|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/mm/vmalloc.c | 
|  | * | 
|  | *  Copyright (C) 1993  Linus Torvalds | 
|  | *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
|  | *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | 
|  | *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | 
|  | *  Numa awareness, Christoph Lameter, SGI, June 2005 | 
|  | */ | 
|  |  | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/set_memory.h> | 
|  | #include <linux/debugobjects.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/llist.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/rbtree_augmented.h> | 
|  | #include <linux/overflow.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/shmparam.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | struct vfree_deferred { | 
|  | struct llist_head list; | 
|  | struct work_struct wq; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | 
|  |  | 
|  | static void __vunmap(const void *, int); | 
|  |  | 
|  | static void free_work(struct work_struct *w) | 
|  | { | 
|  | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | 
|  | struct llist_node *t, *llnode; | 
|  |  | 
|  | llist_for_each_safe(llnode, t, llist_del_all(&p->list)) | 
|  | __vunmap((void *)llnode, 1); | 
|  | } | 
|  |  | 
|  | /*** Page table manipulation functions ***/ | 
|  |  | 
|  | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | do { | 
|  | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | 
|  | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_clear_huge(pmd)) | 
|  | continue; | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | continue; | 
|  | vunmap_pte_range(pmd, addr, next); | 
|  |  | 
|  | cond_resched(); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_clear_huge(pud)) | 
|  | continue; | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | vunmap_pmd_range(pud, addr, next); | 
|  | } while (pud++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_clear_huge(p4d)) | 
|  | continue; | 
|  | if (p4d_none_or_clear_bad(p4d)) | 
|  | continue; | 
|  | vunmap_pud_range(p4d, addr, next); | 
|  | } while (p4d++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void vunmap_page_range(unsigned long addr, unsigned long end) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | vunmap_p4d_range(pgd, addr, next); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | /* | 
|  | * nr is a running index into the array which helps higher level | 
|  | * callers keep track of where we're up to. | 
|  | */ | 
|  |  | 
|  | pte = pte_alloc_kernel(pmd, addr); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | struct page *page = pages[*nr]; | 
|  |  | 
|  | if (WARN_ON(!pte_none(*pte))) | 
|  | return -EBUSY; | 
|  | if (WARN_ON(!page)) | 
|  | return -ENOMEM; | 
|  | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | 
|  | (*nr)++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmap_pmd_range(pud_t *pud, unsigned long addr, | 
|  | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_alloc(&init_mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) | 
|  | return -ENOMEM; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, | 
|  | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_alloc(&init_mm, p4d, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) | 
|  | return -ENOMEM; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  |  | 
|  | p4d = p4d_alloc(&init_mm, pgd, addr); | 
|  | if (!p4d) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) | 
|  | return -ENOMEM; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | 
|  | * will have pfns corresponding to the "pages" array. | 
|  | * | 
|  | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | 
|  | */ | 
|  | static int vmap_page_range_noflush(unsigned long start, unsigned long end, | 
|  | pgprot_t prot, struct page **pages) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long addr = start; | 
|  | int err = 0; | 
|  | int nr = 0; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); | 
|  | if (err) | 
|  | return err; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int vmap_page_range(unsigned long start, unsigned long end, | 
|  | pgprot_t prot, struct page **pages) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = vmap_page_range_noflush(start, end, prot, pages); | 
|  | flush_cache_vmap(start, end); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int is_vmalloc_or_module_addr(const void *x) | 
|  | { | 
|  | /* | 
|  | * ARM, x86-64 and sparc64 put modules in a special place, | 
|  | * and fall back on vmalloc() if that fails. Others | 
|  | * just put it in the vmalloc space. | 
|  | */ | 
|  | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | 
|  | unsigned long addr = (unsigned long)x; | 
|  | if (addr >= MODULES_VADDR && addr < MODULES_END) | 
|  | return 1; | 
|  | #endif | 
|  | return is_vmalloc_addr(x); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk a vmap address to the struct page it maps. | 
|  | */ | 
|  | struct page *vmalloc_to_page(const void *vmalloc_addr) | 
|  | { | 
|  | unsigned long addr = (unsigned long) vmalloc_addr; | 
|  | struct page *page = NULL; | 
|  | pgd_t *pgd = pgd_offset_k(addr); | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep, pte; | 
|  |  | 
|  | /* | 
|  | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | 
|  | * architectures that do not vmalloc module space | 
|  | */ | 
|  | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); | 
|  |  | 
|  | if (pgd_none(*pgd)) | 
|  | return NULL; | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | if (p4d_none(*p4d)) | 
|  | return NULL; | 
|  | pud = pud_offset(p4d, addr); | 
|  |  | 
|  | /* | 
|  | * Don't dereference bad PUD or PMD (below) entries. This will also | 
|  | * identify huge mappings, which we may encounter on architectures | 
|  | * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be | 
|  | * identified as vmalloc addresses by is_vmalloc_addr(), but are | 
|  | * not [unambiguously] associated with a struct page, so there is | 
|  | * no correct value to return for them. | 
|  | */ | 
|  | WARN_ON_ONCE(pud_bad(*pud)); | 
|  | if (pud_none(*pud) || pud_bad(*pud)) | 
|  | return NULL; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | WARN_ON_ONCE(pmd_bad(*pmd)); | 
|  | if (pmd_none(*pmd) || pmd_bad(*pmd)) | 
|  | return NULL; | 
|  |  | 
|  | ptep = pte_offset_map(pmd, addr); | 
|  | pte = *ptep; | 
|  | if (pte_present(pte)) | 
|  | page = pte_page(pte); | 
|  | pte_unmap(ptep); | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_to_page); | 
|  |  | 
|  | /* | 
|  | * Map a vmalloc()-space virtual address to the physical page frame number. | 
|  | */ | 
|  | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | 
|  | { | 
|  | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_to_pfn); | 
|  |  | 
|  |  | 
|  | /*** Global kva allocator ***/ | 
|  |  | 
|  | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 | 
|  | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 | 
|  |  | 
|  |  | 
|  | static DEFINE_SPINLOCK(vmap_area_lock); | 
|  | /* Export for kexec only */ | 
|  | LIST_HEAD(vmap_area_list); | 
|  | static LLIST_HEAD(vmap_purge_list); | 
|  | static struct rb_root vmap_area_root = RB_ROOT; | 
|  | static bool vmap_initialized __read_mostly; | 
|  |  | 
|  | /* | 
|  | * This kmem_cache is used for vmap_area objects. Instead of | 
|  | * allocating from slab we reuse an object from this cache to | 
|  | * make things faster. Especially in "no edge" splitting of | 
|  | * free block. | 
|  | */ | 
|  | static struct kmem_cache *vmap_area_cachep; | 
|  |  | 
|  | /* | 
|  | * This linked list is used in pair with free_vmap_area_root. | 
|  | * It gives O(1) access to prev/next to perform fast coalescing. | 
|  | */ | 
|  | static LIST_HEAD(free_vmap_area_list); | 
|  |  | 
|  | /* | 
|  | * This augment red-black tree represents the free vmap space. | 
|  | * All vmap_area objects in this tree are sorted by va->va_start | 
|  | * address. It is used for allocation and merging when a vmap | 
|  | * object is released. | 
|  | * | 
|  | * Each vmap_area node contains a maximum available free block | 
|  | * of its sub-tree, right or left. Therefore it is possible to | 
|  | * find a lowest match of free area. | 
|  | */ | 
|  | static struct rb_root free_vmap_area_root = RB_ROOT; | 
|  |  | 
|  | /* | 
|  | * Preload a CPU with one object for "no edge" split case. The | 
|  | * aim is to get rid of allocations from the atomic context, thus | 
|  | * to use more permissive allocation masks. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | 
|  |  | 
|  | static __always_inline unsigned long | 
|  | va_size(struct vmap_area *va) | 
|  | { | 
|  | return (va->va_end - va->va_start); | 
|  | } | 
|  |  | 
|  | static __always_inline unsigned long | 
|  | get_subtree_max_size(struct rb_node *node) | 
|  | { | 
|  | struct vmap_area *va; | 
|  |  | 
|  | va = rb_entry_safe(node, struct vmap_area, rb_node); | 
|  | return va ? va->subtree_max_size : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called when remove the node and rotate. | 
|  | */ | 
|  | static __always_inline unsigned long | 
|  | compute_subtree_max_size(struct vmap_area *va) | 
|  | { | 
|  | return max3(va_size(va), | 
|  | get_subtree_max_size(va->rb_node.rb_left), | 
|  | get_subtree_max_size(va->rb_node.rb_right)); | 
|  | } | 
|  |  | 
|  | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, | 
|  | struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | 
|  |  | 
|  | static void purge_vmap_area_lazy(void); | 
|  | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); | 
|  | static unsigned long lazy_max_pages(void); | 
|  |  | 
|  | static atomic_long_t nr_vmalloc_pages; | 
|  |  | 
|  | unsigned long vmalloc_nr_pages(void) | 
|  | { | 
|  | return atomic_long_read(&nr_vmalloc_pages); | 
|  | } | 
|  |  | 
|  | static struct vmap_area *__find_vmap_area(unsigned long addr) | 
|  | { | 
|  | struct rb_node *n = vmap_area_root.rb_node; | 
|  |  | 
|  | while (n) { | 
|  | struct vmap_area *va; | 
|  |  | 
|  | va = rb_entry(n, struct vmap_area, rb_node); | 
|  | if (addr < va->va_start) | 
|  | n = n->rb_left; | 
|  | else if (addr >= va->va_end) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return va; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns back addresses of parent node | 
|  | * and its left or right link for further processing. | 
|  | */ | 
|  | static __always_inline struct rb_node ** | 
|  | find_va_links(struct vmap_area *va, | 
|  | struct rb_root *root, struct rb_node *from, | 
|  | struct rb_node **parent) | 
|  | { | 
|  | struct vmap_area *tmp_va; | 
|  | struct rb_node **link; | 
|  |  | 
|  | if (root) { | 
|  | link = &root->rb_node; | 
|  | if (unlikely(!*link)) { | 
|  | *parent = NULL; | 
|  | return link; | 
|  | } | 
|  | } else { | 
|  | link = &from; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go to the bottom of the tree. When we hit the last point | 
|  | * we end up with parent rb_node and correct direction, i name | 
|  | * it link, where the new va->rb_node will be attached to. | 
|  | */ | 
|  | do { | 
|  | tmp_va = rb_entry(*link, struct vmap_area, rb_node); | 
|  |  | 
|  | /* | 
|  | * During the traversal we also do some sanity check. | 
|  | * Trigger the BUG() if there are sides(left/right) | 
|  | * or full overlaps. | 
|  | */ | 
|  | if (va->va_start < tmp_va->va_end && | 
|  | va->va_end <= tmp_va->va_start) | 
|  | link = &(*link)->rb_left; | 
|  | else if (va->va_end > tmp_va->va_start && | 
|  | va->va_start >= tmp_va->va_end) | 
|  | link = &(*link)->rb_right; | 
|  | else | 
|  | BUG(); | 
|  | } while (*link); | 
|  |  | 
|  | *parent = &tmp_va->rb_node; | 
|  | return link; | 
|  | } | 
|  |  | 
|  | static __always_inline struct list_head * | 
|  | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | 
|  | { | 
|  | struct list_head *list; | 
|  |  | 
|  | if (unlikely(!parent)) | 
|  | /* | 
|  | * The red-black tree where we try to find VA neighbors | 
|  | * before merging or inserting is empty, i.e. it means | 
|  | * there is no free vmap space. Normally it does not | 
|  | * happen but we handle this case anyway. | 
|  | */ | 
|  | return NULL; | 
|  |  | 
|  | list = &rb_entry(parent, struct vmap_area, rb_node)->list; | 
|  | return (&parent->rb_right == link ? list->next : list); | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | link_va(struct vmap_area *va, struct rb_root *root, | 
|  | struct rb_node *parent, struct rb_node **link, struct list_head *head) | 
|  | { | 
|  | /* | 
|  | * VA is still not in the list, but we can | 
|  | * identify its future previous list_head node. | 
|  | */ | 
|  | if (likely(parent)) { | 
|  | head = &rb_entry(parent, struct vmap_area, rb_node)->list; | 
|  | if (&parent->rb_right != link) | 
|  | head = head->prev; | 
|  | } | 
|  |  | 
|  | /* Insert to the rb-tree */ | 
|  | rb_link_node(&va->rb_node, parent, link); | 
|  | if (root == &free_vmap_area_root) { | 
|  | /* | 
|  | * Some explanation here. Just perform simple insertion | 
|  | * to the tree. We do not set va->subtree_max_size to | 
|  | * its current size before calling rb_insert_augmented(). | 
|  | * It is because of we populate the tree from the bottom | 
|  | * to parent levels when the node _is_ in the tree. | 
|  | * | 
|  | * Therefore we set subtree_max_size to zero after insertion, | 
|  | * to let __augment_tree_propagate_from() puts everything to | 
|  | * the correct order later on. | 
