|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  kernel/sched/core.c | 
|  | * | 
|  | *  Core kernel scheduler code and related syscalls | 
|  | * | 
|  | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | */ | 
|  | #include "sched.h" | 
|  |  | 
|  | #include <linux/nospec.h> | 
|  |  | 
|  | #include <linux/kcov.h> | 
|  |  | 
|  | #include <asm/switch_to.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include "../workqueue_internal.h" | 
|  | #include "../smpboot.h" | 
|  |  | 
|  | #include "pelt.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/sched.h> | 
|  |  | 
|  | /* | 
|  | * Export tracepoints that act as a bare tracehook (ie: have no trace event | 
|  | * associated with them) to allow external modules to probe them. | 
|  | */ | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); | 
|  |  | 
|  | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | /* | 
|  | * Debugging: various feature bits | 
|  | * | 
|  | * If SCHED_DEBUG is disabled, each compilation unit has its own copy of | 
|  | * sysctl_sched_features, defined in sched.h, to allow constants propagation | 
|  | * at compile time and compiler optimization based on features default. | 
|  | */ | 
|  | #define SCHED_FEAT(name, enabled)	\ | 
|  | (1UL << __SCHED_FEAT_##name) * enabled | | 
|  | const_debug unsigned int sysctl_sched_features = | 
|  | #include "features.h" | 
|  | 0; | 
|  | #undef SCHED_FEAT | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Number of tasks to iterate in a single balance run. | 
|  | * Limited because this is done with IRQs disabled. | 
|  | */ | 
|  | const_debug unsigned int sysctl_sched_nr_migrate = 32; | 
|  |  | 
|  | /* | 
|  | * period over which we measure -rt task CPU usage in us. | 
|  | * default: 1s | 
|  | */ | 
|  | unsigned int sysctl_sched_rt_period = 1000000; | 
|  |  | 
|  | __read_mostly int scheduler_running; | 
|  |  | 
|  | /* | 
|  | * part of the period that we allow rt tasks to run in us. | 
|  | * default: 0.95s | 
|  | */ | 
|  | int sysctl_sched_rt_runtime = 950000; | 
|  |  | 
|  | /* | 
|  | * __task_rq_lock - lock the rq @p resides on. | 
|  | */ | 
|  | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | lockdep_assert_held(&p->pi_lock); | 
|  |  | 
|  | for (;;) { | 
|  | rq = task_rq(p); | 
|  | raw_spin_lock(&rq->lock); | 
|  | if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { | 
|  | rq_pin_lock(rq, rf); | 
|  | return rq; | 
|  | } | 
|  | raw_spin_unlock(&rq->lock); | 
|  |  | 
|  | while (unlikely(task_on_rq_migrating(p))) | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. | 
|  | */ | 
|  | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) | 
|  | __acquires(p->pi_lock) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | for (;;) { | 
|  | raw_spin_lock_irqsave(&p->pi_lock, rf->flags); | 
|  | rq = task_rq(p); | 
|  | raw_spin_lock(&rq->lock); | 
|  | /* | 
|  | *	move_queued_task()		task_rq_lock() | 
|  | * | 
|  | *	ACQUIRE (rq->lock) | 
|  | *	[S] ->on_rq = MIGRATING		[L] rq = task_rq() | 
|  | *	WMB (__set_task_cpu())		ACQUIRE (rq->lock); | 
|  | *	[S] ->cpu = new_cpu		[L] task_rq() | 
|  | *					[L] ->on_rq | 
|  | *	RELEASE (rq->lock) | 
|  | * | 
|  | * If we observe the old CPU in task_rq_lock(), the acquire of | 
|  | * the old rq->lock will fully serialize against the stores. | 
|  | * | 
|  | * If we observe the new CPU in task_rq_lock(), the address | 
|  | * dependency headed by '[L] rq = task_rq()' and the acquire | 
|  | * will pair with the WMB to ensure we then also see migrating. | 
|  | */ | 
|  | if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { | 
|  | rq_pin_lock(rq, rf); | 
|  | return rq; | 
|  | } | 
|  | raw_spin_unlock(&rq->lock); | 
|  | raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); | 
|  |  | 
|  | while (unlikely(task_on_rq_migrating(p))) | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RQ-clock updating methods: | 
|  | */ | 
|  |  | 
|  | static void update_rq_clock_task(struct rq *rq, s64 delta) | 
|  | { | 
|  | /* | 
|  | * In theory, the compile should just see 0 here, and optimize out the call | 
|  | * to sched_rt_avg_update. But I don't trust it... | 
|  | */ | 
|  | s64 __maybe_unused steal = 0, irq_delta = 0; | 
|  |  | 
|  | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
|  | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; | 
|  |  | 
|  | /* | 
|  | * Since irq_time is only updated on {soft,}irq_exit, we might run into | 
|  | * this case when a previous update_rq_clock() happened inside a | 
|  | * {soft,}irq region. | 
|  | * | 
|  | * When this happens, we stop ->clock_task and only update the | 
|  | * prev_irq_time stamp to account for the part that fit, so that a next | 
|  | * update will consume the rest. This ensures ->clock_task is | 
|  | * monotonic. | 
|  | * | 
|  | * It does however cause some slight miss-attribution of {soft,}irq | 
|  | * time, a more accurate solution would be to update the irq_time using | 
|  | * the current rq->clock timestamp, except that would require using | 
|  | * atomic ops. | 
|  | */ | 
|  | if (irq_delta > delta) | 
|  | irq_delta = delta; | 
|  |  | 
|  | rq->prev_irq_time += irq_delta; | 
|  | delta -= irq_delta; | 
|  | #endif | 
|  | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 
|  | if (static_key_false((¶virt_steal_rq_enabled))) { | 
|  | steal = paravirt_steal_clock(cpu_of(rq)); | 
|  | steal -= rq->prev_steal_time_rq; | 
|  |  | 
|  | if (unlikely(steal > delta)) | 
|  | steal = delta; | 
|  |  | 
|  | rq->prev_steal_time_rq += steal; | 
|  | delta -= steal; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | rq->clock_task += delta; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
|  | if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) | 
|  | update_irq_load_avg(rq, irq_delta + steal); | 
|  | #endif | 
|  | update_rq_clock_pelt(rq, delta); | 
|  | } | 
|  |  | 
|  | void update_rq_clock(struct rq *rq) | 
|  | { | 
|  | s64 delta; | 
|  |  | 
|  | lockdep_assert_held(&rq->lock); | 
|  |  | 
|  | if (rq->clock_update_flags & RQCF_ACT_SKIP) | 
|  | return; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | if (sched_feat(WARN_DOUBLE_CLOCK)) | 
|  | SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); | 
|  | rq->clock_update_flags |= RQCF_UPDATED; | 
|  | #endif | 
|  |  | 
|  | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; | 
|  | if (delta < 0) | 
|  | return; | 
|  | rq->clock += delta; | 
|  | update_rq_clock_task(rq, delta); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | /* | 
|  | * Use HR-timers to deliver accurate preemption points. | 
|  | */ | 
|  |  | 
|  | static void hrtick_clear(struct rq *rq) | 
|  | { | 
|  | if (hrtimer_active(&rq->hrtick_timer)) | 
|  | hrtimer_cancel(&rq->hrtick_timer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * High-resolution timer tick. | 
|  | * Runs from hardirq context with interrupts disabled. | 
|  | */ | 
|  | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 
|  | { | 
|  | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 
|  |  | 
|  | rq_lock(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 
|  | rq_unlock(rq, &rf); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static void __hrtick_restart(struct rq *rq) | 
|  | { | 
|  | struct hrtimer *timer = &rq->hrtick_timer; | 
|  | ktime_t time = rq->hrtick_time; | 
|  |  | 
|  | hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from hardirq (IPI) context | 
|  | */ | 
|  | static void __hrtick_start(void *arg) | 
|  | { | 
|  | struct rq *rq = arg; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock(rq, &rf); | 
|  | __hrtick_restart(rq); | 
|  | rq->hrtick_csd_pending = 0; | 
|  | rq_unlock(rq, &rf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called to set the hrtick timer state. | 
|  | * | 
|  | * called with rq->lock held and irqs disabled | 
|  | */ | 
|  | void hrtick_start(struct rq *rq, u64 delay) | 
|  | { | 
|  | struct hrtimer *timer = &rq->hrtick_timer; | 
|  | s64 delta; | 
|  |  | 
|  | /* | 
|  | * Don't schedule slices shorter than 10000ns, that just | 
|  | * doesn't make sense and can cause timer DoS. | 
|  | */ | 
|  | delta = max_t(s64, delay, 10000LL); | 
|  | rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); | 
|  |  | 
|  | if (rq == this_rq()) { | 
|  | __hrtick_restart(rq); | 
|  | } else if (!rq->hrtick_csd_pending) { | 
|  | smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); | 
|  | rq->hrtick_csd_pending = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  | /* | 
|  | * Called to set the hrtick timer state. | 
|  | * | 
|  | * called with rq->lock held and irqs disabled | 
|  | */ | 
|  | void hrtick_start(struct rq *rq, u64 delay) | 
|  | { | 
|  | /* | 
|  | * Don't schedule slices shorter than 10000ns, that just | 
|  | * doesn't make sense. Rely on vruntime for fairness. | 
|  | */ | 
|  | delay = max_t(u64, delay, 10000LL); | 
|  | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), | 
|  | HRTIMER_MODE_REL_PINNED_HARD); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void hrtick_rq_init(struct rq *rq) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | rq->hrtick_csd_pending = 0; | 
|  |  | 
|  | rq->hrtick_csd.flags = 0; | 
|  | rq->hrtick_csd.func = __hrtick_start; | 
|  | rq->hrtick_csd.info = rq; | 
|  | #endif | 
|  |  | 
|  | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); | 
|  | rq->hrtick_timer.function = hrtick; | 
|  | } | 
|  | #else	/* CONFIG_SCHED_HRTICK */ | 
|  | static inline void hrtick_clear(struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void hrtick_rq_init(struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif	/* CONFIG_SCHED_HRTICK */ | 
|  |  | 
|  | /* | 
|  | * cmpxchg based fetch_or, macro so it works for different integer types | 
|  | */ | 
|  | #define fetch_or(ptr, mask)						\ | 
|  | ({								\ | 
|  | typeof(ptr) _ptr = (ptr);				\ | 
|  | typeof(mask) _mask = (mask);				\ | 
|  | typeof(*_ptr) _old, _val = *_ptr;			\ | 
|  | \ | 
|  | for (;;) {						\ | 
|  | _old = cmpxchg(_ptr, _val, _val | _mask);	\ | 
|  | if (_old == _val)				\ | 
|  | break;					\ | 
|  | _val = _old;					\ | 
|  | }							\ | 
|  | _old;								\ | 
|  | }) | 
|  |  | 
|  | #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) | 
|  | /* | 
|  | * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, | 
|  | * this avoids any races wrt polling state changes and thereby avoids | 
|  | * spurious IPIs. | 
|  | */ | 
|  | static bool set_nr_and_not_polling(struct task_struct *p) | 
|  | { | 
|  | struct thread_info *ti = task_thread_info(p); | 
|  | return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. | 
|  | * | 
|  | * If this returns true, then the idle task promises to call | 
|  | * sched_ttwu_pending() and reschedule soon. | 
|  | */ | 
|  | static bool set_nr_if_polling(struct task_struct *p) | 
|  | { | 
|  | struct thread_info *ti = task_thread_info(p); | 
|  | typeof(ti->flags) old, val = READ_ONCE(ti->flags); | 
|  |  | 
|  | for (;;) { | 
|  | if (!(val & _TIF_POLLING_NRFLAG)) | 
|  | return false; | 
|  | if (val & _TIF_NEED_RESCHED) | 
|  | return true; | 
|  | old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); | 
|  | if (old == val) | 
|  | break; | 
|  | val = old; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static bool set_nr_and_not_polling(struct task_struct *p) | 
|  | { | 
|  | set_tsk_need_resched(p); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static bool set_nr_if_polling(struct task_struct *p) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) | 
|  | { | 
|  | struct wake_q_node *node = &task->wake_q; | 
|  |  | 
|  | /* | 
|  | * Atomically grab the task, if ->wake_q is !nil already it means | 
|  | * its already queued (either by us or someone else) and will get the | 
|  | * wakeup due to that. | 
|  | * | 
|  | * In order to ensure that a pending wakeup will observe our pending | 
|  | * state, even in the failed case, an explicit smp_mb() must be used. | 
|  | */ | 
|  | smp_mb__before_atomic(); | 
|  | if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The head is context local, there can be no concurrency. | 
|  | */ | 
|  | *head->lastp = node; | 
|  | head->lastp = &node->next; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wake_q_add() - queue a wakeup for 'later' waking. | 
|  | * @head: the wake_q_head to add @task to | 
|  | * @task: the task to queue for 'later' wakeup | 
|  | * | 
|  | * Queue a task for later wakeup, most likely by the wake_up_q() call in the | 
|  | * same context, _HOWEVER_ this is not guaranteed, the wakeup can come | 
|  | * instantly. | 
|  | * | 
|  | * This function must be used as-if it were wake_up_process(); IOW the task | 
|  | * must be ready to be woken at this location. | 
|  | */ | 
|  | void wake_q_add(struct wake_q_head *head, struct task_struct *task) | 
|  | { | 
|  | if (__wake_q_add(head, task)) | 
|  | get_task_struct(task); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wake_q_add_safe() - safely queue a wakeup for 'later' waking. | 
|  | * @head: the wake_q_head to add @task to | 
|  | * @task: the task to queue for 'later' wakeup | 
|  | * | 
|  | * Queue a task for later wakeup, most likely by the wake_up_q() call in the | 
|  | * same context, _HOWEVER_ this is not guaranteed, the wakeup can come | 
|  | * instantly. | 
|  | * | 
|  | * This function must be used as-if it were wake_up_process(); IOW the task | 
