ | 
|  | static inline void *mas_root_locked(struct ma_state *mas) | 
|  | { | 
|  | return mt_root_locked(mas->tree); | 
|  | } | 
|  |  | 
|  | static inline struct maple_metadata *ma_meta(struct maple_node *mn, | 
|  | enum maple_type mt) | 
|  | { | 
|  | switch (mt) { | 
|  | case maple_arange_64: | 
|  | return &mn->ma64.meta; | 
|  | default: | 
|  | return &mn->mr64.meta; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_set_meta() - Set the metadata information of a node. | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | * @offset: The offset of the highest sub-gap in this node. | 
|  | * @end: The end of the data in this node. | 
|  | */ | 
|  | static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, | 
|  | unsigned char offset, unsigned char end) | 
|  | { | 
|  | struct maple_metadata *meta = ma_meta(mn, mt); | 
|  |  | 
|  | meta->gap = offset; | 
|  | meta->end = end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mt_clear_meta() - clear the metadata information of a node, if it exists | 
|  | * @mt: The maple tree | 
|  | * @mn: The maple node | 
|  | * @type: The maple node type | 
|  | * @offset: The offset of the highest sub-gap in this node. | 
|  | * @end: The end of the data in this node. | 
|  | */ | 
|  | static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, | 
|  | enum maple_type type) | 
|  | { | 
|  | struct maple_metadata *meta; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | void *next; | 
|  |  | 
|  | switch (type) { | 
|  | case maple_range_64: | 
|  | pivots = mn->mr64.pivot; | 
|  | if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { | 
|  | slots = mn->mr64.slot; | 
|  | next = mt_slot_locked(mt, slots, | 
|  | MAPLE_RANGE64_SLOTS - 1); | 
|  | if (unlikely((mte_to_node(next) && | 
|  | mte_node_type(next)))) | 
|  | return; /* no metadata, could be node */ | 
|  | } | 
|  | fallthrough; | 
|  | case maple_arange_64: | 
|  | meta = ma_meta(mn, type); | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | meta->gap = 0; | 
|  | meta->end = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_meta_end() - Get the data end of a node from the metadata | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | */ | 
|  | static inline unsigned char ma_meta_end(struct maple_node *mn, | 
|  | enum maple_type mt) | 
|  | { | 
|  | struct maple_metadata *meta = ma_meta(mn, mt); | 
|  |  | 
|  | return meta->end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_meta_gap() - Get the largest gap location of a node from the metadata | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | */ | 
|  | static inline unsigned char ma_meta_gap(struct maple_node *mn, | 
|  | enum maple_type mt) | 
|  | { | 
|  | BUG_ON(mt != maple_arange_64); | 
|  |  | 
|  | return mn->ma64.meta.gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_set_meta_gap() - Set the largest gap location in a nodes metadata | 
|  | * @mn: The maple node | 
|  | * @mn: The maple node type | 
|  | * @offset: The location of the largest gap. | 
|  | */ | 
|  | static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, | 
|  | unsigned char offset) | 
|  | { | 
|  |  | 
|  | struct maple_metadata *meta = ma_meta(mn, mt); | 
|  |  | 
|  | meta->gap = offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. | 
|  | * @mat - the ma_topiary, a linked list of dead nodes. | 
|  | * @dead_enode - the node to be marked as dead and added to the tail of the list | 
|  | * | 
|  | * Add the @dead_enode to the linked list in @mat. | 
|  | */ | 
|  | static inline void mat_add(struct ma_topiary *mat, | 
|  | struct maple_enode *dead_enode) | 
|  | { | 
|  | mte_set_node_dead(dead_enode); | 
|  | mte_to_mat(dead_enode)->next = NULL; | 
|  | if (!mat->tail) { | 
|  | mat->tail = mat->head = dead_enode; | 
|  | return; | 
|  | } | 
|  |  | 
|  | mte_to_mat(mat->tail)->next = dead_enode; | 
|  | mat->tail = dead_enode; | 
|  | } | 
|  |  | 
|  | static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); | 
|  | static inline void mas_free(struct ma_state *mas, struct maple_enode *used); | 
|  |  | 
|  | /* | 
|  | * mas_mat_free() - Free all nodes in a dead list. | 
|  | * @mas - the maple state | 
|  | * @mat - the ma_topiary linked list of dead nodes to free. | 
|  | * | 
|  | * Free walk a dead list. | 
|  | */ | 
|  | static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) | 
|  | { | 
|  | struct maple_enode *next; | 
|  |  | 
|  | while (mat->head) { | 
|  | next = mte_to_mat(mat->head)->next; | 
|  | mas_free(mas, mat->head); | 
|  | mat->head = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mat_destroy() - Free all nodes and subtrees in a dead list. | 
|  | * @mas - the maple state | 
|  | * @mat - the ma_topiary linked list of dead nodes to free. | 
|  | * | 
|  | * Destroy walk a dead list. | 
|  | */ | 
|  | static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) | 
|  | { | 
|  | struct maple_enode *next; | 
|  |  | 
|  | while (mat->head) { | 
|  | next = mte_to_mat(mat->head)->next; | 
|  | mte_destroy_walk(mat->head, mat->mtree); | 
|  | mat->head = next; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * mas_descend() - Descend into the slot stored in the ma_state. | 
|  | * @mas - the maple state. | 
|  | * | 
|  | * Note: Not RCU safe, only use in write side or debug code. | 
|  | */ | 
|  | static inline void mas_descend(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type type; | 
|  | unsigned long *pivots; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | type = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  |  | 
|  | if (mas->offset) | 
|  | mas->min = pivots[mas->offset - 1] + 1; | 
|  | mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); | 
|  | mas->node = mas_slot(mas, slots, mas->offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_set_gap() - Set a maple node gap. | 
|  | * @mn: The encoded maple node | 
|  | * @gap: The offset of the gap to set | 
|  | * @val: The gap value | 
|  | */ | 
|  | static inline void mte_set_gap(const struct maple_enode *mn, | 
|  | unsigned char gap, unsigned long val) | 
|  | { | 
|  | switch (mte_node_type(mn)) { | 
|  | default: | 
|  | break; | 
|  | case maple_arange_64: | 
|  | mte_to_node(mn)->ma64.gap[gap] = val; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_ascend() - Walk up a level of the tree. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Sets the @mas->max and @mas->min to the correct values when walking up.  This | 
|  | * may cause several levels of walking up to find the correct min and max. | 
|  | * May find a dead node which will cause a premature return. | 
|  | * Return: 1 on dead node, 0 otherwise | 
|  | */ | 
|  | static int mas_ascend(struct ma_state *mas) | 
|  | { | 
|  | struct maple_enode *p_enode; /* parent enode. */ | 
|  | struct maple_enode *a_enode; /* ancestor enode. */ | 
|  | struct maple_node *a_node; /* ancestor node. */ | 
|  | struct maple_node *p_node; /* parent node. */ | 
|  | unsigned char a_slot; | 
|  | enum maple_type a_type; | 
|  | unsigned long min, max; | 
|  | unsigned long *pivots; | 
|  | unsigned char offset; | 
|  | bool set_max = false, set_min = false; | 
|  |  | 
|  | a_node = mas_mn(mas); | 
|  | if (ma_is_root(a_node)) { | 
|  | mas->offset = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p_node = mte_parent(mas->node); | 
|  | if (unlikely(a_node == p_node)) | 
|  | return 1; | 
|  | a_type = mas_parent_enum(mas, mas->node); | 
|  | offset = mte_parent_slot(mas->node); | 
|  | a_enode = mt_mk_node(p_node, a_type); | 
|  |  | 
|  | /* Check to make sure all parent information is still accurate */ | 
|  | if (p_node != mte_parent(mas->node)) | 
|  | return 1; | 
|  |  | 
|  | mas->node = a_enode; | 
|  | mas->offset = offset; | 
|  |  | 
|  | if (mte_is_root(a_enode)) { | 
|  | mas->max = ULONG_MAX; | 
|  | mas->min = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | min = 0; | 
|  | max = ULONG_MAX; | 
|  | do { | 
|  | p_enode = a_enode; | 
|  | a_type = mas_parent_enum(mas, p_enode); | 
|  | a_node = mte_parent(p_enode); | 
|  | a_slot = mte_parent_slot(p_enode); | 
|  | a_enode = mt_mk_node(a_node, a_type); | 
|  | pivots = ma_pivots(a_node, a_type); | 
|  |  | 
|  | if (unlikely(ma_dead_node(a_node))) | 
|  | return 1; | 
|  |  | 
|  | if (!set_min && a_slot) { | 
|  | set_min = true; | 
|  | min = pivots[a_slot - 1] + 1; | 
|  | } | 
|  |  | 
|  | if (!set_max && a_slot < mt_pivots[a_type]) { | 
|  | set_max = true; | 
|  | max = pivots[a_slot]; | 
|  | } | 
|  |  | 
|  | if (unlikely(ma_dead_node(a_node))) | 
|  | return 1; | 
|  |  | 
|  | if (unlikely(ma_is_root(a_node))) | 
|  | break; | 
|  |  | 
|  | } while (!set_min || !set_max); | 
|  |  | 
|  | mas->max = max; | 
|  | mas->min = min; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_pop_node() - Get a previously allocated maple node from the maple state. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Return: A pointer to a maple node. | 
|  | */ | 
|  | static inline struct maple_node *mas_pop_node(struct ma_state *mas) | 
|  | { | 
|  | struct maple_alloc *ret, *node = mas->alloc; | 
|  | unsigned long total = mas_allocated(mas); | 
|  | unsigned int req = mas_alloc_req(mas); | 
|  |  | 
|  | /* nothing or a request pending. */ | 
|  | if (WARN_ON(!total)) | 
|  | return NULL; | 
|  |  | 
|  | if (total == 1) { | 
|  | /* single allocation in this ma_state */ | 
|  | mas->alloc = NULL; | 
|  | ret = node; | 
|  | goto single_node; | 
|  | } | 
|  |  | 
|  | if (node->node_count == 1) { | 
|  | /* Single allocation in this node. */ | 
|  | mas->alloc = node->slot[0]; | 
|  | mas->alloc->total = node->total - 1; | 
|  | ret = node; | 
|  | goto new_head; | 
|  | } | 
|  | node->total--; | 
|  | ret = node->slot[--node->node_count]; | 
|  | node->slot[node->node_count] = NULL; | 
|  |  | 
|  | single_node: | 
|  | new_head: | 
|  | if (req) { | 
|  | req++; | 
|  | mas_set_alloc_req(mas, req); | 
|  | } | 
|  |  | 
|  | memset(ret, 0, sizeof(*ret)); | 
|  | return (struct maple_node *)ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_push_node() - Push a node back on the maple state allocation. | 
|  | * @mas: The maple state | 
|  | * @used: The used maple node | 
|  | * | 
|  | * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and | 
|  | * requested node count as necessary. | 
|  | */ | 
|  | static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) | 
|  | { | 
|  | struct maple_alloc *reuse = (struct maple_alloc *)used; | 
|  | struct maple_alloc *head = mas->alloc; | 
|  | unsigned long count; | 
|  | unsigned int requested = mas_alloc_req(mas); | 
|  |  | 
|  | count = mas_allocated(mas); | 
|  |  | 
|  | reuse->request_count = 0; | 
|  | reuse->node_count = 0; | 
|  | if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { | 
|  | head->slot[head->node_count++] = reuse; | 
|  | head->total++; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | reuse->total = 1; | 
|  | if ((head) && !((unsigned long)head & 0x1)) { | 
|  | reuse->slot[0] = head; | 
|  | reuse->node_count = 1; | 
|  | reuse->total += head->total; | 
|  | } | 
|  |  | 
|  | mas->alloc = reuse; | 
|  | done: | 
|  | if (requested > 1) | 
|  | mas_set_alloc_req(mas, requested - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_alloc_nodes() - Allocate nodes into a maple state | 
|  | * @mas: The maple state | 
|  | * @gfp: The GFP Flags | 
|  | */ | 
|  | static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) | 
|  | { | 
|  | struct maple_alloc *node; | 
|  | unsigned long allocated = mas_allocated(mas); | 
|  | unsigned int requested = mas_alloc_req(mas); | 
|  | unsigned int count; | 
|  | void **slots = NULL; | 
|  | unsigned int max_req = 0; | 
|  |  | 
|  | if (!requested) | 
|  | return; | 
|  |  | 
|  | mas_set_alloc_req(mas, 0); | 
|  | if (mas->mas_flags & MA_STATE_PREALLOC) { | 
|  | if (allocated) | 
|  | return; | 
|  | WARN_ON(!allocated); | 
|  | } | 
|  |  | 
|  | if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { | 
|  | node = (struct maple_alloc *)mt_alloc_one(gfp); | 
|  | if (!node) | 
|  | goto nomem_one; | 
|  |  | 
|  | if (allocated) { | 
|  | node->slot[0] = mas->alloc; | 
|  | node->node_count = 1; | 
|  | } else { | 
|  | node->node_count = 0; | 
|  | } | 
|  |  | 
|  | mas->alloc = node; | 
|  | node->total = ++allocated; | 
|  | requested--; | 
|  | } | 
|  |  | 
|  | node = mas->alloc; | 
|  | node->request_count = 0; | 
|  | while (requested) { | 
|  | max_req = MAPLE_ALLOC_SLOTS - node->node_count; | 
|  | slots = (void **)&node->slot[node->node_count]; | 
|  | max_req = min(requested, max_req); | 
|  | count = mt_alloc_bulk(gfp, max_req, slots); | 
|  | if (!count) | 
|  | goto nomem_bulk; | 
|  |  | 
|  | if (node->node_count == 0) { | 
|  | node->slot[0]->node_count = 0; | 
|  | node->slot[0]->request_count = 0; | 
|  | } | 
|  |  | 
|  | node->node_count += count; | 
|  | allocated += count; | 
|  | node = node->slot[0]; | 
|  | requested -= count; | 
|  | } | 
|  | mas->alloc->total = allocated; | 
|  | return; | 
|  |  | 
|  | nomem_bulk: | 
|  | /* Clean up potential freed allocations on bulk failure */ | 
|  | memset(slots, 0, max_req * sizeof(unsigned long)); | 
|  | nomem_one: | 
|  | mas_set_alloc_req(mas, requested); | 
|  | if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) | 
|  | mas->alloc->total = allocated; | 
|  | mas_set_err(mas, -ENOMEM); | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_free() - Free an encoded maple node | 
|  | * @mas: The maple state | 
|  | * @used: The encoded maple node to free. | 
|  | * | 
|  | * Uses rcu free if necessary, pushes @used back on the maple state allocations | 
|  | * otherwise. | 
|  | */ | 
|  | static inline void mas_free(struct ma_state *mas, struct maple_enode *used) | 
|  | { | 
|  | struct maple_node *tmp = mte_to_node(used); | 
|  |  | 
|  | if (mt_in_rcu(mas->tree)) | 
|  | ma_free_rcu(tmp); | 
|  | else | 
|  | mas_push_node(mas, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_node_count() - Check if enough nodes are allocated and request more if | 
|  | * there is not enough nodes. | 
|  | * @mas: The maple state | 
|  | * @count: The number of nodes needed | 
|  | * @gfp: the gfp flags | 
|  | */ | 
|  | static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) | 
|  | { | 
|  | unsigned long allocated = mas_allocated(mas); | 
|  |  | 
|  | if (allocated < count) { | 
|  | mas_set_alloc_req(mas, count - allocated); | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_node_count() - Check if enough nodes are allocated and request more if | 
|  | * there is not enough nodes. | 
|  | * @mas: The maple state | 
|  | * @count: The number of nodes needed | 
|  | * | 
|  | * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. | 
|  | */ | 
|  | static void mas_node_count(struct ma_state *mas, int count) | 
|  | { | 
|  | return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_start() - Sets up maple state for operations. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * If mas->node == MAS_START, then set the min, max and depth to | 
|  | * defaults. | 
|  | * | 
|  | * Return: | 
|  | * - If mas->node is an error or not MAS_START, return NULL. | 
|  | * - If it's an empty tree:     NULL & mas->node == MAS_NONE | 
|  | * - If it's a single entry:    The entry & mas->node == MAS_ROOT | 
|  | * - If it's a tree:            NULL & mas->node == safe root node. | 
|  | */ | 
|  | static inline struct maple_enode *mas_start(struct ma_state *mas) | 
|  | { | 
|  | if (likely(mas_is_start(mas))) { | 
|  | struct maple_enode *root; | 
|  |  | 
|  | mas->min = 0; | 
|  | mas->max = ULONG_MAX; | 
|  | mas->depth = 0; | 
|  |  | 
|  | retry: | 
|  | root = mas_root(mas); | 
|  | /* Tree with nodes */ | 
|  | if (likely(xa_is_node(root))) { | 
|  | mas->depth = 1; | 
|  | mas->node = mte_safe_root(root); | 
|  | mas->offset = 0; | 
|  | if (mte_dead_node(mas->node)) | 
|  | goto retry; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* empty tree */ | 
|  | if (unlikely(!root)) { | 
|  | mas->node = MAS_NONE; | 
|  | mas->offset = MAPLE_NODE_SLOTS; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Single entry tree */ | 
|  | mas->node = MAS_ROOT; | 
|  | mas->offset = MAPLE_NODE_SLOTS; | 
|  |  | 
|  | /* Single entry tree. */ | 
|  | if (mas->index > 0) | 
|  | return NULL; | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_data_end() - Find the end of the data in a node. | 
|  | * @node: The maple node | 
|  | * @type: The maple node type | 
|  | * @pivots: The array of pivots in the node | 
|  | * @max: The maximum value in the node | 
|  | * | 
|  | * Uses metadata to find the end of the data when possible. | 
|  | * Return: The zero indexed last slot with data (may be null). | 
|  | */ | 
|  | static inline unsigned char ma_data_end(struct maple_node *node, | 
|  | enum maple_type type, | 
|  | unsigned long *pivots, | 
|  | unsigned long max) | 
|  | { | 
|  | unsigned char offset; | 
|  |  | 
|  | if (!pivots) | 
|  | return 0; | 
|  |  | 
|  | if (type == maple_arange_64) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | offset = mt_pivots[type] - 1; | 
|  | if (likely(!pivots[offset])) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | if (likely(pivots[offset] == max)) | 
|  | return offset; | 
|  |  | 
|  | return mt_pivots[type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_data_end() - Find the end of the data (slot). | 
|  | * @mas: the maple state | 
|  | * | 
|  | * This method is optimized to check the metadata of a node if the node type | 
|  | * supports data end metadata. | 
|  | * | 
|  | * Return: The zero indexed last slot with data (may be null). | 
|  | */ | 
|  | static inline unsigned char mas_data_end(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type type; | 
|  | struct maple_node *node; | 
|  | unsigned char offset; | 
|  | unsigned long *pivots; | 
|  |  | 
|  | type = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | if (type == maple_arange_64) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | pivots = ma_pivots(node, type); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 0; | 
|  |  | 
|  | offset = mt_pivots[type] - 1; | 
|  | if (likely(!pivots[offset])) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | if (likely(pivots[offset] == mas->max)) | 
|  | return offset; | 
|  |  | 
|  | return mt_pivots[type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_leaf_max_gap() - Returns the largest gap in a leaf node | 
|  | * @mas - the maple state | 
|  | * | 
|  | * Return: The maximum gap in the leaf. | 
|  | */ | 
|  | static unsigned long mas_leaf_max_gap(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type mt; | 
|  | unsigned long pstart, gap, max_gap; | 
|  | struct maple_node *mn; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | unsigned char i; | 
|  | unsigned char max_piv; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | mn = mas_mn(mas); | 
|  | slots = ma_slots(mn, mt); | 
|  | max_gap = 0; | 
|  | if (unlikely(ma_is_dense(mt))) { | 
|  | gap = 0; | 
|  | for (i = 0; i < mt_slots[mt]; i++) { | 
|  | if (slots[i]) { | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | gap = 0; | 
|  | } else { | 
|  | gap++; | 
|  | } | 
|  | } | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the first implied pivot optimizes the loop below and slot 1 may | 
|  | * be skipped if there is a gap in slot 0. | 
|  | */ | 
|  | pivots = ma_pivots(mn, mt); | 
|  | if (likely(!slots[0])) { | 
|  | max_gap = pivots[0] - mas->min + 1; | 
|  | i = 2; | 
|  | } else { | 
|  | i = 1; | 
|  | } | 
|  |  | 
|  | /* reduce max_piv as the special case is checked before the loop */ | 
|  | max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; | 
|  | /* | 
|  | * Check end implied pivot which can only be a gap on the right most | 
|  | * node. | 
|  | */ | 
|  | if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { | 
|  | gap = ULONG_MAX - pivots[max_piv]; | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | } | 
|  |  | 
|  | for (; i <= max_piv; i++) { | 
|  | /* data == no gap. */ | 
|  | if (likely(slots[i])) | 
|  | continue; | 
|  |  | 
|  | pstart = pivots[i - 1]; | 
|  | gap = pivots[i] - pstart; | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  |  | 
|  | /* There cannot be two gaps in a row. */ | 
|  | i++; | 
|  | } | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) | 
|  | * @node: The maple node | 
|  | * @gaps: The pointer to the gaps | 
|  | * @mt: The maple node type | 
|  | * @*off: Pointer to store the offset location of the gap. | 
|  | * | 
|  | * Uses the metadata data end to scan backwards across set gaps. | 
|  | * | 
|  | * Return: The maximum gap value | 
|  | */ | 
|  | static inline unsigned long | 
|  | ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, | 
|  | unsigned char *off) | 
|  | { | 
|  | unsigned char offset, i; | 
|  | unsigned long max_gap = 0; | 
|  |  | 
|  | i = offset = ma_meta_end(node, mt); | 
|  | do { | 
|  | if (gaps[i] > max_gap) { | 
|  | max_gap = gaps[i]; | 
|  | offset = i; | 
|  | } | 
|  | } while (i--); | 
|  |  | 
|  | *off = offset; | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. | 
|  | * | 
|  | * Return: The gap value. | 
|  | */ | 
|  | static inline unsigned long mas_max_gap(struct ma_state *mas) | 
|  | { | 
|  | unsigned long *gaps; | 
|  | unsigned char offset; | 
|  | enum maple_type mt; | 
|  | struct maple_node *node; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | if (ma_is_leaf(mt)) | 
|  | return mas_leaf_max_gap(mas); | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | offset = ma_meta_gap(node, mt); | 
|  | if (offset == MAPLE_ARANGE64_META_MAX) | 
|  | return 0; | 
|  |  | 
|  | gaps = ma_gaps(node, mt); | 
|  | return gaps[offset]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_parent_gap() - Set the parent gap and any gaps above, as needed | 
|  | * @mas: The maple state | 
|  | * @offset: The gap offset in the parent to set | 
|  | * @new: The new gap value. | 
|  | * | 
|  | * Set the parent gap then continue to set the gap upwards, using the metadata | 
|  | * of the parent to see if it is necessary to check the node above. | 
|  | */ | 
|  | static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, | 
|  | unsigned long new) | 
|  | { | 
|  | unsigned long meta_gap = 0; | 
|  | struct maple_node *pnode; | 
|  | struct maple_enode *penode; | 
|  | unsigned long *pgaps; | 
|  | unsigned char meta_offset; | 
|  | enum maple_type pmt; | 
|  |  | 
|  | pnode = mte_parent(mas->node); | 
|  | pmt = mas_parent_enum(mas, mas->node); | 
|  | penode = mt_mk_node(pnode, pmt); | 
|  | pgaps = ma_gaps(pnode, pmt); | 
|  |  | 
|  | ascend: | 
|  | meta_offset = ma_meta_gap(pnode, pmt); | 
|  | if (meta_offset == MAPLE_ARANGE64_META_MAX) | 
|  | meta_gap = 0; | 
|  | else | 
|  | meta_gap = pgaps[meta_offset]; | 
|  |  | 
|  | pgaps[offset] = new; | 
|  |  | 
|  | if (meta_gap == new) | 
|  | return; | 
|  |  | 
|  | if (offset != meta_offset) { | 
|  | if (meta_gap > new) | 
|  | return; | 
|  |  | 
|  | ma_set_meta_gap(pnode, pmt, offset); | 
|  | } else if (new < meta_gap) { | 
|  | meta_offset = 15; | 
|  | new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); | 
|  | ma_set_meta_gap(pnode, pmt, meta_offset); | 
|  | } | 
|  |  | 
|  | if (ma_is_root(pnode)) | 
|  | return; | 
|  |  | 
|  | /* Go to the parent node. */ | 
|  | pnode = mte_parent(penode); | 
|  | pmt = mas_parent_enum(mas, penode); | 
|  | pgaps = ma_gaps(pnode, pmt); | 
|  | offset = mte_parent_slot(penode); | 
|  | penode = mt_mk_node(pnode, pmt); | 
|  | goto ascend; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_update_gap() - Update a nodes gaps and propagate up if necessary. | 
|  | * @mas - the maple state. | 
|  | */ | 
|  | static inline void mas_update_gap(struct ma_state *mas) | 
|  | { | 
|  | unsigned char pslot; | 
|  | unsigned long p_gap; | 
|  | unsigned long max_gap; | 
|  |  | 
|  | if (!mt_is_alloc(mas->tree)) | 
|  | return; | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return; | 
|  |  | 
|  | max_gap = mas_max_gap(mas); | 
|  |  | 
|  | pslot = mte_parent_slot(mas->node); | 
|  | p_gap = ma_gaps(mte_parent(mas->node), | 
|  | mas_parent_enum(mas, mas->node))[pslot]; | 