|  | */ | 
|  | rb_insert_augmented(&va->rb_node, | 
|  | root, &free_vmap_area_rb_augment_cb); | 
|  | va->subtree_max_size = 0; | 
|  | } else { | 
|  | rb_insert_color(&va->rb_node, root); | 
|  | } | 
|  |  | 
|  | /* Address-sort this list */ | 
|  | list_add(&va->list, head); | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | unlink_va(struct vmap_area *va, struct rb_root *root) | 
|  | { | 
|  | if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) | 
|  | return; | 
|  |  | 
|  | if (root == &free_vmap_area_root) | 
|  | rb_erase_augmented(&va->rb_node, | 
|  | root, &free_vmap_area_rb_augment_cb); | 
|  | else | 
|  | rb_erase(&va->rb_node, root); | 
|  |  | 
|  | list_del(&va->list); | 
|  | RB_CLEAR_NODE(&va->rb_node); | 
|  | } | 
|  |  | 
|  | #if DEBUG_AUGMENT_PROPAGATE_CHECK | 
|  | static void | 
|  | augment_tree_propagate_check(struct rb_node *n) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct rb_node *node; | 
|  | unsigned long size; | 
|  | bool found = false; | 
|  |  | 
|  | if (n == NULL) | 
|  | return; | 
|  |  | 
|  | va = rb_entry(n, struct vmap_area, rb_node); | 
|  | size = va->subtree_max_size; | 
|  | node = n; | 
|  |  | 
|  | while (node) { | 
|  | va = rb_entry(node, struct vmap_area, rb_node); | 
|  |  | 
|  | if (get_subtree_max_size(node->rb_left) == size) { | 
|  | node = node->rb_left; | 
|  | } else { | 
|  | if (va_size(va) == size) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | node = node->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | va = rb_entry(n, struct vmap_area, rb_node); | 
|  | pr_emerg("tree is corrupted: %lu, %lu\n", | 
|  | va_size(va), va->subtree_max_size); | 
|  | } | 
|  |  | 
|  | augment_tree_propagate_check(n->rb_left); | 
|  | augment_tree_propagate_check(n->rb_right); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This function populates subtree_max_size from bottom to upper | 
|  | * levels starting from VA point. The propagation must be done | 
|  | * when VA size is modified by changing its va_start/va_end. Or | 
|  | * in case of newly inserting of VA to the tree. | 
|  | * | 
|  | * It means that __augment_tree_propagate_from() must be called: | 
|  | * - After VA has been inserted to the tree(free path); | 
|  | * - After VA has been shrunk(allocation path); | 
|  | * - After VA has been increased(merging path). | 
|  | * | 
|  | * Please note that, it does not mean that upper parent nodes | 
|  | * and their subtree_max_size are recalculated all the time up | 
|  | * to the root node. | 
|  | * | 
|  | *       4--8 | 
|  | *        /\ | 
|  | *       /  \ | 
|  | *      /    \ | 
|  | *    2--2  8--8 | 
|  | * | 
|  | * For example if we modify the node 4, shrinking it to 2, then | 
|  | * no any modification is required. If we shrink the node 2 to 1 | 
|  | * its subtree_max_size is updated only, and set to 1. If we shrink | 
|  | * the node 8 to 6, then its subtree_max_size is set to 6 and parent | 
|  | * node becomes 4--6. | 
|  | */ | 
|  | static __always_inline void | 
|  | augment_tree_propagate_from(struct vmap_area *va) | 
|  | { | 
|  | struct rb_node *node = &va->rb_node; | 
|  | unsigned long new_va_sub_max_size; | 
|  |  | 
|  | while (node) { | 
|  | va = rb_entry(node, struct vmap_area, rb_node); | 
|  | new_va_sub_max_size = compute_subtree_max_size(va); | 
|  |  | 
|  | /* | 
|  | * If the newly calculated maximum available size of the | 
|  | * subtree is equal to the current one, then it means that | 
|  | * the tree is propagated correctly. So we have to stop at | 
|  | * this point to save cycles. | 
|  | */ | 
|  | if (va->subtree_max_size == new_va_sub_max_size) | 
|  | break; | 
|  |  | 
|  | va->subtree_max_size = new_va_sub_max_size; | 
|  | node = rb_parent(&va->rb_node); | 
|  | } | 
|  |  | 
|  | #if DEBUG_AUGMENT_PROPAGATE_CHECK | 
|  | augment_tree_propagate_check(free_vmap_area_root.rb_node); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | insert_vmap_area(struct vmap_area *va, | 
|  | struct rb_root *root, struct list_head *head) | 
|  | { | 
|  | struct rb_node **link; | 
|  | struct rb_node *parent; | 
|  |  | 
|  | link = find_va_links(va, root, NULL, &parent); | 
|  | link_va(va, root, parent, link, head); | 
|  | } | 
|  |  | 
|  | static void | 
|  | insert_vmap_area_augment(struct vmap_area *va, | 
|  | struct rb_node *from, struct rb_root *root, | 
|  | struct list_head *head) | 
|  | { | 
|  | struct rb_node **link; | 
|  | struct rb_node *parent; | 
|  |  | 
|  | if (from) | 
|  | link = find_va_links(va, NULL, from, &parent); | 
|  | else | 
|  | link = find_va_links(va, root, NULL, &parent); | 
|  |  | 
|  | link_va(va, root, parent, link, head); | 
|  | augment_tree_propagate_from(va); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Merge de-allocated chunk of VA memory with previous | 
|  | * and next free blocks. If coalesce is not done a new | 
|  | * free area is inserted. If VA has been merged, it is | 
|  | * freed. | 
|  | */ | 
|  | static __always_inline void | 
|  | merge_or_add_vmap_area(struct vmap_area *va, | 
|  | struct rb_root *root, struct list_head *head) | 
|  | { | 
|  | struct vmap_area *sibling; | 
|  | struct list_head *next; | 
|  | struct rb_node **link; | 
|  | struct rb_node *parent; | 
|  | bool merged = false; | 
|  |  | 
|  | /* | 
|  | * Find a place in the tree where VA potentially will be | 
|  | * inserted, unless it is merged with its sibling/siblings. | 
|  | */ | 
|  | link = find_va_links(va, root, NULL, &parent); | 
|  |  | 
|  | /* | 
|  | * Get next node of VA to check if merging can be done. | 
|  | */ | 
|  | next = get_va_next_sibling(parent, link); | 
|  | if (unlikely(next == NULL)) | 
|  | goto insert; | 
|  |  | 
|  | /* | 
|  | * start            end | 
|  | * |                | | 
|  | * |<------VA------>|<-----Next----->| | 
|  | *                  |                | | 
|  | *                  start            end | 
|  | */ | 
|  | if (next != head) { | 
|  | sibling = list_entry(next, struct vmap_area, list); | 
|  | if (sibling->va_start == va->va_end) { | 
|  | sibling->va_start = va->va_start; | 
|  |  | 
|  | /* Check and update the tree if needed. */ | 
|  | augment_tree_propagate_from(sibling); | 
|  |  | 
|  | /* Free vmap_area object. */ | 
|  | kmem_cache_free(vmap_area_cachep, va); | 
|  |  | 
|  | /* Point to the new merged area. */ | 
|  | va = sibling; | 
|  | merged = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start            end | 
|  | * |                | | 
|  | * |<-----Prev----->|<------VA------>| | 
|  | *                  |                | | 
|  | *                  start            end | 
|  | */ | 
|  | if (next->prev != head) { | 
|  | sibling = list_entry(next->prev, struct vmap_area, list); | 
|  | if (sibling->va_end == va->va_start) { | 
|  | sibling->va_end = va->va_end; | 
|  |  | 
|  | /* Check and update the tree if needed. */ | 
|  | augment_tree_propagate_from(sibling); | 
|  |  | 
|  | if (merged) | 
|  | unlink_va(va, root); | 
|  |  | 
|  | /* Free vmap_area object. */ | 
|  | kmem_cache_free(vmap_area_cachep, va); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | insert: | 
|  | if (!merged) { | 
|  | link_va(va, root, parent, link, head); | 
|  | augment_tree_propagate_from(va); | 
|  | } | 
|  | } | 
|  |  | 
|  | static __always_inline bool | 
|  | is_within_this_va(struct vmap_area *va, unsigned long size, | 
|  | unsigned long align, unsigned long vstart) | 
|  | { | 
|  | unsigned long nva_start_addr; | 
|  |  | 
|  | if (va->va_start > vstart) | 
|  | nva_start_addr = ALIGN(va->va_start, align); | 
|  | else | 
|  | nva_start_addr = ALIGN(vstart, align); | 
|  |  | 
|  | /* Can be overflowed due to big size or alignment. */ | 
|  | if (nva_start_addr + size < nva_start_addr || | 
|  | nva_start_addr < vstart) | 
|  | return false; | 
|  |  | 
|  | return (nva_start_addr + size <= va->va_end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the first free block(lowest start address) in the tree, | 
|  | * that will accomplish the request corresponding to passing | 
|  | * parameters. | 
|  | */ | 
|  | static __always_inline struct vmap_area * | 
|  | find_vmap_lowest_match(unsigned long size, | 
|  | unsigned long align, unsigned long vstart) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct rb_node *node; | 
|  | unsigned long length; | 
|  |  | 
|  | /* Start from the root. */ | 
|  | node = free_vmap_area_root.rb_node; | 
|  |  | 
|  | /* Adjust the search size for alignment overhead. */ | 
|  | length = size + align - 1; | 
|  |  | 
|  | while (node) { | 
|  | va = rb_entry(node, struct vmap_area, rb_node); | 
|  |  | 
|  | if (get_subtree_max_size(node->rb_left) >= length && | 
|  | vstart < va->va_start) { | 
|  | node = node->rb_left; | 
|  | } else { | 
|  | if (is_within_this_va(va, size, align, vstart)) | 
|  | return va; | 
|  |  | 
|  | /* | 
|  | * Does not make sense to go deeper towards the right | 
|  | * sub-tree if it does not have a free block that is | 
|  | * equal or bigger to the requested search length. | 
|  | */ | 
|  | if (get_subtree_max_size(node->rb_right) >= length) { | 
|  | node = node->rb_right; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK. We roll back and find the first right sub-tree, | 
|  | * that will satisfy the search criteria. It can happen | 
|  | * only once due to "vstart" restriction. | 
|  | */ | 
|  | while ((node = rb_parent(node))) { | 
|  | va = rb_entry(node, struct vmap_area, rb_node); | 
|  | if (is_within_this_va(va, size, align, vstart)) | 
|  | return va; | 
|  |  | 
|  | if (get_subtree_max_size(node->rb_right) >= length && | 
|  | vstart <= va->va_start) { | 
|  | node = node->rb_right; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | 
|  | #include <linux/random.h> | 
|  |  | 
|  | static struct vmap_area * | 
|  | find_vmap_lowest_linear_match(unsigned long size, | 
|  | unsigned long align, unsigned long vstart) | 
|  | { | 
|  | struct vmap_area *va; | 
|  |  | 
|  | list_for_each_entry(va, &free_vmap_area_list, list) { | 
|  | if (!is_within_this_va(va, size, align, vstart)) | 
|  | continue; | 
|  |  | 
|  | return va; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | find_vmap_lowest_match_check(unsigned long size) | 
|  | { | 
|  | struct vmap_area *va_1, *va_2; | 
|  | unsigned long vstart; | 
|  | unsigned int rnd; | 
|  |  | 
|  | get_random_bytes(&rnd, sizeof(rnd)); | 
|  | vstart = VMALLOC_START + rnd; | 
|  |  | 
|  | va_1 = find_vmap_lowest_match(size, 1, vstart); | 
|  | va_2 = find_vmap_lowest_linear_match(size, 1, vstart); | 
|  |  | 
|  | if (va_1 != va_2) | 
|  | pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | 
|  | va_1, va_2, vstart); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | enum fit_type { | 
|  | NOTHING_FIT = 0, | 
|  | FL_FIT_TYPE = 1,	/* full fit */ | 
|  | LE_FIT_TYPE = 2,	/* left edge fit */ | 
|  | RE_FIT_TYPE = 3,	/* right edge fit */ | 
|  | NE_FIT_TYPE = 4		/* no edge fit */ | 
|  | }; | 
|  |  | 
|  | static __always_inline enum fit_type | 
|  | classify_va_fit_type(struct vmap_area *va, | 
|  | unsigned long nva_start_addr, unsigned long size) | 
|  | { | 
|  | enum fit_type type; | 
|  |  | 
|  | /* Check if it is within VA. */ | 
|  | if (nva_start_addr < va->va_start || | 
|  | nva_start_addr + size > va->va_end) | 
|  | return NOTHING_FIT; | 
|  |  | 
|  | /* Now classify. */ | 
|  | if (va->va_start == nva_start_addr) { | 
|  | if (va->va_end == nva_start_addr + size) | 
|  | type = FL_FIT_TYPE; | 
|  | else | 
|  | type = LE_FIT_TYPE; | 
|  | } else if (va->va_end == nva_start_addr + size) { | 
|  | type = RE_FIT_TYPE; | 
|  | } else { | 
|  | type = NE_FIT_TYPE; | 
|  | } | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static __always_inline int | 
|  | adjust_va_to_fit_type(struct vmap_area *va, | 
|  | unsigned long nva_start_addr, unsigned long size, | 
|  | enum fit_type type) | 
|  | { | 
|  | struct vmap_area *lva = NULL; | 
|  |  | 
|  | if (type == FL_FIT_TYPE) { | 
|  | /* | 
|  | * No need to split VA, it fully fits. | 
|  | * | 
|  | * |               | | 
|  | * V      NVA      V | 
|  | * |---------------| | 
|  | */ | 
|  | unlink_va(va, &free_vmap_area_root); | 
|  | kmem_cache_free(vmap_area_cachep, va); | 
|  | } else if (type == LE_FIT_TYPE) { | 
|  | /* | 
|  | * Split left edge of fit VA. | 
|  | * | 
|  | * |       | | 
|  | * V  NVA  V   R | 
|  | * |-------|-------| | 
|  | */ | 
|  | va->va_start += size; | 
|  | } else if (type == RE_FIT_TYPE) { | 
|  | /* | 
|  | * Split right edge of fit VA. | 
|  | * | 
|  | *         |       | | 
|  | *     L   V  NVA  V | 
|  | * |-------|-------| | 
|  | */ | 
|  | va->va_end = nva_start_addr; | 
|  | } else if (type == NE_FIT_TYPE) { | 
|  | /* | 
|  | * Split no edge of fit VA. | 
|  | * | 
|  | *     |       | | 
|  | *   L V  NVA  V R | 
|  | * |---|-------|---| | 
|  | */ | 
|  | lva = __this_cpu_xchg(ne_fit_preload_node, NULL); | 
|  | if (unlikely(!lva)) { | 
|  | /* | 
|  | * For percpu allocator we do not do any pre-allocation | 
|  | * and leave it as it is. The reason is it most likely | 
|  | * never ends up with NE_FIT_TYPE splitting. In case of | 
|  | * percpu allocations offsets and sizes are aligned to | 
|  | * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | 
|  | * are its main fitting cases. | 
|  | * | 
|  | * There are a few exceptions though, as an example it is | 
|  | * a first allocation (early boot up) when we have "one" | 