|  | * must be ready to be woken at this location. | 
|  | * | 
|  | * This function is essentially a task-safe equivalent to wake_q_add(). Callers | 
|  | * that already hold reference to @task can call the 'safe' version and trust | 
|  | * wake_q to do the right thing depending whether or not the @task is already | 
|  | * queued for wakeup. | 
|  | */ | 
|  | void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) | 
|  | { | 
|  | if (!__wake_q_add(head, task)) | 
|  | put_task_struct(task); | 
|  | } | 
|  |  | 
|  | void wake_up_q(struct wake_q_head *head) | 
|  | { | 
|  | struct wake_q_node *node = head->first; | 
|  |  | 
|  | while (node != WAKE_Q_TAIL) { | 
|  | struct task_struct *task; | 
|  |  | 
|  | task = container_of(node, struct task_struct, wake_q); | 
|  | BUG_ON(!task); | 
|  | /* Task can safely be re-inserted now: */ | 
|  | node = node->next; | 
|  | task->wake_q.next = NULL; | 
|  |  | 
|  | /* | 
|  | * wake_up_process() executes a full barrier, which pairs with | 
|  | * the queueing in wake_q_add() so as not to miss wakeups. | 
|  | */ | 
|  | wake_up_process(task); | 
|  | put_task_struct(task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * resched_curr - mark rq's current task 'to be rescheduled now'. | 
|  | * | 
|  | * On UP this means the setting of the need_resched flag, on SMP it | 
|  | * might also involve a cross-CPU call to trigger the scheduler on | 
|  | * the target CPU. | 
|  | */ | 
|  | void resched_curr(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | int cpu; | 
|  |  | 
|  | lockdep_assert_held(&rq->lock); | 
|  |  | 
|  | if (test_tsk_need_resched(curr)) | 
|  | return; | 
|  |  | 
|  | cpu = cpu_of(rq); | 
|  |  | 
|  | if (cpu == smp_processor_id()) { | 
|  | set_tsk_need_resched(curr); | 
|  | set_preempt_need_resched(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (set_nr_and_not_polling(curr)) | 
|  | smp_send_reschedule(cpu); | 
|  | else | 
|  | trace_sched_wake_idle_without_ipi(cpu); | 
|  | } | 
|  |  | 
|  | void resched_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  | if (cpu_online(cpu) || cpu == smp_processor_id()) | 
|  | resched_curr(rq); | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | /* | 
|  | * In the semi idle case, use the nearest busy CPU for migrating timers | 
|  | * from an idle CPU.  This is good for power-savings. | 
|  | * | 
|  | * We don't do similar optimization for completely idle system, as | 
|  | * selecting an idle CPU will add more delays to the timers than intended | 
|  | * (as that CPU's timer base may not be uptodate wrt jiffies etc). | 
|  | */ | 
|  | int get_nohz_timer_target(void) | 
|  | { | 
|  | int i, cpu = smp_processor_id(); | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) | 
|  | return cpu; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(cpu, sd) { | 
|  | for_each_cpu(i, sched_domain_span(sd)) { | 
|  | if (cpu == i) | 
|  | continue; | 
|  |  | 
|  | if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { | 
|  | cpu = i; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) | 
|  | cpu = housekeeping_any_cpu(HK_FLAG_TIMER); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When add_timer_on() enqueues a timer into the timer wheel of an | 
|  | * idle CPU then this timer might expire before the next timer event | 
|  | * which is scheduled to wake up that CPU. In case of a completely | 
|  | * idle system the next event might even be infinite time into the | 
|  | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 
|  | * leaves the inner idle loop so the newly added timer is taken into | 
|  | * account when the CPU goes back to idle and evaluates the timer | 
|  | * wheel for the next timer event. | 
|  | */ | 
|  | static void wake_up_idle_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (cpu == smp_processor_id()) | 
|  | return; | 
|  |  | 
|  | if (set_nr_and_not_polling(rq->idle)) | 
|  | smp_send_reschedule(cpu); | 
|  | else | 
|  | trace_sched_wake_idle_without_ipi(cpu); | 
|  | } | 
|  |  | 
|  | static bool wake_up_full_nohz_cpu(int cpu) | 
|  | { | 
|  | /* | 
|  | * We just need the target to call irq_exit() and re-evaluate | 
|  | * the next tick. The nohz full kick at least implies that. | 
|  | * If needed we can still optimize that later with an | 
|  | * empty IRQ. | 
|  | */ | 
|  | if (cpu_is_offline(cpu)) | 
|  | return true;  /* Don't try to wake offline CPUs. */ | 
|  | if (tick_nohz_full_cpu(cpu)) { | 
|  | if (cpu != smp_processor_id() || | 
|  | tick_nohz_tick_stopped()) | 
|  | tick_nohz_full_kick_cpu(cpu); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up the specified CPU.  If the CPU is going offline, it is the | 
|  | * caller's responsibility to deal with the lost wakeup, for example, | 
|  | * by hooking into the CPU_DEAD notifier like timers and hrtimers do. | 
|  | */ | 
|  | void wake_up_nohz_cpu(int cpu) | 
|  | { | 
|  | if (!wake_up_full_nohz_cpu(cpu)) | 
|  | wake_up_idle_cpu(cpu); | 
|  | } | 
|  |  | 
|  | static inline bool got_nohz_idle_kick(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) | 
|  | return false; | 
|  |  | 
|  | if (idle_cpu(cpu) && !need_resched()) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * We can't run Idle Load Balance on this CPU for this time so we | 
|  | * cancel it and clear NOHZ_BALANCE_KICK | 
|  | */ | 
|  | atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_NO_HZ_COMMON */ | 
|  |  | 
|  | static inline bool got_nohz_idle_kick(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NO_HZ_COMMON */ | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | bool sched_can_stop_tick(struct rq *rq) | 
|  | { | 
|  | int fifo_nr_running; | 
|  |  | 
|  | /* Deadline tasks, even if single, need the tick */ | 
|  | if (rq->dl.dl_nr_running) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If there are more than one RR tasks, we need the tick to effect the | 
|  | * actual RR behaviour. | 
|  | */ | 
|  | if (rq->rt.rr_nr_running) { | 
|  | if (rq->rt.rr_nr_running == 1) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there's no RR tasks, but FIFO tasks, we can skip the tick, no | 
|  | * forced preemption between FIFO tasks. | 
|  | */ | 
|  | fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; | 
|  | if (fifo_nr_running) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; | 
|  | * if there's more than one we need the tick for involuntary | 
|  | * preemption. | 
|  | */ | 
|  | if (rq->nr_running > 1) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_NO_HZ_FULL */ | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ | 
|  | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) | 
|  | /* | 
|  | * Iterate task_group tree rooted at *from, calling @down when first entering a | 
|  | * node and @up when leaving it for the final time. | 
|  | * | 
|  | * Caller must hold rcu_lock or sufficient equivalent. | 
|  | */ | 
|  | int walk_tg_tree_from(struct task_group *from, | 
|  | tg_visitor down, tg_visitor up, void *data) | 
|  | { | 
|  | struct task_group *parent, *child; | 
|  | int ret; | 
|  |  | 
|  | parent = from; | 
|  |  | 
|  | down: | 
|  | ret = (*down)(parent, data); | 
|  | if (ret) | 
|  | goto out; | 
|  | list_for_each_entry_rcu(child, &parent->children, siblings) { | 
|  | parent = child; | 
|  | goto down; | 
|  |  | 
|  | up: | 
|  | continue; | 
|  | } | 
|  | ret = (*up)(parent, data); | 
|  | if (ret || parent == from) | 
|  | goto out; | 
|  |  | 
|  | child = parent; | 
|  | parent = parent->parent; | 
|  | if (parent) | 
|  | goto up; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int tg_nop(struct task_group *tg, void *data) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void set_load_weight(struct task_struct *p, bool update_load) | 
|  | { | 
|  | int prio = p->static_prio - MAX_RT_PRIO; | 
|  | struct load_weight *load = &p->se.load; | 
|  |  | 
|  | /* | 
|  | * SCHED_IDLE tasks get minimal weight: | 
|  | */ | 
|  | if (task_has_idle_policy(p)) { | 
|  | load->weight = scale_load(WEIGHT_IDLEPRIO); | 
|  | load->inv_weight = WMULT_IDLEPRIO; | 
|  | p->se.runnable_weight = load->weight; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCHED_OTHER tasks have to update their load when changing their | 
|  | * weight | 
|  | */ | 
|  | if (update_load && p->sched_class == &fair_sched_class) { | 
|  | reweight_task(p, prio); | 
|  | } else { | 
|  | load->weight = scale_load(sched_prio_to_weight[prio]); | 
|  | load->inv_weight = sched_prio_to_wmult[prio]; | 
|  | p->se.runnable_weight = load->weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  | /* | 
|  | * Serializes updates of utilization clamp values | 
|  | * | 
|  | * The (slow-path) user-space triggers utilization clamp value updates which | 
|  | * can require updates on (fast-path) scheduler's data structures used to | 
|  | * support enqueue/dequeue operations. | 
|  | * While the per-CPU rq lock protects fast-path update operations, user-space | 
|  | * requests are serialized using a mutex to reduce the risk of conflicting | 
|  | * updates or API abuses. | 
|  | */ | 
|  | static DEFINE_MUTEX(uclamp_mutex); | 
|  |  | 
|  | /* Max allowed minimum utilization */ | 
|  | unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; | 
|  |  | 
|  | /* Max allowed maximum utilization */ | 
|  | unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; | 
|  |  | 
|  | /* All clamps are required to be less or equal than these values */ | 
|  | static struct uclamp_se uclamp_default[UCLAMP_CNT]; | 
|  |  | 
|  | /* | 
|  | * This static key is used to reduce the uclamp overhead in the fast path. It | 
|  | * primarily disables the call to uclamp_rq_{inc, dec}() in | 
|  | * enqueue/dequeue_task(). | 
|  | * | 
|  | * This allows users to continue to enable uclamp in their kernel config with | 
|  | * minimum uclamp overhead in the fast path. | 
|  | * | 
|  | * As soon as userspace modifies any of the uclamp knobs, the static key is | 
|  | * enabled, since we have an actual users that make use of uclamp | 
|  | * functionality. | 
|  | * | 
|  | * The knobs that would enable this static key are: | 
|  | * | 
|  | *   * A task modifying its uclamp value with sched_setattr(). | 
|  | *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. | 
|  | *   * An admin modifying the cgroup cpu.uclamp.{min, max} | 
|  | */ | 
|  | DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); | 
|  |  | 
|  | /* Integer rounded range for each bucket */ | 
|  | #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) | 
|  |  | 
|  | #define for_each_clamp_id(clamp_id) \ | 
|  | for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) | 
|  |  | 
|  | static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) | 
|  | { | 
|  | return clamp_value / UCLAMP_BUCKET_DELTA; | 
|  | } | 
|  |  | 
|  | static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) | 
|  | { | 
|  | return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); | 
|  | } | 
|  |  | 
|  | static inline unsigned int uclamp_none(enum uclamp_id clamp_id) | 
|  | { | 
|  | if (clamp_id == UCLAMP_MIN) | 
|  | return 0; | 
|  | return SCHED_CAPACITY_SCALE; | 
|  | } | 
|  |  | 
|  | static inline void uclamp_se_set(struct uclamp_se *uc_se, | 
|  | unsigned int value, bool user_defined) | 
|  | { | 
|  | uc_se->value = value; | 
|  | uc_se->bucket_id = uclamp_bucket_id(value); | 
|  | uc_se->user_defined = user_defined; | 
|  | } | 
|  |  | 
|  | static inline unsigned int | 
|  | uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, | 
|  | unsigned int clamp_value) | 
|  | { | 
|  | /* | 
|  | * Avoid blocked utilization pushing up the frequency when we go | 
|  | * idle (which drops the max-clamp) by retaining the last known | 
|  | * max-clamp. | 
|  | */ | 
|  | if (clamp_id == UCLAMP_MAX) { | 
|  | rq->uclamp_flags |= UCLAMP_FLAG_IDLE; | 
|  | return clamp_value; | 
|  | } | 
|  |  | 
|  | return uclamp_none(UCLAMP_MIN); | 
|  | } | 
|  |  | 
|  | static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, | 
|  | unsigned int clamp_value) | 
|  | { | 
|  | /* Reset max-clamp retention only on idle exit */ | 
|  | if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) | 
|  | return; | 
|  |  | 
|  | WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, | 
|  | unsigned int clamp_value) | 
|  | { | 
|  | struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; | 
|  | int bucket_id = UCLAMP_BUCKETS - 1; | 
|  |  | 
|  | /* | 
|  | * Since both min and max clamps are max aggregated, find the | 
|  | * top most bucket with tasks in. | 
|  | */ | 
|  | for ( ; bucket_id >= 0; bucket_id--) { | 
|  | if (!bucket[bucket_id].tasks) | 
|  | continue; | 
|  | return bucket[bucket_id].value; | 
|  | } | 
|  |  | 
|  | /* No tasks -- default clamp values */ | 
|  | return uclamp_idle_value(rq, clamp_id, clamp_value); | 
|  | } | 
|  |  | 
|  | static inline struct uclamp_se | 
|  | uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) | 
|  | { | 
|  | struct uclamp_se uc_req = p->uclamp_req[clamp_id]; | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | struct uclamp_se uc_max; | 
|  |  | 
|  | /* | 
|  | * Tasks in autogroups or root task group will be | 
|  | * restricted by system defaults. | 
|  | */ | 
|  | if (task_group_is_autogroup(task_group(p))) | 
|  | return uc_req; | 
|  | if (task_group(p) == &root_task_group) | 
|  | return uc_req; | 
|  |  | 
|  | uc_max = task_group(p)->uclamp[clamp_id]; | 