|  |  | 
|  | if (p_gap != max_gap) | 
|  | mas_parent_gap(mas, pslot, max_gap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_adopt_children() - Set the parent pointer of all nodes in @parent to | 
|  | * @parent with the slot encoded. | 
|  | * @mas - the maple state (for the tree) | 
|  | * @parent - the maple encoded node containing the children. | 
|  | */ | 
|  | static inline void mas_adopt_children(struct ma_state *mas, | 
|  | struct maple_enode *parent) | 
|  | { | 
|  | enum maple_type type = mte_node_type(parent); | 
|  | struct maple_node *node = mas_mn(mas); | 
|  | void __rcu **slots = ma_slots(node, type); | 
|  | unsigned long *pivots = ma_pivots(node, type); | 
|  | struct maple_enode *child; | 
|  | unsigned char offset; | 
|  |  | 
|  | offset = ma_data_end(node, type, pivots, mas->max); | 
|  | do { | 
|  | child = mas_slot_locked(mas, slots, offset); | 
|  | mte_set_parent(child, parent, offset); | 
|  | } while (offset--); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the | 
|  | * parent encoding to locate the maple node in the tree. | 
|  | * @mas - the ma_state to use for operations. | 
|  | * @advanced - boolean to adopt the child nodes and free the old node (false) or | 
|  | * leave the node (true) and handle the adoption and free elsewhere. | 
|  | */ | 
|  | static inline void mas_replace(struct ma_state *mas, bool advanced) | 
|  | __must_hold(mas->tree->lock) | 
|  | { | 
|  | struct maple_node *mn = mas_mn(mas); | 
|  | struct maple_enode *old_enode; | 
|  | unsigned char offset = 0; | 
|  | void __rcu **slots = NULL; | 
|  |  | 
|  | if (ma_is_root(mn)) { | 
|  | old_enode = mas_root_locked(mas); | 
|  | } else { | 
|  | offset = mte_parent_slot(mas->node); | 
|  | slots = ma_slots(mte_parent(mas->node), | 
|  | mas_parent_enum(mas, mas->node)); | 
|  | old_enode = mas_slot_locked(mas, slots, offset); | 
|  | } | 
|  |  | 
|  | if (!advanced && !mte_is_leaf(mas->node)) | 
|  | mas_adopt_children(mas, mas->node); | 
|  |  | 
|  | if (mte_is_root(mas->node)) { | 
|  | mn->parent = ma_parent_ptr( | 
|  | ((unsigned long)mas->tree | MA_ROOT_PARENT)); | 
|  | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); | 
|  | mas_set_height(mas); | 
|  | } else { | 
|  | rcu_assign_pointer(slots[offset], mas->node); | 
|  | } | 
|  |  | 
|  | if (!advanced) { | 
|  | mte_set_node_dead(old_enode); | 
|  | mas_free(mas, old_enode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_new_child() - Find the new child of a node. | 
|  | * @mas: the maple state | 
|  | * @child: the maple state to store the child. | 
|  | */ | 
|  | static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) | 
|  | __must_hold(mas->tree->lock) | 
|  | { | 
|  | enum maple_type mt; | 
|  | unsigned char offset; | 
|  | unsigned char end; | 
|  | unsigned long *pivots; | 
|  | struct maple_enode *entry; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | slots = ma_slots(node, mt); | 
|  | pivots = ma_pivots(node, mt); | 
|  | end = ma_data_end(node, mt, pivots, mas->max); | 
|  | for (offset = mas->offset; offset <= end; offset++) { | 
|  | entry = mas_slot_locked(mas, slots, offset); | 
|  | if (mte_parent(entry) == node) { | 
|  | *child = *mas; | 
|  | mas->offset = offset + 1; | 
|  | child->offset = offset; | 
|  | mas_descend(child); | 
|  | child->offset = 0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_shift_right() - Shift the data in mab right. Note, does not clean out the | 
|  | * old data or set b_node->b_end. | 
|  | * @b_node: the maple_big_node | 
|  | * @shift: the shift count | 
|  | */ | 
|  | static inline void mab_shift_right(struct maple_big_node *b_node, | 
|  | unsigned char shift) | 
|  | { | 
|  | unsigned long size = b_node->b_end * sizeof(unsigned long); | 
|  |  | 
|  | memmove(b_node->pivot + shift, b_node->pivot, size); | 
|  | memmove(b_node->slot + shift, b_node->slot, size); | 
|  | if (b_node->type == maple_arange_64) | 
|  | memmove(b_node->gap + shift, b_node->gap, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_middle_node() - Check if a middle node is needed (unlikely) | 
|  | * @b_node: the maple_big_node that contains the data. | 
|  | * @size: the amount of data in the b_node | 
|  | * @split: the potential split location | 
|  | * @slot_count: the size that can be stored in a single node being considered. | 
|  | * | 
|  | * Return: true if a middle node is required. | 
|  | */ | 
|  | static inline bool mab_middle_node(struct maple_big_node *b_node, int split, | 
|  | unsigned char slot_count) | 
|  | { | 
|  | unsigned char size = b_node->b_end; | 
|  |  | 
|  | if (size >= 2 * slot_count) | 
|  | return true; | 
|  |  | 
|  | if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_no_null_split() - ensure the split doesn't fall on a NULL | 
|  | * @b_node: the maple_big_node with the data | 
|  | * @split: the suggested split location | 
|  | * @slot_count: the number of slots in the node being considered. | 
|  | * | 
|  | * Return: the split location. | 
|  | */ | 
|  | static inline int mab_no_null_split(struct maple_big_node *b_node, | 
|  | unsigned char split, unsigned char slot_count) | 
|  | { | 
|  | if (!b_node->slot[split]) { | 
|  | /* | 
|  | * If the split is less than the max slot && the right side will | 
|  | * still be sufficient, then increment the split on NULL. | 
|  | */ | 
|  | if ((split < slot_count - 1) && | 
|  | (b_node->b_end - split) > (mt_min_slots[b_node->type])) | 
|  | split++; | 
|  | else | 
|  | split--; | 
|  | } | 
|  | return split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_calc_split() - Calculate the split location and if there needs to be two | 
|  | * splits. | 
|  | * @bn: The maple_big_node with the data | 
|  | * @mid_split: The second split, if required.  0 otherwise. | 
|  | * | 
|  | * Return: The first split location.  The middle split is set in @mid_split. | 
|  | */ | 
|  | static inline int mab_calc_split(struct ma_state *mas, | 
|  | struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) | 
|  | { | 
|  | unsigned char b_end = bn->b_end; | 
|  | int split = b_end / 2; /* Assume equal split. */ | 
|  | unsigned char slot_min, slot_count = mt_slots[bn->type]; | 
|  |  | 
|  | /* | 
|  | * To support gap tracking, all NULL entries are kept together and a node cannot | 
|  | * end on a NULL entry, with the exception of the left-most leaf.  The | 
|  | * limitation means that the split of a node must be checked for this condition | 
|  | * and be able to put more data in one direction or the other. | 
|  | */ | 
|  | if (unlikely((mas->mas_flags & MA_STATE_BULK))) { | 
|  | *mid_split = 0; | 
|  | split = b_end - mt_min_slots[bn->type]; | 
|  |  | 
|  | if (!ma_is_leaf(bn->type)) | 
|  | return split; | 
|  |  | 
|  | mas->mas_flags |= MA_STATE_REBALANCE; | 
|  | if (!bn->slot[split]) | 
|  | split--; | 
|  | return split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Although extremely rare, it is possible to enter what is known as the 3-way | 
|  | * split scenario.  The 3-way split comes about by means of a store of a range | 
|  | * that overwrites the end and beginning of two full nodes.  The result is a set | 
|  | * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can | 
|  | * also be located in different parent nodes which are also full.  This can | 
|  | * carry upwards all the way to the root in the worst case. | 
|  | */ | 
|  | if (unlikely(mab_middle_node(bn, split, slot_count))) { | 
|  | split = b_end / 3; | 
|  | *mid_split = split * 2; | 
|  | } else { | 
|  | slot_min = mt_min_slots[bn->type]; | 
|  |  | 
|  | *mid_split = 0; | 
|  | /* | 
|  | * Avoid having a range less than the slot count unless it | 
|  | * causes one node to be deficient. | 
|  | * NOTE: mt_min_slots is 1 based, b_end and split are zero. | 
|  | */ | 
|  | while (((bn->pivot[split] - min) < slot_count - 1) && | 
|  | (split < slot_count - 1) && (b_end - split > slot_min)) | 
|  | split++; | 
|  | } | 
|  |  | 
|  | /* Avoid ending a node on a NULL entry */ | 
|  | split = mab_no_null_split(bn, split, slot_count); | 
|  | if (!(*mid_split)) | 
|  | return split; | 
|  |  | 
|  | *mid_split = mab_no_null_split(bn, *mid_split, slot_count); | 
|  |  | 
|  | return split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node | 
|  | * and set @b_node->b_end to the next free slot. | 
|  | * @mas: The maple state | 
|  | * @mas_start: The starting slot to copy | 
|  | * @mas_end: The end slot to copy (inclusively) | 
|  | * @b_node: The maple_big_node to place the data | 
|  | * @mab_start: The starting location in maple_big_node to store the data. | 
|  | */ | 
|  | static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, | 
|  | unsigned char mas_end, struct maple_big_node *b_node, | 
|  | unsigned char mab_start) | 
|  | { | 
|  | enum maple_type mt; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots, *gaps; | 
|  | int i = mas_start, j = mab_start; | 
|  | unsigned char piv_end; | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, mt); | 
|  | if (!i) { | 
|  | b_node->pivot[j] = pivots[i++]; | 
|  | if (unlikely(i > mas_end)) | 
|  | goto complete; | 
|  | j++; | 
|  | } | 
|  |  | 
|  | piv_end = min(mas_end, mt_pivots[mt]); | 
|  | for (; i < piv_end; i++, j++) { | 
|  | b_node->pivot[j] = pivots[i]; | 
|  | if (unlikely(!b_node->pivot[j])) | 
|  | break; | 
|  |  | 
|  | if (unlikely(mas->max == b_node->pivot[j])) | 
|  | goto complete; | 
|  | } | 
|  |  | 
|  | if (likely(i <= mas_end)) | 
|  | b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); | 
|  |  | 
|  | complete: | 
|  | b_node->b_end = ++j; | 
|  | j -= mab_start; | 
|  | slots = ma_slots(node, mt); | 
|  | memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); | 
|  | if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { | 
|  | gaps = ma_gaps(node, mt); | 
|  | memcpy(b_node->gap + mab_start, gaps + mas_start, | 
|  | sizeof(unsigned long) * j); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_leaf_set_meta() - Set the metadata of a leaf if possible. | 
|  | * @mas: The maple state | 
|  | * @node: The maple node | 
|  | * @pivots: pointer to the maple node pivots | 
|  | * @mt: The maple type | 
|  | * @end: The assumed end | 
|  | * | 
|  | * Note, end may be incremented within this function but not modified at the | 
|  | * source.  This is fine since the metadata is the last thing to be stored in a | 
|  | * node during a write. | 
|  | */ | 
|  | static inline void mas_leaf_set_meta(struct ma_state *mas, | 
|  | struct maple_node *node, unsigned long *pivots, | 
|  | enum maple_type mt, unsigned char end) | 
|  | { | 
|  | /* There is no room for metadata already */ | 
|  | if (mt_pivots[mt] <= end) | 
|  | return; | 
|  |  | 
|  | if (pivots[end] && pivots[end] < mas->max) | 
|  | end++; | 
|  |  | 
|  | if (end < mt_slots[mt] - 1) | 
|  | ma_set_meta(node, mt, 0, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. | 
|  | * @b_node: the maple_big_node that has the data | 
|  | * @mab_start: the start location in @b_node. | 
|  | * @mab_end: The end location in @b_node (inclusively) | 
|  | * @mas: The maple state with the maple encoded node. | 
|  | */ | 
|  | static inline void mab_mas_cp(struct maple_big_node *b_node, | 
|  | unsigned char mab_start, unsigned char mab_end, | 
|  | struct ma_state *mas, bool new_max) | 
|  | { | 
|  | int i, j = 0; | 
|  | enum maple_type mt = mte_node_type(mas->node); | 
|  | struct maple_node *node = mte_to_node(mas->node); | 
|  | void __rcu **slots = ma_slots(node, mt); | 
|  | unsigned long *pivots = ma_pivots(node, mt); | 
|  | unsigned long *gaps = NULL; | 
|  | unsigned char end; | 
|  |  | 
|  | if (mab_end - mab_start > mt_pivots[mt]) | 
|  | mab_end--; | 
|  |  | 
|  | if (!pivots[mt_pivots[mt] - 1]) | 
|  | slots[mt_pivots[mt]] = NULL; | 
|  |  | 
|  | i = mab_start; | 
|  | do { | 
|  | pivots[j++] = b_node->pivot[i++]; | 
|  | } while (i <= mab_end && likely(b_node->pivot[i])); | 
|  |  | 
|  | memcpy(slots, b_node->slot + mab_start, | 
|  | sizeof(void *) * (i - mab_start)); | 
|  |  | 
|  | if (new_max) | 
|  | mas->max = b_node->pivot[i - 1]; | 
|  |  | 
|  | end = j - 1; | 
|  | if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { | 
|  | unsigned long max_gap = 0; | 
|  | unsigned char offset = 15; | 
|  |  | 
|  | gaps = ma_gaps(node, mt); | 
|  | do { | 
|  | gaps[--j] = b_node->gap[--i]; | 
|  | if (gaps[j] > max_gap) { | 
|  | offset = j; | 
|  | max_gap = gaps[j]; | 
|  | } | 
|  | } while (j); | 
|  |  | 
|  | ma_set_meta(node, mt, offset, end); | 
|  | } else { | 
|  | mas_leaf_set_meta(mas, node, pivots, mt, end); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_descend_adopt() - Descend through a sub-tree and adopt children. | 
|  | * @mas: the maple state with the maple encoded node of the sub-tree. | 
|  | * | 
|  | * Descend through a sub-tree and adopt children who do not have the correct | 
|  | * parents set.  Follow the parents which have the correct parents as they are | 
|  | * the new entries which need to be followed to find other incorrectly set | 
|  | * parents. | 
|  | */ | 
|  | static inline void mas_descend_adopt(struct ma_state *mas) | 
|  | { | 
|  | struct ma_state list[3], next[3]; | 
|  | int i, n; | 
|  |  | 
|  | /* | 
|  | * At each level there may be up to 3 correct parent pointers which indicates | 
|  | * the new nodes which need to be walked to find any new nodes at a lower level. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | list[i] = *mas; | 
|  | list[i].offset = 0; | 
|  | next[i].offset = 0; | 
|  | } | 
|  | next[0] = *mas; | 
|  |  | 
|  | while (!mte_is_leaf(list[0].node)) { | 
|  | n = 0; | 
|  | for (i = 0; i < 3; i++) { | 
|  | if (mas_is_none(&list[i])) | 
|  | continue; | 
|  |  | 
|  | if (i && list[i-1].node == list[i].node) | 
|  | continue; | 
|  |  | 
|  | while ((n < 3) && (mas_new_child(&list[i], &next[n]))) | 
|  | n++; | 
|  |  | 
|  | mas_adopt_children(&list[i], list[i].node); | 
|  | } | 
|  |  | 
|  | while (n < 3) | 
|  | next[n++].node = MAS_NONE; | 
|  |  | 
|  | /* descend by setting the list to the children */ | 
|  | for (i = 0; i < 3; i++) | 
|  | list[i] = next[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. | 
|  | * @mas: The maple state | 
|  | * @end: The maple node end | 
|  | * @mt: The maple node type | 
|  | */ | 
|  | static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, | 
|  | enum maple_type mt) | 
|  | { | 
|  | if (!(mas->mas_flags & MA_STATE_BULK)) | 
|  | return; | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return; | 
|  |  | 
|  | if (end > mt_min_slots[mt]) { | 
|  | mas->mas_flags &= ~MA_STATE_REBALANCE; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_store_b_node() - Store an @entry into the b_node while also copying the | 
|  | * data from a maple encoded node. | 
|  | * @wr_mas: the maple write state | 
|  | * @b_node: the maple_big_node to fill with data | 
|  | * @offset_end: the offset to end copying | 
|  | * | 
|  | * Return: The actual end of the data stored in @b_node | 
|  | */ | 
|  | static inline void mas_store_b_node(struct ma_wr_state *wr_mas, | 
|  | struct maple_big_node *b_node, unsigned char offset_end) | 
|  | { | 
|  | unsigned char slot; | 
|  | unsigned char b_end; | 
|  | /* Possible underflow of piv will wrap back to 0 before use. */ | 
|  | unsigned long piv; | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | b_node->type = wr_mas->type; | 
|  | b_end = 0; | 
|  | slot = mas->offset; | 
|  | if (slot) { | 
|  | /* Copy start data up to insert. */ | 
|  | mas_mab_cp(mas, 0, slot - 1, b_node, 0); | 
|  | b_end = b_node->b_end; | 
|  | piv = b_node->pivot[b_end - 1]; | 
|  | } else | 
|  | piv = mas->min - 1; | 
|  |  | 
|  | if (piv + 1 < mas->index) { | 
|  | /* Handle range starting after old range */ | 
|  | b_node->slot[b_end] = wr_mas->content; | 
|  | if (!wr_mas->content) | 
|  | b_node->gap[b_end] = mas->index - 1 - piv; | 
|  | b_node->pivot[b_end++] = mas->index - 1; | 
|  | } | 
|  |  | 
|  | /* Store the new entry. */ | 
|  | mas->offset = b_end; | 
|  | b_node->slot[b_end] = wr_mas->entry; | 
|  | b_node->pivot[b_end] = mas->last; | 
|  |  | 
|  | /* Appended. */ | 
|  | if (mas->last >= mas->max) | 
|  | goto b_end; | 
|  |  | 
|  | /* Handle new range ending before old range ends */ | 
|  | piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); | 
|  | if (piv > mas->last) { | 
|  | if (piv == ULONG_MAX) | 
|  | mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); | 
|  |  | 
|  | if (offset_end != slot) | 
|  | wr_mas->content = mas_slot_locked(mas, wr_mas->slots, | 
|  | offset_end); | 
|  |  | 
|  | b_node->slot[++b_end] = wr_mas->content; | 
|  | if (!wr_mas->content) | 
|  | b_node->gap[b_end] = piv - mas->last + 1; | 
|  | b_node->pivot[b_end] = piv; | 
|  | } | 
|  |  | 
|  | slot = offset_end + 1; | 
|  | if (slot > wr_mas->node_end) | 
|  | goto b_end; | 
|  |  | 
|  | /* Copy end data to the end of the node. */ | 
|  | mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); | 
|  | b_node->b_end--; | 
|  | return; | 
|  |  | 
|  | b_end: | 
|  | b_node->b_end = b_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_prev_sibling() - Find the previous node with the same parent. | 
|  | * @mas: the maple state | 
|  | * | 
|  | * Return: True if there is a previous sibling, false otherwise. | 
|  | */ | 
|  | static inline bool mas_prev_sibling(struct ma_state *mas) | 
|  | { | 
|  | unsigned int p_slot = mte_parent_slot(mas->node); | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return false; | 
|  |  | 
|  | if (!p_slot) | 
|  | return false; | 
|  |  | 
|  | mas_ascend(mas); | 
|  | mas->offset = p_slot - 1; | 
|  | mas_descend(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_sibling() - Find the next node with the same parent. | 
|  | * @mas: the maple state | 
|  | * | 
|  | * Return: true if there is a next sibling, false otherwise. | 
|  | */ | 
|  | static inline bool mas_next_sibling(struct ma_state *mas) | 
|  | { | 
|  | MA_STATE(parent, mas->tree, mas->index, mas->last); | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return false; | 
|  |  | 
|  | parent = *mas; | 
|  | mas_ascend(&parent); | 
|  | parent.offset = mte_parent_slot(mas->node) + 1; | 
|  | if (parent.offset > mas_data_end(&parent)) | 
|  | return false; | 
|  |  | 
|  | *mas = parent; | 
|  | mas_descend(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_node_or_node() - Return the encoded node or MAS_NONE. | 
|  | * @enode: The encoded maple node. | 
|  | * | 
|  | * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. | 
|  | * | 
|  | * Return: @enode or MAS_NONE | 
|  | */ | 
|  | static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) | 
|  | { | 
|  | if (enode) | 
|  | return enode; | 
|  |  | 
|  | return ma_enode_ptr(MAS_NONE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_node_walk() - Find the correct offset for the index in the @mas. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Uses mas_slot_locked() and does not need to worry about dead nodes. | 
|  | */ | 
|  | static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char count; | 
|  | unsigned char offset; | 
|  | unsigned long index, min, max; | 
|  |  | 
|  | if (unlikely(ma_is_dense(wr_mas->type))) { | 
|  | wr_mas->r_max = wr_mas->r_min = mas->index; | 
|  | mas->offset = mas->index = mas->min; | 
|  | return; | 
|  | } | 
|  |  | 
|  | wr_mas->node = mas_mn(wr_mas->mas); | 
|  | wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); | 
|  | count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, | 
|  | wr_mas->pivots, mas->max); | 
|  | offset = mas->offset; | 
|  | min = mas_safe_min(mas, wr_mas->pivots, offset); | 
|  | if (unlikely(offset == count)) | 
|  | goto max; | 
|  |  | 
|  | max = wr_mas->pivots[offset]; | 
|  | index = mas->index; | 
|  | if (unlikely(index <= max)) | 
|  | goto done; | 
|  |  | 
|  | if (unlikely(!max && offset)) | 
|  | goto max; | 
|  |  | 
|  | min = max + 1; | 
|  | while (++offset < count) { | 
|  | max = wr_mas->pivots[offset]; | 
|  | if (index <= max) | 
|  | goto done; | 
|  | else if (unlikely(!max)) | 
|  | break; | 
|  |  | 
|  | min = max + 1; | 
|  | } | 
|  |  | 
|  | max: | 
|  | max = mas->max; | 
|  | done: | 
|  | wr_mas->r_max = max; | 
|  | wr_mas->r_min = min; | 
|  | wr_mas->offset_end = mas->offset = offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_topiary_range() - Add a range of slots to the topiary. | 
|  | * @mas: The maple state | 
|  | * @destroy: The topiary to add the slots (usually destroy) | 
|  | * @start: The starting slot inclusively | 
|  | * @end: The end slot inclusively | 
|  | */ | 
|  | static inline void mas_topiary_range(struct ma_state *mas, | 
|  | struct ma_topiary *destroy, unsigned char start, unsigned char end) | 
|  | { | 
|  | void __rcu **slots; | 
|  | unsigned char offset; | 
|  |  | 
|  | MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); | 
|  | slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); | 
|  | for (offset = start; offset <= end; offset++) { | 
|  | struct maple_enode *enode = mas_slot_locked(mas, slots, offset); | 
|  |  | 
|  | if (mte_dead_node(enode)) | 
|  | continue; | 
|  |  | 
|  | mat_add(destroy, enode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_topiary() - Add the portions of the tree to the removal list; either to | 
|  | * be freed or discarded (destroy walk). | 
|  | * @mast: The maple_subtree_state. | 
|  | */ | 
|  | static inline void mast_topiary(struct maple_subtree_state *mast) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mast->orig_l, NULL); | 
|  | unsigned char r_start, r_end; | 
|  | unsigned char l_start, l_end; | 
|  | void __rcu **l_slots, **r_slots; | 
|  |  | 
|  | wr_mas.type = mte_node_type(mast->orig_l->node); | 
|  | mast->orig_l->index = mast->orig_l->last; | 
|  | mas_wr_node_walk(&wr_mas); | 
|  | l_start = mast->orig_l->offset + 1; | 
|  | l_end = mas_data_end(mast->orig_l); | 
|  | r_start = 0; | 
|  | r_end = mast->orig_r->offset; | 
|  |  | 
|  | if (r_end) | 
|  | r_end--; | 
|  |  | 
|  | l_slots = ma_slots(mas_mn(mast->orig_l), | 
|  | mte_node_type(mast->orig_l->node)); | 
|  |  | 
|  | r_slots = ma_slots(mas_mn(mast->orig_r), | 
|  | mte_node_type(mast->orig_r->node)); | 
|  |  | 
|  | if ((l_start < l_end) && | 
|  | mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { | 
|  | l_start++; | 
|  | } | 
|  |  | 
|  | if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { | 
|  | if (r_end) | 
|  | r_end--; | 
|  | } | 
|  |  | 
|  | if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) | 
|  | return; | 
|  |  | 
|  | /* At the node where left and right sides meet, add the parts between */ | 
|  | if (mast->orig_l->node == mast->orig_r->node) { | 
|  | return mas_topiary_range(mast->orig_l, mast->destroy, | 
|  | l_start, r_end); | 
|  | } | 
|  |  | 
|  | /* mast->orig_r is different and consumed. */ | 
|  | if (mte_is_leaf(mast->orig_r->node)) | 
|  | return; | 
|  |  | 
|  | if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) | 
|  | l_end--; | 
|  |  | 
|  |  | 
|  | if (l_start <= l_end) | 
|  | mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); | 
|  |  | 
|  | if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) | 
|  | r_start++; | 
|  |  | 
|  | if (r_start <= r_end) | 
|  | mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_rebalance_next() - Rebalance against the next node | 
|  | * @mast: The maple subtree state | 
|  | * @old_r: The encoded maple node to the right (next node). | 
|  | */ | 
|  | static inline void mast_rebalance_next(struct maple_subtree_state *mast) | 
|  | { | 
|  | unsigned char b_end = mast->bn->b_end; | 
|  |  | 
|  | mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), | 
|  | mast->bn, b_end); | 
|  | mast->orig_r->last = mast->orig_r->max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_rebalance_prev() - Rebalance against the previous node | 
|  | * @mast: The maple subtree state | 
|  | * @old_l: The encoded maple node to the left (previous node) | 
|  | */ | 
|  | static inline void mast_rebalance_prev(struct maple_subtree_state *mast) | 
|  | { | 
|  | unsigned char end = mas_data_end(mast->orig_l) + 1; | 