|  | * big free space that has to be split. | 
|  | */ | 
|  | lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | 
|  | if (!lva) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build the remainder. | 
|  | */ | 
|  | lva->va_start = va->va_start; | 
|  | lva->va_end = nva_start_addr; | 
|  |  | 
|  | /* | 
|  | * Shrink this VA to remaining size. | 
|  | */ | 
|  | va->va_start = nva_start_addr + size; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (type != FL_FIT_TYPE) { | 
|  | augment_tree_propagate_from(va); | 
|  |  | 
|  | if (lva)	/* type == NE_FIT_TYPE */ | 
|  | insert_vmap_area_augment(lva, &va->rb_node, | 
|  | &free_vmap_area_root, &free_vmap_area_list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a start address of the newly allocated area, if success. | 
|  | * Otherwise a vend is returned that indicates failure. | 
|  | */ | 
|  | static __always_inline unsigned long | 
|  | __alloc_vmap_area(unsigned long size, unsigned long align, | 
|  | unsigned long vstart, unsigned long vend) | 
|  | { | 
|  | unsigned long nva_start_addr; | 
|  | struct vmap_area *va; | 
|  | enum fit_type type; | 
|  | int ret; | 
|  |  | 
|  | va = find_vmap_lowest_match(size, align, vstart); | 
|  | if (unlikely(!va)) | 
|  | return vend; | 
|  |  | 
|  | if (va->va_start > vstart) | 
|  | nva_start_addr = ALIGN(va->va_start, align); | 
|  | else | 
|  | nva_start_addr = ALIGN(vstart, align); | 
|  |  | 
|  | /* Check the "vend" restriction. */ | 
|  | if (nva_start_addr + size > vend) | 
|  | return vend; | 
|  |  | 
|  | /* Classify what we have found. */ | 
|  | type = classify_va_fit_type(va, nva_start_addr, size); | 
|  | if (WARN_ON_ONCE(type == NOTHING_FIT)) | 
|  | return vend; | 
|  |  | 
|  | /* Update the free vmap_area. */ | 
|  | ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); | 
|  | if (ret) | 
|  | return vend; | 
|  |  | 
|  | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | 
|  | find_vmap_lowest_match_check(size); | 
|  | #endif | 
|  |  | 
|  | return nva_start_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a region of KVA of the specified size and alignment, within the | 
|  | * vstart and vend. | 
|  | */ | 
|  | static struct vmap_area *alloc_vmap_area(unsigned long size, | 
|  | unsigned long align, | 
|  | unsigned long vstart, unsigned long vend, | 
|  | int node, gfp_t gfp_mask) | 
|  | { | 
|  | struct vmap_area *va, *pva; | 
|  | unsigned long addr; | 
|  | int purged = 0; | 
|  |  | 
|  | BUG_ON(!size); | 
|  | BUG_ON(offset_in_page(size)); | 
|  | BUG_ON(!is_power_of_2(align)); | 
|  |  | 
|  | if (unlikely(!vmap_initialized)) | 
|  | return ERR_PTR(-EBUSY); | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | va = kmem_cache_alloc_node(vmap_area_cachep, | 
|  | gfp_mask & GFP_RECLAIM_MASK, node); | 
|  | if (unlikely(!va)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Only scan the relevant parts containing pointers to other objects | 
|  | * to avoid false negatives. | 
|  | */ | 
|  | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Preload this CPU with one extra vmap_area object to ensure | 
|  | * that we have it available when fit type of free area is | 
|  | * NE_FIT_TYPE. | 
|  | * | 
|  | * The preload is done in non-atomic context, thus it allows us | 
|  | * to use more permissive allocation masks to be more stable under | 
|  | * low memory condition and high memory pressure. | 
|  | * | 
|  | * Even if it fails we do not really care about that. Just proceed | 
|  | * as it is. "overflow" path will refill the cache we allocate from. | 
|  | */ | 
|  | preempt_disable(); | 
|  | if (!__this_cpu_read(ne_fit_preload_node)) { | 
|  | preempt_enable(); | 
|  | pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); | 
|  | preempt_disable(); | 
|  |  | 
|  | if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) { | 
|  | if (pva) | 
|  | kmem_cache_free(vmap_area_cachep, pva); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | preempt_enable(); | 
|  |  | 
|  | /* | 
|  | * If an allocation fails, the "vend" address is | 
|  | * returned. Therefore trigger the overflow path. | 
|  | */ | 
|  | addr = __alloc_vmap_area(size, align, vstart, vend); | 
|  | if (unlikely(addr == vend)) | 
|  | goto overflow; | 
|  |  | 
|  | va->va_start = addr; | 
|  | va->va_end = addr + size; | 
|  | va->vm = NULL; | 
|  | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | 
|  |  | 
|  | spin_unlock(&vmap_area_lock); | 
|  |  | 
|  | BUG_ON(!IS_ALIGNED(va->va_start, align)); | 
|  | BUG_ON(va->va_start < vstart); | 
|  | BUG_ON(va->va_end > vend); | 
|  |  | 
|  | return va; | 
|  |  | 
|  | overflow: | 
|  | spin_unlock(&vmap_area_lock); | 
|  | if (!purged) { | 
|  | purge_vmap_area_lazy(); | 
|  | purged = 1; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (gfpflags_allow_blocking(gfp_mask)) { | 
|  | unsigned long freed = 0; | 
|  | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | 
|  | if (freed > 0) { | 
|  | purged = 0; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) | 
|  | pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", | 
|  | size); | 
|  |  | 
|  | kmem_cache_free(vmap_area_cachep, va); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  |  | 
|  | int register_vmap_purge_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&vmap_notify_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | 
|  |  | 
|  | int unregister_vmap_purge_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | 
|  |  | 
|  | static void __free_vmap_area(struct vmap_area *va) | 
|  | { | 
|  | /* | 
|  | * Remove from the busy tree/list. | 
|  | */ | 
|  | unlink_va(va, &vmap_area_root); | 
|  |  | 
|  | /* | 
|  | * Merge VA with its neighbors, otherwise just add it. | 
|  | */ | 
|  | merge_or_add_vmap_area(va, | 
|  | &free_vmap_area_root, &free_vmap_area_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a region of KVA allocated by alloc_vmap_area | 
|  | */ | 
|  | static void free_vmap_area(struct vmap_area *va) | 
|  | { | 
|  | spin_lock(&vmap_area_lock); | 
|  | __free_vmap_area(va); | 
|  | spin_unlock(&vmap_area_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the pagetable entries of a given vmap_area | 
|  | */ | 
|  | static void unmap_vmap_area(struct vmap_area *va) | 
|  | { | 
|  | vunmap_page_range(va->va_start, va->va_end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lazy_max_pages is the maximum amount of virtual address space we gather up | 
|  | * before attempting to purge with a TLB flush. | 
|  | * | 
|  | * There is a tradeoff here: a larger number will cover more kernel page tables | 
|  | * and take slightly longer to purge, but it will linearly reduce the number of | 
|  | * global TLB flushes that must be performed. It would seem natural to scale | 
|  | * this number up linearly with the number of CPUs (because vmapping activity | 
|  | * could also scale linearly with the number of CPUs), however it is likely | 
|  | * that in practice, workloads might be constrained in other ways that mean | 
|  | * vmap activity will not scale linearly with CPUs. Also, I want to be | 
|  | * conservative and not introduce a big latency on huge systems, so go with | 
|  | * a less aggressive log scale. It will still be an improvement over the old | 
|  | * code, and it will be simple to change the scale factor if we find that it | 
|  | * becomes a problem on bigger systems. | 
|  | */ | 
|  | static unsigned long lazy_max_pages(void) | 
|  | { | 
|  | unsigned int log; | 
|  |  | 
|  | log = fls(num_online_cpus()); | 
|  |  | 
|  | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); | 
|  |  | 
|  | /* | 
|  | * Serialize vmap purging.  There is no actual criticial section protected | 
|  | * by this look, but we want to avoid concurrent calls for performance | 
|  | * reasons and to make the pcpu_get_vm_areas more deterministic. | 
|  | */ | 
|  | static DEFINE_MUTEX(vmap_purge_lock); | 
|  |  | 
|  | /* for per-CPU blocks */ | 
|  | static void purge_fragmented_blocks_allcpus(void); | 
|  |  | 
|  | /* | 
|  | * called before a call to iounmap() if the caller wants vm_area_struct's | 
|  | * immediately freed. | 
|  | */ | 
|  | void set_iounmap_nonlazy(void) | 
|  | { | 
|  | atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Purges all lazily-freed vmap areas. | 
|  | */ | 
|  | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long resched_threshold; | 
|  | struct llist_node *valist; | 
|  | struct vmap_area *va; | 
|  | struct vmap_area *n_va; | 
|  |  | 
|  | lockdep_assert_held(&vmap_purge_lock); | 
|  |  | 
|  | valist = llist_del_all(&vmap_purge_list); | 
|  | if (unlikely(valist == NULL)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * First make sure the mappings are removed from all page-tables | 
|  | * before they are freed. | 
|  | */ | 
|  | vmalloc_sync_unmappings(); | 
|  |  | 
|  | /* | 
|  | * TODO: to calculate a flush range without looping. | 
|  | * The list can be up to lazy_max_pages() elements. | 
|  | */ | 
|  | llist_for_each_entry(va, valist, purge_list) { | 
|  | if (va->va_start < start) | 
|  | start = va->va_start; | 
|  | if (va->va_end > end) | 
|  | end = va->va_end; | 
|  | } | 
|  |  | 
|  | flush_tlb_kernel_range(start, end); | 
|  | resched_threshold = lazy_max_pages() << 1; | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | llist_for_each_entry_safe(va, n_va, valist, purge_list) { | 
|  | unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Finally insert or merge lazily-freed area. It is | 
|  | * detached and there is no need to "unlink" it from | 
|  | * anything. | 
|  | */ | 
|  | merge_or_add_vmap_area(va, | 
|  | &free_vmap_area_root, &free_vmap_area_list); | 
|  |  | 
|  | atomic_long_sub(nr, &vmap_lazy_nr); | 
|  |  | 
|  | if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) | 
|  | cond_resched_lock(&vmap_area_lock); | 
|  | } | 
|  | spin_unlock(&vmap_area_lock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | 
|  | * is already purging. | 
|  | */ | 
|  | static void try_purge_vmap_area_lazy(void) | 
|  | { | 
|  | if (mutex_trylock(&vmap_purge_lock)) { | 
|  | __purge_vmap_area_lazy(ULONG_MAX, 0); | 
|  | mutex_unlock(&vmap_purge_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kick off a purge of the outstanding lazy areas. | 
|  | */ | 
|  | static void purge_vmap_area_lazy(void) | 
|  | { | 
|  | mutex_lock(&vmap_purge_lock); | 
|  | purge_fragmented_blocks_allcpus(); | 
|  | __purge_vmap_area_lazy(ULONG_MAX, 0); | 
|  | mutex_unlock(&vmap_purge_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a vmap area, caller ensuring that the area has been unmapped | 
|  | * and flush_cache_vunmap had been called for the correct range | 
|  | * previously. | 
|  | */ | 
|  | static void free_vmap_area_noflush(struct vmap_area *va) | 
|  | { | 
|  | unsigned long nr_lazy; | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | unlink_va(va, &vmap_area_root); | 
|  | spin_unlock(&vmap_area_lock); | 
|  |  | 
|  | nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> | 
|  | PAGE_SHIFT, &vmap_lazy_nr); | 
|  |  | 
|  | /* After this point, we may free va at any time */ | 
|  | llist_add(&va->purge_list, &vmap_purge_list); | 
|  |  | 
|  | if (unlikely(nr_lazy > lazy_max_pages())) | 
|  | try_purge_vmap_area_lazy(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free and unmap a vmap area | 
|  | */ | 
|  | static void free_unmap_vmap_area(struct vmap_area *va) | 
|  | { | 
|  | flush_cache_vunmap(va->va_start, va->va_end); | 
|  | unmap_vmap_area(va); | 
|  | if (debug_pagealloc_enabled_static()) | 
|  | flush_tlb_kernel_range(va->va_start, va->va_end); | 
|  |  | 
|  | free_vmap_area_noflush(va); | 
|  | } | 
|  |  | 
|  | static struct vmap_area *find_vmap_area(unsigned long addr) | 
|  | { | 
|  | struct vmap_area *va; | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | va = __find_vmap_area(addr); | 
|  | spin_unlock(&vmap_area_lock); | 
|  |  | 
|  | return va; | 
|  | } | 
|  |  | 
|  | /*** Per cpu kva allocator ***/ | 
|  |  | 
|  | /* | 
|  | * vmap space is limited especially on 32 bit architectures. Ensure there is | 
|  | * room for at least 16 percpu vmap blocks per CPU. | 
|  | */ | 
|  | /* | 
|  | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | 
|  | * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess | 
|  | * instead (we just need a rough idea) | 
|  | */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | #define VMALLOC_SPACE		(128UL*1024*1024) | 
|  | #else | 
|  | #define VMALLOC_SPACE		(128UL*1024*1024*1024) | 
|  | #endif | 
|  |  | 
|  | #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE) | 
|  | #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */ | 
|  | #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */ | 
|  | #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2) | 
|  | #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */ | 
|  | #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */ | 
|  | #define VMAP_BBMAP_BITS		\ | 
|  | VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\ | 
|  | VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\ | 
|  | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | 
|  |  | 
|  | #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE) | 
|  |  | 
|  | struct vmap_block_queue { | 
|  | spinlock_t lock; | 
|  | struct list_head free; | 
|  | }; | 
|  |  | 
|  | struct vmap_block { | 
|  | spinlock_t lock; | 
|  | struct vmap_area *va; | 
|  | unsigned long free, dirty; | 