|  | if (uc_req.value > uc_max.value || !uc_req.user_defined) | 
|  | return uc_max; | 
|  | #endif | 
|  |  | 
|  | return uc_req; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The effective clamp bucket index of a task depends on, by increasing | 
|  | * priority: | 
|  | * - the task specific clamp value, when explicitly requested from userspace | 
|  | * - the task group effective clamp value, for tasks not either in the root | 
|  | *   group or in an autogroup | 
|  | * - the system default clamp value, defined by the sysadmin | 
|  | */ | 
|  | static inline struct uclamp_se | 
|  | uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) | 
|  | { | 
|  | struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); | 
|  | struct uclamp_se uc_max = uclamp_default[clamp_id]; | 
|  |  | 
|  | /* System default restrictions always apply */ | 
|  | if (unlikely(uc_req.value > uc_max.value)) | 
|  | return uc_max; | 
|  |  | 
|  | return uc_req; | 
|  | } | 
|  |  | 
|  | unsigned int uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) | 
|  | { | 
|  | struct uclamp_se uc_eff; | 
|  |  | 
|  | /* Task currently refcounted: use back-annotated (effective) value */ | 
|  | if (p->uclamp[clamp_id].active) | 
|  | return p->uclamp[clamp_id].value; | 
|  |  | 
|  | uc_eff = uclamp_eff_get(p, clamp_id); | 
|  |  | 
|  | return uc_eff.value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a task is enqueued on a rq, the clamp bucket currently defined by the | 
|  | * task's uclamp::bucket_id is refcounted on that rq. This also immediately | 
|  | * updates the rq's clamp value if required. | 
|  | * | 
|  | * Tasks can have a task-specific value requested from user-space, track | 
|  | * within each bucket the maximum value for tasks refcounted in it. | 
|  | * This "local max aggregation" allows to track the exact "requested" value | 
|  | * for each bucket when all its RUNNABLE tasks require the same clamp. | 
|  | */ | 
|  | static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, | 
|  | enum uclamp_id clamp_id) | 
|  | { | 
|  | struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; | 
|  | struct uclamp_se *uc_se = &p->uclamp[clamp_id]; | 
|  | struct uclamp_bucket *bucket; | 
|  |  | 
|  | lockdep_assert_held(&rq->lock); | 
|  |  | 
|  | /* Update task effective clamp */ | 
|  | p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); | 
|  |  | 
|  | bucket = &uc_rq->bucket[uc_se->bucket_id]; | 
|  | bucket->tasks++; | 
|  | uc_se->active = true; | 
|  |  | 
|  | uclamp_idle_reset(rq, clamp_id, uc_se->value); | 
|  |  | 
|  | /* | 
|  | * Local max aggregation: rq buckets always track the max | 
|  | * "requested" clamp value of its RUNNABLE tasks. | 
|  | */ | 
|  | if (bucket->tasks == 1 || uc_se->value > bucket->value) | 
|  | bucket->value = uc_se->value; | 
|  |  | 
|  | if (uc_se->value > READ_ONCE(uc_rq->value)) | 
|  | WRITE_ONCE(uc_rq->value, uc_se->value); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a task is dequeued from a rq, the clamp bucket refcounted by the task | 
|  | * is released. If this is the last task reference counting the rq's max | 
|  | * active clamp value, then the rq's clamp value is updated. | 
|  | * | 
|  | * Both refcounted tasks and rq's cached clamp values are expected to be | 
|  | * always valid. If it's detected they are not, as defensive programming, | 
|  | * enforce the expected state and warn. | 
|  | */ | 
|  | static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, | 
|  | enum uclamp_id clamp_id) | 
|  | { | 
|  | struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; | 
|  | struct uclamp_se *uc_se = &p->uclamp[clamp_id]; | 
|  | struct uclamp_bucket *bucket; | 
|  | unsigned int bkt_clamp; | 
|  | unsigned int rq_clamp; | 
|  |  | 
|  | lockdep_assert_held(&rq->lock); | 
|  |  | 
|  | /* | 
|  | * If sched_uclamp_used was enabled after task @p was enqueued, | 
|  | * we could end up with unbalanced call to uclamp_rq_dec_id(). | 
|  | * | 
|  | * In this case the uc_se->active flag should be false since no uclamp | 
|  | * accounting was performed at enqueue time and we can just return | 
|  | * here. | 
|  | * | 
|  | * Need to be careful of the following enqeueue/dequeue ordering | 
|  | * problem too | 
|  | * | 
|  | *	enqueue(taskA) | 
|  | *	// sched_uclamp_used gets enabled | 
|  | *	enqueue(taskB) | 
|  | *	dequeue(taskA) | 
|  | *	// Must not decrement bukcet->tasks here | 
|  | *	dequeue(taskB) | 
|  | * | 
|  | * where we could end up with stale data in uc_se and | 
|  | * bucket[uc_se->bucket_id]. | 
|  | * | 
|  | * The following check here eliminates the possibility of such race. | 
|  | */ | 
|  | if (unlikely(!uc_se->active)) | 
|  | return; | 
|  |  | 
|  | bucket = &uc_rq->bucket[uc_se->bucket_id]; | 
|  |  | 
|  | SCHED_WARN_ON(!bucket->tasks); | 
|  | if (likely(bucket->tasks)) | 
|  | bucket->tasks--; | 
|  |  | 
|  | uc_se->active = false; | 
|  |  | 
|  | /* | 
|  | * Keep "local max aggregation" simple and accept to (possibly) | 
|  | * overboost some RUNNABLE tasks in the same bucket. | 
|  | * The rq clamp bucket value is reset to its base value whenever | 
|  | * there are no more RUNNABLE tasks refcounting it. | 
|  | */ | 
|  | if (likely(bucket->tasks)) | 
|  | return; | 
|  |  | 
|  | rq_clamp = READ_ONCE(uc_rq->value); | 
|  | /* | 
|  | * Defensive programming: this should never happen. If it happens, | 
|  | * e.g. due to future modification, warn and fixup the expected value. | 
|  | */ | 
|  | SCHED_WARN_ON(bucket->value > rq_clamp); | 
|  | if (bucket->value >= rq_clamp) { | 
|  | bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); | 
|  | WRITE_ONCE(uc_rq->value, bkt_clamp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  |  | 
|  | /* | 
|  | * Avoid any overhead until uclamp is actually used by the userspace. | 
|  | * | 
|  | * The condition is constructed such that a NOP is generated when | 
|  | * sched_uclamp_used is disabled. | 
|  | */ | 
|  | if (!static_branch_unlikely(&sched_uclamp_used)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!p->sched_class->uclamp_enabled)) | 
|  | return; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) | 
|  | uclamp_rq_inc_id(rq, p, clamp_id); | 
|  |  | 
|  | /* Reset clamp idle holding when there is one RUNNABLE task */ | 
|  | if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) | 
|  | rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; | 
|  | } | 
|  |  | 
|  | static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  |  | 
|  | /* | 
|  | * Avoid any overhead until uclamp is actually used by the userspace. | 
|  | * | 
|  | * The condition is constructed such that a NOP is generated when | 
|  | * sched_uclamp_used is disabled. | 
|  | */ | 
|  | if (!static_branch_unlikely(&sched_uclamp_used)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!p->sched_class->uclamp_enabled)) | 
|  | return; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) | 
|  | uclamp_rq_dec_id(rq, p, clamp_id); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* | 
|  | * Lock the task and the rq where the task is (or was) queued. | 
|  | * | 
|  | * We might lock the (previous) rq of a !RUNNABLE task, but that's the | 
|  | * price to pay to safely serialize util_{min,max} updates with | 
|  | * enqueues, dequeues and migration operations. | 
|  | * This is the same locking schema used by __set_cpus_allowed_ptr(). | 
|  | */ | 
|  | rq = task_rq_lock(p, &rf); | 
|  |  | 
|  | /* | 
|  | * Setting the clamp bucket is serialized by task_rq_lock(). | 
|  | * If the task is not yet RUNNABLE and its task_struct is not | 
|  | * affecting a valid clamp bucket, the next time it's enqueued, | 
|  | * it will already see the updated clamp bucket value. | 
|  | */ | 
|  | if (p->uclamp[clamp_id].active) { | 
|  | uclamp_rq_dec_id(rq, p, clamp_id); | 
|  | uclamp_rq_inc_id(rq, p, clamp_id); | 
|  | } | 
|  |  | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | static inline void | 
|  | uclamp_update_active_tasks(struct cgroup_subsys_state *css, | 
|  | unsigned int clamps) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  | struct css_task_iter it; | 
|  | struct task_struct *p; | 
|  |  | 
|  | css_task_iter_start(css, 0, &it); | 
|  | while ((p = css_task_iter_next(&it))) { | 
|  | for_each_clamp_id(clamp_id) { | 
|  | if ((0x1 << clamp_id) & clamps) | 
|  | uclamp_update_active(p, clamp_id); | 
|  | } | 
|  | } | 
|  | css_task_iter_end(&it); | 
|  | } | 
|  |  | 
|  | static void cpu_util_update_eff(struct cgroup_subsys_state *css); | 
|  | static void uclamp_update_root_tg(void) | 
|  | { | 
|  | struct task_group *tg = &root_task_group; | 
|  |  | 
|  | uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], | 
|  | sysctl_sched_uclamp_util_min, false); | 
|  | uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], | 
|  | sysctl_sched_uclamp_util_max, false); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cpu_util_update_eff(&root_task_group.css); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #else | 
|  | static void uclamp_update_root_tg(void) { } | 
|  | #endif | 
|  |  | 
|  | int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, | 
|  | loff_t *ppos) | 
|  | { | 
|  | bool update_root_tg = false; | 
|  | int old_min, old_max; | 
|  | int result; | 
|  |  | 
|  | mutex_lock(&uclamp_mutex); | 
|  | old_min = sysctl_sched_uclamp_util_min; | 
|  | old_max = sysctl_sched_uclamp_util_max; | 
|  |  | 
|  | result = proc_dointvec(table, write, buffer, lenp, ppos); | 
|  | if (result) | 
|  | goto undo; | 
|  | if (!write) | 
|  | goto done; | 
|  |  | 
|  | if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || | 
|  | sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { | 
|  | result = -EINVAL; | 
|  | goto undo; | 
|  | } | 
|  |  | 
|  | if (old_min != sysctl_sched_uclamp_util_min) { | 
|  | uclamp_se_set(&uclamp_default[UCLAMP_MIN], | 
|  | sysctl_sched_uclamp_util_min, false); | 
|  | update_root_tg = true; | 
|  | } | 
|  | if (old_max != sysctl_sched_uclamp_util_max) { | 
|  | uclamp_se_set(&uclamp_default[UCLAMP_MAX], | 
|  | sysctl_sched_uclamp_util_max, false); | 
|  | update_root_tg = true; | 
|  | } | 
|  |  | 
|  | if (update_root_tg) { | 
|  | static_branch_enable(&sched_uclamp_used); | 
|  | uclamp_update_root_tg(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We update all RUNNABLE tasks only when task groups are in use. | 
|  | * Otherwise, keep it simple and do just a lazy update at each next | 
|  | * task enqueue time. | 
|  | */ | 
|  |  | 
|  | goto done; | 
|  |  | 
|  | undo: | 
|  | sysctl_sched_uclamp_util_min = old_min; | 
|  | sysctl_sched_uclamp_util_max = old_max; | 
|  | done: | 
|  | mutex_unlock(&uclamp_mutex); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int uclamp_validate(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; | 
|  | unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) | 
|  | lower_bound = attr->sched_util_min; | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) | 
|  | upper_bound = attr->sched_util_max; | 
|  |  | 
|  | if (lower_bound > upper_bound) | 
|  | return -EINVAL; | 
|  | if (upper_bound > SCHED_CAPACITY_SCALE) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We have valid uclamp attributes; make sure uclamp is enabled. | 
|  | * | 
|  | * We need to do that here, because enabling static branches is a | 
|  | * blocking operation which obviously cannot be done while holding | 
|  | * scheduler locks. | 
|  | */ | 
|  | static_branch_enable(&sched_uclamp_used); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __setscheduler_uclamp(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  |  | 
|  | /* | 
|  | * On scheduling class change, reset to default clamps for tasks | 
|  | * without a task-specific value. | 
|  | */ | 
|  | for_each_clamp_id(clamp_id) { | 
|  | struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; | 
|  | unsigned int clamp_value = uclamp_none(clamp_id); | 
|  |  | 
|  | /* Keep using defined clamps across class changes */ | 
|  | if (uc_se->user_defined) | 
|  | continue; | 
|  |  | 
|  | /* By default, RT tasks always get 100% boost */ | 
|  | if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) | 
|  | clamp_value = uclamp_none(UCLAMP_MAX); | 
|  |  | 
|  | uclamp_se_set(uc_se, clamp_value, false); | 
|  | } | 
|  |  | 
|  | if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) | 
|  | return; | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { | 
|  | uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], | 
|  | attr->sched_util_min, true); | 
|  | } | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { | 
|  | uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], | 
|  | attr->sched_util_max, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void uclamp_fork(struct task_struct *p) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) | 
|  | p->uclamp[clamp_id].active = false; | 
|  |  | 
|  | if (likely(!p->sched_reset_on_fork)) | 
|  | return; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) { | 
|  | uclamp_se_set(&p->uclamp_req[clamp_id], | 
|  | uclamp_none(clamp_id), false); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init init_uclamp_rq(struct rq *rq) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  | struct uclamp_rq *uc_rq = rq->uclamp; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) { | 
|  | uc_rq[clamp_id] = (struct uclamp_rq) { | 