|  | unsigned char b_end = mast->bn->b_end; | 
|  |  | 
|  | mab_shift_right(mast->bn, end); | 
|  | mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); | 
|  | mast->l->min = mast->orig_l->min; | 
|  | mast->orig_l->index = mast->orig_l->min; | 
|  | mast->bn->b_end = end + b_end; | 
|  | mast->l->offset += end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring | 
|  | * the node to the right.  Checking the nodes to the right then the left at each | 
|  | * level upwards until root is reached.  Free and destroy as needed. | 
|  | * Data is copied into the @mast->bn. | 
|  | * @mast: The maple_subtree_state. | 
|  | */ | 
|  | static inline | 
|  | bool mast_spanning_rebalance(struct maple_subtree_state *mast) | 
|  | { | 
|  | struct ma_state r_tmp = *mast->orig_r; | 
|  | struct ma_state l_tmp = *mast->orig_l; | 
|  | struct maple_enode *ancestor = NULL; | 
|  | unsigned char start, end; | 
|  | unsigned char depth = 0; | 
|  |  | 
|  | r_tmp = *mast->orig_r; | 
|  | l_tmp = *mast->orig_l; | 
|  | do { | 
|  | mas_ascend(mast->orig_r); | 
|  | mas_ascend(mast->orig_l); | 
|  | depth++; | 
|  | if (!ancestor && | 
|  | (mast->orig_r->node == mast->orig_l->node)) { | 
|  | ancestor = mast->orig_r->node; | 
|  | end = mast->orig_r->offset - 1; | 
|  | start = mast->orig_l->offset + 1; | 
|  | } | 
|  |  | 
|  | if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { | 
|  | if (!ancestor) { | 
|  | ancestor = mast->orig_r->node; | 
|  | start = 0; | 
|  | } | 
|  |  | 
|  | mast->orig_r->offset++; | 
|  | do { | 
|  | mas_descend(mast->orig_r); | 
|  | mast->orig_r->offset = 0; | 
|  | depth--; | 
|  | } while (depth); | 
|  |  | 
|  | mast_rebalance_next(mast); | 
|  | do { | 
|  | unsigned char l_off = 0; | 
|  | struct maple_enode *child = r_tmp.node; | 
|  |  | 
|  | mas_ascend(&r_tmp); | 
|  | if (ancestor == r_tmp.node) | 
|  | l_off = start; | 
|  |  | 
|  | if (r_tmp.offset) | 
|  | r_tmp.offset--; | 
|  |  | 
|  | if (l_off < r_tmp.offset) | 
|  | mas_topiary_range(&r_tmp, mast->destroy, | 
|  | l_off, r_tmp.offset); | 
|  |  | 
|  | if (l_tmp.node != child) | 
|  | mat_add(mast->free, child); | 
|  |  | 
|  | } while (r_tmp.node != ancestor); | 
|  |  | 
|  | *mast->orig_l = l_tmp; | 
|  | return true; | 
|  |  | 
|  | } else if (mast->orig_l->offset != 0) { | 
|  | if (!ancestor) { | 
|  | ancestor = mast->orig_l->node; | 
|  | end = mas_data_end(mast->orig_l); | 
|  | } | 
|  |  | 
|  | mast->orig_l->offset--; | 
|  | do { | 
|  | mas_descend(mast->orig_l); | 
|  | mast->orig_l->offset = | 
|  | mas_data_end(mast->orig_l); | 
|  | depth--; | 
|  | } while (depth); | 
|  |  | 
|  | mast_rebalance_prev(mast); | 
|  | do { | 
|  | unsigned char r_off; | 
|  | struct maple_enode *child = l_tmp.node; | 
|  |  | 
|  | mas_ascend(&l_tmp); | 
|  | if (ancestor == l_tmp.node) | 
|  | r_off = end; | 
|  | else | 
|  | r_off = mas_data_end(&l_tmp); | 
|  |  | 
|  | if (l_tmp.offset < r_off) | 
|  | l_tmp.offset++; | 
|  |  | 
|  | if (l_tmp.offset < r_off) | 
|  | mas_topiary_range(&l_tmp, mast->destroy, | 
|  | l_tmp.offset, r_off); | 
|  |  | 
|  | if (r_tmp.node != child) | 
|  | mat_add(mast->free, child); | 
|  |  | 
|  | } while (l_tmp.node != ancestor); | 
|  |  | 
|  | *mast->orig_r = r_tmp; | 
|  | return true; | 
|  | } | 
|  | } while (!mte_is_root(mast->orig_r->node)); | 
|  |  | 
|  | *mast->orig_r = r_tmp; | 
|  | *mast->orig_l = l_tmp; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_ascend_free() - Add current original maple state nodes to the free list | 
|  | * and ascend. | 
|  | * @mast: the maple subtree state. | 
|  | * | 
|  | * Ascend the original left and right sides and add the previous nodes to the | 
|  | * free list.  Set the slots to point to the correct location in the new nodes. | 
|  | */ | 
|  | static inline void | 
|  | mast_ascend_free(struct maple_subtree_state *mast) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mast->orig_r,  NULL); | 
|  | struct maple_enode *left = mast->orig_l->node; | 
|  | struct maple_enode *right = mast->orig_r->node; | 
|  |  | 
|  | mas_ascend(mast->orig_l); | 
|  | mas_ascend(mast->orig_r); | 
|  | mat_add(mast->free, left); | 
|  |  | 
|  | if (left != right) | 
|  | mat_add(mast->free, right); | 
|  |  | 
|  | mast->orig_r->offset = 0; | 
|  | mast->orig_r->index = mast->r->max; | 
|  | /* last should be larger than or equal to index */ | 
|  | if (mast->orig_r->last < mast->orig_r->index) | 
|  | mast->orig_r->last = mast->orig_r->index; | 
|  | /* | 
|  | * The node may not contain the value so set slot to ensure all | 
|  | * of the nodes contents are freed or destroyed. | 
|  | */ | 
|  | wr_mas.type = mte_node_type(mast->orig_r->node); | 
|  | mas_wr_node_walk(&wr_mas); | 
|  | /* Set up the left side of things */ | 
|  | mast->orig_l->offset = 0; | 
|  | mast->orig_l->index = mast->l->min; | 
|  | wr_mas.mas = mast->orig_l; | 
|  | wr_mas.type = mte_node_type(mast->orig_l->node); | 
|  | mas_wr_node_walk(&wr_mas); | 
|  |  | 
|  | mast->bn->type = wr_mas.type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_new_ma_node() - Create and return a new maple node.  Helper function. | 
|  | * @mas: the maple state with the allocations. | 
|  | * @b_node: the maple_big_node with the type encoding. | 
|  | * | 
|  | * Use the node type from the maple_big_node to allocate a new node from the | 
|  | * ma_state.  This function exists mainly for code readability. | 
|  | * | 
|  | * Return: A new maple encoded node | 
|  | */ | 
|  | static inline struct maple_enode | 
|  | *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) | 
|  | { | 
|  | return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mab_to_node() - Set up right and middle nodes | 
|  | * | 
|  | * @mas: the maple state that contains the allocations. | 
|  | * @b_node: the node which contains the data. | 
|  | * @left: The pointer which will have the left node | 
|  | * @right: The pointer which may have the right node | 
|  | * @middle: the pointer which may have the middle node (rare) | 
|  | * @mid_split: the split location for the middle node | 
|  | * | 
|  | * Return: the split of left. | 
|  | */ | 
|  | static inline unsigned char mas_mab_to_node(struct ma_state *mas, | 
|  | struct maple_big_node *b_node, struct maple_enode **left, | 
|  | struct maple_enode **right, struct maple_enode **middle, | 
|  | unsigned char *mid_split, unsigned long min) | 
|  | { | 
|  | unsigned char split = 0; | 
|  | unsigned char slot_count = mt_slots[b_node->type]; | 
|  |  | 
|  | *left = mas_new_ma_node(mas, b_node); | 
|  | *right = NULL; | 
|  | *middle = NULL; | 
|  | *mid_split = 0; | 
|  |  | 
|  | if (b_node->b_end < slot_count) { | 
|  | split = b_node->b_end; | 
|  | } else { | 
|  | split = mab_calc_split(mas, b_node, mid_split, min); | 
|  | *right = mas_new_ma_node(mas, b_node); | 
|  | } | 
|  |  | 
|  | if (*mid_split) | 
|  | *middle = mas_new_ma_node(mas, b_node); | 
|  |  | 
|  | return split; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end | 
|  | * pointer. | 
|  | * @b_node - the big node to add the entry | 
|  | * @mas - the maple state to get the pivot (mas->max) | 
|  | * @entry - the entry to add, if NULL nothing happens. | 
|  | */ | 
|  | static inline void mab_set_b_end(struct maple_big_node *b_node, | 
|  | struct ma_state *mas, | 
|  | void *entry) | 
|  | { | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | b_node->slot[b_node->b_end] = entry; | 
|  | if (mt_is_alloc(mas->tree)) | 
|  | b_node->gap[b_node->b_end] = mas_max_gap(mas); | 
|  | b_node->pivot[b_node->b_end++] = mas->max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent | 
|  | * of @mas->node to either @left or @right, depending on @slot and @split | 
|  | * | 
|  | * @mas - the maple state with the node that needs a parent | 
|  | * @left - possible parent 1 | 
|  | * @right - possible parent 2 | 
|  | * @slot - the slot the mas->node was placed | 
|  | * @split - the split location between @left and @right | 
|  | */ | 
|  | static inline void mas_set_split_parent(struct ma_state *mas, | 
|  | struct maple_enode *left, | 
|  | struct maple_enode *right, | 
|  | unsigned char *slot, unsigned char split) | 
|  | { | 
|  | if (mas_is_none(mas)) | 
|  | return; | 
|  |  | 
|  | if ((*slot) <= split) | 
|  | mte_set_parent(mas->node, left, *slot); | 
|  | else if (right) | 
|  | mte_set_parent(mas->node, right, (*slot) - split - 1); | 
|  |  | 
|  | (*slot)++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_mid_split_check() - Check if the next node passes the mid-split | 
|  | * @**l: Pointer to left encoded maple node. | 
|  | * @**m: Pointer to middle encoded maple node. | 
|  | * @**r: Pointer to right encoded maple node. | 
|  | * @slot: The offset | 
|  | * @*split: The split location. | 
|  | * @mid_split: The middle split. | 
|  | */ | 
|  | static inline void mte_mid_split_check(struct maple_enode **l, | 
|  | struct maple_enode **r, | 
|  | struct maple_enode *right, | 
|  | unsigned char slot, | 
|  | unsigned char *split, | 
|  | unsigned char mid_split) | 
|  | { | 
|  | if (*r == right) | 
|  | return; | 
|  |  | 
|  | if (slot < mid_split) | 
|  | return; | 
|  |  | 
|  | *l = *r; | 
|  | *r = right; | 
|  | *split = mid_split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_set_split_parents() - Helper function to set three nodes parents.  Slot | 
|  | * is taken from @mast->l. | 
|  | * @mast - the maple subtree state | 
|  | * @left - the left node | 
|  | * @right - the right node | 
|  | * @split - the split location. | 
|  | */ | 
|  | static inline void mast_set_split_parents(struct maple_subtree_state *mast, | 
|  | struct maple_enode *left, | 
|  | struct maple_enode *middle, | 
|  | struct maple_enode *right, | 
|  | unsigned char split, | 
|  | unsigned char mid_split) | 
|  | { | 
|  | unsigned char slot; | 
|  | struct maple_enode *l = left; | 
|  | struct maple_enode *r = right; | 
|  |  | 
|  | if (mas_is_none(mast->l)) | 
|  | return; | 
|  |  | 
|  | if (middle) | 
|  | r = middle; | 
|  |  | 
|  | slot = mast->l->offset; | 
|  |  | 
|  | mte_mid_split_check(&l, &r, right, slot, &split, mid_split); | 
|  | mas_set_split_parent(mast->l, l, r, &slot, split); | 
|  |  | 
|  | mte_mid_split_check(&l, &r, right, slot, &split, mid_split); | 
|  | mas_set_split_parent(mast->m, l, r, &slot, split); | 
|  |  | 
|  | mte_mid_split_check(&l, &r, right, slot, &split, mid_split); | 
|  | mas_set_split_parent(mast->r, l, r, &slot, split); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wmb_replace() - Write memory barrier and replace | 
|  | * @mas: The maple state | 
|  | * @free: the maple topiary list of nodes to free | 
|  | * @destroy: The maple topiary list of nodes to destroy (walk and free) | 
|  | * | 
|  | * Updates gap as necessary. | 
|  | */ | 
|  | static inline void mas_wmb_replace(struct ma_state *mas, | 
|  | struct ma_topiary *free, | 
|  | struct ma_topiary *destroy) | 
|  | { | 
|  | /* All nodes must see old data as dead prior to replacing that data */ | 
|  | smp_wmb(); /* Needed for RCU */ | 
|  |  | 
|  | /* Insert the new data in the tree */ | 
|  | mas_replace(mas, true); | 
|  |  | 
|  | if (!mte_is_leaf(mas->node)) | 
|  | mas_descend_adopt(mas); | 
|  |  | 
|  | mas_mat_free(mas, free); | 
|  |  | 
|  | if (destroy) | 
|  | mas_mat_destroy(mas, destroy); | 
|  |  | 
|  | if (mte_is_leaf(mas->node)) | 
|  | return; | 
|  |  | 
|  | mas_update_gap(mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_new_root() - Set a new tree root during subtree creation | 
|  | * @mast: The maple subtree state | 
|  | * @mas: The maple state | 
|  | */ | 
|  | static inline void mast_new_root(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas) | 
|  | { | 
|  | mas_mn(mast->l)->parent = | 
|  | ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); | 
|  | if (!mte_dead_node(mast->orig_l->node) && | 
|  | !mte_is_root(mast->orig_l->node)) { | 
|  | do { | 
|  | mast_ascend_free(mast); | 
|  | mast_topiary(mast); | 
|  | } while (!mte_is_root(mast->orig_l->node)); | 
|  | } | 
|  | if ((mast->orig_l->node != mas->node) && | 
|  | (mast->l->depth > mas_mt_height(mas))) { | 
|  | mat_add(mast->free, mas->node); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_cp_to_nodes() - Copy data out to nodes. | 
|  | * @mast: The maple subtree state | 
|  | * @left: The left encoded maple node | 
|  | * @middle: The middle encoded maple node | 
|  | * @right: The right encoded maple node | 
|  | * @split: The location to split between left and (middle ? middle : right) | 
|  | * @mid_split: The location to split between middle and right. | 
|  | */ | 
|  | static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, | 
|  | struct maple_enode *left, struct maple_enode *middle, | 
|  | struct maple_enode *right, unsigned char split, unsigned char mid_split) | 
|  | { | 
|  | bool new_lmax = true; | 
|  |  | 
|  | mast->l->node = mte_node_or_none(left); | 
|  | mast->m->node = mte_node_or_none(middle); | 
|  | mast->r->node = mte_node_or_none(right); | 
|  |  | 
|  | mast->l->min = mast->orig_l->min; | 
|  | if (split == mast->bn->b_end) { | 
|  | mast->l->max = mast->orig_r->max; | 
|  | new_lmax = false; | 
|  | } | 
|  |  | 
|  | mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); | 
|  |  | 
|  | if (middle) { | 
|  | mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); | 
|  | mast->m->min = mast->bn->pivot[split] + 1; | 
|  | split = mid_split; | 
|  | } | 
|  |  | 
|  | mast->r->max = mast->orig_r->max; | 
|  | if (right) { | 
|  | mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); | 
|  | mast->r->min = mast->bn->pivot[split] + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_combine_cp_left - Copy in the original left side of the tree into the | 
|  | * combined data set in the maple subtree state big node. | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline void mast_combine_cp_left(struct maple_subtree_state *mast) | 
|  | { | 
|  | unsigned char l_slot = mast->orig_l->offset; | 
|  |  | 
|  | if (!l_slot) | 
|  | return; | 
|  |  | 
|  | mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_combine_cp_right: Copy in the original right side of the tree into the | 
|  | * combined data set in the maple subtree state big node. | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline void mast_combine_cp_right(struct maple_subtree_state *mast) | 
|  | { | 
|  | if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) | 
|  | return; | 
|  |  | 
|  | mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, | 
|  | mt_slot_count(mast->orig_r->node), mast->bn, | 
|  | mast->bn->b_end); | 
|  | mast->orig_r->last = mast->orig_r->max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_sufficient: Check if the maple subtree state has enough data in the big | 
|  | * node to create at least one sufficient node | 
|  | * @mast: the maple subtree state | 
|  | */ | 
|  | static inline bool mast_sufficient(struct maple_subtree_state *mast) | 
|  | { | 
|  | if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_overflow: Check if there is too much data in the subtree state for a | 
|  | * single node. | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline bool mast_overflow(struct maple_subtree_state *mast) | 
|  | { | 
|  | if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void *mtree_range_walk(struct ma_state *mas) | 
|  | { | 
|  | unsigned long *pivots; | 
|  | unsigned char offset; | 
|  | struct maple_node *node; | 
|  | struct maple_enode *next, *last; | 
|  | enum maple_type type; | 
|  | void __rcu **slots; | 
|  | unsigned char end; | 
|  | unsigned long max, min; | 
|  | unsigned long prev_max, prev_min; | 
|  |  | 
|  | next = mas->node; | 
|  | min = mas->min; | 
|  | max = mas->max; | 
|  | do { | 
|  | offset = 0; | 
|  | last = next; | 
|  | node = mte_to_node(next); | 
|  | type = mte_node_type(next); | 
|  | pivots = ma_pivots(node, type); | 
|  | end = ma_data_end(node, type, pivots, max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | goto dead_node; | 
|  |  | 
|  | if (pivots[offset] >= mas->index) { | 
|  | prev_max = max; | 
|  | prev_min = min; | 
|  | max = pivots[offset]; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | do { | 
|  | offset++; | 
|  | } while ((offset < end) && (pivots[offset] < mas->index)); | 
|  |  | 
|  | prev_min = min; | 
|  | min = pivots[offset - 1] + 1; | 
|  | prev_max = max; | 
|  | if (likely(offset < end && pivots[offset])) | 
|  | max = pivots[offset]; | 
|  |  | 
|  | next: | 
|  | slots = ma_slots(node, type); | 
|  | next = mt_slot(mas->tree, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | goto dead_node; | 
|  | } while (!ma_is_leaf(type)); | 
|  |  | 
|  | mas->offset = offset; | 
|  | mas->index = min; | 
|  | mas->last = max; | 
|  | mas->min = prev_min; | 
|  | mas->max = prev_max; | 
|  | mas->node = last; | 
|  | return (void *) next; | 
|  |  | 
|  | dead_node: | 
|  | mas_reset(mas); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. | 
|  | * @mas: The starting maple state | 
|  | * @mast: The maple_subtree_state, keeps track of 4 maple states. | 
|  | * @count: The estimated count of iterations needed. | 
|  | * | 
|  | * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root | 
|  | * is hit.  First @b_node is split into two entries which are inserted into the | 
|  | * next iteration of the loop.  @b_node is returned populated with the final | 
|  | * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the | 
|  | * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last | 
|  | * to account of what has been copied into the new sub-tree.  The update of | 
|  | * orig_l_mas->last is used in mas_consume to find the slots that will need to | 
|  | * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of | 
|  | * the new sub-tree in case the sub-tree becomes the full tree. | 
|  | * | 
|  | * Return: the number of elements in b_node during the last loop. | 
|  | */ | 
|  | static int mas_spanning_rebalance(struct ma_state *mas, | 
|  | struct maple_subtree_state *mast, unsigned char count) | 
|  | { | 
|  | unsigned char split, mid_split; | 
|  | unsigned char slot = 0; | 
|  | struct maple_enode *left = NULL, *middle = NULL, *right = NULL; | 
|  |  | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->index); | 
|  | MA_STATE(r_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(m_mas, mas->tree, mas->index, mas->index); | 
|  | MA_TOPIARY(free, mas->tree); | 
|  | MA_TOPIARY(destroy, mas->tree); | 
|  |  | 
|  | /* | 
|  | * The tree needs to be rebalanced and leaves need to be kept at the same level. | 
|  | * Rebalancing is done by use of the ``struct maple_topiary``. | 
|  | */ | 
|  | mast->l = &l_mas; | 
|  | mast->m = &m_mas; | 
|  | mast->r = &r_mas; | 
|  | mast->free = &free; | 
|  | mast->destroy = &destroy; | 
|  | l_mas.node = r_mas.node = m_mas.node = MAS_NONE; | 
|  |  | 
|  | /* Check if this is not root and has sufficient data.  */ | 
|  | if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && | 
|  | unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) | 
|  | mast_spanning_rebalance(mast); | 
|  |  | 
|  | mast->orig_l->depth = 0; | 
|  |  | 
|  | /* | 
|  | * Each level of the tree is examined and balanced, pushing data to the left or | 
|  | * right, or rebalancing against left or right nodes is employed to avoid | 
|  | * rippling up the tree to limit the amount of churn.  Once a new sub-section of | 
|  | * the tree is created, there may be a mix of new and old nodes.  The old nodes | 
|  | * will have the incorrect parent pointers and currently be in two trees: the | 
|  | * original tree and the partially new tree.  To remedy the parent pointers in | 
|  | * the old tree, the new data is swapped into the active tree and a walk down | 
|  | * the tree is performed and the parent pointers are updated. | 
|  | * See mas_descend_adopt() for more information.. | 
|  | */ | 
|  | while (count--) { | 
|  | mast->bn->b_end--; | 
|  | mast->bn->type = mte_node_type(mast->orig_l->node); | 
|  | split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, | 
|  | &mid_split, mast->orig_l->min); | 
|  | mast_set_split_parents(mast, left, middle, right, split, | 
|  | mid_split); | 
|  | mast_cp_to_nodes(mast, left, middle, right, split, mid_split); | 
|  |  | 
|  | /* | 
|  | * Copy data from next level in the tree to mast->bn from next | 
|  | * iteration | 
|  | */ | 
|  | memset(mast->bn, 0, sizeof(struct maple_big_node)); | 
|  | mast->bn->type = mte_node_type(left); | 
|  | mast->orig_l->depth++; | 
|  |  | 
|  | /* Root already stored in l->node. */ | 
|  | if (mas_is_root_limits(mast->l)) | 
|  | goto new_root; | 
|  |  | 
|  | mast_ascend_free(mast); | 
|  | mast_combine_cp_left(mast); | 
|  | l_mas.offset = mast->bn->b_end; | 
|  | mab_set_b_end(mast->bn, &l_mas, left); | 
|  | mab_set_b_end(mast->bn, &m_mas, middle); | 
|  | mab_set_b_end(mast->bn, &r_mas, right); | 
|  |  | 
|  | /* Copy anything necessary out of the right node. */ | 
|  | mast_combine_cp_right(mast); | 
|  | mast_topiary(mast); | 
|  | mast->orig_l->last = mast->orig_l->max; | 
|  |  | 
|  | if (mast_sufficient(mast)) | 
|  | continue; | 
|  |  | 
|  | if (mast_overflow(mast)) | 
|  | continue; | 
|  |  | 
|  | /* May be a new root stored in mast->bn */ | 
|  | if (mas_is_root_limits(mast->orig_l)) | 
|  | break; | 
|  |  | 
|  | mast_spanning_rebalance(mast); | 
|  |  | 
|  | /* rebalancing from other nodes may require another loop. */ | 
|  | if (!count) | 
|  | count++; | 
|  | } | 
|  |  | 
|  | l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), | 
|  | mte_node_type(mast->orig_l->node)); | 
|  | mast->orig_l->depth++; | 
|  | mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); | 
|  | mte_set_parent(left, l_mas.node, slot); | 
|  | if (middle) | 
|  | mte_set_parent(middle, l_mas.node, ++slot); | 
|  |  | 
|  | if (right) | 
|  | mte_set_parent(right, l_mas.node, ++slot); | 
|  |  | 
|  | if (mas_is_root_limits(mast->l)) { | 
|  | new_root: | 
|  | mast_new_root(mast, mas); | 
|  | } else { | 
|  | mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; | 
|  | } | 
|  |  | 
|  | if (!mte_dead_node(mast->orig_l->node)) | 
|  | mat_add(&free, mast->orig_l->node); | 
|  |  | 
|  | mas->depth = mast->orig_l->depth; | 
|  | *mast->orig_l = l_mas; | 
|  | mte_set_node_dead(mas->node); | 
|  |  | 
|  | /* Set up mas for insertion. */ | 
|  | mast->orig_l->depth = mas->depth; | 
|  | mast->orig_l->alloc = mas->alloc; | 
|  | *mas = *mast->orig_l; | 
|  | mas_wmb_replace(mas, &free, &destroy); | 
|  | mtree_range_walk(mas); | 
|  | return mast->bn->b_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_rebalance() - Rebalance a given node. | 
|  | * @mas: The maple state | 
|  | * @b_node: The big maple node. | 
|  | * | 
|  | * Rebalance two nodes into a single node or two new nodes that are sufficient. | 
|  | * Continue upwards until tree is sufficient. | 
|  | * | 
|  | * Return: the number of elements in b_node during the last loop. | 
|  | */ | 
|  | static inline int mas_rebalance(struct ma_state *mas, | 
|  | struct maple_big_node *b_node) | 
|  | { | 
|  | char empty_count = mas_mt_height(mas); | 
|  | struct maple_subtree_state mast; | 
|  | unsigned char shift, b_end = ++b_node->b_end; | 
|  |  | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(r_mas, mas->tree, mas->index, mas->last); | 
|  |  | 
|  | trace_ma_op(__func__, mas); | 
|  |  | 
|  | /* | 
|  | * Rebalancing occurs if a node is insufficient.  Data is rebalanced | 
|  | * against the node to the right if it exists, otherwise the node to the | 
|  | * left of this node is rebalanced against this node.  If rebalancing | 
|  | * causes just one node to be produced instead of two, then the parent | 
|  | * is also examined and rebalanced if it is insufficient.  Every level | 
|  | * tries to combine the data in the same way.  If one node contains the | 
|  | * entire range of the tree, then that node is used as a new root node. | 
|  | */ | 
|  | mas_node_count(mas, 1 + empty_count * 3); | 
|  | if (mas_is_err(mas)) | 
|  | return 0; | 
|  |  | 
|  | mast.orig_l = &l_mas; | 
|  | mast.orig_r = &r_mas; | 
|  | mast.bn = b_node; | 
|  | mast.bn->type = mte_node_type(mas->node); | 