|  | unsigned long dirty_min, dirty_max; /*< dirty range */ | 
|  | struct list_head free_list; | 
|  | struct rcu_head rcu_head; | 
|  | struct list_head purge; | 
|  | }; | 
|  |  | 
|  | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | 
|  | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | 
|  |  | 
|  | /* | 
|  | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | 
|  | * in the free path. Could get rid of this if we change the API to return a | 
|  | * "cookie" from alloc, to be passed to free. But no big deal yet. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(vmap_block_tree_lock); | 
|  | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | 
|  |  | 
|  | /* | 
|  | * We should probably have a fallback mechanism to allocate virtual memory | 
|  | * out of partially filled vmap blocks. However vmap block sizing should be | 
|  | * fairly reasonable according to the vmalloc size, so it shouldn't be a | 
|  | * big problem. | 
|  | */ | 
|  |  | 
|  | static unsigned long addr_to_vb_idx(unsigned long addr) | 
|  | { | 
|  | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | 
|  | addr /= VMAP_BLOCK_SIZE; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = va_start + (pages_off << PAGE_SHIFT); | 
|  | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | 
|  | return (void *)addr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | 
|  | *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS | 
|  | * @order:    how many 2^order pages should be occupied in newly allocated block | 
|  | * @gfp_mask: flags for the page level allocator | 
|  | * | 
|  | * Return: virtual address in a newly allocated block or ERR_PTR(-errno) | 
|  | */ | 
|  | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | 
|  | { | 
|  | struct vmap_block_queue *vbq; | 
|  | struct vmap_block *vb; | 
|  | struct vmap_area *va; | 
|  | unsigned long vb_idx; | 
|  | int node, err; | 
|  | void *vaddr; | 
|  |  | 
|  | node = numa_node_id(); | 
|  |  | 
|  | vb = kmalloc_node(sizeof(struct vmap_block), | 
|  | gfp_mask & GFP_RECLAIM_MASK, node); | 
|  | if (unlikely(!vb)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | 
|  | VMALLOC_START, VMALLOC_END, | 
|  | node, gfp_mask); | 
|  | if (IS_ERR(va)) { | 
|  | kfree(vb); | 
|  | return ERR_CAST(va); | 
|  | } | 
|  |  | 
|  | err = radix_tree_preload(gfp_mask); | 
|  | if (unlikely(err)) { | 
|  | kfree(vb); | 
|  | free_vmap_area(va); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | vaddr = vmap_block_vaddr(va->va_start, 0); | 
|  | spin_lock_init(&vb->lock); | 
|  | vb->va = va; | 
|  | /* At least something should be left free */ | 
|  | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | 
|  | vb->free = VMAP_BBMAP_BITS - (1UL << order); | 
|  | vb->dirty = 0; | 
|  | vb->dirty_min = VMAP_BBMAP_BITS; | 
|  | vb->dirty_max = 0; | 
|  | INIT_LIST_HEAD(&vb->free_list); | 
|  |  | 
|  | vb_idx = addr_to_vb_idx(va->va_start); | 
|  | spin_lock(&vmap_block_tree_lock); | 
|  | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | 
|  | spin_unlock(&vmap_block_tree_lock); | 
|  | BUG_ON(err); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | vbq = &get_cpu_var(vmap_block_queue); | 
|  | spin_lock(&vbq->lock); | 
|  | list_add_tail_rcu(&vb->free_list, &vbq->free); | 
|  | spin_unlock(&vbq->lock); | 
|  | put_cpu_var(vmap_block_queue); | 
|  |  | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static void free_vmap_block(struct vmap_block *vb) | 
|  | { | 
|  | struct vmap_block *tmp; | 
|  | unsigned long vb_idx; | 
|  |  | 
|  | vb_idx = addr_to_vb_idx(vb->va->va_start); | 
|  | spin_lock(&vmap_block_tree_lock); | 
|  | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | 
|  | spin_unlock(&vmap_block_tree_lock); | 
|  | BUG_ON(tmp != vb); | 
|  |  | 
|  | free_vmap_area_noflush(vb->va); | 
|  | kfree_rcu(vb, rcu_head); | 
|  | } | 
|  |  | 
|  | static void purge_fragmented_blocks(int cpu) | 
|  | { | 
|  | LIST_HEAD(purge); | 
|  | struct vmap_block *vb; | 
|  | struct vmap_block *n_vb; | 
|  | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
|  |  | 
|  | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&vb->lock); | 
|  | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | 
|  | vb->free = 0; /* prevent further allocs after releasing lock */ | 
|  | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | 
|  | vb->dirty_min = 0; | 
|  | vb->dirty_max = VMAP_BBMAP_BITS; | 
|  | spin_lock(&vbq->lock); | 
|  | list_del_rcu(&vb->free_list); | 
|  | spin_unlock(&vbq->lock); | 
|  | spin_unlock(&vb->lock); | 
|  | list_add_tail(&vb->purge, &purge); | 
|  | } else | 
|  | spin_unlock(&vb->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | 
|  | list_del(&vb->purge); | 
|  | free_vmap_block(vb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void purge_fragmented_blocks_allcpus(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | purge_fragmented_blocks(cpu); | 
|  | } | 
|  |  | 
|  | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | 
|  | { | 
|  | struct vmap_block_queue *vbq; | 
|  | struct vmap_block *vb; | 
|  | void *vaddr = NULL; | 
|  | unsigned int order; | 
|  |  | 
|  | BUG_ON(offset_in_page(size)); | 
|  | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
|  | if (WARN_ON(size == 0)) { | 
|  | /* | 
|  | * Allocating 0 bytes isn't what caller wants since | 
|  | * get_order(0) returns funny result. Just warn and terminate | 
|  | * early. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  | order = get_order(size); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | vbq = &get_cpu_var(vmap_block_queue); | 
|  | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
|  | unsigned long pages_off; | 
|  |  | 
|  | spin_lock(&vb->lock); | 
|  | if (vb->free < (1UL << order)) { | 
|  | spin_unlock(&vb->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pages_off = VMAP_BBMAP_BITS - vb->free; | 
|  | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | 
|  | vb->free -= 1UL << order; | 
|  | if (vb->free == 0) { | 
|  | spin_lock(&vbq->lock); | 
|  | list_del_rcu(&vb->free_list); | 
|  | spin_unlock(&vbq->lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(&vb->lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | put_cpu_var(vmap_block_queue); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* Allocate new block if nothing was found */ | 
|  | if (!vaddr) | 
|  | vaddr = new_vmap_block(order, gfp_mask); | 
|  |  | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static void vb_free(const void *addr, unsigned long size) | 
|  | { | 
|  | unsigned long offset; | 
|  | unsigned long vb_idx; | 
|  | unsigned int order; | 
|  | struct vmap_block *vb; | 
|  |  | 
|  | BUG_ON(offset_in_page(size)); | 
|  | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
|  |  | 
|  | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | 
|  |  | 
|  | order = get_order(size); | 
|  |  | 
|  | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | 
|  | offset >>= PAGE_SHIFT; | 
|  |  | 
|  | vb_idx = addr_to_vb_idx((unsigned long)addr); | 
|  | rcu_read_lock(); | 
|  | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | 
|  | rcu_read_unlock(); | 
|  | BUG_ON(!vb); | 
|  |  | 
|  | vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); | 
|  |  | 
|  | if (debug_pagealloc_enabled_static()) | 
|  | flush_tlb_kernel_range((unsigned long)addr, | 
|  | (unsigned long)addr + size); | 
|  |  | 
|  | spin_lock(&vb->lock); | 
|  |  | 
|  | /* Expand dirty range */ | 
|  | vb->dirty_min = min(vb->dirty_min, offset); | 
|  | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | 
|  |  | 
|  | vb->dirty += 1UL << order; | 
|  | if (vb->dirty == VMAP_BBMAP_BITS) { | 
|  | BUG_ON(vb->free); | 
|  | spin_unlock(&vb->lock); | 
|  | free_vmap_block(vb); | 
|  | } else | 
|  | spin_unlock(&vb->lock); | 
|  | } | 
|  |  | 
|  | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (unlikely(!vmap_initialized)) | 
|  | return; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
|  | struct vmap_block *vb; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
|  | spin_lock(&vb->lock); | 
|  | if (vb->dirty) { | 
|  | unsigned long va_start = vb->va->va_start; | 
|  | unsigned long s, e; | 
|  |  | 
|  | s = va_start + (vb->dirty_min << PAGE_SHIFT); | 
|  | e = va_start + (vb->dirty_max << PAGE_SHIFT); | 
|  |  | 
|  | start = min(s, start); | 
|  | end   = max(e, end); | 
|  |  | 
|  | flush = 1; | 
|  | } | 
|  | spin_unlock(&vb->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | mutex_lock(&vmap_purge_lock); | 
|  | purge_fragmented_blocks_allcpus(); | 
|  | if (!__purge_vmap_area_lazy(start, end) && flush) | 
|  | flush_tlb_kernel_range(start, end); | 
|  | mutex_unlock(&vmap_purge_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | 
|  | * | 
|  | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | 
|  | * to amortize TLB flushing overheads. What this means is that any page you | 
|  | * have now, may, in a former life, have been mapped into kernel virtual | 
|  | * address by the vmap layer and so there might be some CPUs with TLB entries | 
|  | * still referencing that page (additional to the regular 1:1 kernel mapping). | 
|  | * | 
|  | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | 
|  | * be sure that none of the pages we have control over will have any aliases | 
|  | * from the vmap layer. | 
|  | */ | 
|  | void vm_unmap_aliases(void) | 
|  | { | 
|  | unsigned long start = ULONG_MAX, end = 0; | 
|  | int flush = 0; | 
|  |  | 
|  | _vm_unmap_aliases(start, end, flush); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | 
|  |  | 
|  | /** | 
|  | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | 
|  | * @mem: the pointer returned by vm_map_ram | 
|  | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | 
|  | */ | 
|  | void vm_unmap_ram(const void *mem, unsigned int count) | 
|  | { | 
|  | unsigned long size = (unsigned long)count << PAGE_SHIFT; | 
|  | unsigned long addr = (unsigned long)mem; | 
|  | struct vmap_area *va; | 
|  |  | 
|  | might_sleep(); | 
|  | BUG_ON(!addr); | 
|  | BUG_ON(addr < VMALLOC_START); | 
|  | BUG_ON(addr > VMALLOC_END); | 
|  | BUG_ON(!PAGE_ALIGNED(addr)); | 
|  |  | 
|  | if (likely(count <= VMAP_MAX_ALLOC)) { | 
|  | debug_check_no_locks_freed(mem, size); | 
|  | vb_free(mem, size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | va = find_vmap_area(addr); | 
|  | BUG_ON(!va); | 
|  | debug_check_no_locks_freed((void *)va->va_start, | 
|  | (va->va_end - va->va_start)); | 
|  | free_unmap_vmap_area(va); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_unmap_ram); | 
|  |  | 
|  | /** | 
|  | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | 
|  | * @pages: an array of pointers to the pages to be mapped | 
|  | * @count: number of pages | 
|  | * @node: prefer to allocate data structures on this node | 
|  | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | 
|  | * | 
|  | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be | 
|  | * faster than vmap so it's good.  But if you mix long-life and short-life | 
|  | * objects with vm_map_ram(), it could consume lots of address space through | 
|  | * fragmentation (especially on a 32bit machine).  You could see failures in | 
|  | * the end.  Please use this function for short-lived objects. | 
|  | * | 
|  | * Returns: a pointer to the address that has been mapped, or %NULL on failure | 
|  | */ | 
|  | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | 
|  | { | 
|  | unsigned long size = (unsigned long)count << PAGE_SHIFT; | 
|  | unsigned long addr; | 
|  | void *mem; | 
|  |  | 
|  | if (likely(count <= VMAP_MAX_ALLOC)) { | 
|  | mem = vb_alloc(size, GFP_KERNEL); | 
|  | if (IS_ERR(mem)) | 
|  | return NULL; | 
|  | addr = (unsigned long)mem; | 
|  | } else { | 
|  | struct vmap_area *va; | 
|  | va = alloc_vmap_area(size, PAGE_SIZE, | 
|  | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | 
|  | if (IS_ERR(va)) | 
|  | return NULL; | 
|  |  | 
|  | addr = va->va_start; | 
|  | mem = (void *)addr; | 
|  | } | 
|  | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | 
|  | vm_unmap_ram(mem, count); | 
|  | return NULL; | 
|  | } | 
|  | return mem; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_map_ram); | 
|  |  | 
|  | static struct vm_struct *vmlist __initdata; | 
|  |  | 
|  | /** | 
|  | * vm_area_add_early - add vmap area early during boot | 
|  | * @vm: vm_struct to add | 
|  | * | 
|  | * This function is used to add fixed kernel vm area to vmlist before | 
|  | * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags | 
|  | * should contain proper values and the other fields should be zero. | 
|  | * | 
|  | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
|  | */ | 
|  | void __init vm_area_add_early(struct vm_struct *vm) | 
|  | { | 
|  | struct vm_struct *tmp, **p; | 
|  |  | 
|  | BUG_ON(vmap_initialized); | 
|  | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | 
|  | if (tmp->addr >= vm->addr) { | 
|  | BUG_ON(tmp->addr < vm->addr + vm->size); | 
|  | break; | 
|  | } else | 
|  | BUG_ON(tmp->addr + tmp->size > vm->addr); | 
|  | } | 
|  | vm->next = *p; | 
|  | *p = vm; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_area_register_early - register vmap area early during boot | 
|  | * @vm: vm_struct to register | 
|  | * @align: requested alignment | 
|  | * | 
|  | * This function is used to register kernel vm area before | 
|  | * vmalloc_init() is called.  @vm->size and @vm->flags should contain | 