|  | .value = uclamp_none(clamp_id) | 
|  | }; | 
|  | } | 
|  |  | 
|  | rq->uclamp_flags = 0; | 
|  | } | 
|  |  | 
|  | static void __init init_uclamp(void) | 
|  | { | 
|  | struct uclamp_se uc_max = {}; | 
|  | enum uclamp_id clamp_id; | 
|  | int cpu; | 
|  |  | 
|  | mutex_init(&uclamp_mutex); | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | init_uclamp_rq(cpu_rq(cpu)); | 
|  |  | 
|  | for_each_clamp_id(clamp_id) { | 
|  | uclamp_se_set(&init_task.uclamp_req[clamp_id], | 
|  | uclamp_none(clamp_id), false); | 
|  | } | 
|  |  | 
|  | /* System defaults allow max clamp values for both indexes */ | 
|  | uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); | 
|  | for_each_clamp_id(clamp_id) { | 
|  | uclamp_default[clamp_id] = uc_max; | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | root_task_group.uclamp_req[clamp_id] = uc_max; | 
|  | root_task_group.uclamp[clamp_id] = uc_max; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_UCLAMP_TASK */ | 
|  | static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } | 
|  | static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } | 
|  | static inline int uclamp_validate(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | static void __setscheduler_uclamp(struct task_struct *p, | 
|  | const struct sched_attr *attr) { } | 
|  | static inline void uclamp_fork(struct task_struct *p) { } | 
|  | static inline void init_uclamp(void) { } | 
|  | #endif /* CONFIG_UCLAMP_TASK */ | 
|  |  | 
|  | static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | if (!(flags & ENQUEUE_NOCLOCK)) | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | if (!(flags & ENQUEUE_RESTORE)) { | 
|  | sched_info_queued(rq, p); | 
|  | psi_enqueue(p, flags & ENQUEUE_WAKEUP); | 
|  | } | 
|  |  | 
|  | uclamp_rq_inc(rq, p); | 
|  | p->sched_class->enqueue_task(rq, p, flags); | 
|  | } | 
|  |  | 
|  | static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | if (!(flags & DEQUEUE_NOCLOCK)) | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | if (!(flags & DEQUEUE_SAVE)) { | 
|  | sched_info_dequeued(rq, p); | 
|  | psi_dequeue(p, flags & DEQUEUE_SLEEP); | 
|  | } | 
|  |  | 
|  | uclamp_rq_dec(rq, p); | 
|  | p->sched_class->dequeue_task(rq, p, flags); | 
|  | } | 
|  |  | 
|  | void activate_task(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | if (task_contributes_to_load(p)) | 
|  | rq->nr_uninterruptible--; | 
|  |  | 
|  | enqueue_task(rq, p, flags); | 
|  |  | 
|  | p->on_rq = TASK_ON_RQ_QUEUED; | 
|  | } | 
|  |  | 
|  | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; | 
|  |  | 
|  | if (task_contributes_to_load(p)) | 
|  | rq->nr_uninterruptible++; | 
|  |  | 
|  | dequeue_task(rq, p, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __normal_prio - return the priority that is based on the static prio | 
|  | */ | 
|  | static inline int __normal_prio(struct task_struct *p) | 
|  | { | 
|  | return p->static_prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the expected normal priority: i.e. priority | 
|  | * without taking RT-inheritance into account. Might be | 
|  | * boosted by interactivity modifiers. Changes upon fork, | 
|  | * setprio syscalls, and whenever the interactivity | 
|  | * estimator recalculates. | 
|  | */ | 
|  | static inline int normal_prio(struct task_struct *p) | 
|  | { | 
|  | int prio; | 
|  |  | 
|  | if (task_has_dl_policy(p)) | 
|  | prio = MAX_DL_PRIO-1; | 
|  | else if (task_has_rt_policy(p)) | 
|  | prio = MAX_RT_PRIO-1 - p->rt_priority; | 
|  | else | 
|  | prio = __normal_prio(p); | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the current priority, i.e. the priority | 
|  | * taken into account by the scheduler. This value might | 
|  | * be boosted by RT tasks, or might be boosted by | 
|  | * interactivity modifiers. Will be RT if the task got | 
|  | * RT-boosted. If not then it returns p->normal_prio. | 
|  | */ | 
|  | static int effective_prio(struct task_struct *p) | 
|  | { | 
|  | p->normal_prio = normal_prio(p); | 
|  | /* | 
|  | * If we are RT tasks or we were boosted to RT priority, | 
|  | * keep the priority unchanged. Otherwise, update priority | 
|  | * to the normal priority: | 
|  | */ | 
|  | if (!rt_prio(p->prio)) | 
|  | return p->normal_prio; | 
|  | return p->prio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_curr - is this task currently executing on a CPU? | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: 1 if the task is currently executing. 0 otherwise. | 
|  | */ | 
|  | inline int task_curr(const struct task_struct *p) | 
|  | { | 
|  | return cpu_curr(task_cpu(p)) == p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, | 
|  | * use the balance_callback list if you want balancing. | 
|  | * | 
|  | * this means any call to check_class_changed() must be followed by a call to | 
|  | * balance_callback(). | 
|  | */ | 
|  | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 
|  | const struct sched_class *prev_class, | 
|  | int oldprio) | 
|  | { | 
|  | if (prev_class != p->sched_class) { | 
|  | if (prev_class->switched_from) | 
|  | prev_class->switched_from(rq, p); | 
|  |  | 
|  | p->sched_class->switched_to(rq, p); | 
|  | } else if (oldprio != p->prio || dl_task(p)) | 
|  | p->sched_class->prio_changed(rq, p, oldprio); | 
|  | } | 
|  |  | 
|  | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | const struct sched_class *class; | 
|  |  | 
|  | if (p->sched_class == rq->curr->sched_class) { | 
|  | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | 
|  | } else { | 
|  | for_each_class(class) { | 
|  | if (class == rq->curr->sched_class) | 
|  | break; | 
|  | if (class == p->sched_class) { | 
|  | resched_curr(rq); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A queue event has occurred, and we're going to schedule.  In | 
|  | * this case, we can save a useless back to back clock update. | 
|  | */ | 
|  | if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) | 
|  | rq_clock_skip_update(rq); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static inline bool is_per_cpu_kthread(struct task_struct *p) | 
|  | { | 
|  | if (!(p->flags & PF_KTHREAD)) | 
|  | return false; | 
|  |  | 
|  | if (p->nr_cpus_allowed != 1) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-CPU kthreads are allowed to run on !active && online CPUs, see | 
|  | * __set_cpus_allowed_ptr() and select_fallback_rq(). | 
|  | */ | 
|  | static inline bool is_cpu_allowed(struct task_struct *p, int cpu) | 
|  | { | 
|  | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) | 
|  | return false; | 
|  |  | 
|  | if (is_per_cpu_kthread(p)) | 
|  | return cpu_online(cpu); | 
|  |  | 
|  | return cpu_active(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is how migration works: | 
|  | * | 
|  | * 1) we invoke migration_cpu_stop() on the target CPU using | 
|  | *    stop_one_cpu(). | 
|  | * 2) stopper starts to run (implicitly forcing the migrated thread | 
|  | *    off the CPU) | 
|  | * 3) it checks whether the migrated task is still in the wrong runqueue. | 
|  | * 4) if it's in the wrong runqueue then the migration thread removes | 
|  | *    it and puts it into the right queue. | 
|  | * 5) stopper completes and stop_one_cpu() returns and the migration | 
|  | *    is done. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * move_queued_task - move a queued task to new rq. | 
|  | * | 
|  | * Returns (locked) new rq. Old rq's lock is released. | 
|  | */ | 
|  | static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, | 
|  | struct task_struct *p, int new_cpu) | 
|  | { | 
|  | lockdep_assert_held(&rq->lock); | 
|  |  | 
|  | WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); | 
|  | dequeue_task(rq, p, DEQUEUE_NOCLOCK); | 
|  | set_task_cpu(p, new_cpu); | 
|  | rq_unlock(rq, rf); | 
|  |  | 
|  | rq = cpu_rq(new_cpu); | 
|  |  | 
|  | rq_lock(rq, rf); | 
|  | BUG_ON(task_cpu(p) != new_cpu); | 
|  | enqueue_task(rq, p, 0); | 
|  | p->on_rq = TASK_ON_RQ_QUEUED; | 
|  | check_preempt_curr(rq, p, 0); | 
|  |  | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | struct migration_arg { | 
|  | struct task_struct *task; | 
|  | int dest_cpu; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Move (not current) task off this CPU, onto the destination CPU. We're doing | 
|  | * this because either it can't run here any more (set_cpus_allowed() | 
|  | * away from this CPU, or CPU going down), or because we're | 
|  | * attempting to rebalance this task on exec (sched_exec). | 
|  | * | 
|  | * So we race with normal scheduler movements, but that's OK, as long | 
|  | * as the task is no longer on this CPU. | 
|  | */ | 
|  | static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, | 
|  | struct task_struct *p, int dest_cpu) | 
|  | { | 
|  | /* Affinity changed (again). */ | 
|  | if (!is_cpu_allowed(p, dest_cpu)) | 
|  | return rq; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | rq = move_queued_task(rq, rf, p, dest_cpu); | 
|  |  | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migration_cpu_stop - this will be executed by a highprio stopper thread | 
|  | * and performs thread migration by bumping thread off CPU then | 
|  | * 'pushing' onto another runqueue. | 
|  | */ | 
|  | static int migration_cpu_stop(void *data) | 
|  | { | 
|  | struct migration_arg *arg = data; | 
|  | struct task_struct *p = arg->task; | 
|  | struct rq *rq = this_rq(); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | /* | 
|  | * The original target CPU might have gone down and we might | 
|  | * be on another CPU but it doesn't matter. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | /* | 
|  | * We need to explicitly wake pending tasks before running | 
|  | * __migrate_task() such that we will not miss enforcing cpus_ptr | 
|  | * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. | 
|  | */ | 
|  | sched_ttwu_pending(); | 
|  |  | 
|  | raw_spin_lock(&p->pi_lock); | 
|  | rq_lock(rq, &rf); | 
|  | /* | 
|  | * If task_rq(p) != rq, it cannot be migrated here, because we're | 
|  | * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because | 
|  | * we're holding p->pi_lock. | 
|  | */ | 
|  | if (task_rq(p) == rq) { | 
|  | if (task_on_rq_queued(p)) | 
|  | rq = __migrate_task(rq, &rf, p, arg->dest_cpu); | 
|  | else | 
|  | p->wake_cpu = arg->dest_cpu; | 
|  | } | 
|  | rq_unlock(rq, &rf); | 
|  | raw_spin_unlock(&p->pi_lock); | 
|  |  | 
|  | local_irq_enable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_class::set_cpus_allowed must do the below, but is not required to | 
|  | * actually call this function. | 
|  | */ | 
|  | void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) | 
|  | { | 
|  | cpumask_copy(&p->cpus_mask, new_mask); | 
|  | p->nr_cpus_allowed = cpumask_weight(new_mask); | 
|  | } | 
|  |  | 
|  | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | 
|  | { | 
|  | struct rq *rq = task_rq(p); | 
|  | bool queued, running; | 
|  |  | 
|  | lockdep_assert_held(&p->pi_lock); | 
|  |  | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  |  | 
|  | if (queued) { | 
|  | /* | 
|  | * Because __kthread_bind() calls this on blocked tasks without | 
|  | * holding rq->lock. | 
|  | */ | 
|  | lockdep_assert_held(&rq->lock); | 
|  | dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); | 
|  | } | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | p->sched_class->set_cpus_allowed(p, new_mask); | 
|  |  | 
|  | if (queued) | 
|  | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change a given task's CPU affinity. Migrate the thread to a | 
|  | * proper CPU and schedule it away if the CPU it's executing on | 
|  | * is removed from the allowed bitmask. | 
|  | * | 
|  | * NOTE: the caller must have a valid reference to the task, the | 
|  | * task must not exit() & deallocate itself prematurely. The | 
|  | * call is not atomic; no spinlocks may be held. | 
|  | */ | 
|  | static int __set_cpus_allowed_ptr(struct task_struct *p, | 
|  | const struct cpumask *new_mask, bool check) | 
|  | { | 
|  | const struct cpumask *cpu_valid_mask = cpu_active_mask; | 
|  | unsigned int dest_cpu; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | int ret = 0; | 
|  |  | 
|  | rq = task_rq_lock(p, &rf); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | if (p->flags & PF_KTHREAD) { | 
|  | /* | 
|  | * Kernel threads are allowed on online && !active CPUs | 
|  | */ | 
|  | cpu_valid_mask = cpu_online_mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must re-check here, to close a race against __kthread_bind(), | 
|  | * sched_setaffinity() is not guaranteed to observe the flag. | 
|  | */ | 
|  | if (check && (p->flags & PF_NO_SETAFFINITY)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (cpumask_equal(&p->cpus_mask, new_mask)) | 
|  | goto out; | 
|  |  | 
|  | dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); | 
|  | if (dest_cpu >= nr_cpu_ids) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | do_set_cpus_allowed(p, new_mask); | 
|  |  | 
|  | if (p->flags & PF_KTHREAD) { | 
|  | /* | 
|  | * For kernel threads that do indeed end up on online && | 
|  | * !active we want to ensure they are strict per-CPU threads. | 
|  | */ | 
|  | WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && | 
|  | !cpumask_intersects(new_mask, cpu_active_mask) && | 
|  | p->nr_cpus_allowed != 1); | 
|  | } | 
|  |  | 
|  | /* Can the task run on the task's current CPU? If so, we're done */ | 