|  |  | 
|  | l_mas = r_mas = *mas; | 
|  |  | 
|  | if (mas_next_sibling(&r_mas)) { | 
|  | mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); | 
|  | r_mas.last = r_mas.index = r_mas.max; | 
|  | } else { | 
|  | mas_prev_sibling(&l_mas); | 
|  | shift = mas_data_end(&l_mas) + 1; | 
|  | mab_shift_right(b_node, shift); | 
|  | mas->offset += shift; | 
|  | mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); | 
|  | b_node->b_end = shift + b_end; | 
|  | l_mas.index = l_mas.last = l_mas.min; | 
|  | } | 
|  |  | 
|  | return mas_spanning_rebalance(mas, &mast, empty_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple | 
|  | * state. | 
|  | * @mas: The maple state | 
|  | * @end: The end of the left-most node. | 
|  | * | 
|  | * During a mass-insert event (such as forking), it may be necessary to | 
|  | * rebalance the left-most node when it is not sufficient. | 
|  | */ | 
|  | static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) | 
|  | { | 
|  | enum maple_type mt = mte_node_type(mas->node); | 
|  | struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; | 
|  | struct maple_enode *eparent; | 
|  | unsigned char offset, tmp, split = mt_slots[mt] / 2; | 
|  | void __rcu **l_slots, **slots; | 
|  | unsigned long *l_pivs, *pivs, gap; | 
|  | bool in_rcu = mt_in_rcu(mas->tree); | 
|  |  | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->last); | 
|  |  | 
|  | l_mas = *mas; | 
|  | mas_prev_sibling(&l_mas); | 
|  |  | 
|  | /* set up node. */ | 
|  | if (in_rcu) { | 
|  | /* Allocate for both left and right as well as parent. */ | 
|  | mas_node_count(mas, 3); | 
|  | if (mas_is_err(mas)) | 
|  | return; | 
|  |  | 
|  | newnode = mas_pop_node(mas); | 
|  | } else { | 
|  | newnode = &reuse; | 
|  | } | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | newnode->parent = node->parent; | 
|  | slots = ma_slots(newnode, mt); | 
|  | pivs = ma_pivots(newnode, mt); | 
|  | left = mas_mn(&l_mas); | 
|  | l_slots = ma_slots(left, mt); | 
|  | l_pivs = ma_pivots(left, mt); | 
|  | if (!l_slots[split]) | 
|  | split++; | 
|  | tmp = mas_data_end(&l_mas) - split; | 
|  |  | 
|  | memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); | 
|  | memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); | 
|  | pivs[tmp] = l_mas.max; | 
|  | memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); | 
|  | memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); | 
|  |  | 
|  | l_mas.max = l_pivs[split]; | 
|  | mas->min = l_mas.max + 1; | 
|  | eparent = mt_mk_node(mte_parent(l_mas.node), | 
|  | mas_parent_enum(&l_mas, l_mas.node)); | 
|  | tmp += end; | 
|  | if (!in_rcu) { | 
|  | unsigned char max_p = mt_pivots[mt]; | 
|  | unsigned char max_s = mt_slots[mt]; | 
|  |  | 
|  | if (tmp < max_p) | 
|  | memset(pivs + tmp, 0, | 
|  | sizeof(unsigned long *) * (max_p - tmp)); | 
|  |  | 
|  | if (tmp < mt_slots[mt]) | 
|  | memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); | 
|  |  | 
|  | memcpy(node, newnode, sizeof(struct maple_node)); | 
|  | ma_set_meta(node, mt, 0, tmp - 1); | 
|  | mte_set_pivot(eparent, mte_parent_slot(l_mas.node), | 
|  | l_pivs[split]); | 
|  |  | 
|  | /* Remove data from l_pivs. */ | 
|  | tmp = split + 1; | 
|  | memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); | 
|  | memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); | 
|  | ma_set_meta(left, mt, 0, split); | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* RCU requires replacing both l_mas, mas, and parent. */ | 
|  | mas->node = mt_mk_node(newnode, mt); | 
|  | ma_set_meta(newnode, mt, 0, tmp); | 
|  |  | 
|  | new_left = mas_pop_node(mas); | 
|  | new_left->parent = left->parent; | 
|  | mt = mte_node_type(l_mas.node); | 
|  | slots = ma_slots(new_left, mt); | 
|  | pivs = ma_pivots(new_left, mt); | 
|  | memcpy(slots, l_slots, sizeof(void *) * split); | 
|  | memcpy(pivs, l_pivs, sizeof(unsigned long) * split); | 
|  | ma_set_meta(new_left, mt, 0, split); | 
|  | l_mas.node = mt_mk_node(new_left, mt); | 
|  |  | 
|  | /* replace parent. */ | 
|  | offset = mte_parent_slot(mas->node); | 
|  | mt = mas_parent_enum(&l_mas, l_mas.node); | 
|  | parent = mas_pop_node(mas); | 
|  | slots = ma_slots(parent, mt); | 
|  | pivs = ma_pivots(parent, mt); | 
|  | memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); | 
|  | rcu_assign_pointer(slots[offset], mas->node); | 
|  | rcu_assign_pointer(slots[offset - 1], l_mas.node); | 
|  | pivs[offset - 1] = l_mas.max; | 
|  | eparent = mt_mk_node(parent, mt); | 
|  | done: | 
|  | gap = mas_leaf_max_gap(mas); | 
|  | mte_set_gap(eparent, mte_parent_slot(mas->node), gap); | 
|  | gap = mas_leaf_max_gap(&l_mas); | 
|  | mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); | 
|  | mas_ascend(mas); | 
|  |  | 
|  | if (in_rcu) | 
|  | mas_replace(mas, false); | 
|  |  | 
|  | mas_update_gap(mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_split_final_node() - Split the final node in a subtree operation. | 
|  | * @mast: the maple subtree state | 
|  | * @mas: The maple state | 
|  | * @height: The height of the tree in case it's a new root. | 
|  | */ | 
|  | static inline bool mas_split_final_node(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas, int height) | 
|  | { | 
|  | struct maple_enode *ancestor; | 
|  |  | 
|  | if (mte_is_root(mas->node)) { | 
|  | if (mt_is_alloc(mas->tree)) | 
|  | mast->bn->type = maple_arange_64; | 
|  | else | 
|  | mast->bn->type = maple_range_64; | 
|  | mas->depth = height; | 
|  | } | 
|  | /* | 
|  | * Only a single node is used here, could be root. | 
|  | * The Big_node data should just fit in a single node. | 
|  | */ | 
|  | ancestor = mas_new_ma_node(mas, mast->bn); | 
|  | mte_set_parent(mast->l->node, ancestor, mast->l->offset); | 
|  | mte_set_parent(mast->r->node, ancestor, mast->r->offset); | 
|  | mte_to_node(ancestor)->parent = mas_mn(mas)->parent; | 
|  |  | 
|  | mast->l->node = ancestor; | 
|  | mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); | 
|  | mas->offset = mast->bn->b_end - 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_fill_bnode() - Copy data into the big node in the subtree state | 
|  | * @mast: The maple subtree state | 
|  | * @mas: the maple state | 
|  | * @skip: The number of entries to skip for new nodes insertion. | 
|  | */ | 
|  | static inline void mast_fill_bnode(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas, | 
|  | unsigned char skip) | 
|  | { | 
|  | bool cp = true; | 
|  | struct maple_enode *old = mas->node; | 
|  | unsigned char split; | 
|  |  | 
|  | memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); | 
|  | memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); | 
|  | memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); | 
|  | mast->bn->b_end = 0; | 
|  |  | 
|  | if (mte_is_root(mas->node)) { | 
|  | cp = false; | 
|  | } else { | 
|  | mas_ascend(mas); | 
|  | mat_add(mast->free, old); | 
|  | mas->offset = mte_parent_slot(mas->node); | 
|  | } | 
|  |  | 
|  | if (cp && mast->l->offset) | 
|  | mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); | 
|  |  | 
|  | split = mast->bn->b_end; | 
|  | mab_set_b_end(mast->bn, mast->l, mast->l->node); | 
|  | mast->r->offset = mast->bn->b_end; | 
|  | mab_set_b_end(mast->bn, mast->r, mast->r->node); | 
|  | if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) | 
|  | cp = false; | 
|  |  | 
|  | if (cp) | 
|  | mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, | 
|  | mast->bn, mast->bn->b_end); | 
|  |  | 
|  | mast->bn->b_end--; | 
|  | mast->bn->type = mte_node_type(mas->node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_split_data() - Split the data in the subtree state big node into regular | 
|  | * nodes. | 
|  | * @mast: The maple subtree state | 
|  | * @mas: The maple state | 
|  | * @split: The location to split the big node | 
|  | */ | 
|  | static inline void mast_split_data(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas, unsigned char split) | 
|  | { | 
|  | unsigned char p_slot; | 
|  |  | 
|  | mab_mas_cp(mast->bn, 0, split, mast->l, true); | 
|  | mte_set_pivot(mast->r->node, 0, mast->r->max); | 
|  | mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); | 
|  | mast->l->offset = mte_parent_slot(mas->node); | 
|  | mast->l->max = mast->bn->pivot[split]; | 
|  | mast->r->min = mast->l->max + 1; | 
|  | if (mte_is_leaf(mas->node)) | 
|  | return; | 
|  |  | 
|  | p_slot = mast->orig_l->offset; | 
|  | mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, | 
|  | &p_slot, split); | 
|  | mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, | 
|  | &p_slot, split); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_push_data() - Instead of splitting a node, it is beneficial to push the | 
|  | * data to the right or left node if there is room. | 
|  | * @mas: The maple state | 
|  | * @height: The current height of the maple state | 
|  | * @mast: The maple subtree state | 
|  | * @left: Push left or not. | 
|  | * | 
|  | * Keeping the height of the tree low means faster lookups. | 
|  | * | 
|  | * Return: True if pushed, false otherwise. | 
|  | */ | 
|  | static inline bool mas_push_data(struct ma_state *mas, int height, | 
|  | struct maple_subtree_state *mast, bool left) | 
|  | { | 
|  | unsigned char slot_total = mast->bn->b_end; | 
|  | unsigned char end, space, split; | 
|  |  | 
|  | MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); | 
|  | tmp_mas = *mas; | 
|  | tmp_mas.depth = mast->l->depth; | 
|  |  | 
|  | if (left && !mas_prev_sibling(&tmp_mas)) | 
|  | return false; | 
|  | else if (!left && !mas_next_sibling(&tmp_mas)) | 
|  | return false; | 
|  |  | 
|  | end = mas_data_end(&tmp_mas); | 
|  | slot_total += end; | 
|  | space = 2 * mt_slot_count(mas->node) - 2; | 
|  | /* -2 instead of -1 to ensure there isn't a triple split */ | 
|  | if (ma_is_leaf(mast->bn->type)) | 
|  | space--; | 
|  |  | 
|  | if (mas->max == ULONG_MAX) | 
|  | space--; | 
|  |  | 
|  | if (slot_total >= space) | 
|  | return false; | 
|  |  | 
|  | /* Get the data; Fill mast->bn */ | 
|  | mast->bn->b_end++; | 
|  | if (left) { | 
|  | mab_shift_right(mast->bn, end + 1); | 
|  | mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); | 
|  | mast->bn->b_end = slot_total + 1; | 
|  | } else { | 
|  | mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); | 
|  | } | 
|  |  | 
|  | /* Configure mast for splitting of mast->bn */ | 
|  | split = mt_slots[mast->bn->type] - 2; | 
|  | if (left) { | 
|  | /*  Switch mas to prev node  */ | 
|  | mat_add(mast->free, mas->node); | 
|  | *mas = tmp_mas; | 
|  | /* Start using mast->l for the left side. */ | 
|  | tmp_mas.node = mast->l->node; | 
|  | *mast->l = tmp_mas; | 
|  | } else { | 
|  | mat_add(mast->free, tmp_mas.node); | 
|  | tmp_mas.node = mast->r->node; | 
|  | *mast->r = tmp_mas; | 
|  | split = slot_total - split; | 
|  | } | 
|  | split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); | 
|  | /* Update parent slot for split calculation. */ | 
|  | if (left) | 
|  | mast->orig_l->offset += end + 1; | 
|  |  | 
|  | mast_split_data(mast, mas, split); | 
|  | mast_fill_bnode(mast, mas, 2); | 
|  | mas_split_final_node(mast, mas, height + 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_split() - Split data that is too big for one node into two. | 
|  | * @mas: The maple state | 
|  | * @b_node: The maple big node | 
|  | * Return: 1 on success, 0 on failure. | 
|  | */ | 
|  | static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) | 
|  | { | 
|  |  | 
|  | struct maple_subtree_state mast; | 
|  | int height = 0; | 
|  | unsigned char mid_split, split = 0; | 
|  |  | 
|  | /* | 
|  | * Splitting is handled differently from any other B-tree; the Maple | 
|  | * Tree splits upwards.  Splitting up means that the split operation | 
|  | * occurs when the walk of the tree hits the leaves and not on the way | 
|  | * down.  The reason for splitting up is that it is impossible to know | 
|  | * how much space will be needed until the leaf is (or leaves are) | 
|  | * reached.  Since overwriting data is allowed and a range could | 
|  | * overwrite more than one range or result in changing one entry into 3 | 
|  | * entries, it is impossible to know if a split is required until the | 
|  | * data is examined. | 
|  | * | 
|  | * Splitting is a balancing act between keeping allocations to a minimum | 
|  | * and avoiding a 'jitter' event where a tree is expanded to make room | 
|  | * for an entry followed by a contraction when the entry is removed.  To | 
|  | * accomplish the balance, there are empty slots remaining in both left | 
|  | * and right nodes after a split. | 
|  | */ | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(r_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); | 
|  | MA_TOPIARY(mat, mas->tree); | 
|  |  | 
|  | trace_ma_op(__func__, mas); | 
|  | mas->depth = mas_mt_height(mas); | 
|  | /* Allocation failures will happen early. */ | 
|  | mas_node_count(mas, 1 + mas->depth * 2); | 
|  | if (mas_is_err(mas)) | 
|  | return 0; | 
|  |  | 
|  | mast.l = &l_mas; | 
|  | mast.r = &r_mas; | 
|  | mast.orig_l = &prev_l_mas; | 
|  | mast.orig_r = &prev_r_mas; | 
|  | mast.free = &mat; | 
|  | mast.bn = b_node; | 
|  |  | 
|  | while (height++ <= mas->depth) { | 
|  | if (mt_slots[b_node->type] > b_node->b_end) { | 
|  | mas_split_final_node(&mast, mas, height); | 
|  | break; | 
|  | } | 
|  |  | 
|  | l_mas = r_mas = *mas; | 
|  | l_mas.node = mas_new_ma_node(mas, b_node); | 
|  | r_mas.node = mas_new_ma_node(mas, b_node); | 
|  | /* | 
|  | * Another way that 'jitter' is avoided is to terminate a split up early if the | 
|  | * left or right node has space to spare.  This is referred to as "pushing left" | 
|  | * or "pushing right" and is similar to the B* tree, except the nodes left or | 
|  | * right can rarely be reused due to RCU, but the ripple upwards is halted which | 
|  | * is a significant savings. | 
|  | */ | 
|  | /* Try to push left. */ | 
|  | if (mas_push_data(mas, height, &mast, true)) | 
|  | break; | 
|  |  | 
|  | /* Try to push right. */ | 
|  | if (mas_push_data(mas, height, &mast, false)) | 
|  | break; | 
|  |  | 
|  | split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); | 
|  | mast_split_data(&mast, mas, split); | 
|  | /* | 
|  | * Usually correct, mab_mas_cp in the above call overwrites | 
|  | * r->max. | 
|  | */ | 
|  | mast.r->max = mas->max; | 
|  | mast_fill_bnode(&mast, mas, 1); | 
|  | prev_l_mas = *mast.l; | 
|  | prev_r_mas = *mast.r; | 
|  | } | 
|  |  | 
|  | /* Set the original node as dead */ | 
|  | mat_add(mast.free, mas->node); | 
|  | mas->node = l_mas.node; | 
|  | mas_wmb_replace(mas, mast.free, NULL); | 
|  | mtree_range_walk(mas); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_reuse_node() - Reuse the node to store the data. | 
|  | * @wr_mas: The maple write state | 
|  | * @bn: The maple big node | 
|  | * @end: The end of the data. | 
|  | * | 
|  | * Will always return false in RCU mode. | 
|  | * | 
|  | * Return: True if node was reused, false otherwise. | 
|  | */ | 
|  | static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, | 
|  | struct maple_big_node *bn, unsigned char end) | 
|  | { | 
|  | /* Need to be rcu safe. */ | 
|  | if (mt_in_rcu(wr_mas->mas->tree)) | 
|  | return false; | 
|  |  | 
|  | if (end > bn->b_end) { | 
|  | int clear = mt_slots[wr_mas->type] - bn->b_end; | 
|  |  | 
|  | memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); | 
|  | memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); | 
|  | } | 
|  | mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_commit_b_node() - Commit the big node into the tree. | 
|  | * @wr_mas: The maple write state | 
|  | * @b_node: The maple big node | 
|  | * @end: The end of the data. | 
|  | */ | 
|  | static inline int mas_commit_b_node(struct ma_wr_state *wr_mas, | 
|  | struct maple_big_node *b_node, unsigned char end) | 
|  | { | 
|  | struct maple_node *node; | 
|  | unsigned char b_end = b_node->b_end; | 
|  | enum maple_type b_type = b_node->type; | 
|  |  | 
|  | if ((b_end < mt_min_slots[b_type]) && | 
|  | (!mte_is_root(wr_mas->mas->node)) && | 
|  | (mas_mt_height(wr_mas->mas) > 1)) | 
|  | return mas_rebalance(wr_mas->mas, b_node); | 
|  |  | 
|  | if (b_end >= mt_slots[b_type]) | 
|  | return mas_split(wr_mas->mas, b_node); | 
|  |  | 
|  | if (mas_reuse_node(wr_mas, b_node, end)) | 
|  | goto reuse_node; | 
|  |  | 
|  | mas_node_count(wr_mas->mas, 1); | 
|  | if (mas_is_err(wr_mas->mas)) | 
|  | return 0; | 
|  |  | 
|  | node = mas_pop_node(wr_mas->mas); | 
|  | node->parent = mas_mn(wr_mas->mas)->parent; | 
|  | wr_mas->mas->node = mt_mk_node(node, b_type); | 
|  | mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); | 
|  | mas_replace(wr_mas->mas, false); | 
|  | reuse_node: | 
|  | mas_update_gap(wr_mas->mas); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_root_expand() - Expand a root to a node | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store into the tree | 
|  | */ | 
|  | static inline int mas_root_expand(struct ma_state *mas, void *entry) | 
|  | { | 
|  | void *contents = mas_root_locked(mas); | 
|  | enum maple_type type = maple_leaf_64; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots; | 
|  | int slot = 0; | 
|  |  | 
|  | mas_node_count(mas, 1); | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return 0; | 
|  |  | 
|  | node = mas_pop_node(mas); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | node->parent = ma_parent_ptr( | 
|  | ((unsigned long)mas->tree | MA_ROOT_PARENT)); | 
|  | mas->node = mt_mk_node(node, type); | 
|  |  | 
|  | if (mas->index) { | 
|  | if (contents) { | 
|  | rcu_assign_pointer(slots[slot], contents); | 
|  | if (likely(mas->index > 1)) | 
|  | slot++; | 
|  | } | 
|  | pivots[slot++] = mas->index - 1; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(slots[slot], entry); | 
|  | mas->offset = slot; | 
|  | pivots[slot] = mas->last; | 
|  | if (mas->last != ULONG_MAX) | 
|  | pivots[++slot] = ULONG_MAX; | 
|  |  | 
|  | mas->depth = 1; | 
|  | mas_set_height(mas); | 
|  | ma_set_meta(node, maple_leaf_64, 0, slot); | 
|  | /* swap the new root into the tree */ | 
|  | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | static inline void mas_store_root(struct ma_state *mas, void *entry) | 
|  | { | 
|  | if (likely((mas->last != 0) || (mas->index != 0))) | 
|  | mas_root_expand(mas, entry); | 
|  | else if (((unsigned long) (entry) & 3) == 2) | 
|  | mas_root_expand(mas, entry); | 
|  | else { | 
|  | rcu_assign_pointer(mas->tree->ma_root, entry); | 
|  | mas->node = MAS_START; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_is_span_wr() - Check if the write needs to be treated as a write that | 
|  | * spans the node. | 
|  | * @mas: The maple state | 
|  | * @piv: The pivot value being written | 
|  | * @type: The maple node type | 
|  | * @entry: The data to write | 
|  | * | 
|  | * Spanning writes are writes that start in one node and end in another OR if | 
|  | * the write of a %NULL will cause the node to end with a %NULL. | 
|  | * | 
|  | * Return: True if this is a spanning write, false otherwise. | 
|  | */ | 
|  | static bool mas_is_span_wr(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | unsigned long max; | 
|  | unsigned long last = wr_mas->mas->last; | 
|  | unsigned long piv = wr_mas->r_max; | 
|  | enum maple_type type = wr_mas->type; | 
|  | void *entry = wr_mas->entry; | 
|  |  | 
|  | /* Contained in this pivot */ | 
|  | if (piv > last) | 
|  | return false; | 
|  |  | 
|  | max = wr_mas->mas->max; | 
|  | if (unlikely(ma_is_leaf(type))) { | 
|  | /* Fits in the node, but may span slots. */ | 
|  | if (last < max) | 
|  | return false; | 
|  |  | 
|  | /* Writes to the end of the node but not null. */ | 
|  | if ((last == max) && entry) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Writing ULONG_MAX is not a spanning write regardless of the | 
|  | * value being written as long as the range fits in the node. | 
|  | */ | 
|  | if ((last == ULONG_MAX) && (last == max)) | 
|  | return false; | 
|  | } else if (piv == last) { | 
|  | if (entry) | 
|  | return false; | 
|  |  | 
|  | /* Detect spanning store wr walk */ | 
|  | if (last == ULONG_MAX) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_ma_write(__func__, wr_mas->mas, piv, entry); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | wr_mas->type = mte_node_type(wr_mas->mas->node); | 
|  | mas_wr_node_walk(wr_mas); | 
|  | wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | wr_mas->mas->max = wr_mas->r_max; | 
|  | wr_mas->mas->min = wr_mas->r_min; | 
|  | wr_mas->mas->node = wr_mas->content; | 
|  | wr_mas->mas->offset = 0; | 
|  | wr_mas->mas->depth++; | 
|  | } | 
|  | /* | 
|  | * mas_wr_walk() - Walk the tree for a write. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Uses mas_slot_locked() and does not need to worry about dead nodes. | 
|  | * | 
|  | * Return: True if it's contained in a node, false on spanning write. | 
|  | */ | 
|  | static bool mas_wr_walk(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | while (true) { | 
|  | mas_wr_walk_descend(wr_mas); | 
|  | if (unlikely(mas_is_span_wr(wr_mas))) | 
|  | return false; | 
|  |  | 
|  | wr_mas->content = mas_slot_locked(mas, wr_mas->slots, | 
|  | mas->offset); | 
|  | if (ma_is_leaf(wr_mas->type)) | 
|  | return true; | 
|  |  | 
|  | mas_wr_walk_traverse(wr_mas); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | while (true) { | 
|  | mas_wr_walk_descend(wr_mas); | 
|  | wr_mas->content = mas_slot_locked(mas, wr_mas->slots, | 
|  | mas->offset); | 
|  | if (ma_is_leaf(wr_mas->type)) | 
|  | return true; | 
|  | mas_wr_walk_traverse(wr_mas); | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  | /* | 
|  | * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. | 
|  | * @l_wr_mas: The left maple write state | 
|  | * @r_wr_mas: The right maple write state | 
|  | */ | 
|  | static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, | 
|  | struct ma_wr_state *r_wr_mas) | 
|  | { | 
|  | struct ma_state *r_mas = r_wr_mas->mas; | 
|  | struct ma_state *l_mas = l_wr_mas->mas; | 
|  | unsigned char l_slot; | 
|  |  | 
|  | l_slot = l_mas->offset; | 
|  | if (!l_wr_mas->content) | 
|  | l_mas->index = l_wr_mas->r_min; | 
|  |  | 
|  | if ((l_mas->index == l_wr_mas->r_min) && | 
|  | (l_slot && | 
|  | !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { | 
|  | if (l_slot > 1) | 
|  | l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; | 
|  | else | 
|  | l_mas->index = l_mas->min; | 
|  |  | 
|  | l_mas->offset = l_slot - 1; | 
|  | } | 
|  |  | 
|  | if (!r_wr_mas->content) { | 
|  | if (r_mas->last < r_wr_mas->r_max) | 
|  | r_mas->last = r_wr_mas->r_max; | 
|  | r_mas->offset++; | 
|  | } else if ((r_mas->last == r_wr_mas->r_max) && | 
|  | (r_mas->last < r_mas->max) && | 
|  | !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { | 
|  | r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, | 
|  | r_wr_mas->type, r_mas->offset + 1); | 
|  | r_mas->offset++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void *mas_state_walk(struct ma_state *mas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | entry = mas_start(mas); | 
|  | if (mas_is_none(mas)) | 
|  | return NULL; | 
|  |  | 
|  | if (mas_is_ptr(mas)) | 
|  | return entry; | 
|  |  | 
|  | return mtree_range_walk(mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up | 
|  | * to date. | 
|  | * | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Note: Leaves mas in undesirable state. | 
|  | * Return: The entry for @mas->index or %NULL on dead node. | 
|  | */ | 
|  | static inline void *mtree_lookup_walk(struct ma_state *mas) | 
|  | { | 
|  | unsigned long *pivots; | 
|  | unsigned char offset; | 
|  | struct maple_node *node; | 
|  | struct maple_enode *next; | 
|  | enum maple_type type; | 
|  | void __rcu **slots; | 
|  | unsigned char end; | 
|  | unsigned long max; | 
|  |  | 
|  | next = mas->node; | 
|  | max = ULONG_MAX; | 
|  | do { | 
|  | offset = 0; | 
|  | node = mte_to_node(next); | 
|  | type = mte_node_type(next); | 
|  | pivots = ma_pivots(node, type); | 