|  | * proper values on entry and other fields should be zero.  On return, | 
|  | * vm->addr contains the allocated address. | 
|  | * | 
|  | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
|  | */ | 
|  | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | 
|  | { | 
|  | static size_t vm_init_off __initdata; | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = ALIGN(VMALLOC_START + vm_init_off, align); | 
|  | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | 
|  |  | 
|  | vm->addr = (void *)addr; | 
|  |  | 
|  | vm_area_add_early(vm); | 
|  | } | 
|  |  | 
|  | static void vmap_init_free_space(void) | 
|  | { | 
|  | unsigned long vmap_start = 1; | 
|  | const unsigned long vmap_end = ULONG_MAX; | 
|  | struct vmap_area *busy, *free; | 
|  |  | 
|  | /* | 
|  | *     B     F     B     B     B     F | 
|  | * -|-----|.....|-----|-----|-----|.....|- | 
|  | *  |           The KVA space           | | 
|  | *  |<--------------------------------->| | 
|  | */ | 
|  | list_for_each_entry(busy, &vmap_area_list, list) { | 
|  | if (busy->va_start - vmap_start > 0) { | 
|  | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
|  | if (!WARN_ON_ONCE(!free)) { | 
|  | free->va_start = vmap_start; | 
|  | free->va_end = busy->va_start; | 
|  |  | 
|  | insert_vmap_area_augment(free, NULL, | 
|  | &free_vmap_area_root, | 
|  | &free_vmap_area_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | vmap_start = busy->va_end; | 
|  | } | 
|  |  | 
|  | if (vmap_end - vmap_start > 0) { | 
|  | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
|  | if (!WARN_ON_ONCE(!free)) { | 
|  | free->va_start = vmap_start; | 
|  | free->va_end = vmap_end; | 
|  |  | 
|  | insert_vmap_area_augment(free, NULL, | 
|  | &free_vmap_area_root, | 
|  | &free_vmap_area_list); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init vmalloc_init(void) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct vm_struct *tmp; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Create the cache for vmap_area objects. | 
|  | */ | 
|  | vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct vmap_block_queue *vbq; | 
|  | struct vfree_deferred *p; | 
|  |  | 
|  | vbq = &per_cpu(vmap_block_queue, i); | 
|  | spin_lock_init(&vbq->lock); | 
|  | INIT_LIST_HEAD(&vbq->free); | 
|  | p = &per_cpu(vfree_deferred, i); | 
|  | init_llist_head(&p->list); | 
|  | INIT_WORK(&p->wq, free_work); | 
|  | } | 
|  |  | 
|  | /* Import existing vmlist entries. */ | 
|  | for (tmp = vmlist; tmp; tmp = tmp->next) { | 
|  | va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
|  | if (WARN_ON_ONCE(!va)) | 
|  | continue; | 
|  |  | 
|  | va->va_start = (unsigned long)tmp->addr; | 
|  | va->va_end = va->va_start + tmp->size; | 
|  | va->vm = tmp; | 
|  | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we can initialize a free vmap space. | 
|  | */ | 
|  | vmap_init_free_space(); | 
|  | vmap_initialized = true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * map_kernel_range_noflush - map kernel VM area with the specified pages | 
|  | * @addr: start of the VM area to map | 
|  | * @size: size of the VM area to map | 
|  | * @prot: page protection flags to use | 
|  | * @pages: pages to map | 
|  | * | 
|  | * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size | 
|  | * specify should have been allocated using get_vm_area() and its | 
|  | * friends. | 
|  | * | 
|  | * NOTE: | 
|  | * This function does NOT do any cache flushing.  The caller is | 
|  | * responsible for calling flush_cache_vmap() on to-be-mapped areas | 
|  | * before calling this function. | 
|  | * | 
|  | * RETURNS: | 
|  | * The number of pages mapped on success, -errno on failure. | 
|  | */ | 
|  | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | 
|  | pgprot_t prot, struct page **pages) | 
|  | { | 
|  | return vmap_page_range_noflush(addr, addr + size, prot, pages); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_kernel_range_noflush - unmap kernel VM area | 
|  | * @addr: start of the VM area to unmap | 
|  | * @size: size of the VM area to unmap | 
|  | * | 
|  | * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size | 
|  | * specify should have been allocated using get_vm_area() and its | 
|  | * friends. | 
|  | * | 
|  | * NOTE: | 
|  | * This function does NOT do any cache flushing.  The caller is | 
|  | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | 
|  | * before calling this function and flush_tlb_kernel_range() after. | 
|  | */ | 
|  | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | 
|  | { | 
|  | vunmap_page_range(addr, addr + size); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); | 
|  |  | 
|  | /** | 
|  | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | 
|  | * @addr: start of the VM area to unmap | 
|  | * @size: size of the VM area to unmap | 
|  | * | 
|  | * Similar to unmap_kernel_range_noflush() but flushes vcache before | 
|  | * the unmapping and tlb after. | 
|  | */ | 
|  | void unmap_kernel_range(unsigned long addr, unsigned long size) | 
|  | { | 
|  | unsigned long end = addr + size; | 
|  |  | 
|  | flush_cache_vunmap(addr, end); | 
|  | vunmap_page_range(addr, end); | 
|  | flush_tlb_kernel_range(addr, end); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unmap_kernel_range); | 
|  |  | 
|  | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) | 
|  | { | 
|  | unsigned long addr = (unsigned long)area->addr; | 
|  | unsigned long end = addr + get_vm_area_size(area); | 
|  | int err; | 
|  |  | 
|  | err = vmap_page_range(addr, end, prot, pages); | 
|  |  | 
|  | return err > 0 ? 0 : err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(map_vm_area); | 
|  |  | 
|  | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | 
|  | unsigned long flags, const void *caller) | 
|  | { | 
|  | spin_lock(&vmap_area_lock); | 
|  | vm->flags = flags; | 
|  | vm->addr = (void *)va->va_start; | 
|  | vm->size = va->va_end - va->va_start; | 
|  | vm->caller = caller; | 
|  | va->vm = vm; | 
|  | spin_unlock(&vmap_area_lock); | 
|  | } | 
|  |  | 
|  | static void clear_vm_uninitialized_flag(struct vm_struct *vm) | 
|  | { | 
|  | /* | 
|  | * Before removing VM_UNINITIALIZED, | 
|  | * we should make sure that vm has proper values. | 
|  | * Pair with smp_rmb() in show_numa_info(). | 
|  | */ | 
|  | smp_wmb(); | 
|  | vm->flags &= ~VM_UNINITIALIZED; | 
|  | } | 
|  |  | 
|  | static struct vm_struct *__get_vm_area_node(unsigned long size, | 
|  | unsigned long align, unsigned long flags, unsigned long start, | 
|  | unsigned long end, int node, gfp_t gfp_mask, const void *caller) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct vm_struct *area; | 
|  |  | 
|  | BUG_ON(in_interrupt()); | 
|  | size = PAGE_ALIGN(size); | 
|  | if (unlikely(!size)) | 
|  | return NULL; | 
|  |  | 
|  | if (flags & VM_IOREMAP) | 
|  | align = 1ul << clamp_t(int, get_count_order_long(size), | 
|  | PAGE_SHIFT, IOREMAP_MAX_ORDER); | 
|  |  | 
|  | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 
|  | if (unlikely(!area)) | 
|  | return NULL; | 
|  |  | 
|  | if (!(flags & VM_NO_GUARD)) | 
|  | size += PAGE_SIZE; | 
|  |  | 
|  | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); | 
|  | if (IS_ERR(va)) { | 
|  | kfree(area); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | setup_vmalloc_vm(area, va, flags, caller); | 
|  |  | 
|  | return area; | 
|  | } | 
|  |  | 
|  | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, | 
|  | GFP_KERNEL, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__get_vm_area); | 
|  |  | 
|  | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, | 
|  | unsigned long start, unsigned long end, | 
|  | const void *caller) | 
|  | { | 
|  | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, | 
|  | GFP_KERNEL, caller); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_vm_area - reserve a contiguous kernel virtual area | 
|  | * @size:	 size of the area | 
|  | * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC | 
|  | * | 
|  | * Search an area of @size in the kernel virtual mapping area, | 
|  | * and reserved it for out purposes.  Returns the area descriptor | 
|  | * on success or %NULL on failure. | 
|  | * | 
|  | * Return: the area descriptor on success or %NULL on failure. | 
|  | */ | 
|  | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | 
|  | { | 
|  | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
|  | NUMA_NO_NODE, GFP_KERNEL, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | 
|  | const void *caller) | 
|  | { | 
|  | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
|  | NUMA_NO_NODE, GFP_KERNEL, caller); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_vm_area - find a continuous kernel virtual area | 
|  | * @addr:	  base address | 
|  | * | 
|  | * Search for the kernel VM area starting at @addr, and return it. | 
|  | * It is up to the caller to do all required locking to keep the returned | 
|  | * pointer valid. | 
|  | * | 
|  | * Return: pointer to the found area or %NULL on faulure | 
|  | */ | 
|  | struct vm_struct *find_vm_area(const void *addr) | 
|  | { | 
|  | struct vmap_area *va; | 
|  |  | 
|  | va = find_vmap_area((unsigned long)addr); | 
|  | if (!va) | 
|  | return NULL; | 
|  |  | 
|  | return va->vm; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * remove_vm_area - find and remove a continuous kernel virtual area | 
|  | * @addr:	    base address | 
|  | * | 
|  | * Search for the kernel VM area starting at @addr, and remove it. | 
|  | * This function returns the found VM area, but using it is NOT safe | 
|  | * on SMP machines, except for its size or flags. | 
|  | * | 
|  | * Return: pointer to the found area or %NULL on faulure | 
|  | */ | 
|  | struct vm_struct *remove_vm_area(const void *addr) | 
|  | { | 
|  | struct vmap_area *va; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | va = __find_vmap_area((unsigned long)addr); | 
|  | if (va && va->vm) { | 
|  | struct vm_struct *vm = va->vm; | 
|  |  | 
|  | va->vm = NULL; | 
|  | spin_unlock(&vmap_area_lock); | 
|  |  | 
|  | kasan_free_shadow(vm); | 
|  | free_unmap_vmap_area(va); | 
|  |  | 
|  | return vm; | 
|  | } | 
|  |  | 
|  | spin_unlock(&vmap_area_lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void set_area_direct_map(const struct vm_struct *area, | 
|  | int (*set_direct_map)(struct page *page)) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < area->nr_pages; i++) | 
|  | if (page_address(area->pages[i])) | 
|  | set_direct_map(area->pages[i]); | 
|  | } | 
|  |  | 
|  | /* Handle removing and resetting vm mappings related to the vm_struct. */ | 
|  | static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) | 
|  | { | 
|  | unsigned long start = ULONG_MAX, end = 0; | 
|  | int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; | 
|  | int flush_dmap = 0; | 
|  | int i; | 
|  |  | 
|  | remove_vm_area(area->addr); | 
|  |  | 
|  | /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ | 
|  | if (!flush_reset) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If not deallocating pages, just do the flush of the VM area and | 
|  | * return. | 
|  | */ | 
|  | if (!deallocate_pages) { | 
|  | vm_unmap_aliases(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If execution gets here, flush the vm mapping and reset the direct | 
|  | * map. Find the start and end range of the direct mappings to make sure | 
|  | * the vm_unmap_aliases() flush includes the direct map. | 
|  | */ | 
|  | for (i = 0; i < area->nr_pages; i++) { | 
|  | unsigned long addr = (unsigned long)page_address(area->pages[i]); | 
|  | if (addr) { | 
|  | start = min(addr, start); | 
|  | end = max(addr + PAGE_SIZE, end); | 
|  | flush_dmap = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set direct map to something invalid so that it won't be cached if | 
|  | * there are any accesses after the TLB flush, then flush the TLB and | 
|  | * reset the direct map permissions to the default. | 
|  | */ | 
|  | set_area_direct_map(area, set_direct_map_invalid_noflush); | 
|  | _vm_unmap_aliases(start, end, flush_dmap); | 
|  | set_area_direct_map(area, set_direct_map_default_noflush); | 
|  | } | 
|  |  | 
|  | static void __vunmap(const void *addr, int deallocate_pages) | 
|  | { | 
|  | struct vm_struct *area; | 
|  |  | 
|  | if (!addr) | 
|  | return; | 
|  |  | 
|  | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", | 
|  | addr)) | 
|  | return; | 
|  |  | 
|  | area = find_vm_area(addr); | 
|  | if (unlikely(!area)) { | 
|  | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 
|  | addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); | 
|  | debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); | 
|  |  | 
|  | vm_remove_mappings(area, deallocate_pages); | 
|  |  | 
|  | if (deallocate_pages) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < area->nr_pages; i++) { | 
|  | struct page *page = area->pages[i]; | 
|  |  | 
|  | BUG_ON(!page); | 
|  | __free_pages(page, 0); | 
|  | } | 
|  | atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); | 
|  |  | 
|  | kvfree(area->pages); | 
|  | } | 
|  |  | 
|  | kfree(area); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void __vfree_deferred(const void *addr) | 
|  | { | 
|  | /* | 
|  | * Use raw_cpu_ptr() because this can be called from preemptible | 
|  | * context. Preemption is absolutely fine here, because the llist_add() | 
|  | * implementation is lockless, so it works even if we are adding to | 