|  | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 
|  | goto out; | 
|  |  | 
|  | if (task_running(rq, p) || p->state == TASK_WAKING) { | 
|  | struct migration_arg arg = { p, dest_cpu }; | 
|  | /* Need help from migration thread: drop lock and wait. */ | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); | 
|  | return 0; | 
|  | } else if (task_on_rq_queued(p)) { | 
|  | /* | 
|  | * OK, since we're going to drop the lock immediately | 
|  | * afterwards anyway. | 
|  | */ | 
|  | rq = move_queued_task(rq, &rf, p, dest_cpu); | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, p, &rf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 
|  | { | 
|  | return __set_cpus_allowed_ptr(p, new_mask, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 
|  |  | 
|  | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | /* | 
|  | * We should never call set_task_cpu() on a blocked task, | 
|  | * ttwu() will sort out the placement. | 
|  | */ | 
|  | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | 
|  | !p->on_rq); | 
|  |  | 
|  | /* | 
|  | * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, | 
|  | * because schedstat_wait_{start,end} rebase migrating task's wait_start | 
|  | * time relying on p->on_rq. | 
|  | */ | 
|  | WARN_ON_ONCE(p->state == TASK_RUNNING && | 
|  | p->sched_class == &fair_sched_class && | 
|  | (p->on_rq && !task_on_rq_migrating(p))); | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | /* | 
|  | * The caller should hold either p->pi_lock or rq->lock, when changing | 
|  | * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. | 
|  | * | 
|  | * sched_move_task() holds both and thus holding either pins the cgroup, | 
|  | * see task_group(). | 
|  | * | 
|  | * Furthermore, all task_rq users should acquire both locks, see | 
|  | * task_rq_lock(). | 
|  | */ | 
|  | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || | 
|  | lockdep_is_held(&task_rq(p)->lock))); | 
|  | #endif | 
|  | /* | 
|  | * Clearly, migrating tasks to offline CPUs is a fairly daft thing. | 
|  | */ | 
|  | WARN_ON_ONCE(!cpu_online(new_cpu)); | 
|  | #endif | 
|  |  | 
|  | trace_sched_migrate_task(p, new_cpu); | 
|  |  | 
|  | if (task_cpu(p) != new_cpu) { | 
|  | if (p->sched_class->migrate_task_rq) | 
|  | p->sched_class->migrate_task_rq(p, new_cpu); | 
|  | p->se.nr_migrations++; | 
|  | rseq_migrate(p); | 
|  | perf_event_task_migrate(p); | 
|  | } | 
|  |  | 
|  | __set_task_cpu(p, new_cpu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | static void __migrate_swap_task(struct task_struct *p, int cpu) | 
|  | { | 
|  | if (task_on_rq_queued(p)) { | 
|  | struct rq *src_rq, *dst_rq; | 
|  | struct rq_flags srf, drf; | 
|  |  | 
|  | src_rq = task_rq(p); | 
|  | dst_rq = cpu_rq(cpu); | 
|  |  | 
|  | rq_pin_lock(src_rq, &srf); | 
|  | rq_pin_lock(dst_rq, &drf); | 
|  |  | 
|  | deactivate_task(src_rq, p, 0); | 
|  | set_task_cpu(p, cpu); | 
|  | activate_task(dst_rq, p, 0); | 
|  | check_preempt_curr(dst_rq, p, 0); | 
|  |  | 
|  | rq_unpin_lock(dst_rq, &drf); | 
|  | rq_unpin_lock(src_rq, &srf); | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * Task isn't running anymore; make it appear like we migrated | 
|  | * it before it went to sleep. This means on wakeup we make the | 
|  | * previous CPU our target instead of where it really is. | 
|  | */ | 
|  | p->wake_cpu = cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct migration_swap_arg { | 
|  | struct task_struct *src_task, *dst_task; | 
|  | int src_cpu, dst_cpu; | 
|  | }; | 
|  |  | 
|  | static int migrate_swap_stop(void *data) | 
|  | { | 
|  | struct migration_swap_arg *arg = data; | 
|  | struct rq *src_rq, *dst_rq; | 
|  | int ret = -EAGAIN; | 
|  |  | 
|  | if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | src_rq = cpu_rq(arg->src_cpu); | 
|  | dst_rq = cpu_rq(arg->dst_cpu); | 
|  |  | 
|  | double_raw_lock(&arg->src_task->pi_lock, | 
|  | &arg->dst_task->pi_lock); | 
|  | double_rq_lock(src_rq, dst_rq); | 
|  |  | 
|  | if (task_cpu(arg->dst_task) != arg->dst_cpu) | 
|  | goto unlock; | 
|  |  | 
|  | if (task_cpu(arg->src_task) != arg->src_cpu) | 
|  | goto unlock; | 
|  |  | 
|  | if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) | 
|  | goto unlock; | 
|  |  | 
|  | if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) | 
|  | goto unlock; | 
|  |  | 
|  | __migrate_swap_task(arg->src_task, arg->dst_cpu); | 
|  | __migrate_swap_task(arg->dst_task, arg->src_cpu); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | unlock: | 
|  | double_rq_unlock(src_rq, dst_rq); | 
|  | raw_spin_unlock(&arg->dst_task->pi_lock); | 
|  | raw_spin_unlock(&arg->src_task->pi_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross migrate two tasks | 
|  | */ | 
|  | int migrate_swap(struct task_struct *cur, struct task_struct *p, | 
|  | int target_cpu, int curr_cpu) | 
|  | { | 
|  | struct migration_swap_arg arg; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | arg = (struct migration_swap_arg){ | 
|  | .src_task = cur, | 
|  | .src_cpu = curr_cpu, | 
|  | .dst_task = p, | 
|  | .dst_cpu = target_cpu, | 
|  | }; | 
|  |  | 
|  | if (arg.src_cpu == arg.dst_cpu) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * These three tests are all lockless; this is OK since all of them | 
|  | * will be re-checked with proper locks held further down the line. | 
|  | */ | 
|  | if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) | 
|  | goto out; | 
|  |  | 
|  | if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) | 
|  | goto out; | 
|  |  | 
|  | if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) | 
|  | goto out; | 
|  |  | 
|  | trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); | 
|  | ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | /* | 
|  | * wait_task_inactive - wait for a thread to unschedule. | 
|  | * | 
|  | * If @match_state is nonzero, it's the @p->state value just checked and | 
|  | * not expected to change.  If it changes, i.e. @p might have woken up, | 
|  | * then return zero.  When we succeed in waiting for @p to be off its CPU, | 
|  | * we return a positive number (its total switch count).  If a second call | 
|  | * a short while later returns the same number, the caller can be sure that | 
|  | * @p has remained unscheduled the whole time. | 
|  | * | 
|  | * The caller must ensure that the task *will* unschedule sometime soon, | 
|  | * else this function might spin for a *long* time. This function can't | 
|  | * be called with interrupts off, or it may introduce deadlock with | 
|  | * smp_call_function() if an IPI is sent by the same process we are | 
|  | * waiting to become inactive. | 
|  | */ | 
|  | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | 
|  | { | 
|  | int running, queued; | 
|  | struct rq_flags rf; | 
|  | unsigned long ncsw; | 
|  | struct rq *rq; | 
|  |  | 
|  | for (;;) { | 
|  | /* | 
|  | * We do the initial early heuristics without holding | 
|  | * any task-queue locks at all. We'll only try to get | 
|  | * the runqueue lock when things look like they will | 
|  | * work out! | 
|  | */ | 
|  | rq = task_rq(p); | 
|  |  | 
|  | /* | 
|  | * If the task is actively running on another CPU | 
|  | * still, just relax and busy-wait without holding | 
|  | * any locks. | 
|  | * | 
|  | * NOTE! Since we don't hold any locks, it's not | 
|  | * even sure that "rq" stays as the right runqueue! | 
|  | * But we don't care, since "task_running()" will | 
|  | * return false if the runqueue has changed and p | 
|  | * is actually now running somewhere else! | 
|  | */ | 
|  | while (task_running(rq, p)) { | 
|  | if (match_state && unlikely(p->state != match_state)) | 
|  | return 0; | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, time to look more closely! We need the rq | 
|  | * lock now, to be *sure*. If we're wrong, we'll | 
|  | * just go back and repeat. | 
|  | */ | 
|  | rq = task_rq_lock(p, &rf); | 
|  | trace_sched_wait_task(p); | 
|  | running = task_running(rq, p); | 
|  | queued = task_on_rq_queued(p); | 
|  | ncsw = 0; | 
|  | if (!match_state || p->state == match_state) | 
|  | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 
|  | task_rq_unlock(rq, p, &rf); | 
|  |  | 
|  | /* | 
|  | * If it changed from the expected state, bail out now. | 
|  | */ | 
|  | if (unlikely(!ncsw)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Was it really running after all now that we | 
|  | * checked with the proper locks actually held? | 
|  | * | 
|  | * Oops. Go back and try again.. | 
|  | */ | 
|  | if (unlikely(running)) { | 
|  | cpu_relax(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's not enough that it's not actively running, | 
|  | * it must be off the runqueue _entirely_, and not | 
|  | * preempted! | 
|  | * | 
|  | * So if it was still runnable (but just not actively | 
|  | * running right now), it's preempted, and we should | 
|  | * yield - it could be a while. | 
|  | */ | 
|  | if (unlikely(queued)) { | 
|  | ktime_t to = NSEC_PER_SEC / HZ; | 
|  |  | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_hrtimeout(&to, HRTIMER_MODE_REL); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ahh, all good. It wasn't running, and it wasn't | 
|  | * runnable, which means that it will never become | 
|  | * running in the future either. We're all done! | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ncsw; | 
|  | } | 
|  |  | 
|  | /*** | 
|  | * kick_process - kick a running thread to enter/exit the kernel | 
|  | * @p: the to-be-kicked thread | 
|  | * | 
|  | * Cause a process which is running on another CPU to enter | 
|  | * kernel-mode, without any delay. (to get signals handled.) | 
|  | * | 
|  | * NOTE: this function doesn't have to take the runqueue lock, | 
|  | * because all it wants to ensure is that the remote task enters | 
|  | * the kernel. If the IPI races and the task has been migrated | 
|  | * to another CPU then no harm is done and the purpose has been | 
|  | * achieved as well. | 
|  | */ | 
|  | void kick_process(struct task_struct *p) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | preempt_disable(); | 
|  | cpu = task_cpu(p); | 
|  | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|  | smp_send_reschedule(cpu); | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kick_process); | 
|  |  | 
|  | /* | 
|  | * ->cpus_ptr is protected by both rq->lock and p->pi_lock | 
|  | * | 
|  | * A few notes on cpu_active vs cpu_online: | 
|  | * | 
|  | *  - cpu_active must be a subset of cpu_online | 
|  | * | 
|  | *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU, | 
|  | *    see __set_cpus_allowed_ptr(). At this point the newly online | 
|  | *    CPU isn't yet part of the sched domains, and balancing will not | 
|  | *    see it. | 
|  | * | 
|  | *  - on CPU-down we clear cpu_active() to mask the sched domains and | 
|  | *    avoid the load balancer to place new tasks on the to be removed | 
|  | *    CPU. Existing tasks will remain running there and will be taken | 
|  | *    off. | 
|  | * | 
|  | * This means that fallback selection must not select !active CPUs. | 
|  | * And can assume that any active CPU must be online. Conversely | 
|  | * select_task_rq() below may allow selection of !active CPUs in order | 
|  | * to satisfy the above rules. | 
|  | */ | 
|  | static int select_fallback_rq(int cpu, struct task_struct *p) | 
|  | { | 
|  | int nid = cpu_to_node(cpu); | 
|  | const struct cpumask *nodemask = NULL; | 
|  | enum { cpuset, possible, fail } state = cpuset; | 
|  | int dest_cpu; | 
|  |  | 
|  | /* | 
|  | * If the node that the CPU is on has been offlined, cpu_to_node() | 
|  | * will return -1. There is no CPU on the node, and we should | 
|  | * select the CPU on the other node. | 
|  | */ | 
|  | if (nid != -1) { | 
|  | nodemask = cpumask_of_node(nid); | 
|  |  | 
|  | /* Look for allowed, online CPU in same node. */ | 
|  | for_each_cpu(dest_cpu, nodemask) { | 
|  | if (!cpu_active(dest_cpu)) | 
|  | continue; | 
|  | if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) | 
|  | return dest_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | /* Any allowed, online CPU? */ | 
|  | for_each_cpu(dest_cpu, p->cpus_ptr) { | 
|  | if (!is_cpu_allowed(p, dest_cpu)) | 
|  | continue; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* No more Mr. Nice Guy. */ | 
|  | switch (state) { | 
|  | case cpuset: | 
|  | if (IS_ENABLED(CONFIG_CPUSETS)) { | 
|  | cpuset_cpus_allowed_fallback(p); | 
|  | state = possible; | 
|  | break; | 
|  | } | 
|  | /* Fall-through */ | 
|  | case possible: | 
|  | do_set_cpus_allowed(p, cpu_possible_mask); | 
|  | state = fail; | 
|  | break; | 
|  |  | 
|  | case fail: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (state != cpuset) { | 
|  | /* | 
|  | * Don't tell them about moving exiting tasks or | 
|  | * kernel threads (both mm NULL), since they never | 
|  | * leave kernel. | 
|  | */ | 
|  | if (p->mm && printk_ratelimit()) { | 
|  | printk_deferred("process %d (%s) no longer affine to cpu%d\n", | 
|  | task_pid_nr(p), p->comm, cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | return dest_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. | 
|  | */ | 
|  | static inline | 
|  | int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) | 
|  | { | 
|  | lockdep_assert_held(&p->pi_lock); | 
|  |  | 
|  | if (p->nr_cpus_allowed > 1) | 
|  | cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); | 