|  | end = ma_data_end(node, type, pivots, max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | goto dead_node; | 
|  | do { | 
|  | if (pivots[offset] >= mas->index) { | 
|  | max = pivots[offset]; | 
|  | break; | 
|  | } | 
|  | } while (++offset < end); | 
|  |  | 
|  | slots = ma_slots(node, type); | 
|  | next = mt_slot(mas->tree, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | goto dead_node; | 
|  | } while (!ma_is_leaf(type)); | 
|  |  | 
|  | return (void *) next; | 
|  |  | 
|  | dead_node: | 
|  | mas_reset(mas); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_new_root() - Create a new root node that only contains the entry passed | 
|  | * in. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store. | 
|  | * | 
|  | * Only valid when the index == 0 and the last == ULONG_MAX | 
|  | * | 
|  | * Return 0 on error, 1 on success. | 
|  | */ | 
|  | static inline int mas_new_root(struct ma_state *mas, void *entry) | 
|  | { | 
|  | struct maple_enode *root = mas_root_locked(mas); | 
|  | enum maple_type type = maple_leaf_64; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots; | 
|  |  | 
|  | if (!entry && !mas->index && mas->last == ULONG_MAX) { | 
|  | mas->depth = 0; | 
|  | mas_set_height(mas); | 
|  | rcu_assign_pointer(mas->tree->ma_root, entry); | 
|  | mas->node = MAS_START; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | mas_node_count(mas, 1); | 
|  | if (mas_is_err(mas)) | 
|  | return 0; | 
|  |  | 
|  | node = mas_pop_node(mas); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | node->parent = ma_parent_ptr( | 
|  | ((unsigned long)mas->tree | MA_ROOT_PARENT)); | 
|  | mas->node = mt_mk_node(node, type); | 
|  | rcu_assign_pointer(slots[0], entry); | 
|  | pivots[0] = mas->last; | 
|  | mas->depth = 1; | 
|  | mas_set_height(mas); | 
|  | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); | 
|  |  | 
|  | done: | 
|  | if (xa_is_node(root)) | 
|  | mte_destroy_walk(root, mas->tree); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * mas_wr_spanning_store() - Create a subtree with the store operation completed | 
|  | * and new nodes where necessary, then place the sub-tree in the actual tree. | 
|  | * Note that mas is expected to point to the node which caused the store to | 
|  | * span. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Return: 0 on error, positive on success. | 
|  | */ | 
|  | static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct maple_subtree_state mast; | 
|  | struct maple_big_node b_node; | 
|  | struct ma_state *mas; | 
|  | unsigned char height; | 
|  |  | 
|  | /* Left and Right side of spanning store */ | 
|  | MA_STATE(l_mas, NULL, 0, 0); | 
|  | MA_STATE(r_mas, NULL, 0, 0); | 
|  |  | 
|  | MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); | 
|  | MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); | 
|  |  | 
|  | /* | 
|  | * A store operation that spans multiple nodes is called a spanning | 
|  | * store and is handled early in the store call stack by the function | 
|  | * mas_is_span_wr().  When a spanning store is identified, the maple | 
|  | * state is duplicated.  The first maple state walks the left tree path | 
|  | * to ``index``, the duplicate walks the right tree path to ``last``. | 
|  | * The data in the two nodes are combined into a single node, two nodes, | 
|  | * or possibly three nodes (see the 3-way split above).  A ``NULL`` | 
|  | * written to the last entry of a node is considered a spanning store as | 
|  | * a rebalance is required for the operation to complete and an overflow | 
|  | * of data may happen. | 
|  | */ | 
|  | mas = wr_mas->mas; | 
|  | trace_ma_op(__func__, mas); | 
|  |  | 
|  | if (unlikely(!mas->index && mas->last == ULONG_MAX)) | 
|  | return mas_new_root(mas, wr_mas->entry); | 
|  | /* | 
|  | * Node rebalancing may occur due to this store, so there may be three new | 
|  | * entries per level plus a new root. | 
|  | */ | 
|  | height = mas_mt_height(mas); | 
|  | mas_node_count(mas, 1 + height * 3); | 
|  | if (mas_is_err(mas)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Set up right side.  Need to get to the next offset after the spanning | 
|  | * store to ensure it's not NULL and to combine both the next node and | 
|  | * the node with the start together. | 
|  | */ | 
|  | r_mas = *mas; | 
|  | /* Avoid overflow, walk to next slot in the tree. */ | 
|  | if (r_mas.last + 1) | 
|  | r_mas.last++; | 
|  |  | 
|  | r_mas.index = r_mas.last; | 
|  | mas_wr_walk_index(&r_wr_mas); | 
|  | r_mas.last = r_mas.index = mas->last; | 
|  |  | 
|  | /* Set up left side. */ | 
|  | l_mas = *mas; | 
|  | mas_wr_walk_index(&l_wr_mas); | 
|  |  | 
|  | if (!wr_mas->entry) { | 
|  | mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); | 
|  | mas->offset = l_mas.offset; | 
|  | mas->index = l_mas.index; | 
|  | mas->last = l_mas.last = r_mas.last; | 
|  | } | 
|  |  | 
|  | /* expanding NULLs may make this cover the entire range */ | 
|  | if (!l_mas.index && r_mas.last == ULONG_MAX) { | 
|  | mas_set_range(mas, 0, ULONG_MAX); | 
|  | return mas_new_root(mas, wr_mas->entry); | 
|  | } | 
|  |  | 
|  | memset(&b_node, 0, sizeof(struct maple_big_node)); | 
|  | /* Copy l_mas and store the value in b_node. */ | 
|  | mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); | 
|  | /* Copy r_mas into b_node. */ | 
|  | if (r_mas.offset <= r_wr_mas.node_end) | 
|  | mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, | 
|  | &b_node, b_node.b_end + 1); | 
|  | else | 
|  | b_node.b_end++; | 
|  |  | 
|  | /* Stop spanning searches by searching for just index. */ | 
|  | l_mas.index = l_mas.last = mas->index; | 
|  |  | 
|  | mast.bn = &b_node; | 
|  | mast.orig_l = &l_mas; | 
|  | mast.orig_r = &r_mas; | 
|  | /* Combine l_mas and r_mas and split them up evenly again. */ | 
|  | return mas_spanning_rebalance(mas, &mast, height + 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_node_store() - Attempt to store the value in a node | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Attempts to reuse the node, but may allocate. | 
|  | * | 
|  | * Return: True if stored, false otherwise | 
|  | */ | 
|  | static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | void __rcu **dst_slots; | 
|  | unsigned long *dst_pivots; | 
|  | unsigned char dst_offset; | 
|  | unsigned char new_end = wr_mas->node_end; | 
|  | unsigned char offset; | 
|  | unsigned char node_slots = mt_slots[wr_mas->type]; | 
|  | struct maple_node reuse, *newnode; | 
|  | unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; | 
|  | bool in_rcu = mt_in_rcu(mas->tree); | 
|  |  | 
|  | offset = mas->offset; | 
|  | if (mas->last == wr_mas->r_max) { | 
|  | /* runs right to the end of the node */ | 
|  | if (mas->last == mas->max) | 
|  | new_end = offset; | 
|  | /* don't copy this offset */ | 
|  | wr_mas->offset_end++; | 
|  | } else if (mas->last < wr_mas->r_max) { | 
|  | /* new range ends in this range */ | 
|  | if (unlikely(wr_mas->r_max == ULONG_MAX)) | 
|  | mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); | 
|  |  | 
|  | new_end++; | 
|  | } else { | 
|  | if (wr_mas->end_piv == mas->last) | 
|  | wr_mas->offset_end++; | 
|  |  | 
|  | new_end -= wr_mas->offset_end - offset - 1; | 
|  | } | 
|  |  | 
|  | /* new range starts within a range */ | 
|  | if (wr_mas->r_min < mas->index) | 
|  | new_end++; | 
|  |  | 
|  | /* Not enough room */ | 
|  | if (new_end >= node_slots) | 
|  | return false; | 
|  |  | 
|  | /* Not enough data. */ | 
|  | if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && | 
|  | !(mas->mas_flags & MA_STATE_BULK)) | 
|  | return false; | 
|  |  | 
|  | /* set up node. */ | 
|  | if (in_rcu) { | 
|  | mas_node_count(mas, 1); | 
|  | if (mas_is_err(mas)) | 
|  | return false; | 
|  |  | 
|  | newnode = mas_pop_node(mas); | 
|  | } else { | 
|  | memset(&reuse, 0, sizeof(struct maple_node)); | 
|  | newnode = &reuse; | 
|  | } | 
|  |  | 
|  | newnode->parent = mas_mn(mas)->parent; | 
|  | dst_pivots = ma_pivots(newnode, wr_mas->type); | 
|  | dst_slots = ma_slots(newnode, wr_mas->type); | 
|  | /* Copy from start to insert point */ | 
|  | memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); | 
|  | memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); | 
|  | dst_offset = offset; | 
|  |  | 
|  | /* Handle insert of new range starting after old range */ | 
|  | if (wr_mas->r_min < mas->index) { | 
|  | mas->offset++; | 
|  | rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); | 
|  | dst_pivots[dst_offset++] = mas->index - 1; | 
|  | } | 
|  |  | 
|  | /* Store the new entry and range end. */ | 
|  | if (dst_offset < max_piv) | 
|  | dst_pivots[dst_offset] = mas->last; | 
|  | mas->offset = dst_offset; | 
|  | rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); | 
|  |  | 
|  | /* | 
|  | * this range wrote to the end of the node or it overwrote the rest of | 
|  | * the data | 
|  | */ | 
|  | if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { | 
|  | new_end = dst_offset; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | dst_offset++; | 
|  | /* Copy to the end of node if necessary. */ | 
|  | copy_size = wr_mas->node_end - wr_mas->offset_end + 1; | 
|  | memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, | 
|  | sizeof(void *) * copy_size); | 
|  | if (dst_offset < max_piv) { | 
|  | if (copy_size > max_piv - dst_offset) | 
|  | copy_size = max_piv - dst_offset; | 
|  |  | 
|  | memcpy(dst_pivots + dst_offset, | 
|  | wr_mas->pivots + wr_mas->offset_end, | 
|  | sizeof(unsigned long) * copy_size); | 
|  | } | 
|  |  | 
|  | if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) | 
|  | dst_pivots[new_end] = mas->max; | 
|  |  | 
|  | done: | 
|  | mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); | 
|  | if (in_rcu) { | 
|  | mte_set_node_dead(mas->node); | 
|  | mas->node = mt_mk_node(newnode, wr_mas->type); | 
|  | mas_replace(mas, false); | 
|  | } else { | 
|  | memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); | 
|  | } | 
|  | trace_ma_write(__func__, mas, 0, wr_mas->entry); | 
|  | mas_update_gap(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_slot_store: Attempt to store a value in a slot. | 
|  | * @wr_mas: the maple write state | 
|  | * | 
|  | * Return: True if stored, false otherwise | 
|  | */ | 
|  | static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned long lmax; /* Logical max. */ | 
|  | unsigned char offset = mas->offset; | 
|  |  | 
|  | if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || | 
|  | (offset != wr_mas->node_end))) | 
|  | return false; | 
|  |  | 
|  | if (offset == wr_mas->node_end - 1) | 
|  | lmax = mas->max; | 
|  | else | 
|  | lmax = wr_mas->pivots[offset + 1]; | 
|  |  | 
|  | /* going to overwrite too many slots. */ | 
|  | if (lmax < mas->last) | 
|  | return false; | 
|  |  | 
|  | if (wr_mas->r_min == mas->index) { | 
|  | /* overwriting two or more ranges with one. */ | 
|  | if (lmax == mas->last) | 
|  | return false; | 
|  |  | 
|  | /* Overwriting all of offset and a portion of offset + 1. */ | 
|  | rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); | 
|  | wr_mas->pivots[offset] = mas->last; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Doesn't end on the next range end. */ | 
|  | if (lmax != mas->last) | 
|  | return false; | 
|  |  | 
|  | /* Overwriting a portion of offset and all of offset + 1 */ | 
|  | if ((offset + 1 < mt_pivots[wr_mas->type]) && | 
|  | (wr_mas->entry || wr_mas->pivots[offset + 1])) | 
|  | wr_mas->pivots[offset + 1] = mas->last; | 
|  |  | 
|  | rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); | 
|  | wr_mas->pivots[offset] = mas->index - 1; | 
|  | mas->offset++; /* Keep mas accurate. */ | 
|  |  | 
|  | done: | 
|  | trace_ma_write(__func__, mas, 0, wr_mas->entry); | 
|  | mas_update_gap(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | while ((wr_mas->offset_end < wr_mas->node_end) && | 
|  | (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) | 
|  | wr_mas->offset_end++; | 
|  |  | 
|  | if (wr_mas->offset_end < wr_mas->node_end) | 
|  | wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; | 
|  | else | 
|  | wr_mas->end_piv = wr_mas->mas->max; | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) | 
|  | mas->last = wr_mas->end_piv; | 
|  |  | 
|  | /* Check next slot(s) if we are overwriting the end */ | 
|  | if ((mas->last == wr_mas->end_piv) && | 
|  | (wr_mas->node_end != wr_mas->offset_end) && | 
|  | !wr_mas->slots[wr_mas->offset_end + 1]) { | 
|  | wr_mas->offset_end++; | 
|  | if (wr_mas->offset_end == wr_mas->node_end) | 
|  | mas->last = mas->max; | 
|  | else | 
|  | mas->last = wr_mas->pivots[wr_mas->offset_end]; | 
|  | wr_mas->end_piv = mas->last; | 
|  | } | 
|  |  | 
|  | if (!wr_mas->content) { | 
|  | /* If this one is null, the next and prev are not */ | 
|  | mas->index = wr_mas->r_min; | 
|  | } else { | 
|  | /* Check prev slot if we are overwriting the start */ | 
|  | if (mas->index == wr_mas->r_min && mas->offset && | 
|  | !wr_mas->slots[mas->offset - 1]) { | 
|  | mas->offset--; | 
|  | wr_mas->r_min = mas->index = | 
|  | mas_safe_min(mas, wr_mas->pivots, mas->offset); | 
|  | wr_mas->r_max = wr_mas->pivots[mas->offset]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool mas_wr_append(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | unsigned char end = wr_mas->node_end; | 
|  | unsigned char new_end = end + 1; | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char node_pivots = mt_pivots[wr_mas->type]; | 
|  |  | 
|  | if (mt_in_rcu(mas->tree)) | 
|  | return false; | 
|  |  | 
|  | if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { | 
|  | if (new_end < node_pivots) | 
|  | wr_mas->pivots[new_end] = wr_mas->pivots[end]; | 
|  |  | 
|  | if (new_end < node_pivots) | 
|  | ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); | 
|  |  | 
|  | rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); | 
|  | mas->offset = new_end; | 
|  | wr_mas->pivots[end] = mas->index - 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { | 
|  | if (new_end < node_pivots) | 
|  | wr_mas->pivots[new_end] = wr_mas->pivots[end]; | 
|  |  | 
|  | rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); | 
|  | if (new_end < node_pivots) | 
|  | ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); | 
|  |  | 
|  | wr_mas->pivots[end] = mas->last; | 
|  | rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_bnode() - Slow path for a modification. | 
|  | * @wr_mas: The write maple state | 
|  | * | 
|  | * This is where split, rebalance end up. | 
|  | */ | 
|  | static void mas_wr_bnode(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct maple_big_node b_node; | 
|  |  | 
|  | trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); | 
|  | memset(&b_node, 0, sizeof(struct maple_big_node)); | 
|  | mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); | 
|  | mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_modify(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | unsigned char node_slots; | 
|  | unsigned char node_size; | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | /* Direct replacement */ | 
|  | if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { | 
|  | rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); | 
|  | if (!!wr_mas->entry ^ !!wr_mas->content) | 
|  | mas_update_gap(mas); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Attempt to append */ | 
|  | node_slots = mt_slots[wr_mas->type]; | 
|  | node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; | 
|  | if (mas->max == ULONG_MAX) | 
|  | node_size++; | 
|  |  | 
|  | /* slot and node store will not fit, go to the slow path */ | 
|  | if (unlikely(node_size >= node_slots)) | 
|  | goto slow_path; | 
|  |  | 
|  | if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && | 
|  | (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { | 
|  | if (!wr_mas->content || !wr_mas->entry) | 
|  | mas_update_gap(mas); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) | 
|  | return; | 
|  | else if (mas_wr_node_store(wr_mas)) | 
|  | return; | 
|  |  | 
|  | if (mas_is_err(mas)) | 
|  | return; | 
|  |  | 
|  | slow_path: | 
|  | mas_wr_bnode(wr_mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_store_entry() - Internal call to store a value | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store. | 
|  | * | 
|  | * Return: The contents that was stored at the index. | 
|  | */ | 
|  | static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | wr_mas->content = mas_start(mas); | 
|  | if (mas_is_none(mas) || mas_is_ptr(mas)) { | 
|  | mas_store_root(mas, wr_mas->entry); | 
|  | return wr_mas->content; | 
|  | } | 
|  |  | 
|  | if (unlikely(!mas_wr_walk(wr_mas))) { | 
|  | mas_wr_spanning_store(wr_mas); | 
|  | return wr_mas->content; | 
|  | } | 
|  |  | 
|  | /* At this point, we are at the leaf node that needs to be altered. */ | 
|  | mas_wr_end_piv(wr_mas); | 
|  |  | 
|  | if (!wr_mas->entry) | 
|  | mas_wr_extend_null(wr_mas); | 
|  |  | 
|  | /* New root for a single pointer */ | 
|  | if (unlikely(!mas->index && mas->last == ULONG_MAX)) { | 
|  | mas_new_root(mas, wr_mas->entry); | 
|  | return wr_mas->content; | 
|  | } | 
|  |  | 
|  | mas_wr_modify(wr_mas); | 
|  | return wr_mas->content; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_insert() - Internal call to insert a value | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store | 
|  | * | 
|  | * Return: %NULL or the contents that already exists at the requested index | 
|  | * otherwise.  The maple state needs to be checked for error conditions. | 
|  | */ | 
|  | static inline void *mas_insert(struct ma_state *mas, void *entry) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | /* | 
|  | * Inserting a new range inserts either 0, 1, or 2 pivots within the | 
|  | * tree.  If the insert fits exactly into an existing gap with a value | 
|  | * of NULL, then the slot only needs to be written with the new value. | 
|  | * If the range being inserted is adjacent to another range, then only a | 
|  | * single pivot needs to be inserted (as well as writing the entry).  If | 
|  | * the new range is within a gap but does not touch any other ranges, | 
|  | * then two pivots need to be inserted: the start - 1, and the end.  As | 
|  | * usual, the entry must be written.  Most operations require a new node | 
|  | * to be allocated and replace an existing node to ensure RCU safety, | 
|  | * when in RCU mode.  The exception to requiring a newly allocated node | 
|  | * is when inserting at the end of a node (appending).  When done | 
|  | * carefully, appending can reuse the node in place. | 
|  | */ | 
|  | wr_mas.content = mas_start(mas); | 
|  | if (wr_mas.content) | 
|  | goto exists; | 
|  |  | 
|  | if (mas_is_none(mas) || mas_is_ptr(mas)) { | 
|  | mas_store_root(mas, entry); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* spanning writes always overwrite something */ | 
|  | if (!mas_wr_walk(&wr_mas)) | 
|  | goto exists; | 
|  |  | 
|  | /* At this point, we are at the leaf node that needs to be altered. */ | 
|  | wr_mas.offset_end = mas->offset; | 
|  | wr_mas.end_piv = wr_mas.r_max; | 
|  |  | 
|  | if (wr_mas.content || (mas->last > wr_mas.r_max)) | 
|  | goto exists; | 
|  |  | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | mas_wr_modify(&wr_mas); | 
|  | return wr_mas.content; | 
|  |  | 
|  | exists: | 
|  | mas_set_err(mas, -EEXIST); | 
|  | return wr_mas.content; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_prev_node() - Find the prev non-null entry at the same level in the | 
|  | * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE. | 
|  | * @mas: The maple state | 
|  | * @min: The lower limit to search | 
|  | * | 
|  | * The prev node value will be mas->node[mas->offset] or MAS_NONE. | 
|  | * Return: 1 if the node is dead, 0 otherwise. | 
|  | */ | 
|  | static inline int mas_prev_node(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | enum maple_type mt; | 
|  | int offset, level; | 
|  | void __rcu **slots; | 
|  | struct maple_node *node; | 
|  | struct maple_enode *enode; | 
|  | unsigned long *pivots; | 
|  |  | 
|  | if (mas_is_none(mas)) | 
|  | return 0; | 
|  |  | 
|  | level = 0; | 
|  | do { | 
|  | node = mas_mn(mas); | 
|  | if (ma_is_root(node)) | 
|  | goto no_entry; | 
|  |  | 
|  | /* Walk up. */ | 
|  | if (unlikely(mas_ascend(mas))) | 
|  | return 1; | 
|  | offset = mas->offset; | 
|  | level++; | 
|  | } while (!offset); | 
|  |  | 
|  | offset--; | 
|  | mt = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | slots = ma_slots(node, mt); | 
|  | pivots = ma_pivots(node, mt); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->max = pivots[offset]; | 
|  | if (offset) | 
|  | mas->min = pivots[offset - 1] + 1; | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | if (mas->max < min) | 
|  | goto no_entry_min; | 
|  |  | 
|  | while (level > 1) { | 
|  | level--; | 
|  | enode = mas_slot(mas, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->node = enode; | 
|  | mt = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | slots = ma_slots(node, mt); | 
|  | pivots = ma_pivots(node, mt); | 
|  | offset = ma_data_end(node, mt, pivots, mas->max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | if (offset) | 
|  | mas->min = pivots[offset - 1] + 1; | 
|  |  | 
|  | if (offset < mt_pivots[mt]) | 
|  | mas->max = pivots[offset]; | 
|  |  | 
|  | if (mas->max < min) | 
|  | goto no_entry; | 
|  | } | 
|  |  | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->offset = mas_data_end(mas); | 
|  | if (unlikely(mte_dead_node(mas->node))) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | no_entry_min: | 
|  | mas->offset = offset; | 
|  | if (offset) | 
|  | mas->min = pivots[offset - 1] + 1; | 
|  | no_entry: | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->node = MAS_NONE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_node() - Get the next node at the same level in the tree. | 
|  | * @mas: The maple state | 
|  | * @max: The maximum pivot value to check. | 
|  | * | 
|  | * The next value will be mas->node[mas->offset] or MAS_NONE. | 
|  | * Return: 1 on dead node, 0 otherwise. | 
|  | */ | 
|  | static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, | 
|  | unsigned long max) | 
|  | { | 
|  | unsigned long min, pivot; | 
|  | unsigned long *pivots; | 
|  | struct maple_enode *enode; | 
|  | int level = 0; | 
|  | unsigned char offset; | 
|  | unsigned char node_end; | 
|  | enum maple_type mt; | 
|  | void __rcu **slots; | 
|  |  | 
|  | if (mas->max >= max) | 
|  | goto no_entry; | 
|  |  | 
|  | level = 0; | 
|  | do { | 
|  | if (ma_is_root(node)) | 
|  | goto no_entry; | 
|  |  | 
|  | min = mas->max + 1; | 
|  | if (min > max) | 
|  | goto no_entry; | 
|  |  | 
|  | if (unlikely(mas_ascend(mas))) | 
|  | return 1; | 
|  |  | 
|  | offset = mas->offset; | 
|  | level++; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, mt); | 
|  | node_end = ma_data_end(node, mt, pivots, mas->max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | } while (unlikely(offset == node_end)); | 
|  |  | 
|  | slots = ma_slots(node, mt); | 
|  | pivot = mas_safe_pivot(mas, pivots, ++offset, mt); | 
|  | while (unlikely(level > 1)) { | 
|  | /* Descend, if necessary */ | 
|  | enode = mas_slot(mas, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->node = enode; | 
|  | level--; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | slots = ma_slots(node, mt); | 
|  | pivots = ma_pivots(node, mt); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | offset = 0; | 
|  | pivot = pivots[0]; | 
|  | } | 
|  |  | 
|  | enode = mas_slot(mas, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->node = enode; | 
|  | mas->min = min; | 
|  | mas->max = pivot; | 
|  | return 0; | 
|  |  | 
|  | no_entry: | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->node = MAS_NONE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_nentry() - Get the next node entry | 
|  | * @mas: The maple state | 
|  | * @max: The maximum value to check | 
|  | * @*range_start: Pointer to store the start of the range. | 
|  | * | 
|  | * Sets @mas->offset to the offset of the next node entry, @mas->last to the | 
|  | * pivot of the entry. | 