|  | * nother cpu's list.  schedule_work() should be fine with this too. | 
|  | */ | 
|  | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | 
|  |  | 
|  | if (llist_add((struct llist_node *)addr, &p->list)) | 
|  | schedule_work(&p->wq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vfree_atomic - release memory allocated by vmalloc() | 
|  | * @addr:	  memory base address | 
|  | * | 
|  | * This one is just like vfree() but can be called in any atomic context | 
|  | * except NMIs. | 
|  | */ | 
|  | void vfree_atomic(const void *addr) | 
|  | { | 
|  | BUG_ON(in_nmi()); | 
|  |  | 
|  | kmemleak_free(addr); | 
|  |  | 
|  | if (!addr) | 
|  | return; | 
|  | __vfree_deferred(addr); | 
|  | } | 
|  |  | 
|  | static void __vfree(const void *addr) | 
|  | { | 
|  | if (unlikely(in_interrupt())) | 
|  | __vfree_deferred(addr); | 
|  | else | 
|  | __vunmap(addr, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vfree - release memory allocated by vmalloc() | 
|  | * @addr:  memory base address | 
|  | * | 
|  | * Free the virtually continuous memory area starting at @addr, as | 
|  | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is | 
|  | * NULL, no operation is performed. | 
|  | * | 
|  | * Must not be called in NMI context (strictly speaking, only if we don't | 
|  | * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | 
|  | * conventions for vfree() arch-depenedent would be a really bad idea) | 
|  | * | 
|  | * May sleep if called *not* from interrupt context. | 
|  | * | 
|  | * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) | 
|  | */ | 
|  | void vfree(const void *addr) | 
|  | { | 
|  | BUG_ON(in_nmi()); | 
|  |  | 
|  | kmemleak_free(addr); | 
|  |  | 
|  | might_sleep_if(!in_interrupt()); | 
|  |  | 
|  | if (!addr) | 
|  | return; | 
|  |  | 
|  | __vfree(addr); | 
|  | } | 
|  | EXPORT_SYMBOL(vfree); | 
|  |  | 
|  | /** | 
|  | * vunmap - release virtual mapping obtained by vmap() | 
|  | * @addr:   memory base address | 
|  | * | 
|  | * Free the virtually contiguous memory area starting at @addr, | 
|  | * which was created from the page array passed to vmap(). | 
|  | * | 
|  | * Must not be called in interrupt context. | 
|  | */ | 
|  | void vunmap(const void *addr) | 
|  | { | 
|  | BUG_ON(in_interrupt()); | 
|  | might_sleep(); | 
|  | if (addr) | 
|  | __vunmap(addr, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(vunmap); | 
|  |  | 
|  | /** | 
|  | * vmap - map an array of pages into virtually contiguous space | 
|  | * @pages: array of page pointers | 
|  | * @count: number of pages to map | 
|  | * @flags: vm_area->flags | 
|  | * @prot: page protection for the mapping | 
|  | * | 
|  | * Maps @count pages from @pages into contiguous kernel virtual | 
|  | * space. | 
|  | * | 
|  | * Return: the address of the area or %NULL on failure | 
|  | */ | 
|  | void *vmap(struct page **pages, unsigned int count, | 
|  | unsigned long flags, pgprot_t prot) | 
|  | { | 
|  | struct vm_struct *area; | 
|  | unsigned long size;		/* In bytes */ | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (count > totalram_pages()) | 
|  | return NULL; | 
|  |  | 
|  | size = (unsigned long)count << PAGE_SHIFT; | 
|  | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | 
|  | if (!area) | 
|  | return NULL; | 
|  |  | 
|  | if (map_vm_area(area, prot, pages)) { | 
|  | vunmap(area->addr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return area->addr; | 
|  | } | 
|  | EXPORT_SYMBOL(vmap); | 
|  |  | 
|  | static void *__vmalloc_node(unsigned long size, unsigned long align, | 
|  | gfp_t gfp_mask, pgprot_t prot, | 
|  | int node, const void *caller); | 
|  | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | 
|  | pgprot_t prot, int node) | 
|  | { | 
|  | struct page **pages; | 
|  | unsigned int nr_pages, array_size, i; | 
|  | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; | 
|  | const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; | 
|  | const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? | 
|  | 0 : | 
|  | __GFP_HIGHMEM; | 
|  |  | 
|  | nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; | 
|  | array_size = (nr_pages * sizeof(struct page *)); | 
|  |  | 
|  | /* Please note that the recursion is strictly bounded. */ | 
|  | if (array_size > PAGE_SIZE) { | 
|  | pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, | 
|  | PAGE_KERNEL, node, area->caller); | 
|  | } else { | 
|  | pages = kmalloc_node(array_size, nested_gfp, node); | 
|  | } | 
|  |  | 
|  | if (!pages) { | 
|  | remove_vm_area(area->addr); | 
|  | kfree(area); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | area->pages = pages; | 
|  | area->nr_pages = nr_pages; | 
|  |  | 
|  | for (i = 0; i < area->nr_pages; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | if (node == NUMA_NO_NODE) | 
|  | page = alloc_page(alloc_mask|highmem_mask); | 
|  | else | 
|  | page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); | 
|  |  | 
|  | if (unlikely(!page)) { | 
|  | /* Successfully allocated i pages, free them in __vunmap() */ | 
|  | area->nr_pages = i; | 
|  | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); | 
|  | goto fail; | 
|  | } | 
|  | area->pages[i] = page; | 
|  | if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) | 
|  | cond_resched(); | 
|  | } | 
|  | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); | 
|  |  | 
|  | if (map_vm_area(area, prot, pages)) | 
|  | goto fail; | 
|  | return area->addr; | 
|  |  | 
|  | fail: | 
|  | warn_alloc(gfp_mask, NULL, | 
|  | "vmalloc: allocation failure, allocated %ld of %ld bytes", | 
|  | (area->nr_pages*PAGE_SIZE), area->size); | 
|  | __vfree(area->addr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __vmalloc_node_range - allocate virtually contiguous memory | 
|  | * @size:		  allocation size | 
|  | * @align:		  desired alignment | 
|  | * @start:		  vm area range start | 
|  | * @end:		  vm area range end | 
|  | * @gfp_mask:		  flags for the page level allocator | 
|  | * @prot:		  protection mask for the allocated pages | 
|  | * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD) | 
|  | * @node:		  node to use for allocation or NUMA_NO_NODE | 
|  | * @caller:		  caller's return address | 
|  | * | 
|  | * Allocate enough pages to cover @size from the page level | 
|  | * allocator with @gfp_mask flags.  Map them into contiguous | 
|  | * kernel virtual space, using a pagetable protection of @prot. | 
|  | * | 
|  | * Return: the address of the area or %NULL on failure | 
|  | */ | 
|  | void *__vmalloc_node_range(unsigned long size, unsigned long align, | 
|  | unsigned long start, unsigned long end, gfp_t gfp_mask, | 
|  | pgprot_t prot, unsigned long vm_flags, int node, | 
|  | const void *caller) | 
|  | { | 
|  | struct vm_struct *area; | 
|  | void *addr; | 
|  | unsigned long real_size = size; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | if (!size || (size >> PAGE_SHIFT) > totalram_pages()) | 
|  | goto fail; | 
|  |  | 
|  | area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | | 
|  | vm_flags, start, end, node, gfp_mask, caller); | 
|  | if (!area) | 
|  | goto fail; | 
|  |  | 
|  | addr = __vmalloc_area_node(area, gfp_mask, prot, node); | 
|  | if (!addr) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * In this function, newly allocated vm_struct has VM_UNINITIALIZED | 
|  | * flag. It means that vm_struct is not fully initialized. | 
|  | * Now, it is fully initialized, so remove this flag here. | 
|  | */ | 
|  | clear_vm_uninitialized_flag(area); | 
|  |  | 
|  | kmemleak_vmalloc(area, size, gfp_mask); | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | fail: | 
|  | warn_alloc(gfp_mask, NULL, | 
|  | "vmalloc: allocation failure: %lu bytes", real_size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is only for performance analysis of vmalloc and stress purpose. | 
|  | * It is required by vmalloc test module, therefore do not use it other | 
|  | * than that. | 
|  | */ | 
|  | #ifdef CONFIG_TEST_VMALLOC_MODULE | 
|  | EXPORT_SYMBOL_GPL(__vmalloc_node_range); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * __vmalloc_node - allocate virtually contiguous memory | 
|  | * @size:	    allocation size | 
|  | * @align:	    desired alignment | 
|  | * @gfp_mask:	    flags for the page level allocator | 
|  | * @prot:	    protection mask for the allocated pages | 
|  | * @node:	    node to use for allocation or NUMA_NO_NODE | 
|  | * @caller:	    caller's return address | 
|  | * | 
|  | * Allocate enough pages to cover @size from the page level | 
|  | * allocator with @gfp_mask flags.  Map them into contiguous | 
|  | * kernel virtual space, using a pagetable protection of @prot. | 
|  | * | 
|  | * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL | 
|  | * and __GFP_NOFAIL are not supported | 
|  | * | 
|  | * Any use of gfp flags outside of GFP_KERNEL should be consulted | 
|  | * with mm people. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | static void *__vmalloc_node(unsigned long size, unsigned long align, | 
|  | gfp_t gfp_mask, pgprot_t prot, | 
|  | int node, const void *caller) | 
|  | { | 
|  | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | 
|  | gfp_mask, prot, 0, node, caller); | 
|  | } | 
|  |  | 
|  | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) | 
|  | { | 
|  | return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(__vmalloc); | 
|  |  | 
|  | static inline void *__vmalloc_node_flags(unsigned long size, | 
|  | int node, gfp_t flags) | 
|  | { | 
|  | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | 
|  | node, __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, | 
|  | void *caller) | 
|  | { | 
|  | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmalloc - allocate virtually contiguous memory | 
|  | * @size:    allocation size | 
|  | * | 
|  | * Allocate enough pages to cover @size from the page level | 
|  | * allocator and map them into contiguous kernel virtual space. | 
|  | * | 
|  | * For tight control over page level allocator and protection flags | 
|  | * use __vmalloc() instead. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vmalloc(unsigned long size) | 
|  | { | 
|  | return __vmalloc_node_flags(size, NUMA_NO_NODE, | 
|  | GFP_KERNEL); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc); | 
|  |  | 
|  | /** | 
|  | * vzalloc - allocate virtually contiguous memory with zero fill | 
|  | * @size:    allocation size | 
|  | * | 
|  | * Allocate enough pages to cover @size from the page level | 
|  | * allocator and map them into contiguous kernel virtual space. | 
|  | * The memory allocated is set to zero. | 
|  | * | 
|  | * For tight control over page level allocator and protection flags | 
|  | * use __vmalloc() instead. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vzalloc(unsigned long size) | 
|  | { | 
|  | return __vmalloc_node_flags(size, NUMA_NO_NODE, | 
|  | GFP_KERNEL | __GFP_ZERO); | 
|  | } | 
|  | EXPORT_SYMBOL(vzalloc); | 
|  |  | 
|  | /** | 
|  | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | 
|  | * @size: allocation size | 
|  | * | 
|  | * The resulting memory area is zeroed so it can be mapped to userspace | 
|  | * without leaking data. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vmalloc_user(unsigned long size) | 
|  | { | 
|  | return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END, | 
|  | GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, | 
|  | VM_USERMAP, NUMA_NO_NODE, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_user); | 
|  |  | 
|  | /** | 
|  | * vmalloc_node - allocate memory on a specific node | 
|  | * @size:	  allocation size | 
|  | * @node:	  numa node | 
|  | * | 
|  | * Allocate enough pages to cover @size from the page level | 
|  | * allocator and map them into contiguous kernel virtual space. | 
|  | * | 
|  | * For tight control over page level allocator and protection flags | 
|  | * use __vmalloc() instead. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vmalloc_node(unsigned long size, int node) | 
|  | { | 
|  | return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, | 
|  | node, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_node); | 
|  |  | 
|  | /** | 
|  | * vzalloc_node - allocate memory on a specific node with zero fill | 
|  | * @size:	allocation size | 
|  | * @node:	numa node | 
|  | * | 
|  | * Allocate enough pages to cover @size from the page level | 
|  | * allocator and map them into contiguous kernel virtual space. | 
|  | * The memory allocated is set to zero. | 
|  | * | 
|  | * For tight control over page level allocator and protection flags | 
|  | * use __vmalloc_node() instead. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vzalloc_node(unsigned long size, int node) | 
|  | { | 
|  | return __vmalloc_node_flags(size, node, | 
|  | GFP_KERNEL | __GFP_ZERO); | 
|  | } | 
|  | EXPORT_SYMBOL(vzalloc_node); | 
|  |  | 
|  | /** | 
|  | * vmalloc_exec - allocate virtually contiguous, executable memory | 
|  | * @size:	  allocation size | 
|  | * | 
|  | * Kernel-internal function to allocate enough pages to cover @size | 
|  | * the page level allocator and map them into contiguous and | 
|  | * executable kernel virtual space. | 
|  | * | 
|  | * For tight control over page level allocator and protection flags | 
|  | * use __vmalloc() instead. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vmalloc_exec(unsigned long size) | 
|  | { | 