|  | else | 
|  | cpu = cpumask_any(p->cpus_ptr); | 
|  |  | 
|  | /* | 
|  | * In order not to call set_task_cpu() on a blocking task we need | 
|  | * to rely on ttwu() to place the task on a valid ->cpus_ptr | 
|  | * CPU. | 
|  | * | 
|  | * Since this is common to all placement strategies, this lives here. | 
|  | * | 
|  | * [ this allows ->select_task() to simply return task_cpu(p) and | 
|  | *   not worry about this generic constraint ] | 
|  | */ | 
|  | if (unlikely(!is_cpu_allowed(p, cpu))) | 
|  | cpu = select_fallback_rq(task_cpu(p), p); | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static void update_avg(u64 *avg, u64 sample) | 
|  | { | 
|  | s64 diff = sample - *avg; | 
|  | *avg += diff >> 3; | 
|  | } | 
|  |  | 
|  | void sched_set_stop_task(int cpu, struct task_struct *stop) | 
|  | { | 
|  | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 
|  | struct task_struct *old_stop = cpu_rq(cpu)->stop; | 
|  |  | 
|  | if (stop) { | 
|  | /* | 
|  | * Make it appear like a SCHED_FIFO task, its something | 
|  | * userspace knows about and won't get confused about. | 
|  | * | 
|  | * Also, it will make PI more or less work without too | 
|  | * much confusion -- but then, stop work should not | 
|  | * rely on PI working anyway. | 
|  | */ | 
|  | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); | 
|  |  | 
|  | stop->sched_class = &stop_sched_class; | 
|  | } | 
|  |  | 
|  | cpu_rq(cpu)->stop = stop; | 
|  |  | 
|  | if (old_stop) { | 
|  | /* | 
|  | * Reset it back to a normal scheduling class so that | 
|  | * it can die in pieces. | 
|  | */ | 
|  | old_stop->sched_class = &rt_sched_class; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int __set_cpus_allowed_ptr(struct task_struct *p, | 
|  | const struct cpumask *new_mask, bool check) | 
|  | { | 
|  | return set_cpus_allowed_ptr(p, new_mask); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void | 
|  | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | if (!schedstat_enabled()) | 
|  | return; | 
|  |  | 
|  | rq = this_rq(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (cpu == rq->cpu) { | 
|  | __schedstat_inc(rq->ttwu_local); | 
|  | __schedstat_inc(p->se.statistics.nr_wakeups_local); | 
|  | } else { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | __schedstat_inc(p->se.statistics.nr_wakeups_remote); | 
|  | rcu_read_lock(); | 
|  | for_each_domain(rq->cpu, sd) { | 
|  | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 
|  | __schedstat_inc(sd->ttwu_wake_remote); | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | if (wake_flags & WF_MIGRATED) | 
|  | __schedstat_inc(p->se.statistics.nr_wakeups_migrate); | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | __schedstat_inc(rq->ttwu_count); | 
|  | __schedstat_inc(p->se.statistics.nr_wakeups); | 
|  |  | 
|  | if (wake_flags & WF_SYNC) | 
|  | __schedstat_inc(p->se.statistics.nr_wakeups_sync); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the task runnable and perform wakeup-preemption. | 
|  | */ | 
|  | static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, | 
|  | struct rq_flags *rf) | 
|  | { | 
|  | check_preempt_curr(rq, p, wake_flags); | 
|  | p->state = TASK_RUNNING; | 
|  | trace_sched_wakeup(p); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (p->sched_class->task_woken) { | 
|  | /* | 
|  | * Our task @p is fully woken up and running; so its safe to | 
|  | * drop the rq->lock, hereafter rq is only used for statistics. | 
|  | */ | 
|  | rq_unpin_lock(rq, rf); | 
|  | p->sched_class->task_woken(rq, p); | 
|  | rq_repin_lock(rq, rf); | 
|  | } | 
|  |  | 
|  | if (rq->idle_stamp) { | 
|  | u64 delta = rq_clock(rq) - rq->idle_stamp; | 
|  | u64 max = 2*rq->max_idle_balance_cost; | 
|  |  | 
|  | update_avg(&rq->avg_idle, delta); | 
|  |  | 
|  | if (rq->avg_idle > max) | 
|  | rq->avg_idle = max; | 
|  |  | 
|  | rq->idle_stamp = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, | 
|  | struct rq_flags *rf) | 
|  | { | 
|  | int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; | 
|  |  | 
|  | lockdep_assert_held(&rq->lock); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (p->sched_contributes_to_load) | 
|  | rq->nr_uninterruptible--; | 
|  |  | 
|  | if (wake_flags & WF_MIGRATED) | 
|  | en_flags |= ENQUEUE_MIGRATED; | 
|  | #endif | 
|  |  | 
|  | activate_task(rq, p, en_flags); | 
|  | ttwu_do_wakeup(rq, p, wake_flags, rf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called in case the task @p isn't fully descheduled from its runqueue, | 
|  | * in this case we must do a remote wakeup. Its a 'light' wakeup though, | 
|  | * since all we need to do is flip p->state to TASK_RUNNING, since | 
|  | * the task is still ->on_rq. | 
|  | */ | 
|  | static int ttwu_remote(struct task_struct *p, int wake_flags) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | int ret = 0; | 
|  |  | 
|  | rq = __task_rq_lock(p, &rf); | 
|  | if (task_on_rq_queued(p)) { | 
|  | /* check_preempt_curr() may use rq clock */ | 
|  | update_rq_clock(rq); | 
|  | ttwu_do_wakeup(rq, p, wake_flags, &rf); | 
|  | ret = 1; | 
|  | } | 
|  | __task_rq_unlock(rq, &rf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void sched_ttwu_pending(void) | 
|  | { | 
|  | struct rq *rq = this_rq(); | 
|  | struct llist_node *llist = llist_del_all(&rq->wake_list); | 
|  | struct task_struct *p, *t; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | if (!llist) | 
|  | return; | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | llist_for_each_entry_safe(p, t, llist, wake_entry) | 
|  | ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); | 
|  |  | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  |  | 
|  | void scheduler_ipi(void) | 
|  | { | 
|  | /* | 
|  | * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting | 
|  | * TIF_NEED_RESCHED remotely (for the first time) will also send | 
|  | * this IPI. | 
|  | */ | 
|  | preempt_fold_need_resched(); | 
|  |  | 
|  | if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Not all reschedule IPI handlers call irq_enter/irq_exit, since | 
|  | * traditionally all their work was done from the interrupt return | 
|  | * path. Now that we actually do some work, we need to make sure | 
|  | * we do call them. | 
|  | * | 
|  | * Some archs already do call them, luckily irq_enter/exit nest | 
|  | * properly. | 
|  | * | 
|  | * Arguably we should visit all archs and update all handlers, | 
|  | * however a fair share of IPIs are still resched only so this would | 
|  | * somewhat pessimize the simple resched case. | 
|  | */ | 
|  | irq_enter(); | 
|  | sched_ttwu_pending(); | 
|  |  | 
|  | /* | 
|  | * Check if someone kicked us for doing the nohz idle load balance. | 
|  | */ | 
|  | if (unlikely(got_nohz_idle_kick())) { | 
|  | this_rq()->idle_balance = 1; | 
|  | raise_softirq_irqoff(SCHED_SOFTIRQ); | 
|  | } | 
|  | irq_exit(); | 
|  | } | 
|  |  | 
|  | static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); | 
|  |  | 
|  | if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { | 
|  | if (!set_nr_if_polling(rq->idle)) | 
|  | smp_send_reschedule(cpu); | 
|  | else | 
|  | trace_sched_wake_idle_without_ipi(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | void wake_up_if_idle(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (!is_idle_task(rcu_dereference(rq->curr))) | 
|  | goto out; | 
|  |  | 
|  | if (set_nr_if_polling(rq->idle)) { | 
|  | trace_sched_wake_idle_without_ipi(cpu); | 
|  | } else { | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | if (is_idle_task(rq->curr)) | 
|  | smp_send_reschedule(cpu); | 
|  | /* Else CPU is not idle, do nothing here: */ | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  |  | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | bool cpus_share_cache(int this_cpu, int that_cpu) | 
|  | { | 
|  | return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | #if defined(CONFIG_SMP) | 
|  | if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { | 
|  | sched_clock_cpu(cpu); /* Sync clocks across CPUs */ | 
|  | ttwu_queue_remote(p, cpu, wake_flags); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | rq_lock(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  | ttwu_do_activate(rq, p, wake_flags, &rf); | 
|  | rq_unlock(rq, &rf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notes on Program-Order guarantees on SMP systems. | 
|  | * | 
|  | *  MIGRATION | 
|  | * | 
|  | * The basic program-order guarantee on SMP systems is that when a task [t] | 
|  | * migrates, all its activity on its old CPU [c0] happens-before any subsequent | 
|  | * execution on its new CPU [c1]. | 
|  | * | 
|  | * For migration (of runnable tasks) this is provided by the following means: | 
|  | * | 
|  | *  A) UNLOCK of the rq(c0)->lock scheduling out task t | 
|  | *  B) migration for t is required to synchronize *both* rq(c0)->lock and | 
|  | *     rq(c1)->lock (if not at the same time, then in that order). | 
|  | *  C) LOCK of the rq(c1)->lock scheduling in task | 
|  | * | 
|  | * Release/acquire chaining guarantees that B happens after A and C after B. | 
|  | * Note: the CPU doing B need not be c0 or c1 | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | *   CPU0            CPU1            CPU2 | 
|  | * | 
|  | *   LOCK rq(0)->lock | 
|  | *   sched-out X | 
|  | *   sched-in Y | 
|  | *   UNLOCK rq(0)->lock | 
|  | * | 
|  | *                                   LOCK rq(0)->lock // orders against CPU0 | 
|  | *                                   dequeue X | 
|  | *                                   UNLOCK rq(0)->lock | 
|  | * | 
|  | *                                   LOCK rq(1)->lock | 
|  | *                                   enqueue X | 
|  | *                                   UNLOCK rq(1)->lock | 
|  | * | 
|  | *                   LOCK rq(1)->lock // orders against CPU2 | 
|  | *                   sched-out Z | 
|  | *                   sched-in X | 
|  | *                   UNLOCK rq(1)->lock | 
|  | * | 
|  | * | 
|  | *  BLOCKING -- aka. SLEEP + WAKEUP | 
|  | * | 
|  | * For blocking we (obviously) need to provide the same guarantee as for | 
|  | * migration. However the means are completely different as there is no lock | 
|  | * chain to provide order. Instead we do: | 
|  | * | 
|  | *   1) smp_store_release(X->on_cpu, 0) | 
|  | *   2) smp_cond_load_acquire(!X->on_cpu) | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule) | 
|  | * | 
|  | *   LOCK rq(0)->lock LOCK X->pi_lock | 
|  | *   dequeue X | 
|  | *   sched-out X | 
|  | *   smp_store_release(X->on_cpu, 0); | 
|  | * | 
|  | *                    smp_cond_load_acquire(&X->on_cpu, !VAL); | 
|  | *                    X->state = WAKING | 
|  | *                    set_task_cpu(X,2) | 
|  | * | 
|  | *                    LOCK rq(2)->lock | 
|  | *                    enqueue X | 
|  | *                    X->state = RUNNING | 
|  | *                    UNLOCK rq(2)->lock | 
|  | * | 
|  | *                                          LOCK rq(2)->lock // orders against CPU1 | 
|  | *                                          sched-out Z | 
|  | *                                          sched-in X | 
|  | *                                          UNLOCK rq(2)->lock | 
|  | * | 
|  | *                    UNLOCK X->pi_lock | 
|  | *   UNLOCK rq(0)->lock | 
|  | * | 
|  | * | 
|  | * However, for wakeups there is a second guarantee we must provide, namely we | 
|  | * must ensure that CONDITION=1 done by the caller can not be reordered with | 
|  | * accesses to the task state; see try_to_wake_up() and set_current_state(). | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * try_to_wake_up - wake up a thread | 
|  | * @p: the thread to be awakened | 
|  | * @state: the mask of task states that can be woken | 
|  | * @wake_flags: wake modifier flags (WF_*) | 
|  | * | 
|  | * If (@state & @p->state) @p->state = TASK_RUNNING. | 
|  | * | 
|  | * If the task was not queued/runnable, also place it back on a runqueue. | 
|  | * | 
|  | * Atomic against schedule() which would dequeue a task, also see | 
|  | * set_current_state(). | 
|  | * | 
|  | * This function executes a full memory barrier before accessing the task | 
|  | * state; see set_current_state(). | 
|  | * | 
|  | * Return: %true if @p->state changes (an actual wakeup was done), | 
|  | *	   %false otherwise. | 
|  | */ | 
|  | static int | 
|  | try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | int cpu, success = 0; | 
|  |  | 
|  | preempt_disable(); | 
|  | if (p == current) { | 
|  | /* | 
|  | * We're waking current, this means 'p->on_rq' and 'task_cpu(p) | 
|  | * == smp_processor_id()'. Together this means we can special | 
|  | * case the whole 'p->on_rq && ttwu_remote()' case below | 
|  | * without taking any locks. | 
|  | * | 
|  | * In particular: | 
|  | *  - we rely on Program-Order guarantees for all the ordering, | 
|  | *  - we're serialized against set_special_state() by virtue of | 
|  | *    it disabling IRQs (this allows not taking ->pi_lock). | 
|  | */ | 
|  | if (!(p->state & state)) | 
|  | goto out; | 
|  |  | 
|  | success = 1; | 
|  | cpu = task_cpu(p); | 
|  | trace_sched_waking(p); | 
|  | p->state = TASK_RUNNING; | 
|  | trace_sched_wakeup(p); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are going to wake up a thread waiting for CONDITION we | 
|  | * need to ensure that CONDITION=1 done by the caller can not be | 