|  | * | 
|  | * Return: The next entry, %NULL otherwise | 
|  | */ | 
|  | static inline void *mas_next_nentry(struct ma_state *mas, | 
|  | struct maple_node *node, unsigned long max, enum maple_type type) | 
|  | { | 
|  | unsigned char count; | 
|  | unsigned long pivot; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | void *entry; | 
|  |  | 
|  | if (mas->last == mas->max) { | 
|  | mas->index = mas->max; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | slots = ma_slots(node, type); | 
|  | pivots = ma_pivots(node, type); | 
|  | count = ma_data_end(node, type, pivots, mas->max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return NULL; | 
|  |  | 
|  | mas->index = mas_safe_min(mas, pivots, mas->offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return NULL; | 
|  |  | 
|  | if (mas->index > max) | 
|  | return NULL; | 
|  |  | 
|  | if (mas->offset > count) | 
|  | return NULL; | 
|  |  | 
|  | while (mas->offset < count) { | 
|  | pivot = pivots[mas->offset]; | 
|  | entry = mas_slot(mas, slots, mas->offset); | 
|  | if (ma_dead_node(node)) | 
|  | return NULL; | 
|  |  | 
|  | if (entry) | 
|  | goto found; | 
|  |  | 
|  | if (pivot >= max) | 
|  | return NULL; | 
|  |  | 
|  | mas->index = pivot + 1; | 
|  | mas->offset++; | 
|  | } | 
|  |  | 
|  | if (mas->index > mas->max) { | 
|  | mas->index = mas->last; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pivot = mas_safe_pivot(mas, pivots, mas->offset, type); | 
|  | entry = mas_slot(mas, slots, mas->offset); | 
|  | if (ma_dead_node(node)) | 
|  | return NULL; | 
|  |  | 
|  | if (!pivot) | 
|  | return NULL; | 
|  |  | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | mas->last = pivot; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static inline void mas_rewalk(struct ma_state *mas, unsigned long index) | 
|  | { | 
|  |  | 
|  | retry: | 
|  | mas_set(mas, index); | 
|  | mas_state_walk(mas); | 
|  | if (mas_is_start(mas)) | 
|  | goto retry; | 
|  |  | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_entry() - Internal function to get the next entry. | 
|  | * @mas: The maple state | 
|  | * @limit: The maximum range start. | 
|  | * | 
|  | * Set the @mas->node to the next entry and the range_start to | 
|  | * the beginning value for the entry.  Does not check beyond @limit. | 
|  | * Sets @mas->index and @mas->last to the limit if it is hit. | 
|  | * Restarts on dead nodes. | 
|  | * | 
|  | * Return: the next entry or %NULL. | 
|  | */ | 
|  | static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) | 
|  | { | 
|  | void *entry = NULL; | 
|  | struct maple_enode *prev_node; | 
|  | struct maple_node *node; | 
|  | unsigned char offset; | 
|  | unsigned long last; | 
|  | enum maple_type mt; | 
|  |  | 
|  | if (mas->index > limit) { | 
|  | mas->index = mas->last = limit; | 
|  | mas_pause(mas); | 
|  | return NULL; | 
|  | } | 
|  | last = mas->last; | 
|  | retry: | 
|  | offset = mas->offset; | 
|  | prev_node = mas->node; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | mas->offset++; | 
|  | if (unlikely(mas->offset >= mt_slots[mt])) { | 
|  | mas->offset = mt_slots[mt] - 1; | 
|  | goto next_node; | 
|  | } | 
|  |  | 
|  | while (!mas_is_none(mas)) { | 
|  | entry = mas_next_nentry(mas, node, limit, mt); | 
|  | if (unlikely(ma_dead_node(node))) { | 
|  | mas_rewalk(mas, last); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (likely(entry)) | 
|  | return entry; | 
|  |  | 
|  | if (unlikely((mas->index > limit))) | 
|  | break; | 
|  |  | 
|  | next_node: | 
|  | prev_node = mas->node; | 
|  | offset = mas->offset; | 
|  | if (unlikely(mas_next_node(mas, node, limit))) { | 
|  | mas_rewalk(mas, last); | 
|  | goto retry; | 
|  | } | 
|  | mas->offset = 0; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | } | 
|  |  | 
|  | mas->index = mas->last = limit; | 
|  | mas->offset = offset; | 
|  | mas->node = prev_node; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_prev_nentry() - Get the previous node entry. | 
|  | * @mas: The maple state. | 
|  | * @limit: The lower limit to check for a value. | 
|  | * | 
|  | * Return: the entry, %NULL otherwise. | 
|  | */ | 
|  | static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, | 
|  | unsigned long index) | 
|  | { | 
|  | unsigned long pivot, min; | 
|  | unsigned char offset; | 
|  | struct maple_node *mn; | 
|  | enum maple_type mt; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | void *entry; | 
|  |  | 
|  | retry: | 
|  | if (!mas->offset) | 
|  | return NULL; | 
|  |  | 
|  | mn = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | offset = mas->offset - 1; | 
|  | if (offset >= mt_slots[mt]) | 
|  | offset = mt_slots[mt] - 1; | 
|  |  | 
|  | slots = ma_slots(mn, mt); | 
|  | pivots = ma_pivots(mn, mt); | 
|  | if (unlikely(ma_dead_node(mn))) { | 
|  | mas_rewalk(mas, index); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (offset == mt_pivots[mt]) | 
|  | pivot = mas->max; | 
|  | else | 
|  | pivot = pivots[offset]; | 
|  |  | 
|  | if (unlikely(ma_dead_node(mn))) { | 
|  | mas_rewalk(mas, index); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || | 
|  | !pivot)) | 
|  | pivot = pivots[--offset]; | 
|  |  | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | entry = mas_slot(mas, slots, offset); | 
|  | if (unlikely(ma_dead_node(mn))) { | 
|  | mas_rewalk(mas, index); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (likely(entry)) { | 
|  | mas->offset = offset; | 
|  | mas->last = pivot; | 
|  | mas->index = min; | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | if (mas->index < min) { | 
|  | mas->index = mas->last = min; | 
|  | mas->node = MAS_NONE; | 
|  | return NULL; | 
|  | } | 
|  | retry: | 
|  | while (likely(!mas_is_none(mas))) { | 
|  | entry = mas_prev_nentry(mas, min, mas->index); | 
|  | if (unlikely(mas->last < min)) | 
|  | goto not_found; | 
|  |  | 
|  | if (likely(entry)) | 
|  | return entry; | 
|  |  | 
|  | if (unlikely(mas_prev_node(mas, min))) { | 
|  | mas_rewalk(mas, mas->index); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | mas->offset++; | 
|  | } | 
|  |  | 
|  | mas->offset--; | 
|  | not_found: | 
|  | mas->index = mas->last = min; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the | 
|  | * highest gap address of a given size in a given node and descend. | 
|  | * @mas: The maple state | 
|  | * @size: The needed size. | 
|  | * | 
|  | * Return: True if found in a leaf, false otherwise. | 
|  | * | 
|  | */ | 
|  | static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, | 
|  | unsigned long *gap_min, unsigned long *gap_max) | 
|  | { | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | struct maple_node *node = mas_mn(mas); | 
|  | unsigned long *pivots, *gaps; | 
|  | void __rcu **slots; | 
|  | unsigned long gap = 0; | 
|  | unsigned long max, min; | 
|  | unsigned char offset; | 
|  |  | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return true; | 
|  |  | 
|  | if (ma_is_dense(type)) { | 
|  | /* dense nodes. */ | 
|  | mas->offset = (unsigned char)(mas->index - mas->min); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | gaps = ma_gaps(node, type); | 
|  | offset = mas->offset; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | /* Skip out of bounds. */ | 
|  | while (mas->last < min) | 
|  | min = mas_safe_min(mas, pivots, --offset); | 
|  |  | 
|  | max = mas_safe_pivot(mas, pivots, offset, type); | 
|  | while (mas->index <= max) { | 
|  | gap = 0; | 
|  | if (gaps) | 
|  | gap = gaps[offset]; | 
|  | else if (!mas_slot(mas, slots, offset)) | 
|  | gap = max - min + 1; | 
|  |  | 
|  | if (gap) { | 
|  | if ((size <= gap) && (size <= mas->last - min + 1)) | 
|  | break; | 
|  |  | 
|  | if (!gaps) { | 
|  | /* Skip the next slot, it cannot be a gap. */ | 
|  | if (offset < 2) | 
|  | goto ascend; | 
|  |  | 
|  | offset -= 2; | 
|  | max = pivots[offset]; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!offset) | 
|  | goto ascend; | 
|  |  | 
|  | offset--; | 
|  | max = min - 1; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | } | 
|  |  | 
|  | if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) | 
|  | goto no_space; | 
|  |  | 
|  | if (unlikely(ma_is_leaf(type))) { | 
|  | mas->offset = offset; | 
|  | *gap_min = min; | 
|  | *gap_max = min + gap - 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* descend, only happens under lock. */ | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | mas->min = min; | 
|  | mas->max = max; | 
|  | mas->offset = mas_data_end(mas); | 
|  | return false; | 
|  |  | 
|  | ascend: | 
|  | if (!mte_is_root(mas->node)) | 
|  | return false; | 
|  |  | 
|  | no_space: | 
|  | mas_set_err(mas, -EBUSY); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) | 
|  | { | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | unsigned long pivot, min, gap = 0; | 
|  | unsigned char offset, data_end; | 
|  | unsigned long *gaps, *pivots; | 
|  | void __rcu **slots; | 
|  | struct maple_node *node; | 
|  | bool found = false; | 
|  |  | 
|  | if (ma_is_dense(type)) { | 
|  | mas->offset = (unsigned char)(mas->index - mas->min); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | gaps = ma_gaps(node, type); | 
|  | offset = mas->offset; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | data_end = ma_data_end(node, type, pivots, mas->max); | 
|  | for (; offset <= data_end; offset++) { | 
|  | pivot = mas_logical_pivot(mas, pivots, offset, type); | 
|  |  | 
|  | /* Not within lower bounds */ | 
|  | if (mas->index > pivot) | 
|  | goto next_slot; | 
|  |  | 
|  | if (gaps) | 
|  | gap = gaps[offset]; | 
|  | else if (!mas_slot(mas, slots, offset)) | 
|  | gap = min(pivot, mas->last) - max(mas->index, min) + 1; | 
|  | else | 
|  | goto next_slot; | 
|  |  | 
|  | if (gap >= size) { | 
|  | if (ma_is_leaf(type)) { | 
|  | found = true; | 
|  | goto done; | 
|  | } | 
|  | if (mas->index <= pivot) { | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | mas->min = min; | 
|  | mas->max = pivot; | 
|  | offset = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | next_slot: | 
|  | min = pivot + 1; | 
|  | if (mas->last <= pivot) { | 
|  | mas_set_err(mas, -EBUSY); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | found = true; | 
|  | done: | 
|  | mas->offset = offset; | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_walk() - Search for @mas->index in the tree. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * mas->index and mas->last will be set to the range if there is a value.  If | 
|  | * mas->node is MAS_NONE, reset to MAS_START. | 
|  | * | 
|  | * Return: the entry at the location or %NULL. | 
|  | */ | 
|  | void *mas_walk(struct ma_state *mas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | retry: | 
|  | entry = mas_state_walk(mas); | 
|  | if (mas_is_start(mas)) | 
|  | goto retry; | 
|  |  | 
|  | if (mas_is_ptr(mas)) { | 
|  | if (!mas->index) { | 
|  | mas->last = 0; | 
|  | } else { | 
|  | mas->index = 1; | 
|  | mas->last = ULONG_MAX; | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | if (mas_is_none(mas)) { | 
|  | mas->index = 0; | 
|  | mas->last = ULONG_MAX; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_walk); | 
|  |  | 
|  | static inline bool mas_rewind_node(struct ma_state *mas) | 
|  | { | 
|  | unsigned char slot; | 
|  |  | 
|  | do { | 
|  | if (mte_is_root(mas->node)) { | 
|  | slot = mas->offset; | 
|  | if (!slot) | 
|  | return false; | 
|  | } else { | 
|  | mas_ascend(mas); | 
|  | slot = mas->offset; | 
|  | } | 
|  | } while (!slot); | 
|  |  | 
|  | mas->offset = --slot; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_skip_node() - Internal function.  Skip over a node. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: true if there is another node, false otherwise. | 
|  | */ | 
|  | static inline bool mas_skip_node(struct ma_state *mas) | 
|  | { | 
|  | if (mas_is_err(mas)) | 
|  | return false; | 
|  |  | 
|  | do { | 
|  | if (mte_is_root(mas->node)) { | 
|  | if (mas->offset >= mas_data_end(mas)) { | 
|  | mas_set_err(mas, -EBUSY); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | mas_ascend(mas); | 
|  | } | 
|  | } while (mas->offset >= mas_data_end(mas)); | 
|  |  | 
|  | mas->offset++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of | 
|  | * @size | 
|  | * @mas: The maple state | 
|  | * @size: The size of the gap required | 
|  | * | 
|  | * Search between @mas->index and @mas->last for a gap of @size. | 
|  | */ | 
|  | static inline void mas_awalk(struct ma_state *mas, unsigned long size) | 
|  | { | 
|  | struct maple_enode *last = NULL; | 
|  |  | 
|  | /* | 
|  | * There are 4 options: | 
|  | * go to child (descend) | 
|  | * go back to parent (ascend) | 
|  | * no gap found. (return, slot == MAPLE_NODE_SLOTS) | 
|  | * found the gap. (return, slot != MAPLE_NODE_SLOTS) | 
|  | */ | 
|  | while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { | 
|  | if (last == mas->node) | 
|  | mas_skip_node(mas); | 
|  | else | 
|  | last = mas->node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_fill_gap() - Fill a located gap with @entry. | 
|  | * @mas: The maple state | 
|  | * @entry: The value to store | 
|  | * @slot: The offset into the node to store the @entry | 
|  | * @size: The size of the entry | 
|  | * @index: The start location | 
|  | */ | 
|  | static inline void mas_fill_gap(struct ma_state *mas, void *entry, | 
|  | unsigned char slot, unsigned long size, unsigned long *index) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  | unsigned char pslot = mte_parent_slot(mas->node); | 
|  | struct maple_enode *mn = mas->node; | 
|  | unsigned long *pivots; | 
|  | enum maple_type ptype; | 
|  | /* | 
|  | * mas->index is the start address for the search | 
|  | *  which may no longer be needed. | 
|  | * mas->last is the end address for the search | 
|  | */ | 
|  |  | 
|  | *index = mas->index; | 
|  | mas->last = mas->index + size - 1; | 
|  |  | 
|  | /* | 
|  | * It is possible that using mas->max and mas->min to correctly | 
|  | * calculate the index and last will cause an issue in the gap | 
|  | * calculation, so fix the ma_state here | 
|  | */ | 
|  | mas_ascend(mas); | 
|  | ptype = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(mas_mn(mas), ptype); | 
|  | mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); | 
|  | mas->min = mas_safe_min(mas, pivots, pslot); | 
|  | mas->node = mn; | 
|  | mas->offset = slot; | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_sparse_area() - Internal function.  Return upper or lower limit when | 
|  | * searching for a gap in an empty tree. | 
|  | * @mas: The maple state | 
|  | * @min: the minimum range | 
|  | * @max: The maximum range | 
|  | * @size: The size of the gap | 
|  | * @fwd: Searching forward or back | 
|  | */ | 
|  | static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, unsigned long size, bool fwd) | 
|  | { | 
|  | if (!unlikely(mas_is_none(mas)) && min == 0) { | 
|  | min++; | 
|  | /* | 
|  | * At this time, min is increased, we need to recheck whether | 
|  | * the size is satisfied. | 
|  | */ | 
|  | if (min > max || max - min + 1 < size) | 
|  | return -EBUSY; | 
|  | } | 
|  | /* mas_is_ptr */ | 
|  |  | 
|  | if (fwd) { | 
|  | mas->index = min; | 
|  | mas->last = min + size - 1; | 
|  | } else { | 
|  | mas->last = max; | 
|  | mas->index = max - size + 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_empty_area() - Get the lowest address within the range that is | 
|  | * sufficient for the size requested. | 
|  | * @mas: The maple state | 
|  | * @min: The lowest value of the range | 
|  | * @max: The highest value of the range | 
|  | * @size: The size needed | 
|  | */ | 
|  | int mas_empty_area(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, unsigned long size) | 
|  | { | 
|  | unsigned char offset; | 
|  | unsigned long *pivots; | 
|  | enum maple_type mt; | 
|  |  | 
|  | if (min >= max) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_start(mas); | 
|  | else if (mas->offset >= 2) | 
|  | mas->offset -= 2; | 
|  | else if (!mas_skip_node(mas)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Empty set */ | 
|  | if (mas_is_none(mas) || mas_is_ptr(mas)) | 
|  | return mas_sparse_area(mas, min, max, size, true); | 
|  |  | 
|  | /* The start of the window can only be within these values */ | 
|  | mas->index = min; | 
|  | mas->last = max; | 
|  | mas_awalk(mas, size); | 
|  |  | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | offset = mas->offset; | 
|  | if (unlikely(offset == MAPLE_NODE_SLOTS)) | 
|  | return -EBUSY; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(mas_mn(mas), mt); | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | if (mas->index < min) | 
|  | mas->index = min; | 
|  | mas->last = mas->index + size - 1; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_empty_area); | 
|  |  | 
|  | /* | 
|  | * mas_empty_area_rev() - Get the highest address within the range that is | 
|  | * sufficient for the size requested. | 
|  | * @mas: The maple state | 
|  | * @min: The lowest value of the range | 
|  | * @max: The highest value of the range | 
|  | * @size: The size needed | 
|  | */ | 
|  | int mas_empty_area_rev(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, unsigned long size) | 
|  | { | 
|  | struct maple_enode *last = mas->node; | 
|  |  | 
|  | if (min >= max) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_start(mas); | 
|  | else if ((mas->offset < 2) && (!mas_rewind_node(mas))) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) | 
|  | return mas_sparse_area(mas, min, max, size, false); | 
|  | else if (mas->offset >= 2) | 
|  | mas->offset -= 2; | 
|  | else | 
|  | mas->offset = mas_data_end(mas); | 
|  |  | 
|  |  | 
|  | /* The start of the window can only be within these values. */ | 
|  | mas->index = min; | 
|  | mas->last = max; | 
|  |  | 
|  | while (!mas_rev_awalk(mas, size, &min, &max)) { | 
|  | if (last == mas->node) { | 
|  | if (!mas_rewind_node(mas)) | 
|  | return -EBUSY; | 
|  | } else { | 
|  | last = mas->node; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mas_is_err(mas)) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Trim the upper limit to the max. */ | 
|  | if (max <= mas->last) | 
|  | mas->last = max; | 
|  |  | 
|  | mas->index = mas->last - size + 1; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_empty_area_rev); | 
|  |  | 
|  | static inline int mas_alloc(struct ma_state *mas, void *entry, | 
|  | unsigned long size, unsigned long *index) | 
|  | { | 
|  | unsigned long min; | 
|  |  | 
|  | mas_start(mas); | 
|  | if (mas_is_none(mas) || mas_is_ptr(mas)) { | 
|  | mas_root_expand(mas, entry); | 
|  | if (mas_is_err(mas)) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | if (!mas->index) | 
|  | return mte_pivot(mas->node, 0); | 
|  | return mte_pivot(mas->node, 1); | 
|  | } | 
|  |  | 
|  | /* Must be walking a tree. */ | 
|  | mas_awalk(mas, size); | 
|  | if (mas_is_err(mas)) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | if (mas->offset == MAPLE_NODE_SLOTS) | 
|  | goto no_gap; | 
|  |  | 
|  | /* | 
|  | * At this point, mas->node points to the right node and we have an | 
|  | * offset that has a sufficient gap. | 
|  | */ | 
|  | min = mas->min; | 
|  | if (mas->offset) | 
|  | min = mte_pivot(mas->node, mas->offset - 1) + 1; | 
|  |  | 
|  | if (mas->index < min) | 
|  | mas->index = min; | 
|  |  | 
|  | mas_fill_gap(mas, entry, mas->offset, size, index); | 
|  | return 0; | 
|  |  | 
|  | no_gap: | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, void *entry, | 
|  | unsigned long size, unsigned long *index) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ret = mas_empty_area_rev(mas, min, max, size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (mas_is_err(mas)) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | if (mas->offset == MAPLE_NODE_SLOTS) | 
|  | goto no_gap; | 
|  |  | 
|  | mas_fill_gap(mas, entry, mas->offset, size, index); | 
|  | return 0; | 
|  |  | 
|  | no_gap: | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_dead_leaves() - Mark all leaves of a node as dead. | 
|  | * @mas: The maple state | 
|  | * @slots: Pointer to the slot array | 
|  | * @type: The maple node type | 
|  | * | 
|  | * Must hold the write lock. | 
|  | * | 
|  | * Return: The number of leaves marked as dead. | 
|  | */ | 
|  | static inline | 
|  | unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, | 
|  | void __rcu **slots) | 
|  | { | 
|  | struct maple_node *node; | 
|  | enum maple_type type; | 
|  | void *entry; | 
|  | int offset; | 
|  |  | 
|  | for (offset = 0; offset < mt_slot_count(enode); offset++) { | 
|  | entry = mt_slot(mt, slots, offset); | 
|  | type = mte_node_type(entry); | 
|  | node = mte_to_node(entry); | 
|  | /* Use both node and type to catch LE & BE metadata */ | 
|  | if (!node || !type) | 
|  | break; | 
|  |  | 
|  | mte_set_node_dead(entry); | 
|  | node->type = type; | 
|  | rcu_assign_pointer(slots[offset], node); | 
|  | } | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mte_dead_walk() - Walk down a dead tree to just before the leaves | 
|  | * @enode: The maple encoded node | 
|  | * @offset: The starting offset | 
|  | * | 
|  | * Note: This can only be used from the RCU callback context. | 
|  | */ | 
|  | static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) | 
|  | { | 
|  | struct maple_node *node, *next; | 
|  | void __rcu **slots = NULL; | 
|  |  | 
|  | next = mte_to_node(*enode); | 
|  | do { | 
|  | *enode = ma_enode_ptr(next); | 
|  | node = mte_to_node(*enode); | 
|  | slots = ma_slots(node, node->type); | 
|  | next = rcu_dereference_protected(slots[offset], | 
|  | lock_is_held(&rcu_callback_map)); | 
|  | offset = 0; | 
|  | } while (!ma_is_leaf(next->type)); | 
|  |  | 
|  | return slots; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mt_free_walk() - Walk & free a tree in the RCU callback context | 
|  | * @head: The RCU head that's within the node. | 
|  | * | 
|  | * Note: This can only be used from the RCU callback context. | 
|  | */ | 
|  | static void mt_free_walk(struct rcu_head *head) | 
|  | { | 
|  | void __rcu **slots; | 
|  | struct maple_node *node, *start; | 
|  | struct maple_enode *enode; | 
|  | unsigned char offset; | 
|  | enum maple_type type; | 
|  |  | 
|  | node = container_of(head, struct maple_node, rcu); | 
|  |  | 
|  | if (ma_is_leaf(node->type)) | 
|  | goto free_leaf; | 
|  |  | 
|  | start = node; | 
|  | enode = mt_mk_node(node, node->type); | 
|  | slots = mte_dead_walk(&enode, 0); | 
|  | node = mte_to_node(enode); | 
|  | do { | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  | offset = node->parent_slot + 1; | 
|  | enode = node->piv_parent; | 
|  | if (mte_to_node(enode) == node) | 
|  | goto free_leaf; | 
|  |  | 
|  | type = mte_node_type(enode); | 
|  | slots = ma_slots(mte_to_node(enode), type); | 
|  | if ((offset < mt_slots[type]) && | 
|  | rcu_dereference_protected(slots[offset], | 
|  | lock_is_held(&rcu_callback_map))) | 
|  | slots = mte_dead_walk(&enode, offset); | 
|  | node = mte_to_node(enode); | 
|  | } while ((node != start) || (node->slot_len < offset)); | 
|  |  | 
|  | slots = ma_slots(node, node->type); | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  |  | 
|  | free_leaf: | 
|  | mt_free_rcu(&node->rcu); | 
|  | } | 
|  |  | 
|  | static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, | 
|  | struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) | 
|  | { | 
|  | struct maple_node *node; | 
|  | struct maple_enode *next = *enode; | 
|  | void __rcu **slots = NULL; | 
|  | enum maple_type type; | 
|  | unsigned char next_offset = 0; | 
|  |  | 
|  | do { | 
|  | *enode = next; | 
|  | node = mte_to_node(*enode); | 
|  | type = mte_node_type(*enode); | 
|  | slots = ma_slots(node, type); | 
|  | next = mt_slot_locked(mt, slots, next_offset); | 
|  | if ((mte_dead_node(next))) | 
|  | next = mt_slot_locked(mt, slots, ++next_offset); | 
|  |  | 
|  | mte_set_node_dead(*enode); | 
|  | node->type = type; | 
|  | node->piv_parent = prev; | 
|  | node->parent_slot = offset; | 
|  | offset = next_offset; | 
|  | next_offset = 0; | 
|  | prev = *enode; | 