|  | return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | 
|  | GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, | 
|  | NUMA_NO_NODE, __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) | 
|  | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) | 
|  | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) | 
|  | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) | 
|  | #else | 
|  | /* | 
|  | * 64b systems should always have either DMA or DMA32 zones. For others | 
|  | * GFP_DMA32 should do the right thing and use the normal zone. | 
|  | */ | 
|  | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | 
|  | * @size:	allocation size | 
|  | * | 
|  | * Allocate enough 32bit PA addressable pages to cover @size from the | 
|  | * page level allocator and map them into contiguous kernel virtual space. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vmalloc_32(unsigned long size) | 
|  | { | 
|  | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, | 
|  | NUMA_NO_NODE, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_32); | 
|  |  | 
|  | /** | 
|  | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory | 
|  | * @size:	     allocation size | 
|  | * | 
|  | * The resulting memory area is 32bit addressable and zeroed so it can be | 
|  | * mapped to userspace without leaking data. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL on error | 
|  | */ | 
|  | void *vmalloc_32_user(unsigned long size) | 
|  | { | 
|  | return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END, | 
|  | GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | 
|  | VM_USERMAP, NUMA_NO_NODE, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_32_user); | 
|  |  | 
|  | /* | 
|  | * small helper routine , copy contents to buf from addr. | 
|  | * If the page is not present, fill zero. | 
|  | */ | 
|  |  | 
|  | static int aligned_vread(char *buf, char *addr, unsigned long count) | 
|  | { | 
|  | struct page *p; | 
|  | int copied = 0; | 
|  |  | 
|  | while (count) { | 
|  | unsigned long offset, length; | 
|  |  | 
|  | offset = offset_in_page(addr); | 
|  | length = PAGE_SIZE - offset; | 
|  | if (length > count) | 
|  | length = count; | 
|  | p = vmalloc_to_page(addr); | 
|  | /* | 
|  | * To do safe access to this _mapped_ area, we need | 
|  | * lock. But adding lock here means that we need to add | 
|  | * overhead of vmalloc()/vfree() calles for this _debug_ | 
|  | * interface, rarely used. Instead of that, we'll use | 
|  | * kmap() and get small overhead in this access function. | 
|  | */ | 
|  | if (p) { | 
|  | /* | 
|  | * we can expect USER0 is not used (see vread/vwrite's | 
|  | * function description) | 
|  | */ | 
|  | void *map = kmap_atomic(p); | 
|  | memcpy(buf, map + offset, length); | 
|  | kunmap_atomic(map); | 
|  | } else | 
|  | memset(buf, 0, length); | 
|  |  | 
|  | addr += length; | 
|  | buf += length; | 
|  | copied += length; | 
|  | count -= length; | 
|  | } | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | 
|  | { | 
|  | struct page *p; | 
|  | int copied = 0; | 
|  |  | 
|  | while (count) { | 
|  | unsigned long offset, length; | 
|  |  | 
|  | offset = offset_in_page(addr); | 
|  | length = PAGE_SIZE - offset; | 
|  | if (length > count) | 
|  | length = count; | 
|  | p = vmalloc_to_page(addr); | 
|  | /* | 
|  | * To do safe access to this _mapped_ area, we need | 
|  | * lock. But adding lock here means that we need to add | 
|  | * overhead of vmalloc()/vfree() calles for this _debug_ | 
|  | * interface, rarely used. Instead of that, we'll use | 
|  | * kmap() and get small overhead in this access function. | 
|  | */ | 
|  | if (p) { | 
|  | /* | 
|  | * we can expect USER0 is not used (see vread/vwrite's | 
|  | * function description) | 
|  | */ | 
|  | void *map = kmap_atomic(p); | 
|  | memcpy(map + offset, buf, length); | 
|  | kunmap_atomic(map); | 
|  | } | 
|  | addr += length; | 
|  | buf += length; | 
|  | copied += length; | 
|  | count -= length; | 
|  | } | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vread() - read vmalloc area in a safe way. | 
|  | * @buf:     buffer for reading data | 
|  | * @addr:    vm address. | 
|  | * @count:   number of bytes to be read. | 
|  | * | 
|  | * This function checks that addr is a valid vmalloc'ed area, and | 
|  | * copy data from that area to a given buffer. If the given memory range | 
|  | * of [addr...addr+count) includes some valid address, data is copied to | 
|  | * proper area of @buf. If there are memory holes, they'll be zero-filled. | 
|  | * IOREMAP area is treated as memory hole and no copy is done. | 
|  | * | 
|  | * If [addr...addr+count) doesn't includes any intersects with alive | 
|  | * vm_struct area, returns 0. @buf should be kernel's buffer. | 
|  | * | 
|  | * Note: In usual ops, vread() is never necessary because the caller | 
|  | * should know vmalloc() area is valid and can use memcpy(). | 
|  | * This is for routines which have to access vmalloc area without | 
|  | * any information, as /dev/kmem. | 
|  | * | 
|  | * Return: number of bytes for which addr and buf should be increased | 
|  | * (same number as @count) or %0 if [addr...addr+count) doesn't | 
|  | * include any intersection with valid vmalloc area | 
|  | */ | 
|  | long vread(char *buf, char *addr, unsigned long count) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct vm_struct *vm; | 
|  | char *vaddr, *buf_start = buf; | 
|  | unsigned long buflen = count; | 
|  | unsigned long n; | 
|  |  | 
|  | /* Don't allow overflow */ | 
|  | if ((unsigned long) addr + count < count) | 
|  | count = -(unsigned long) addr; | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | list_for_each_entry(va, &vmap_area_list, list) { | 
|  | if (!count) | 
|  | break; | 
|  |  | 
|  | if (!va->vm) | 
|  | continue; | 
|  |  | 
|  | vm = va->vm; | 
|  | vaddr = (char *) vm->addr; | 
|  | if (addr >= vaddr + get_vm_area_size(vm)) | 
|  | continue; | 
|  | while (addr < vaddr) { | 
|  | if (count == 0) | 
|  | goto finished; | 
|  | *buf = '\0'; | 
|  | buf++; | 
|  | addr++; | 
|  | count--; | 
|  | } | 
|  | n = vaddr + get_vm_area_size(vm) - addr; | 
|  | if (n > count) | 
|  | n = count; | 
|  | if (!(vm->flags & VM_IOREMAP)) | 
|  | aligned_vread(buf, addr, n); | 
|  | else /* IOREMAP area is treated as memory hole */ | 
|  | memset(buf, 0, n); | 
|  | buf += n; | 
|  | addr += n; | 
|  | count -= n; | 
|  | } | 
|  | finished: | 
|  | spin_unlock(&vmap_area_lock); | 
|  |  | 
|  | if (buf == buf_start) | 
|  | return 0; | 
|  | /* zero-fill memory holes */ | 
|  | if (buf != buf_start + buflen) | 
|  | memset(buf, 0, buflen - (buf - buf_start)); | 
|  |  | 
|  | return buflen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vwrite() - write vmalloc area in a safe way. | 
|  | * @buf:      buffer for source data | 
|  | * @addr:     vm address. | 
|  | * @count:    number of bytes to be read. | 
|  | * | 
|  | * This function checks that addr is a valid vmalloc'ed area, and | 
|  | * copy data from a buffer to the given addr. If specified range of | 
|  | * [addr...addr+count) includes some valid address, data is copied from | 
|  | * proper area of @buf. If there are memory holes, no copy to hole. | 
|  | * IOREMAP area is treated as memory hole and no copy is done. | 
|  | * | 
|  | * If [addr...addr+count) doesn't includes any intersects with alive | 
|  | * vm_struct area, returns 0. @buf should be kernel's buffer. | 
|  | * | 
|  | * Note: In usual ops, vwrite() is never necessary because the caller | 
|  | * should know vmalloc() area is valid and can use memcpy(). | 
|  | * This is for routines which have to access vmalloc area without | 
|  | * any information, as /dev/kmem. | 
|  | * | 
|  | * Return: number of bytes for which addr and buf should be | 
|  | * increased (same number as @count) or %0 if [addr...addr+count) | 
|  | * doesn't include any intersection with valid vmalloc area | 
|  | */ | 
|  | long vwrite(char *buf, char *addr, unsigned long count) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct vm_struct *vm; | 
|  | char *vaddr; | 
|  | unsigned long n, buflen; | 
|  | int copied = 0; | 
|  |  | 
|  | /* Don't allow overflow */ | 
|  | if ((unsigned long) addr + count < count) | 
|  | count = -(unsigned long) addr; | 
|  | buflen = count; | 
|  |  | 
|  | spin_lock(&vmap_area_lock); | 
|  | list_for_each_entry(va, &vmap_area_list, list) { | 
|  | if (!count) | 
|  | break; | 
|  |  | 
|  | if (!va->vm) | 
|  | continue; | 
|  |  | 
|  | vm = va->vm; | 
|  | vaddr = (char *) vm->addr; | 
|  | if (addr >= vaddr + get_vm_area_size(vm)) | 
|  | continue; | 
|  | while (addr < vaddr) { | 
|  | if (count == 0) | 
|  | goto finished; | 
|  | buf++; | 
|  | addr++; | 
|  | count--; | 
|  | } | 
|  | n = vaddr + get_vm_area_size(vm) - addr; | 
|  | if (n > count) | 
|  | n = count; | 
|  | if (!(vm->flags & VM_IOREMAP)) { | 
|  | aligned_vwrite(buf, addr, n); | 
|  | copied++; | 
|  | } | 
|  | buf += n; | 
|  | addr += n; | 
|  | count -= n; | 
|  | } | 
|  | finished: | 
|  | spin_unlock(&vmap_area_lock); | 
|  | if (!copied) | 
|  | return 0; | 
|  | return buflen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * remap_vmalloc_range_partial - map vmalloc pages to userspace | 
|  | * @vma:		vma to cover | 
|  | * @uaddr:		target user address to start at | 
|  | * @kaddr:		virtual address of vmalloc kernel memory | 
|  | * @pgoff:		offset from @kaddr to start at | 
|  | * @size:		size of map area | 
|  | * | 
|  | * Returns:	0 for success, -Exxx on failure | 
|  | * | 
|  | * This function checks that @kaddr is a valid vmalloc'ed area, | 
|  | * and that it is big enough to cover the range starting at | 
|  | * @uaddr in @vma. Will return failure if that criteria isn't | 
|  | * met. | 
|  | * | 
|  | * Similar to remap_pfn_range() (see mm/memory.c) | 
|  | */ | 
|  | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, | 
|  | void *kaddr, unsigned long pgoff, | 
|  | unsigned long size) | 
|  | { | 
|  | struct vm_struct *area; | 
|  | unsigned long off; | 
|  | unsigned long end_index; | 
|  |  | 
|  | if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | 
|  | return -EINVAL; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | area = find_vm_area(kaddr); | 
|  | if (!area) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (check_add_overflow(size, off, &end_index) || | 
|  | end_index > get_vm_area_size(area)) | 
|  | return -EINVAL; | 
|  | kaddr += off; | 
|  |  | 
|  | do { | 
|  | struct page *page = vmalloc_to_page(kaddr); | 
|  | int ret; | 
|  |  | 
|  | ret = vm_insert_page(vma, uaddr, page); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | uaddr += PAGE_SIZE; | 
|  | kaddr += PAGE_SIZE; | 
|  | size -= PAGE_SIZE; | 
|  | } while (size > 0); | 
|  |  | 
|  | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(remap_vmalloc_range_partial); | 
|  |  | 
|  | /** | 
|  | * remap_vmalloc_range - map vmalloc pages to userspace | 
|  | * @vma:		vma to cover (map full range of vma) | 
|  | * @addr:		vmalloc memory | 
|  | * @pgoff:		number of pages into addr before first page to map | 
|  | * | 
|  | * Returns:	0 for success, -Exxx on failure | 
|  | * | 
|  | * This function checks that addr is a valid vmalloc'ed area, and | 
|  | * that it is big enough to cover the vma. Will return failure if | 
|  | * that criteria isn't met. | 
|  | * | 
|  | * Similar to remap_pfn_range() (see mm/memory.c) | 
|  | */ | 
|  | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | 
|  | unsigned long pgoff) | 
|  | { | 
|  | return remap_vmalloc_range_partial(vma, vma->vm_start, | 
|  | addr, pgoff, | 
|  | vma->vm_end - vma->vm_start); | 
|  | } | 
|  | EXPORT_SYMBOL(remap_vmalloc_range); | 
|  |  | 
|  | /* | 
|  | * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose | 
|  | * not to have one. | 
|  | * | 
|  | * The purpose of this function is to make sure the vmalloc area | 
|  | * mappings are identical in all page-tables in the system. | 
|  | */ | 
|  | void __weak vmalloc_sync_mappings(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void __weak vmalloc_sync_unmappings(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int f(pte_t *pte, unsigned long addr, void *data) | 
|  | { | 
|  | pte_t ***p = data; | 
|  |  | 
|  | if (p) { | 
|  | *(*p) = pte; | 
|  | (*p)++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_vm_area - allocate a range of kernel address space | 
|  | * @size:	   size of the area | 
|  | * @ptes:	   returns the PTEs for the address space | 
|  | * | 
|  | * Returns:	NULL on failure, vm_struct on success | 
|  | * | 
|  | * This function reserves a range of kernel address space, and | 
|  | * allocates pagetables to map that range.  No actual mappings | 
|  | * are created. | 
|  | * | 
|  | * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | 
|  | * allocated for the VM area are returned. | 
|  | */ | 
|  | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) | 
|  | { | 
|  | struct vm_struct *area; | 
|  |  | 
|  | area = get_vm_area_caller(size, VM_IOREMAP, | 
|  | __builtin_return_address(0)); | 
|  | if (area == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * This ensures that page tables are constructed for this region | 
|  | * of kernel virtual address space and mapped into init_mm. | 
|  | */ | 
|  | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | 
|  | size, f, ptes ? &ptes : NULL)) { | 