|  | * reordered with p->state check below. This pairs with mb() in | 
|  | * set_current_state() the waiting thread does. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&p->pi_lock, flags); | 
|  | smp_mb__after_spinlock(); | 
|  | if (!(p->state & state)) | 
|  | goto unlock; | 
|  |  | 
|  | trace_sched_waking(p); | 
|  |  | 
|  | /* We're going to change ->state: */ | 
|  | success = 1; | 
|  | cpu = task_cpu(p); | 
|  |  | 
|  | /* | 
|  | * Ensure we load p->on_rq _after_ p->state, otherwise it would | 
|  | * be possible to, falsely, observe p->on_rq == 0 and get stuck | 
|  | * in smp_cond_load_acquire() below. | 
|  | * | 
|  | * sched_ttwu_pending()			try_to_wake_up() | 
|  | *   STORE p->on_rq = 1			  LOAD p->state | 
|  | *   UNLOCK rq->lock | 
|  | * | 
|  | * __schedule() (switch to task 'p') | 
|  | *   LOCK rq->lock			  smp_rmb(); | 
|  | *   smp_mb__after_spinlock(); | 
|  | *   UNLOCK rq->lock | 
|  | * | 
|  | * [task p] | 
|  | *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq | 
|  | * | 
|  | * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in | 
|  | * __schedule().  See the comment for smp_mb__after_spinlock(). | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (p->on_rq && ttwu_remote(p, wake_flags)) | 
|  | goto unlock; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be | 
|  | * possible to, falsely, observe p->on_cpu == 0. | 
|  | * | 
|  | * One must be running (->on_cpu == 1) in order to remove oneself | 
|  | * from the runqueue. | 
|  | * | 
|  | * __schedule() (switch to task 'p')	try_to_wake_up() | 
|  | *   STORE p->on_cpu = 1		  LOAD p->on_rq | 
|  | *   UNLOCK rq->lock | 
|  | * | 
|  | * __schedule() (put 'p' to sleep) | 
|  | *   LOCK rq->lock			  smp_rmb(); | 
|  | *   smp_mb__after_spinlock(); | 
|  | *   STORE p->on_rq = 0			  LOAD p->on_cpu | 
|  | * | 
|  | * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in | 
|  | * __schedule().  See the comment for smp_mb__after_spinlock(). | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | /* | 
|  | * If the owning (remote) CPU is still in the middle of schedule() with | 
|  | * this task as prev, wait until its done referencing the task. | 
|  | * | 
|  | * Pairs with the smp_store_release() in finish_task(). | 
|  | * | 
|  | * This ensures that tasks getting woken will be fully ordered against | 
|  | * their previous state and preserve Program Order. | 
|  | */ | 
|  | smp_cond_load_acquire(&p->on_cpu, !VAL); | 
|  |  | 
|  | p->sched_contributes_to_load = !!task_contributes_to_load(p); | 
|  | p->state = TASK_WAKING; | 
|  |  | 
|  | if (p->in_iowait) { | 
|  | delayacct_blkio_end(p); | 
|  | atomic_dec(&task_rq(p)->nr_iowait); | 
|  | } | 
|  |  | 
|  | cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); | 
|  | if (task_cpu(p) != cpu) { | 
|  | wake_flags |= WF_MIGRATED; | 
|  | psi_ttwu_dequeue(p); | 
|  | set_task_cpu(p, cpu); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | if (p->in_iowait) { | 
|  | delayacct_blkio_end(p); | 
|  | atomic_dec(&task_rq(p)->nr_iowait); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | ttwu_queue(p, cpu, wake_flags); | 
|  | unlock: | 
|  | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  | out: | 
|  | if (success) | 
|  | ttwu_stat(p, cpu, wake_flags); | 
|  | preempt_enable(); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wake_up_process - Wake up a specific process | 
|  | * @p: The process to be woken up. | 
|  | * | 
|  | * Attempt to wake up the nominated process and move it to the set of runnable | 
|  | * processes. | 
|  | * | 
|  | * Return: 1 if the process was woken up, 0 if it was already running. | 
|  | * | 
|  | * This function executes a full memory barrier before accessing the task state. | 
|  | */ | 
|  | int wake_up_process(struct task_struct *p) | 
|  | { | 
|  | return try_to_wake_up(p, TASK_NORMAL, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_up_process); | 
|  |  | 
|  | int wake_up_swap(struct task_struct *tsk) | 
|  | { | 
|  | return try_to_wake_up(tsk, TASK_NORMAL, WF_CURRENT_CPU); | 
|  | } | 
|  |  | 
|  | int wake_up_state(struct task_struct *p, unsigned int state) | 
|  | { | 
|  | return try_to_wake_up(p, state, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform scheduler related setup for a newly forked process p. | 
|  | * p is forked by current. | 
|  | * | 
|  | * __sched_fork() is basic setup used by init_idle() too: | 
|  | */ | 
|  | static void __sched_fork(unsigned long clone_flags, struct task_struct *p) | 
|  | { | 
|  | p->on_rq			= 0; | 
|  |  | 
|  | p->se.on_rq			= 0; | 
|  | p->se.exec_start		= 0; | 
|  | p->se.sum_exec_runtime		= 0; | 
|  | p->se.prev_sum_exec_runtime	= 0; | 
|  | p->se.nr_migrations		= 0; | 
|  | p->se.vruntime			= 0; | 
|  | INIT_LIST_HEAD(&p->se.group_node); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | p->se.cfs_rq			= NULL; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* Even if schedstat is disabled, there should not be garbage */ | 
|  | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); | 
|  | #endif | 
|  |  | 
|  | RB_CLEAR_NODE(&p->dl.rb_node); | 
|  | init_dl_task_timer(&p->dl); | 
|  | init_dl_inactive_task_timer(&p->dl); | 
|  | __dl_clear_params(p); | 
|  |  | 
|  | INIT_LIST_HEAD(&p->rt.run_list); | 
|  | p->rt.timeout		= 0; | 
|  | p->rt.time_slice	= sched_rr_timeslice; | 
|  | p->rt.on_rq		= 0; | 
|  | p->rt.on_list		= 0; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  | INIT_HLIST_HEAD(&p->preempt_notifiers); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | p->capture_control = NULL; | 
|  | #endif | 
|  | init_numa_balancing(clone_flags, p); | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  |  | 
|  | void set_numabalancing_state(bool enabled) | 
|  | { | 
|  | if (enabled) | 
|  | static_branch_enable(&sched_numa_balancing); | 
|  | else | 
|  | static_branch_disable(&sched_numa_balancing); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_SYSCTL | 
|  | int sysctl_numa_balancing(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | int err; | 
|  | int state = static_branch_likely(&sched_numa_balancing); | 
|  |  | 
|  | if (write && !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | t = *table; | 
|  | t.data = &state; | 
|  | err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (write) | 
|  | set_numabalancing_state(state); | 
|  | return err; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(sched_schedstats); | 
|  | static bool __initdata __sched_schedstats = false; | 
|  |  | 
|  | static void set_schedstats(bool enabled) | 
|  | { | 
|  | if (enabled) | 
|  | static_branch_enable(&sched_schedstats); | 
|  | else | 
|  | static_branch_disable(&sched_schedstats); | 
|  | } | 
|  |  | 
|  | void force_schedstat_enabled(void) | 
|  | { | 
|  | if (!schedstat_enabled()) { | 
|  | pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); | 
|  | static_branch_enable(&sched_schedstats); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init setup_schedstats(char *str) | 
|  | { | 
|  | int ret = 0; | 
|  | if (!str) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * This code is called before jump labels have been set up, so we can't | 
|  | * change the static branch directly just yet.  Instead set a temporary | 
|  | * variable so init_schedstats() can do it later. | 
|  | */ | 
|  | if (!strcmp(str, "enable")) { | 
|  | __sched_schedstats = true; | 
|  | ret = 1; | 
|  | } else if (!strcmp(str, "disable")) { | 
|  | __sched_schedstats = false; | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | if (!ret) | 
|  | pr_warn("Unable to parse schedstats=\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | __setup("schedstats=", setup_schedstats); | 
|  |  | 
|  | static void __init init_schedstats(void) | 
|  | { | 
|  | set_schedstats(__sched_schedstats); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_SYSCTL | 
|  | int sysctl_schedstats(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | int err; | 
|  | int state = static_branch_likely(&sched_schedstats); | 
|  |  | 
|  | if (write && !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | t = *table; | 
|  | t.data = &state; | 
|  | err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (write) | 
|  | set_schedstats(state); | 
|  | return err; | 
|  | } | 
|  | #endif /* CONFIG_PROC_SYSCTL */ | 
|  | #else  /* !CONFIG_SCHEDSTATS */ | 
|  | static inline void init_schedstats(void) {} | 
|  | #endif /* CONFIG_SCHEDSTATS */ | 
|  |  | 
|  | /* | 
|  | * fork()/clone()-time setup: | 
|  | */ | 
|  | int sched_fork(unsigned long clone_flags, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | __sched_fork(clone_flags, p); | 
|  | /* | 
|  | * We mark the process as NEW here. This guarantees that | 
|  | * nobody will actually run it, and a signal or other external | 
|  | * event cannot wake it up and insert it on the runqueue either. | 
|  | */ | 
|  | p->state = TASK_NEW; | 
|  |  | 
|  | /* | 
|  | * Make sure we do not leak PI boosting priority to the child. | 
|  | */ | 
|  | p->prio = current->normal_prio; | 
|  |  | 
|  | uclamp_fork(p); | 
|  |  | 
|  | /* | 
|  | * Revert to default priority/policy on fork if requested. | 
|  | */ | 
|  | if (unlikely(p->sched_reset_on_fork)) { | 
|  | if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
|  | p->policy = SCHED_NORMAL; | 
|  | p->static_prio = NICE_TO_PRIO(0); | 
|  | p->rt_priority = 0; | 
|  | } else if (PRIO_TO_NICE(p->static_prio) < 0) | 
|  | p->static_prio = NICE_TO_PRIO(0); | 
|  |  | 
|  | p->prio = p->normal_prio = __normal_prio(p); | 
|  | set_load_weight(p, false); | 
|  |  | 
|  | /* | 
|  | * We don't need the reset flag anymore after the fork. It has | 
|  | * fulfilled its duty: | 
|  | */ | 
|  | p->sched_reset_on_fork = 0; | 
|  | } | 
|  |  | 
|  | if (dl_prio(p->prio)) | 
|  | return -EAGAIN; | 
|  | else if (rt_prio(p->prio)) | 
|  | p->sched_class = &rt_sched_class; | 
|  | else | 
|  | p->sched_class = &fair_sched_class; | 
|  |  | 
|  | init_entity_runnable_average(&p->se); | 
|  |  | 
|  | /* | 
|  | * The child is not yet in the pid-hash so no cgroup attach races, | 
|  | * and the cgroup is pinned to this child due to cgroup_fork() | 
|  | * is ran before sched_fork(). | 
|  | * | 
|  | * Silence PROVE_RCU. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&p->pi_lock, flags); | 
|  | rseq_migrate(p); | 
|  | /* | 
|  | * We're setting the CPU for the first time, we don't migrate, | 
|  | * so use __set_task_cpu(). | 
|  | */ | 
|  | __set_task_cpu(p, smp_processor_id()); | 
|  | if (p->sched_class->task_fork) | 
|  | p->sched_class->task_fork(p); | 
|  | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_INFO | 
|  | if (likely(sched_info_on())) | 
|  | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
|  | #endif | 
|  | #if defined(CONFIG_SMP) | 
|  | p->on_cpu = 0; | 
|  | #endif | 
|  | init_task_preempt_count(p); | 
|  | #ifdef CONFIG_SMP | 
|  | plist_node_init(&p->pushable_tasks, MAX_PRIO); | 
|  | RB_CLEAR_NODE(&p->pushable_dl_tasks); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long to_ratio(u64 period, u64 runtime) | 
|  | { | 
|  | if (runtime == RUNTIME_INF) | 
|  | return BW_UNIT; | 
|  |  | 
|  | /* | 
|  | * Doing this here saves a lot of checks in all | 
|  | * the calling paths, and returning zero seems | 
|  | * safe for them anyway. | 
|  | */ | 
|  | if (period == 0) | 
|  | return 0; | 
|  |  | 
|  | return div64_u64(runtime << BW_SHIFT, period); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake_up_new_task - wake up a newly created task for the first time. | 
|  | * | 
|  | * This function will do some initial scheduler statistics housekeeping | 
|  | * that must be done for every newly created context, then puts the task | 
|  | * on the runqueue and wakes it. | 
|  | */ | 
|  | void wake_up_new_task(struct task_struct *p) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | raw_spin_lock_irqsave(&p->pi_lock, rf.flags); | 
|  | p->state = TASK_RUNNING; | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Fork balancing, do it here and not earlier because: | 
|  | *  - cpus_ptr can change in the fork path | 
|  | *  - any previously selected CPU might disappear through hotplug | 
|  | * | 
|  | * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, | 
|  | * as we're not fully set-up yet. | 
|  | */ | 
|  | p->recent_used_cpu = task_cpu(p); | 
|  | rseq_migrate(p); | 
|  | __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); | 
|  | #endif | 
|  | rq = __task_rq_lock(p, &rf); | 
|  | update_rq_clock(rq); | 
|  | post_init_entity_util_avg(p); | 
|  |  | 
|  | activate_task(rq, p, ENQUEUE_NOCLOCK); | 
|  | trace_sched_wakeup_new(p); | 
|  | check_preempt_curr(rq, p, WF_FORK); | 
|  | #ifdef CONFIG_SMP | 
|  | if (p->sched_class->task_woken) { | 
|  | /* | 
|  | * Nothing relies on rq->lock after this, so its fine to | 
|  | * drop it. | 
|  | */ | 
|  | rq_unpin_lock(rq, &rf); | 
|  | p->sched_class->task_woken(rq, p); | 
|  | rq_repin_lock(rq, &rf); | 
|  | } | 
|  | #endif | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  |  | 
|  | static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); | 
|  |  | 
|  | void preempt_notifier_inc(void) | 
|  | { | 
|  | static_branch_inc(&preempt_notifier_key); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_notifier_inc); | 
|  |  | 
|  | void preempt_notifier_dec(void) | 
|  | { | 