|  | } while (!mte_is_leaf(next)); | 
|  |  | 
|  | return slots; | 
|  | } | 
|  |  | 
|  | static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, | 
|  | bool free) | 
|  | { | 
|  | void __rcu **slots; | 
|  | struct maple_node *node = mte_to_node(enode); | 
|  | struct maple_enode *start; | 
|  |  | 
|  | if (mte_is_leaf(enode)) { | 
|  | node->type = mte_node_type(enode); | 
|  | goto free_leaf; | 
|  | } | 
|  |  | 
|  | start = enode; | 
|  | slots = mte_destroy_descend(&enode, mt, start, 0); | 
|  | node = mte_to_node(enode); // Updated in the above call. | 
|  | do { | 
|  | enum maple_type type; | 
|  | unsigned char offset; | 
|  | struct maple_enode *parent, *tmp; | 
|  |  | 
|  | node->slot_len = mte_dead_leaves(enode, mt, slots); | 
|  | if (free) | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  | offset = node->parent_slot + 1; | 
|  | enode = node->piv_parent; | 
|  | if (mte_to_node(enode) == node) | 
|  | goto free_leaf; | 
|  |  | 
|  | type = mte_node_type(enode); | 
|  | slots = ma_slots(mte_to_node(enode), type); | 
|  | if (offset >= mt_slots[type]) | 
|  | goto next; | 
|  |  | 
|  | tmp = mt_slot_locked(mt, slots, offset); | 
|  | if (mte_node_type(tmp) && mte_to_node(tmp)) { | 
|  | parent = enode; | 
|  | enode = tmp; | 
|  | slots = mte_destroy_descend(&enode, mt, parent, offset); | 
|  | } | 
|  | next: | 
|  | node = mte_to_node(enode); | 
|  | } while (start != enode); | 
|  |  | 
|  | node = mte_to_node(enode); | 
|  | node->slot_len = mte_dead_leaves(enode, mt, slots); | 
|  | if (free) | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  |  | 
|  | free_leaf: | 
|  | if (free) | 
|  | mt_free_rcu(&node->rcu); | 
|  | else | 
|  | mt_clear_meta(mt, node, node->type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_destroy_walk() - Free a tree or sub-tree. | 
|  | * @enode - the encoded maple node (maple_enode) to start | 
|  | * @mn - the tree to free - needed for node types. | 
|  | * | 
|  | * Must hold the write lock. | 
|  | */ | 
|  | static inline void mte_destroy_walk(struct maple_enode *enode, | 
|  | struct maple_tree *mt) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(enode); | 
|  |  | 
|  | if (mt_in_rcu(mt)) { | 
|  | mt_destroy_walk(enode, mt, false); | 
|  | call_rcu(&node->rcu, mt_free_walk); | 
|  | } else { | 
|  | mt_destroy_walk(enode, mt, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mas_wr_store_setup(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | if (unlikely(mas_is_paused(wr_mas->mas))) | 
|  | mas_reset(wr_mas->mas); | 
|  |  | 
|  | if (!mas_is_start(wr_mas->mas)) { | 
|  | if (mas_is_none(wr_mas->mas)) { | 
|  | mas_reset(wr_mas->mas); | 
|  | } else { | 
|  | wr_mas->r_max = wr_mas->mas->max; | 
|  | wr_mas->type = mte_node_type(wr_mas->mas->node); | 
|  | if (mas_is_span_wr(wr_mas)) | 
|  | mas_reset(wr_mas->mas); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Interface */ | 
|  |  | 
|  | /** | 
|  | * mas_store() - Store an @entry. | 
|  | * @mas: The maple state. | 
|  | * @entry: The entry to store. | 
|  | * | 
|  | * The @mas->index and @mas->last is used to set the range for the @entry. | 
|  | * Note: The @mas should have pre-allocated entries to ensure there is memory to | 
|  | * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details. | 
|  | * | 
|  | * Return: the first entry between mas->index and mas->last or %NULL. | 
|  | */ | 
|  | void *mas_store(struct ma_state *mas, void *entry) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | trace_ma_write(__func__, mas, 0, entry); | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | if (mas->index > mas->last) | 
|  | pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); | 
|  | MT_BUG_ON(mas->tree, mas->index > mas->last); | 
|  | if (mas->index > mas->last) { | 
|  | mas_set_err(mas, -EINVAL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Storing is the same operation as insert with the added caveat that it | 
|  | * can overwrite entries.  Although this seems simple enough, one may | 
|  | * want to examine what happens if a single store operation was to | 
|  | * overwrite multiple entries within a self-balancing B-Tree. | 
|  | */ | 
|  | mas_wr_store_setup(&wr_mas); | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | return wr_mas.content; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_store); | 
|  |  | 
|  | /** | 
|  | * mas_store_gfp() - Store a value into the tree. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations if necessary. | 
|  | * | 
|  | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not | 
|  | * be allocated. | 
|  | */ | 
|  | int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | mas_wr_store_setup(&wr_mas); | 
|  | trace_ma_write(__func__, mas, 0, entry); | 
|  | retry: | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | if (unlikely(mas_nomem(mas, gfp))) | 
|  | goto retry; | 
|  |  | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_store_gfp); | 
|  |  | 
|  | /** | 
|  | * mas_store_prealloc() - Store a value into the tree using memory | 
|  | * preallocated in the maple state. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store. | 
|  | */ | 
|  | void mas_store_prealloc(struct ma_state *mas, void *entry) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | mas_wr_store_setup(&wr_mas); | 
|  | trace_ma_write(__func__, mas, 0, entry); | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | BUG_ON(mas_is_err(mas)); | 
|  | mas_destroy(mas); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_store_prealloc); | 
|  |  | 
|  | /** | 
|  | * mas_preallocate() - Preallocate enough nodes for a store operation | 
|  | * @mas: The maple state | 
|  | * @entry: The entry that will be stored | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 on success, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); | 
|  | mas->mas_flags |= MA_STATE_PREALLOC; | 
|  | if (likely(!mas_is_err(mas))) | 
|  | return 0; | 
|  |  | 
|  | mas_set_alloc_req(mas, 0); | 
|  | ret = xa_err(mas->node); | 
|  | mas_reset(mas); | 
|  | mas_destroy(mas); | 
|  | mas_reset(mas); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_destroy() - destroy a maple state. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Upon completion, check the left-most node and rebalance against the node to | 
|  | * the right if necessary.  Frees any allocated nodes associated with this maple | 
|  | * state. | 
|  | */ | 
|  | void mas_destroy(struct ma_state *mas) | 
|  | { | 
|  | struct maple_alloc *node; | 
|  | unsigned long total; | 
|  |  | 
|  | /* | 
|  | * When using mas_for_each() to insert an expected number of elements, | 
|  | * it is possible that the number inserted is less than the expected | 
|  | * number.  To fix an invalid final node, a check is performed here to | 
|  | * rebalance the previous node with the final node. | 
|  | */ | 
|  | if (mas->mas_flags & MA_STATE_REBALANCE) { | 
|  | unsigned char end; | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_start(mas); | 
|  |  | 
|  | mtree_range_walk(mas); | 
|  | end = mas_data_end(mas) + 1; | 
|  | if (end < mt_min_slot_count(mas->node) - 1) | 
|  | mas_destroy_rebalance(mas, end); | 
|  |  | 
|  | mas->mas_flags &= ~MA_STATE_REBALANCE; | 
|  | } | 
|  | mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); | 
|  |  | 
|  | total = mas_allocated(mas); | 
|  | while (total) { | 
|  | node = mas->alloc; | 
|  | mas->alloc = node->slot[0]; | 
|  | if (node->node_count > 1) { | 
|  | size_t count = node->node_count - 1; | 
|  |  | 
|  | mt_free_bulk(count, (void __rcu **)&node->slot[1]); | 
|  | total -= count; | 
|  | } | 
|  | kmem_cache_free(maple_node_cache, node); | 
|  | total--; | 
|  | } | 
|  |  | 
|  | mas->alloc = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_destroy); | 
|  |  | 
|  | /* | 
|  | * mas_expected_entries() - Set the expected number of entries that will be inserted. | 
|  | * @mas: The maple state | 
|  | * @nr_entries: The number of expected entries. | 
|  | * | 
|  | * This will attempt to pre-allocate enough nodes to store the expected number | 
|  | * of entries.  The allocations will occur using the bulk allocator interface | 
|  | * for speed.  Please call mas_destroy() on the @mas after inserting the entries | 
|  | * to ensure any unused nodes are freed. | 
|  | * | 
|  | * Return: 0 on success, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) | 
|  | { | 
|  | int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; | 
|  | struct maple_enode *enode = mas->node; | 
|  | int nr_nodes; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Sometimes it is necessary to duplicate a tree to a new tree, such as | 
|  | * forking a process and duplicating the VMAs from one tree to a new | 
|  | * tree.  When such a situation arises, it is known that the new tree is | 
|  | * not going to be used until the entire tree is populated.  For | 
|  | * performance reasons, it is best to use a bulk load with RCU disabled. | 
|  | * This allows for optimistic splitting that favours the left and reuse | 
|  | * of nodes during the operation. | 
|  | */ | 
|  |  | 
|  | /* Optimize splitting for bulk insert in-order */ | 
|  | mas->mas_flags |= MA_STATE_BULK; | 
|  |  | 
|  | /* | 
|  | * Avoid overflow, assume a gap between each entry and a trailing null. | 
|  | * If this is wrong, it just means allocation can happen during | 
|  | * insertion of entries. | 
|  | */ | 
|  | nr_nodes = max(nr_entries, nr_entries * 2 + 1); | 
|  | if (!mt_is_alloc(mas->tree)) | 
|  | nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; | 
|  |  | 
|  | /* Leaves; reduce slots to keep space for expansion */ | 
|  | nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); | 
|  | /* Internal nodes */ | 
|  | nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); | 
|  | /* Add working room for split (2 nodes) + new parents */ | 
|  | mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); | 
|  |  | 
|  | /* Detect if allocations run out */ | 
|  | mas->mas_flags |= MA_STATE_PREALLOC; | 
|  |  | 
|  | if (!mas_is_err(mas)) | 
|  | return 0; | 
|  |  | 
|  | ret = xa_err(mas->node); | 
|  | mas->node = enode; | 
|  | mas_destroy(mas); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_expected_entries); | 
|  |  | 
|  | /** | 
|  | * mas_next() - Get the next entry. | 
|  | * @mas: The maple state | 
|  | * @max: The maximum index to check. | 
|  | * | 
|  | * Returns the next entry after @mas->index. | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * Can return the zero entry. | 
|  | * | 
|  | * Return: The next entry or %NULL | 
|  | */ | 
|  | void *mas_next(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  | if (mas_is_none(mas) || mas_is_paused(mas)) | 
|  | mas->node = MAS_START; | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ | 
|  |  | 
|  | if (mas_is_ptr(mas)) { | 
|  | if (!mas->index) { | 
|  | mas->index = 1; | 
|  | mas->last = ULONG_MAX; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (mas->last == ULONG_MAX) | 
|  | return NULL; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_entry */ | 
|  | return mas_next_entry(mas, max); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_next); | 
|  |  | 
|  | /** | 
|  | * mt_next() - get the next value in the maple tree | 
|  | * @mt: The maple tree | 
|  | * @index: The start index | 
|  | * @max: The maximum index to check | 
|  | * | 
|  | * Return: The entry at @index or higher, or %NULL if nothing is found. | 
|  | */ | 
|  | void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) | 
|  | { | 
|  | void *entry = NULL; | 
|  | MA_STATE(mas, mt, index, index); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | entry = mas_next(&mas, max); | 
|  | rcu_read_unlock(); | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_next); | 
|  |  | 
|  | /** | 
|  | * mas_prev() - Get the previous entry | 
|  | * @mas: The maple state | 
|  | * @min: The minimum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not | 
|  | * searchable nodes. | 
|  | * | 
|  | * Return: the previous value or %NULL. | 
|  | */ | 
|  | void *mas_prev(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | if (!mas->index) { | 
|  | /* Nothing comes before 0 */ | 
|  | mas->last = 0; | 
|  | mas->node = MAS_NONE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (unlikely(mas_is_ptr(mas))) | 
|  | return NULL; | 
|  |  | 
|  | if (mas_is_none(mas) || mas_is_paused(mas)) | 
|  | mas->node = MAS_START; | 
|  |  | 
|  | if (mas_is_start(mas)) { | 
|  | mas_walk(mas); | 
|  | if (!mas->index) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (mas_is_ptr(mas)) { | 
|  | if (!mas->index) { | 
|  | mas->last = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mas->index = mas->last = 0; | 
|  | return mas_root_locked(mas); | 
|  | } | 
|  | return mas_prev_entry(mas, min); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_prev); | 
|  |  | 
|  | /** | 
|  | * mt_prev() - get the previous value in the maple tree | 
|  | * @mt: The maple tree | 
|  | * @index: The start index | 
|  | * @min: The minimum index to check | 
|  | * | 
|  | * Return: The entry at @index or lower, or %NULL if nothing is found. | 
|  | */ | 
|  | void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) | 
|  | { | 
|  | void *entry = NULL; | 
|  | MA_STATE(mas, mt, index, index); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | entry = mas_prev(&mas, min); | 
|  | rcu_read_unlock(); | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_prev); | 
|  |  | 
|  | /** | 
|  | * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. | 
|  | * @mas: The maple state to pause | 
|  | * | 
|  | * Some users need to pause a walk and drop the lock they're holding in | 
|  | * order to yield to a higher priority thread or carry out an operation | 
|  | * on an entry.  Those users should call this function before they drop | 
|  | * the lock.  It resets the @mas to be suitable for the next iteration | 
|  | * of the loop after the user has reacquired the lock.  If most entries | 
|  | * found during a walk require you to call mas_pause(), the mt_for_each() | 
|  | * iterator may be more appropriate. | 
|  | * | 
|  | */ | 
|  | void mas_pause(struct ma_state *mas) | 
|  | { | 
|  | mas->node = MAS_PAUSE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_pause); | 
|  |  | 
|  | /** | 
|  | * mas_find() - On the first call, find the entry at or after mas->index up to | 
|  | * %max.  Otherwise, find the entry after mas->index. | 
|  | * @mas: The maple state | 
|  | * @max: The maximum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * If an entry exists, last and index are updated accordingly. | 
|  | * May set @mas->node to MAS_NONE. | 
|  | * | 
|  | * Return: The entry or %NULL. | 
|  | */ | 
|  | void *mas_find(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  | if (unlikely(mas_is_paused(mas))) { | 
|  | if (unlikely(mas->last == ULONG_MAX)) { | 
|  | mas->node = MAS_NONE; | 
|  | return NULL; | 
|  | } | 
|  | mas->node = MAS_START; | 
|  | mas->index = ++mas->last; | 
|  | } | 
|  |  | 
|  | if (unlikely(mas_is_none(mas))) | 
|  | mas->node = MAS_START; | 
|  |  | 
|  | if (unlikely(mas_is_start(mas))) { | 
|  | /* First run or continue */ | 
|  | void *entry; | 
|  |  | 
|  | if (mas->index > max) | 
|  | return NULL; | 
|  |  | 
|  | entry = mas_walk(mas); | 
|  | if (entry) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | if (unlikely(!mas_searchable(mas))) | 
|  | return NULL; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_entry */ | 
|  | return mas_next_entry(mas, max); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_find); | 
|  |  | 
|  | /** | 
|  | * mas_find_rev: On the first call, find the first non-null entry at or below | 
|  | * mas->index down to %min.  Otherwise find the first non-null entry below | 
|  | * mas->index down to %min. | 
|  | * @mas: The maple state | 
|  | * @min: The minimum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * If an entry exists, last and index are updated accordingly. | 
|  | * May set @mas->node to MAS_NONE. | 
|  | * | 
|  | * Return: The entry or %NULL. | 
|  | */ | 
|  | void *mas_find_rev(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | if (unlikely(mas_is_paused(mas))) { | 
|  | if (unlikely(mas->last == ULONG_MAX)) { | 
|  | mas->node = MAS_NONE; | 
|  | return NULL; | 
|  | } | 
|  | mas->node = MAS_START; | 
|  | mas->last = --mas->index; | 
|  | } | 
|  |  | 
|  | if (unlikely(mas_is_start(mas))) { | 
|  | /* First run or continue */ | 
|  | void *entry; | 
|  |  | 
|  | if (mas->index < min) | 
|  | return NULL; | 
|  |  | 
|  | entry = mas_walk(mas); | 
|  | if (entry) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | if (unlikely(!mas_searchable(mas))) | 
|  | return NULL; | 
|  |  | 
|  | if (mas->index < min) | 
|  | return NULL; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_entry */ | 
|  | return mas_prev_entry(mas, min); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_find_rev); | 
|  |  | 
|  | /** | 
|  | * mas_erase() - Find the range in which index resides and erase the entire | 
|  | * range. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Must hold the write lock. | 
|  | * Searches for @mas->index, sets @mas->index and @mas->last to the range and | 
|  | * erases that range. | 
|  | * | 
|  | * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. | 
|  | */ | 
|  | void *mas_erase(struct ma_state *mas) | 
|  | { | 
|  | void *entry; | 
|  | MA_WR_STATE(wr_mas, mas, NULL); | 
|  |  | 
|  | if (mas_is_none(mas) || mas_is_paused(mas)) | 
|  | mas->node = MAS_START; | 
|  |  | 
|  | /* Retry unnecessary when holding the write lock. */ | 
|  | entry = mas_state_walk(mas); | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | write_retry: | 
|  | /* Must reset to ensure spanning writes of last slot are detected */ | 
|  | mas_reset(mas); | 
|  | mas_wr_store_setup(&wr_mas); | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | if (mas_nomem(mas, GFP_KERNEL)) | 
|  | goto write_retry; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_erase); | 
|  |  | 
|  | /** | 
|  | * mas_nomem() - Check if there was an error allocating and do the allocation | 
|  | * if necessary If there are allocations, then free them. | 
|  | * @mas: The maple state | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * Return: true on allocation, false otherwise. | 
|  | */ | 
|  | bool mas_nomem(struct ma_state *mas, gfp_t gfp) | 
|  | __must_hold(mas->tree->lock) | 
|  | { | 
|  | if (likely(mas->node != MA_ERROR(-ENOMEM))) { | 
|  | mas_destroy(mas); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { | 
|  | mtree_unlock(mas->tree); | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | mtree_lock(mas->tree); | 
|  | } else { | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | } | 
|  |  | 
|  | if (!mas_allocated(mas)) | 
|  | return false; | 
|  |  | 
|  | mas->node = MAS_START; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __init maple_tree_init(void) | 
|  | { | 
|  | maple_node_cache = kmem_cache_create("maple_node", | 
|  | sizeof(struct maple_node), sizeof(struct maple_node), | 
|  | SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mtree_load() - Load a value stored in a maple tree | 
|  | * @mt: The maple tree | 
|  | * @index: The index to load | 
|  | * | 
|  | * Return: the entry or %NULL | 
|  | */ | 
|  | void *mtree_load(struct maple_tree *mt, unsigned long index) | 
|  | { | 
|  | MA_STATE(mas, mt, index, index); | 
|  | void *entry; | 
|  |  | 
|  | trace_ma_read(__func__, &mas); | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | entry = mas_start(&mas); | 
|  | if (unlikely(mas_is_none(&mas))) | 
|  | goto unlock; | 
|  |  | 
|  | if (unlikely(mas_is_ptr(&mas))) { | 
|  | if (index) | 
|  | entry = NULL; | 
|  |  | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | entry = mtree_lookup_walk(&mas); | 
|  | if (!entry && unlikely(mas_is_start(&mas))) | 
|  | goto retry; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | if (xa_is_zero(entry)) | 
|  | return NULL; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_load); | 
|  |  | 
|  | /** | 
|  | * mtree_store_range() - Store an entry at a given range. | 
|  | * @mt: The maple tree | 
|  | * @index: The start of the range | 
|  | * @last: The end of the range | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * | 
|  | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not | 
|  | * be allocated. | 
|  | */ | 
|  | int mtree_store_range(struct maple_tree *mt, unsigned long index, | 
|  | unsigned long last, void *entry, gfp_t gfp) | 
|  | { | 
|  | MA_STATE(mas, mt, index, last); | 
|  | MA_WR_STATE(wr_mas, &mas, entry); | 
|  |  | 
|  | trace_ma_write(__func__, &mas, 0, entry); | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (index > last) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | if (mas_nomem(&mas, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | mtree_unlock(mt); | 
|  | if (mas_is_err(&mas)) | 
|  | return xa_err(mas.node); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_store_range); | 
|  |  | 
|  | /** | 
|  | * mtree_store() - Store an entry at a given index. | 
|  | * @mt: The maple tree | 
|  | * @index: The index to store the value | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * | 
|  | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not | 
|  | * be allocated. | 
|  | */ | 
|  | int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return mtree_store_range(mt, index, index, entry, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_store); | 
|  |  | 
|  | /** | 
|  | * mtree_insert_range() - Insert an entry at a give range if there is no value. | 
|  | * @mt: The maple tree | 
|  | * @first: The start of the range | 
|  | * @last: The end of the range | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid | 
|  | * request, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mtree_insert_range(struct maple_tree *mt, unsigned long first, | 
|  | unsigned long last, void *entry, gfp_t gfp) | 
|  | { | 
|  | MA_STATE(ms, mt, first, last); | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (first > last) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | mas_insert(&ms, entry); | 
|  | if (mas_nomem(&ms, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | mtree_unlock(mt); | 
|  | if (mas_is_err(&ms)) | 
|  | return xa_err(ms.node); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_insert_range); | 
|  |  | 
|  | /** | 
|  | * mtree_insert() - Insert an entry at a give index if there is no value. | 
|  | * @mt: The maple tree | 
|  | * @index : The index to store the value | 
|  | * @entry: The entry to store | 
|  | * @gfp: The FGP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid | 
|  | * request, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return mtree_insert_range(mt, index, index, entry, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_insert); | 
|  |  | 
|  | int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, | 
|  | void *entry, unsigned long size, unsigned long min, | 
|  | unsigned long max, gfp_t gfp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | MA_STATE(mas, mt, min, max - size); | 
|  | if (!mt_is_alloc(mt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON_ONCE(mt_is_reserved(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (min > max) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (max < size) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!size) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | mas.offset = 0; | 
|  | mas.index = min; | 
|  | mas.last = max - size; | 
|  | ret = mas_alloc(&mas, entry, size, startp); | 
|  | if (mas_nomem(&mas, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | mtree_unlock(mt); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_alloc_range); | 
|  |  | 
|  | int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, | 
|  | void *entry, unsigned long size, unsigned long min, | 
|  | unsigned long max, gfp_t gfp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | MA_STATE(mas, mt, min, max - size); | 