|  | free_vm_area(area); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return area; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(alloc_vm_area); | 
|  |  | 
|  | void free_vm_area(struct vm_struct *area) | 
|  | { | 
|  | struct vm_struct *ret; | 
|  | ret = remove_vm_area(area->addr); | 
|  | BUG_ON(ret != area); | 
|  | kfree(area); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_vm_area); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static struct vmap_area *node_to_va(struct rb_node *n) | 
|  | { | 
|  | return rb_entry_safe(n, struct vmap_area, rb_node); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to | 
|  | * @addr: target address | 
|  | * | 
|  | * Returns: vmap_area if it is found. If there is no such area | 
|  | *   the first highest(reverse order) vmap_area is returned | 
|  | *   i.e. va->va_start < addr && va->va_end < addr or NULL | 
|  | *   if there are no any areas before @addr. | 
|  | */ | 
|  | static struct vmap_area * | 
|  | pvm_find_va_enclose_addr(unsigned long addr) | 
|  | { | 
|  | struct vmap_area *va, *tmp; | 
|  | struct rb_node *n; | 
|  |  | 
|  | n = free_vmap_area_root.rb_node; | 
|  | va = NULL; | 
|  |  | 
|  | while (n) { | 
|  | tmp = rb_entry(n, struct vmap_area, rb_node); | 
|  | if (tmp->va_start <= addr) { | 
|  | va = tmp; | 
|  | if (tmp->va_end >= addr) | 
|  | break; | 
|  |  | 
|  | n = n->rb_right; | 
|  | } else { | 
|  | n = n->rb_left; | 
|  | } | 
|  | } | 
|  |  | 
|  | return va; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pvm_determine_end_from_reverse - find the highest aligned address | 
|  | * of free block below VMALLOC_END | 
|  | * @va: | 
|  | *   in - the VA we start the search(reverse order); | 
|  | *   out - the VA with the highest aligned end address. | 
|  | * | 
|  | * Returns: determined end address within vmap_area | 
|  | */ | 
|  | static unsigned long | 
|  | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | 
|  | { | 
|  | unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
|  | unsigned long addr; | 
|  |  | 
|  | if (likely(*va)) { | 
|  | list_for_each_entry_from_reverse((*va), | 
|  | &free_vmap_area_list, list) { | 
|  | addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | 
|  | if ((*va)->va_start < addr) | 
|  | return addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | 
|  | * @offsets: array containing offset of each area | 
|  | * @sizes: array containing size of each area | 
|  | * @nr_vms: the number of areas to allocate | 
|  | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | 
|  | * | 
|  | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | 
|  | *	    vm_structs on success, %NULL on failure | 
|  | * | 
|  | * Percpu allocator wants to use congruent vm areas so that it can | 
|  | * maintain the offsets among percpu areas.  This function allocates | 
|  | * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to | 
|  | * be scattered pretty far, distance between two areas easily going up | 
|  | * to gigabytes.  To avoid interacting with regular vmallocs, these | 
|  | * areas are allocated from top. | 
|  | * | 
|  | * Despite its complicated look, this allocator is rather simple. It | 
|  | * does everything top-down and scans free blocks from the end looking | 
|  | * for matching base. While scanning, if any of the areas do not fit the | 
|  | * base address is pulled down to fit the area. Scanning is repeated till | 
|  | * all the areas fit and then all necessary data structures are inserted | 
|  | * and the result is returned. | 
|  | */ | 
|  | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | 
|  | const size_t *sizes, int nr_vms, | 
|  | size_t align) | 
|  | { | 
|  | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | 
|  | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
|  | struct vmap_area **vas, *va; | 
|  | struct vm_struct **vms; | 
|  | int area, area2, last_area, term_area; | 
|  | unsigned long base, start, size, end, last_end; | 
|  | bool purged = false; | 
|  | enum fit_type type; | 
|  |  | 
|  | /* verify parameters and allocate data structures */ | 
|  | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); | 
|  | for (last_area = 0, area = 0; area < nr_vms; area++) { | 
|  | start = offsets[area]; | 
|  | end = start + sizes[area]; | 
|  |  | 
|  | /* is everything aligned properly? */ | 
|  | BUG_ON(!IS_ALIGNED(offsets[area], align)); | 
|  | BUG_ON(!IS_ALIGNED(sizes[area], align)); | 
|  |  | 
|  | /* detect the area with the highest address */ | 
|  | if (start > offsets[last_area]) | 
|  | last_area = area; | 
|  |  | 
|  | for (area2 = area + 1; area2 < nr_vms; area2++) { | 
|  | unsigned long start2 = offsets[area2]; | 
|  | unsigned long end2 = start2 + sizes[area2]; | 
|  |  | 
|  | BUG_ON(start2 < end && start < end2); | 
|  | } | 
|  | } | 
|  | last_end = offsets[last_area] + sizes[last_area]; | 
|  |  | 
|  | if (vmalloc_end - vmalloc_start < last_end) { | 
|  | WARN_ON(true); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); | 
|  | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | 
|  | if (!vas || !vms) | 
|  | goto err_free2; | 
|  |  | 
|  | for (area = 0; area < nr_vms; area++) { | 
|  | vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); | 
|  | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | 
|  | if (!vas[area] || !vms[area]) | 
|  | goto err_free; | 
|  | } | 
|  | retry: | 
|  | spin_lock(&vmap_area_lock); | 
|  |  | 
|  | /* start scanning - we scan from the top, begin with the last area */ | 
|  | area = term_area = last_area; | 
|  | start = offsets[area]; | 
|  | end = start + sizes[area]; | 
|  |  | 
|  | va = pvm_find_va_enclose_addr(vmalloc_end); | 
|  | base = pvm_determine_end_from_reverse(&va, align) - end; | 
|  |  | 
|  | while (true) { | 
|  | /* | 
|  | * base might have underflowed, add last_end before | 
|  | * comparing. | 
|  | */ | 
|  | if (base + last_end < vmalloc_start + last_end) | 
|  | goto overflow; | 
|  |  | 
|  | /* | 
|  | * Fitting base has not been found. | 
|  | */ | 
|  | if (va == NULL) | 
|  | goto overflow; | 
|  |  | 
|  | /* | 
|  | * If required width exeeds current VA block, move | 
|  | * base downwards and then recheck. | 
|  | */ | 
|  | if (base + end > va->va_end) { | 
|  | base = pvm_determine_end_from_reverse(&va, align) - end; | 
|  | term_area = area; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this VA does not fit, move base downwards and recheck. | 
|  | */ | 
|  | if (base + start < va->va_start) { | 
|  | va = node_to_va(rb_prev(&va->rb_node)); | 
|  | base = pvm_determine_end_from_reverse(&va, align) - end; | 
|  | term_area = area; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This area fits, move on to the previous one.  If | 
|  | * the previous one is the terminal one, we're done. | 
|  | */ | 
|  | area = (area + nr_vms - 1) % nr_vms; | 
|  | if (area == term_area) | 
|  | break; | 
|  |  | 
|  | start = offsets[area]; | 
|  | end = start + sizes[area]; | 
|  | va = pvm_find_va_enclose_addr(base + end); | 
|  | } | 
|  |  | 
|  | /* we've found a fitting base, insert all va's */ | 
|  | for (area = 0; area < nr_vms; area++) { | 
|  | int ret; | 
|  |  | 
|  | start = base + offsets[area]; | 
|  | size = sizes[area]; | 
|  |  | 
|  | va = pvm_find_va_enclose_addr(start); | 
|  | if (WARN_ON_ONCE(va == NULL)) | 
|  | /* It is a BUG(), but trigger recovery instead. */ | 
|  | goto recovery; | 
|  |  | 
|  | type = classify_va_fit_type(va, start, size); | 
|  | if (WARN_ON_ONCE(type == NOTHING_FIT)) | 
|  | /* It is a BUG(), but trigger recovery instead. */ | 
|  | goto recovery; | 
|  |  | 
|  | ret = adjust_va_to_fit_type(va, start, size, type); | 
|  | if (unlikely(ret)) | 
|  | goto recovery; | 
|  |  | 
|  | /* Allocated area. */ | 
|  | va = vas[area]; | 
|  | va->va_start = start; | 
|  | va->va_end = start + size; | 
|  |  | 
|  | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | 
|  | } | 
|  |  | 
|  | spin_unlock(&vmap_area_lock); | 
|  |  | 
|  | /* insert all vm's */ | 
|  | for (area = 0; area < nr_vms; area++) | 
|  | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | 
|  | pcpu_get_vm_areas); | 
|  |  | 
|  | kfree(vas); | 
|  | return vms; | 
|  |  | 
|  | recovery: | 
|  | /* Remove previously inserted areas. */ | 
|  | while (area--) { | 
|  | __free_vmap_area(vas[area]); | 
|  | vas[area] = NULL; | 
|  | } | 
|  |  | 
|  | overflow: | 
|  | spin_unlock(&vmap_area_lock); | 
|  | if (!purged) { | 
|  | purge_vmap_area_lazy(); | 
|  | purged = true; | 
|  |  | 
|  | /* Before "retry", check if we recover. */ | 
|  | for (area = 0; area < nr_vms; area++) { | 
|  | if (vas[area]) | 
|  | continue; | 
|  |  | 
|  | vas[area] = kmem_cache_zalloc( | 
|  | vmap_area_cachep, GFP_KERNEL); | 
|  | if (!vas[area]) | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | err_free: | 
|  | for (area = 0; area < nr_vms; area++) { | 
|  | if (vas[area]) | 
|  | kmem_cache_free(vmap_area_cachep, vas[area]); | 
|  |  | 
|  | kfree(vms[area]); | 
|  | } | 
|  | err_free2: | 
|  | kfree(vas); | 
|  | kfree(vms); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | 
|  | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | 
|  | * @nr_vms: the number of allocated areas | 
|  | * | 
|  | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | 
|  | */ | 
|  | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_vms; i++) | 
|  | free_vm_area(vms[i]); | 
|  | kfree(vms); | 
|  | } | 
|  | #endif	/* CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static void *s_start(struct seq_file *m, loff_t *pos) | 
|  | __acquires(&vmap_area_lock) | 
|  | { | 
|  | spin_lock(&vmap_area_lock); | 
|  | return seq_list_start(&vmap_area_list, *pos); | 
|  | } | 
|  |  | 
|  | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &vmap_area_list, pos); | 
|  | } | 
|  |  | 
|  | static void s_stop(struct seq_file *m, void *p) | 
|  | __releases(&vmap_area_lock) | 
|  | { | 
|  | spin_unlock(&vmap_area_lock); | 
|  | } | 
|  |  | 
|  | static void show_numa_info(struct seq_file *m, struct vm_struct *v) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_NUMA)) { | 
|  | unsigned int nr, *counters = m->private; | 
|  |  | 
|  | if (!counters) | 
|  | return; | 
|  |  | 
|  | if (v->flags & VM_UNINITIALIZED) | 
|  | return; | 
|  | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | 
|  | smp_rmb(); | 
|  |  | 
|  | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | 
|  |  | 
|  | for (nr = 0; nr < v->nr_pages; nr++) | 
|  | counters[page_to_nid(v->pages[nr])]++; | 
|  |  | 
|  | for_each_node_state(nr, N_HIGH_MEMORY) | 
|  | if (counters[nr]) | 
|  | seq_printf(m, " N%u=%u", nr, counters[nr]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void show_purge_info(struct seq_file *m) | 
|  | { | 
|  | struct llist_node *head; | 
|  | struct vmap_area *va; | 
|  |  | 
|  | head = READ_ONCE(vmap_purge_list.first); | 
|  | if (head == NULL) | 
|  | return; | 
|  |  | 
|  | llist_for_each_entry(va, head, purge_list) { | 
|  | seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", | 
|  | (void *)va->va_start, (void *)va->va_end, | 
|  | va->va_end - va->va_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int s_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct vmap_area *va; | 
|  | struct vm_struct *v; | 
|  |  | 
|  | va = list_entry(p, struct vmap_area, list); | 
|  |  | 
|  | /* | 
|  | * s_show can encounter race with remove_vm_area, !vm on behalf | 
|  | * of vmap area is being tear down or vm_map_ram allocation. | 
|  | */ | 
|  | if (!va->vm) { | 
|  | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", | 
|  | (void *)va->va_start, (void *)va->va_end, | 
|  | va->va_end - va->va_start); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | v = va->vm; | 
|  |  | 
|  | seq_printf(m, "0x%pK-0x%pK %7ld", | 
|  | v->addr, v->addr + v->size, v->size); | 
|  |  | 
|  | if (v->caller) | 
|  | seq_printf(m, " %pS", v->caller); | 
|  |  | 
|  | if (v->nr_pages) | 
|  | seq_printf(m, " pages=%d", v->nr_pages); | 
|  |  | 
|  | if (v->phys_addr) | 
|  | seq_printf(m, " phys=%pa", &v->phys_addr); | 
|  |  | 
|  | if (v->flags & VM_IOREMAP) | 
|  | seq_puts(m, " ioremap"); | 
|  |  | 
|  | if (v->flags & VM_ALLOC) | 
|  | seq_puts(m, " vmalloc"); | 
|  |  | 
|  | if (v->flags & VM_MAP) | 
|  | seq_puts(m, " vmap"); | 
|  |  | 
|  | if (v->flags & VM_USERMAP) | 
|  | seq_puts(m, " user"); | 
|  |  | 
|  | if (v->flags & VM_DMA_COHERENT) | 
|  | seq_puts(m, " dma-coherent"); | 
|  |  | 
|  | if (is_vmalloc_addr(v->pages)) | 
|  | seq_puts(m, " vpages"); | 
|  |  | 
|  | show_numa_info(m, v); | 
|  | seq_putc(m, '\n'); | 
|  |  | 
|  | /* | 
|  | * As a final step, dump "unpurged" areas. Note, | 
|  | * that entire "/proc/vmallocinfo" output will not | 
|  | * be address sorted, because the purge list is not | 
|  | * sorted. | 
|  | */ | 
|  | if (list_is_last(&va->list, &vmap_area_list)) | 
|  | show_purge_info(m); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations vmalloc_op = { | 
|  | .start = s_start, | 
|  | .next = s_next, | 
|  | .stop = s_stop, | 
|  | .show = s_show, | 
|  | }; | 
|  |  | 
|  | static int __init proc_vmalloc_init(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_NUMA)) | 
|  | proc_create_seq_private("vmallocinfo", 0400, NULL, | 
|  | &vmalloc_op, | 
|  | nr_node_ids * sizeof(unsigned int), NULL); | 
|  | else | 
|  | proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); | 
|  | return 0; | 
|  | } | 
|  | module_init(proc_vmalloc_init); | 
|  |  | 
|  | #endif |