|  | if (!mt_is_alloc(mt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON_ONCE(mt_is_reserved(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (min >= max) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (max < size - 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!size) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | ret = mas_rev_alloc(&mas, min, max, entry, size, startp); | 
|  | if (mas_nomem(&mas, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | mtree_unlock(mt); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_alloc_rrange); | 
|  |  | 
|  | /** | 
|  | * mtree_erase() - Find an index and erase the entire range. | 
|  | * @mt: The maple tree | 
|  | * @index: The index to erase | 
|  | * | 
|  | * Erasing is the same as a walk to an entry then a store of a NULL to that | 
|  | * ENTIRE range.  In fact, it is implemented as such using the advanced API. | 
|  | * | 
|  | * Return: The entry stored at the @index or %NULL | 
|  | */ | 
|  | void *mtree_erase(struct maple_tree *mt, unsigned long index) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | MA_STATE(mas, mt, index, index); | 
|  | trace_ma_op(__func__, &mas); | 
|  |  | 
|  | mtree_lock(mt); | 
|  | entry = mas_erase(&mas); | 
|  | mtree_unlock(mt); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_erase); | 
|  |  | 
|  | /** | 
|  | * __mt_destroy() - Walk and free all nodes of a locked maple tree. | 
|  | * @mt: The maple tree | 
|  | * | 
|  | * Note: Does not handle locking. | 
|  | */ | 
|  | void __mt_destroy(struct maple_tree *mt) | 
|  | { | 
|  | void *root = mt_root_locked(mt); | 
|  |  | 
|  | rcu_assign_pointer(mt->ma_root, NULL); | 
|  | if (xa_is_node(root)) | 
|  | mte_destroy_walk(root, mt); | 
|  |  | 
|  | mt->ma_flags = 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__mt_destroy); | 
|  |  | 
|  | /** | 
|  | * mtree_destroy() - Destroy a maple tree | 
|  | * @mt: The maple tree | 
|  | * | 
|  | * Frees all resources used by the tree.  Handles locking. | 
|  | */ | 
|  | void mtree_destroy(struct maple_tree *mt) | 
|  | { | 
|  | mtree_lock(mt); | 
|  | __mt_destroy(mt); | 
|  | mtree_unlock(mt); | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_destroy); | 
|  |  | 
|  | /** | 
|  | * mt_find() - Search from the start up until an entry is found. | 
|  | * @mt: The maple tree | 
|  | * @index: Pointer which contains the start location of the search | 
|  | * @max: The maximum value to check | 
|  | * | 
|  | * Handles locking.  @index will be incremented to one beyond the range. | 
|  | * | 
|  | * Return: The entry at or after the @index or %NULL | 
|  | */ | 
|  | void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) | 
|  | { | 
|  | MA_STATE(mas, mt, *index, *index); | 
|  | void *entry; | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | unsigned long copy = *index; | 
|  | #endif | 
|  |  | 
|  | trace_ma_read(__func__, &mas); | 
|  |  | 
|  | if ((*index) > max) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | entry = mas_state_walk(&mas); | 
|  | if (mas_is_start(&mas)) | 
|  | goto retry; | 
|  |  | 
|  | if (unlikely(xa_is_zero(entry))) | 
|  | entry = NULL; | 
|  |  | 
|  | if (entry) | 
|  | goto unlock; | 
|  |  | 
|  | while (mas_searchable(&mas) && (mas.index < max)) { | 
|  | entry = mas_next_entry(&mas, max); | 
|  | if (likely(entry && !xa_is_zero(entry))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(xa_is_zero(entry))) | 
|  | entry = NULL; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | if (likely(entry)) { | 
|  | *index = mas.last + 1; | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | if ((*index) && (*index) <= copy) | 
|  | pr_err("index not increased! %lx <= %lx\n", | 
|  | *index, copy); | 
|  | MT_BUG_ON(mt, (*index) && ((*index) <= copy)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(mt_find); | 
|  |  | 
|  | /** | 
|  | * mt_find_after() - Search from the start up until an entry is found. | 
|  | * @mt: The maple tree | 
|  | * @index: Pointer which contains the start location of the search | 
|  | * @max: The maximum value to check | 
|  | * | 
|  | * Handles locking, detects wrapping on index == 0 | 
|  | * | 
|  | * Return: The entry at or after the @index or %NULL | 
|  | */ | 
|  | void *mt_find_after(struct maple_tree *mt, unsigned long *index, | 
|  | unsigned long max) | 
|  | { | 
|  | if (!(*index)) | 
|  | return NULL; | 
|  |  | 
|  | return mt_find(mt, index, max); | 
|  | } | 
|  | EXPORT_SYMBOL(mt_find_after); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | atomic_t maple_tree_tests_run; | 
|  | EXPORT_SYMBOL_GPL(maple_tree_tests_run); | 
|  | atomic_t maple_tree_tests_passed; | 
|  | EXPORT_SYMBOL_GPL(maple_tree_tests_passed); | 
|  |  | 
|  | #ifndef __KERNEL__ | 
|  | extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); | 
|  | void mt_set_non_kernel(unsigned int val) | 
|  | { | 
|  | kmem_cache_set_non_kernel(maple_node_cache, val); | 
|  | } | 
|  |  | 
|  | extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); | 
|  | unsigned long mt_get_alloc_size(void) | 
|  | { | 
|  | return kmem_cache_get_alloc(maple_node_cache); | 
|  | } | 
|  |  | 
|  | extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); | 
|  | void mt_zero_nr_tallocated(void) | 
|  | { | 
|  | kmem_cache_zero_nr_tallocated(maple_node_cache); | 
|  | } | 
|  |  | 
|  | extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); | 
|  | unsigned int mt_nr_tallocated(void) | 
|  | { | 
|  | return kmem_cache_nr_tallocated(maple_node_cache); | 
|  | } | 
|  |  | 
|  | extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); | 
|  | unsigned int mt_nr_allocated(void) | 
|  | { | 
|  | return kmem_cache_nr_allocated(maple_node_cache); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_dead_node() - Check if the maple state is pointing to a dead node. | 
|  | * @mas: The maple state | 
|  | * @index: The index to restore in @mas. | 
|  | * | 
|  | * Used in test code. | 
|  | * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. | 
|  | */ | 
|  | static inline int mas_dead_node(struct ma_state *mas, unsigned long index) | 
|  | { | 
|  | if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) | 
|  | return 0; | 
|  |  | 
|  | if (likely(!mte_dead_node(mas->node))) | 
|  | return 0; | 
|  |  | 
|  | mas_rewalk(mas, index); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void mt_cache_shrink(void) | 
|  | { | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * mt_cache_shrink() - For testing, don't use this. | 
|  | * | 
|  | * Certain testcases can trigger an OOM when combined with other memory | 
|  | * debugging configuration options.  This function is used to reduce the | 
|  | * possibility of an out of memory even due to kmem_cache objects remaining | 
|  | * around for longer than usual. | 
|  | */ | 
|  | void mt_cache_shrink(void) | 
|  | { | 
|  | kmem_cache_shrink(maple_node_cache); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_cache_shrink); | 
|  |  | 
|  | #endif /* not defined __KERNEL__ */ | 
|  | /* | 
|  | * mas_get_slot() - Get the entry in the maple state node stored at @offset. | 
|  | * @mas: The maple state | 
|  | * @offset: The offset into the slot array to fetch. | 
|  | * | 
|  | * Return: The entry stored at @offset. | 
|  | */ | 
|  | static inline struct maple_enode *mas_get_slot(struct ma_state *mas, | 
|  | unsigned char offset) | 
|  | { | 
|  | return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), | 
|  | offset); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mas_first_entry() - Go the first leaf and find the first entry. | 
|  | * @mas: the maple state. | 
|  | * @limit: the maximum index to check. | 
|  | * @*r_start: Pointer to set to the range start. | 
|  | * | 
|  | * Sets mas->offset to the offset of the entry, r_start to the range minimum. | 
|  | * | 
|  | * Return: The first entry or MAS_NONE. | 
|  | */ | 
|  | static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, | 
|  | unsigned long limit, enum maple_type mt) | 
|  |  | 
|  | { | 
|  | unsigned long max; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | void *entry = NULL; | 
|  |  | 
|  | mas->index = mas->min; | 
|  | if (mas->index > limit) | 
|  | goto none; | 
|  |  | 
|  | max = mas->max; | 
|  | mas->offset = 0; | 
|  | while (likely(!ma_is_leaf(mt))) { | 
|  | MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); | 
|  | slots = ma_slots(mn, mt); | 
|  | entry = mas_slot(mas, slots, 0); | 
|  | pivots = ma_pivots(mn, mt); | 
|  | if (unlikely(ma_dead_node(mn))) | 
|  | return NULL; | 
|  | max = pivots[0]; | 
|  | mas->node = entry; | 
|  | mn = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | } | 
|  | MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); | 
|  |  | 
|  | mas->max = max; | 
|  | slots = ma_slots(mn, mt); | 
|  | entry = mas_slot(mas, slots, 0); | 
|  | if (unlikely(ma_dead_node(mn))) | 
|  | return NULL; | 
|  |  | 
|  | /* Slot 0 or 1 must be set */ | 
|  | if (mas->index > limit) | 
|  | goto none; | 
|  |  | 
|  | if (likely(entry)) | 
|  | return entry; | 
|  |  | 
|  | mas->offset = 1; | 
|  | entry = mas_slot(mas, slots, 1); | 
|  | pivots = ma_pivots(mn, mt); | 
|  | if (unlikely(ma_dead_node(mn))) | 
|  | return NULL; | 
|  |  | 
|  | mas->index = pivots[0] + 1; | 
|  | if (mas->index > limit) | 
|  | goto none; | 
|  |  | 
|  | if (likely(entry)) | 
|  | return entry; | 
|  |  | 
|  | none: | 
|  | if (likely(!ma_dead_node(mn))) | 
|  | mas->node = MAS_NONE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Depth first search, post-order */ | 
|  | static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  |  | 
|  | struct maple_enode *p = MAS_NONE, *mn = mas->node; | 
|  | unsigned long p_min, p_max; | 
|  |  | 
|  | mas_next_node(mas, mas_mn(mas), max); | 
|  | if (!mas_is_none(mas)) | 
|  | return; | 
|  |  | 
|  | if (mte_is_root(mn)) | 
|  | return; | 
|  |  | 
|  | mas->node = mn; | 
|  | mas_ascend(mas); | 
|  | while (mas->node != MAS_NONE) { | 
|  | p = mas->node; | 
|  | p_min = mas->min; | 
|  | p_max = mas->max; | 
|  | mas_prev_node(mas, 0); | 
|  | } | 
|  |  | 
|  | if (p == MAS_NONE) | 
|  | return; | 
|  |  | 
|  | mas->node = p; | 
|  | mas->max = p_max; | 
|  | mas->min = p_min; | 
|  | } | 
|  |  | 
|  | /* Tree validations */ | 
|  | static void mt_dump_node(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth); | 
|  | static void mt_dump_range(unsigned long min, unsigned long max, | 
|  | unsigned int depth) | 
|  | { | 
|  | static const char spaces[] = "                                "; | 
|  |  | 
|  | if (min == max) | 
|  | pr_info("%.*s%lu: ", depth * 2, spaces, min); | 
|  | else | 
|  | pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); | 
|  | } | 
|  |  | 
|  | static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, | 
|  | unsigned int depth) | 
|  | { | 
|  | mt_dump_range(min, max, depth); | 
|  |  | 
|  | if (xa_is_value(entry)) | 
|  | pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), | 
|  | xa_to_value(entry), entry); | 
|  | else if (xa_is_zero(entry)) | 
|  | pr_cont("zero (%ld)\n", xa_to_internal(entry)); | 
|  | else if (mt_is_reserved(entry)) | 
|  | pr_cont("UNKNOWN ENTRY (%p)\n", entry); | 
|  | else | 
|  | pr_cont("%p\n", entry); | 
|  | } | 
|  |  | 
|  | static void mt_dump_range64(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth) | 
|  | { | 
|  | struct maple_range_64 *node = &mte_to_node(entry)->mr64; | 
|  | bool leaf = mte_is_leaf(entry); | 
|  | unsigned long first = min; | 
|  | int i; | 
|  |  | 
|  | pr_cont(" contents: "); | 
|  | for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) | 
|  | pr_cont("%p %lu ", node->slot[i], node->pivot[i]); | 
|  | pr_cont("%p\n", node->slot[i]); | 
|  | for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { | 
|  | unsigned long last = max; | 
|  |  | 
|  | if (i < (MAPLE_RANGE64_SLOTS - 1)) | 
|  | last = node->pivot[i]; | 
|  | else if (!node->slot[i] && max != mt_max[mte_node_type(entry)]) | 
|  | break; | 
|  | if (last == 0 && i > 0) | 
|  | break; | 
|  | if (leaf) | 
|  | mt_dump_entry(mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1); | 
|  | else if (node->slot[i]) | 
|  | mt_dump_node(mt, mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1); | 
|  |  | 
|  | if (last == max) | 
|  | break; | 
|  | if (last > max) { | 
|  | pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", | 
|  | node, last, max, i); | 
|  | break; | 
|  | } | 
|  | first = last + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_dump_arange64(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth) | 
|  | { | 
|  | struct maple_arange_64 *node = &mte_to_node(entry)->ma64; | 
|  | bool leaf = mte_is_leaf(entry); | 
|  | unsigned long first = min; | 
|  | int i; | 
|  |  | 
|  | pr_cont(" contents: "); | 
|  | for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) | 
|  | pr_cont("%lu ", node->gap[i]); | 
|  | pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); | 
|  | for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) | 
|  | pr_cont("%p %lu ", node->slot[i], node->pivot[i]); | 
|  | pr_cont("%p\n", node->slot[i]); | 
|  | for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { | 
|  | unsigned long last = max; | 
|  |  | 
|  | if (i < (MAPLE_ARANGE64_SLOTS - 1)) | 
|  | last = node->pivot[i]; | 
|  | else if (!node->slot[i]) | 
|  | break; | 
|  | if (last == 0 && i > 0) | 
|  | break; | 
|  | if (leaf) | 
|  | mt_dump_entry(mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1); | 
|  | else if (node->slot[i]) | 
|  | mt_dump_node(mt, mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1); | 
|  |  | 
|  | if (last == max) | 
|  | break; | 
|  | if (last > max) { | 
|  | pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", | 
|  | node, last, max, i); | 
|  | break; | 
|  | } | 
|  | first = last + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_dump_node(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(entry); | 
|  | unsigned int type = mte_node_type(entry); | 
|  | unsigned int i; | 
|  |  | 
|  | mt_dump_range(min, max, depth); | 
|  |  | 
|  | pr_cont("node %p depth %d type %d parent %p", node, depth, type, | 
|  | node ? node->parent : NULL); | 
|  | switch (type) { | 
|  | case maple_dense: | 
|  | pr_cont("\n"); | 
|  | for (i = 0; i < MAPLE_NODE_SLOTS; i++) { | 
|  | if (min + i > max) | 
|  | pr_cont("OUT OF RANGE: "); | 
|  | mt_dump_entry(mt_slot(mt, node->slot, i), | 
|  | min + i, min + i, depth); | 
|  | } | 
|  | break; | 
|  | case maple_leaf_64: | 
|  | case maple_range_64: | 
|  | mt_dump_range64(mt, entry, min, max, depth); | 
|  | break; | 
|  | case maple_arange_64: | 
|  | mt_dump_arange64(mt, entry, min, max, depth); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_cont(" UNKNOWN TYPE\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mt_dump(const struct maple_tree *mt) | 
|  | { | 
|  | void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); | 
|  |  | 
|  | pr_info("maple_tree(%p) flags %X, height %u root %p\n", | 
|  | mt, mt->ma_flags, mt_height(mt), entry); | 
|  | if (!xa_is_node(entry)) | 
|  | mt_dump_entry(entry, 0, 0, 0); | 
|  | else if (entry) | 
|  | mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_dump); | 
|  |  | 
|  | /* | 
|  | * Calculate the maximum gap in a node and check if that's what is reported in | 
|  | * the parent (unless root). | 
|  | */ | 
|  | static void mas_validate_gaps(struct ma_state *mas) | 
|  | { | 
|  | struct maple_enode *mte = mas->node; | 
|  | struct maple_node *p_mn; | 
|  | unsigned long gap = 0, max_gap = 0; | 
|  | unsigned long p_end, p_start = mas->min; | 
|  | unsigned char p_slot; | 
|  | unsigned long *gaps = NULL; | 
|  | unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); | 
|  | int i; | 
|  |  | 
|  | if (ma_is_dense(mte_node_type(mte))) { | 
|  | for (i = 0; i < mt_slot_count(mte); i++) { | 
|  | if (mas_get_slot(mas, i)) { | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | gap = 0; | 
|  | continue; | 
|  | } | 
|  | gap++; | 
|  | } | 
|  | goto counted; | 
|  | } | 
|  |  | 
|  | gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); | 
|  | for (i = 0; i < mt_slot_count(mte); i++) { | 
|  | p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); | 
|  |  | 
|  | if (!gaps) { | 
|  | if (mas_get_slot(mas, i)) { | 
|  | gap = 0; | 
|  | goto not_empty; | 
|  | } | 
|  |  | 
|  | gap += p_end - p_start + 1; | 
|  | } else { | 
|  | void *entry = mas_get_slot(mas, i); | 
|  |  | 
|  | gap = gaps[i]; | 
|  | if (!entry) { | 
|  | if (gap != p_end - p_start + 1) { | 
|  | pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", | 
|  | mas_mn(mas), i, | 
|  | mas_get_slot(mas, i), gap, | 
|  | p_end, p_start); | 
|  | mt_dump(mas->tree); | 
|  |  | 
|  | MT_BUG_ON(mas->tree, | 
|  | gap != p_end - p_start + 1); | 
|  | } | 
|  | } else { | 
|  | if (gap > p_end - p_start + 1) { | 
|  | pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", | 
|  | mas_mn(mas), i, gap, p_end, p_start, | 
|  | p_end - p_start + 1); | 
|  | MT_BUG_ON(mas->tree, | 
|  | gap > p_end - p_start + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | not_empty: | 
|  | p_start = p_end + 1; | 
|  | if (p_end >= mas->max) | 
|  | break; | 
|  | } | 
|  |  | 
|  | counted: | 
|  | if (mte_is_root(mte)) | 
|  | return; | 
|  |  | 
|  | p_slot = mte_parent_slot(mas->node); | 
|  | p_mn = mte_parent(mte); | 
|  | MT_BUG_ON(mas->tree, max_gap > mas->max); | 
|  | if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { | 
|  | pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); | 
|  | mt_dump(mas->tree); | 
|  | } | 
|  |  | 
|  | MT_BUG_ON(mas->tree, | 
|  | ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); | 
|  | } | 
|  |  | 
|  | static void mas_validate_parent_slot(struct ma_state *mas) | 
|  | { | 
|  | struct maple_node *parent; | 
|  | struct maple_enode *node; | 
|  | enum maple_type p_type = mas_parent_enum(mas, mas->node); | 
|  | unsigned char p_slot = mte_parent_slot(mas->node); | 
|  | void __rcu **slots; | 
|  | int i; | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return; | 
|  |  | 
|  | parent = mte_parent(mas->node); | 
|  | slots = ma_slots(parent, p_type); | 
|  | MT_BUG_ON(mas->tree, mas_mn(mas) == parent); | 
|  |  | 
|  | /* Check prev/next parent slot for duplicate node entry */ | 
|  |  | 
|  | for (i = 0; i < mt_slots[p_type]; i++) { | 
|  | node = mas_slot(mas, slots, i); | 
|  | if (i == p_slot) { | 
|  | if (node != mas->node) | 
|  | pr_err("parent %p[%u] does not have %p\n", | 
|  | parent, i, mas_mn(mas)); | 
|  | MT_BUG_ON(mas->tree, node != mas->node); | 
|  | } else if (node == mas->node) { | 
|  | pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", | 
|  | mas_mn(mas), parent, i, p_slot); | 
|  | MT_BUG_ON(mas->tree, node == mas->node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mas_validate_child_slot(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | void __rcu **slots = ma_slots(mte_to_node(mas->node), type); | 
|  | unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); | 
|  | struct maple_enode *child; | 
|  | unsigned char i; | 
|  |  | 
|  | if (mte_is_leaf(mas->node)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < mt_slots[type]; i++) { | 
|  | child = mas_slot(mas, slots, i); | 
|  | if (!pivots[i] || pivots[i] == mas->max) | 
|  | break; | 
|  |  | 
|  | if (!child) | 
|  | break; | 
|  |  | 
|  | if (mte_parent_slot(child) != i) { | 
|  | pr_err("Slot error at %p[%u]: child %p has pslot %u\n", | 
|  | mas_mn(mas), i, mte_to_node(child), | 
|  | mte_parent_slot(child)); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | if (mte_parent(child) != mte_to_node(mas->node)) { | 
|  | pr_err("child %p has parent %p not %p\n", | 
|  | mte_to_node(child), mte_parent(child), | 
|  | mte_to_node(mas->node)); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate all pivots are within mas->min and mas->max. | 
|  | */ | 
|  | static void mas_validate_limits(struct ma_state *mas) | 
|  | { | 
|  | int i; | 
|  | unsigned long prev_piv = 0; | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | void __rcu **slots = ma_slots(mte_to_node(mas->node), type); | 
|  | unsigned long *pivots = ma_pivots(mas_mn(mas), type); | 
|  |  | 
|  | /* all limits are fine here. */ | 
|  | if (mte_is_root(mas->node)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < mt_slots[type]; i++) { | 
|  | unsigned long piv; | 
|  |  | 
|  | piv = mas_safe_pivot(mas, pivots, i, type); | 
|  |  | 
|  | if (!piv && (i != 0)) | 
|  | break; | 
|  |  | 
|  | if (!mte_is_leaf(mas->node)) { | 
|  | void *entry = mas_slot(mas, slots, i); | 
|  |  | 
|  | if (!entry) | 
|  | pr_err("%p[%u] cannot be null\n", | 
|  | mas_mn(mas), i); | 
|  |  | 
|  | MT_BUG_ON(mas->tree, !entry); | 
|  | } | 
|  |  | 
|  | if (prev_piv > piv) { | 
|  | pr_err("%p[%u] piv %lu < prev_piv %lu\n", | 
|  | mas_mn(mas), i, piv, prev_piv); | 
|  | MT_BUG_ON(mas->tree, piv < prev_piv); | 
|  | } | 
|  |  | 
|  | if (piv < mas->min) { | 
|  | pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, | 
|  | piv, mas->min); | 
|  | MT_BUG_ON(mas->tree, piv < mas->min); | 
|  | } | 
|  | if (piv > mas->max) { | 
|  | pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, | 
|  | piv, mas->max); | 
|  | MT_BUG_ON(mas->tree, piv > mas->max); | 
|  | } | 
|  | prev_piv = piv; | 
|  | if (piv == mas->max) | 
|  | break; | 
|  | } | 
|  | for (i += 1; i < mt_slots[type]; i++) { | 
|  | void *entry = mas_slot(mas, slots, i); | 
|  |  | 
|  | if (entry && (i != mt_slots[type] - 1)) { | 
|  | pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), | 
|  | i, entry); | 
|  | MT_BUG_ON(mas->tree, entry != NULL); | 
|  | } | 
|  |  | 
|  | if (i < mt_pivots[type]) { | 
|  | unsigned long piv = pivots[i]; | 
|  |  | 
|  | if (!piv) | 
|  | continue; | 
|  |  | 
|  | pr_err("%p[%u] should not have piv %lu\n", | 
|  | mas_mn(mas), i, piv); | 
|  | MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_validate_nulls(struct maple_tree *mt) | 
|  | { | 
|  | void *entry, *last = (void *)1; | 
|  | unsigned char offset = 0; | 
|  | void __rcu **slots; | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  |  | 
|  | mas_start(&mas); | 
|  | if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) | 
|  | return; | 
|  |  | 
|  | while (!mte_is_leaf(mas.node)) | 
|  | mas_descend(&mas); | 
|  |  | 
|  | slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); | 
|  | do { | 
|  | entry = mas_slot(&mas, slots, offset); | 
|  | if (!last && !entry) { | 
|  | pr_err("Sequential nulls end at %p[%u]\n", | 
|  | mas_mn(&mas), offset); | 
|  | } | 
|  | MT_BUG_ON(mt, !last && !entry); | 
|  | last = entry; | 
|  | if (offset == mas_data_end(&mas)) { | 
|  | mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); | 
|  | if (mas_is_none(&mas)) | 
|  | return; | 
|  | offset = 0; | 
|  | slots = ma_slots(mte_to_node(mas.node), | 
|  | mte_node_type(mas.node)); | 
|  | } else { | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | } while (!mas_is_none(&mas)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate a maple tree by checking: | 
|  | * 1. The limits (pivots are within mas->min to mas->max) | 
|  | * 2. The gap is correctly set in the parents | 
|  | */ | 
|  | void mt_validate(struct maple_tree *mt) | 
|  | { | 
|  | unsigned char end; | 
|  |  | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  | rcu_read_lock(); | 
|  | mas_start(&mas); | 
|  | if (!mas_searchable(&mas)) | 
|  | goto done; | 
|  |  | 
|  | mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); | 
|  | while (!mas_is_none(&mas)) { | 
|  | MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); | 
|  | if (!mte_is_root(mas.node)) { | 
|  | end = mas_data_end(&mas); | 
|  | if ((end < mt_min_slot_count(mas.node)) && | 
|  | (mas.max != ULONG_MAX)) { | 
|  | pr_err("Invalid size %u of %p\n", end, | 
|  | mas_mn(&mas)); | 
|  | MT_BUG_ON(mas.tree, 1); | 
|  | } | 
|  |  | 
|  | } | 
|  | mas_validate_parent_slot(&mas); | 
|  | mas_validate_child_slot(&mas); | 
|  | mas_validate_limits(&mas); | 
|  | if (mt_is_alloc(mt)) | 
|  | mas_validate_gaps(&mas); | 
|  | mas_dfs_postorder(&mas, ULONG_MAX); | 
|  | } | 
|  | mt_validate_nulls(mt); | 
|  | done: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_validate); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_MAPLE_TREE */ |