|  | static_branch_dec(&preempt_notifier_key); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_notifier_dec); | 
|  |  | 
|  | /** | 
|  | * preempt_notifier_register - tell me when current is being preempted & rescheduled | 
|  | * @notifier: notifier struct to register | 
|  | */ | 
|  | void preempt_notifier_register(struct preempt_notifier *notifier) | 
|  | { | 
|  | if (!static_branch_unlikely(&preempt_notifier_key)) | 
|  | WARN(1, "registering preempt_notifier while notifiers disabled\n"); | 
|  |  | 
|  | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 
|  |  | 
|  | /** | 
|  | * preempt_notifier_unregister - no longer interested in preemption notifications | 
|  | * @notifier: notifier struct to unregister | 
|  | * | 
|  | * This is *not* safe to call from within a preemption notifier. | 
|  | */ | 
|  | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 
|  | { | 
|  | hlist_del(¬ifier->link); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 
|  |  | 
|  | static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|  | { | 
|  | struct preempt_notifier *notifier; | 
|  |  | 
|  | hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) | 
|  | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|  | { | 
|  | if (static_branch_unlikely(&preempt_notifier_key)) | 
|  | __fire_sched_in_preempt_notifiers(curr); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|  | struct task_struct *next) | 
|  | { | 
|  | struct preempt_notifier *notifier; | 
|  |  | 
|  | hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) | 
|  | notifier->ops->sched_out(notifier, next); | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|  | struct task_struct *next) | 
|  | { | 
|  | if (static_branch_unlikely(&preempt_notifier_key)) | 
|  | __fire_sched_out_preempt_notifiers(curr, next); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | 
|  |  | 
|  | static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|  | struct task_struct *next) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | 
|  |  | 
|  | static inline void prepare_task(struct task_struct *next) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Claim the task as running, we do this before switching to it | 
|  | * such that any running task will have this set. | 
|  | */ | 
|  | next->on_cpu = 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void finish_task(struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->on_cpu is cleared, the task can be moved to a different CPU. | 
|  | * We must ensure this doesn't happen until the switch is completely | 
|  | * finished. | 
|  | * | 
|  | * In particular, the load of prev->state in finish_task_switch() must | 
|  | * happen before this. | 
|  | * | 
|  | * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). | 
|  | */ | 
|  | smp_store_release(&prev->on_cpu, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) | 
|  | { | 
|  | /* | 
|  | * Since the runqueue lock will be released by the next | 
|  | * task (which is an invalid locking op but in the case | 
|  | * of the scheduler it's an obvious special-case), so we | 
|  | * do an early lockdep release here: | 
|  | */ | 
|  | rq_unpin_lock(rq, rf); | 
|  | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK | 
|  | /* this is a valid case when another task releases the spinlock */ | 
|  | rq->lock.owner = next; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq) | 
|  | { | 
|  | /* | 
|  | * If we are tracking spinlock dependencies then we have to | 
|  | * fix up the runqueue lock - which gets 'carried over' from | 
|  | * prev into current: | 
|  | */ | 
|  | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
|  | raw_spin_unlock_irq(&rq->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOP if the arch has not defined these: | 
|  | */ | 
|  |  | 
|  | #ifndef prepare_arch_switch | 
|  | # define prepare_arch_switch(next)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef finish_arch_post_lock_switch | 
|  | # define finish_arch_post_lock_switch()	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * prepare_task_switch - prepare to switch tasks | 
|  | * @rq: the runqueue preparing to switch | 
|  | * @prev: the current task that is being switched out | 
|  | * @next: the task we are going to switch to. | 
|  | * | 
|  | * This is called with the rq lock held and interrupts off. It must | 
|  | * be paired with a subsequent finish_task_switch after the context | 
|  | * switch. | 
|  | * | 
|  | * prepare_task_switch sets up locking and calls architecture specific | 
|  | * hooks. | 
|  | */ | 
|  | static inline void | 
|  | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 
|  | struct task_struct *next) | 
|  | { | 
|  | kcov_prepare_switch(prev); | 
|  | sched_info_switch(rq, prev, next); | 
|  | perf_event_task_sched_out(prev, next); | 
|  | rseq_preempt(prev); | 
|  | fire_sched_out_preempt_notifiers(prev, next); | 
|  | prepare_task(next); | 
|  | prepare_arch_switch(next); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * finish_task_switch - clean up after a task-switch | 
|  | * @prev: the thread we just switched away from. | 
|  | * | 
|  | * finish_task_switch must be called after the context switch, paired | 
|  | * with a prepare_task_switch call before the context switch. | 
|  | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
|  | * and do any other architecture-specific cleanup actions. | 
|  | * | 
|  | * Note that we may have delayed dropping an mm in context_switch(). If | 
|  | * so, we finish that here outside of the runqueue lock. (Doing it | 
|  | * with the lock held can cause deadlocks; see schedule() for | 
|  | * details.) | 
|  | * | 
|  | * The context switch have flipped the stack from under us and restored the | 
|  | * local variables which were saved when this task called schedule() in the | 
|  | * past. prev == current is still correct but we need to recalculate this_rq | 
|  | * because prev may have moved to another CPU. | 
|  | */ | 
|  | static struct rq *finish_task_switch(struct task_struct *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | struct rq *rq = this_rq(); | 
|  | struct mm_struct *mm = rq->prev_mm; | 
|  | long prev_state; | 
|  |  | 
|  | /* | 
|  | * The previous task will have left us with a preempt_count of 2 | 
|  | * because it left us after: | 
|  | * | 
|  | *	schedule() | 
|  | *	  preempt_disable();			// 1 | 
|  | *	  __schedule() | 
|  | *	    raw_spin_lock_irq(&rq->lock)	// 2 | 
|  | * | 
|  | * Also, see FORK_PREEMPT_COUNT. | 
|  | */ | 
|  | if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, | 
|  | "corrupted preempt_count: %s/%d/0x%x\n", | 
|  | current->comm, current->pid, preempt_count())) | 
|  | preempt_count_set(FORK_PREEMPT_COUNT); | 
|  |  | 
|  | rq->prev_mm = NULL; | 
|  |  | 
|  | /* | 
|  | * A task struct has one reference for the use as "current". | 
|  | * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 
|  | * schedule one last time. The schedule call will never return, and | 
|  | * the scheduled task must drop that reference. | 
|  | * | 
|  | * We must observe prev->state before clearing prev->on_cpu (in | 
|  | * finish_task), otherwise a concurrent wakeup can get prev | 
|  | * running on another CPU and we could rave with its RUNNING -> DEAD | 
|  | * transition, resulting in a double drop. | 
|  | */ | 
|  | prev_state = prev->state; | 
|  | vtime_task_switch(prev); | 
|  | perf_event_task_sched_in(prev, current); | 
|  | finish_task(prev); | 
|  | finish_lock_switch(rq); | 
|  | finish_arch_post_lock_switch(); | 
|  | kcov_finish_switch(current); | 
|  |  | 
|  | fire_sched_in_preempt_notifiers(current); | 
|  | /* | 
|  | * When switching through a kernel thread, the loop in | 
|  | * membarrier_{private,global}_expedited() may have observed that | 
|  | * kernel thread and not issued an IPI. It is therefore possible to | 
|  | * schedule between user->kernel->user threads without passing though | 
|  | * switch_mm(). Membarrier requires a barrier after storing to | 
|  | * rq->curr, before returning to userspace, so provide them here: | 
|  | * | 
|  | * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly | 
|  | *   provided by mmdrop(), | 
|  | * - a sync_core for SYNC_CORE. | 
|  | */ | 
|  | if (mm) { | 
|  | membarrier_mm_sync_core_before_usermode(mm); | 
|  | mmdrop(mm); | 
|  | } | 
|  | if (unlikely(prev_state == TASK_DEAD)) { | 
|  | if (prev->sched_class->task_dead) | 
|  | prev->sched_class->task_dead(prev); | 
|  |  | 
|  | /* | 
|  | * Remove function-return probe instances associated with this | 
|  | * task and put them back on the free list. | 
|  | */ | 
|  | kprobe_flush_task(prev); | 
|  |  | 
|  | /* Task is done with its stack. */ | 
|  | put_task_stack(prev); | 
|  |  | 
|  | put_task_struct_rcu_user(prev); | 
|  | } | 
|  |  | 
|  | tick_nohz_task_switch(); | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* rq->lock is NOT held, but preemption is disabled */ | 
|  | static void __balance_callback(struct rq *rq) | 
|  | { | 
|  | struct callback_head *head, *next; | 
|  | void (*func)(struct rq *rq); | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  | head = rq->balance_callback; | 
|  | rq->balance_callback = NULL; | 
|  | while (head) { | 
|  | func = (void (*)(struct rq *))head->func; | 
|  | next = head->next; | 
|  | head->next = NULL; | 
|  | head = next; | 
|  |  | 
|  | func(rq); | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | static inline void balance_callback(struct rq *rq) | 
|  | { | 
|  | if (unlikely(rq->balance_callback)) | 
|  | __balance_callback(rq); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void balance_callback(struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * schedule_tail - first thing a freshly forked thread must call. | 
|  | * @prev: the thread we just switched away from. | 
|  | */ | 
|  | asmlinkage __visible void schedule_tail(struct task_struct *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | /* | 
|  | * New tasks start with FORK_PREEMPT_COUNT, see there and | 
|  | * finish_task_switch() for details. | 
|  | * | 
|  | * finish_task_switch() will drop rq->lock() and lower preempt_count | 
|  | * and the preempt_enable() will end up enabling preemption (on | 
|  | * PREEMPT_COUNT kernels). | 
|  | */ | 
|  |  | 
|  | rq = finish_task_switch(prev); | 
|  | balance_callback(rq); | 
|  | preempt_enable(); | 
|  |  | 
|  | if (current->set_child_tid) | 
|  | put_user(task_pid_vnr(current), current->set_child_tid); | 
|  |  | 
|  | calculate_sigpending(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * context_switch - switch to the new MM and the new thread's register state. | 
|  | */ | 
|  | static __always_inline struct rq * | 
|  | context_switch(struct rq *rq, struct task_struct *prev, | 
|  | struct task_struct *next, struct rq_flags *rf) | 
|  | { | 
|  | prepare_task_switch(rq, prev, next); | 
|  |  | 
|  | /* | 
|  | * For paravirt, this is coupled with an exit in switch_to to | 
|  | * combine the page table reload and the switch backend into | 
|  | * one hypercall. | 
|  | */ | 
|  | arch_start_context_switch(prev); | 
|  |  | 
|  | /* | 
|  | * kernel -> kernel   lazy + transfer active | 
|  | *   user -> kernel   lazy + mmgrab() active | 
|  | * | 
|  | * kernel ->   user   switch + mmdrop() active | 
|  | *   user ->   user   switch | 
|  | */ | 
|  | if (!next->mm) {                                // to kernel | 
|  | enter_lazy_tlb(prev->active_mm, next); | 
|  |  | 
|  | next->active_mm = prev->active_mm; | 
|  | if (prev->mm)                           // from user | 
|  | mmgrab(prev->active_mm); | 
|  | else | 
|  | prev->active_mm = NULL; | 
|  | } else {                                        // to user | 
|  | membarrier_switch_mm(rq, prev->active_mm, next->mm); | 
|  | /* | 
|  | * sys_membarrier() requires an smp_mb() between setting | 
|  | * rq->curr / membarrier_switch_mm() and returning to userspace. | 
|  | * | 
|  | * The below provides this either through switch_mm(), or in | 
|  | * case 'prev->active_mm == next->mm' through | 
|  | * finish_task_switch()'s mmdrop(). | 
|  | */ | 
|  | switch_mm_irqs_off(prev->active_mm, next->mm, next); | 
|  |  | 
|  | if (!prev->mm) {                        // from kernel | 
|  | /* will mmdrop() in finish_task_switch(). */ | 
|  | rq->prev_mm = prev->active_mm; | 
|  | prev->active_mm = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); | 
|  |  | 
|  | prepare_lock_switch(rq, next, rf); | 
|  |  | 
|  | /* Here we just switch the register state and the stack. */ | 
|  | switch_to(prev, next, prev); | 
|  | barrier(); | 
|  |  | 
|  | return finish_task_switch(prev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nr_running and nr_context_switches: | 
|  | * | 
|  | * externally visible scheduler statistics: current number of runnable | 
|  | * threads, total number of context switches performed since bootup. | 
|  | */ | 
|  | unsigned long nr_running(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_online_cpu(i) | 
|  | sum += cpu_rq(i)->nr_running; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if only the current task is running on the CPU. | 
|  | * | 
|  | * Caution: this function does not check that the caller has disabled | 
|  | * preemption, thus the result might have a time-of-check-to-time-of-use | 
|  | * race.  The caller is responsible to use it correctly, for example: | 
|  | * | 
|  | * - from a non-preemptible section (of course) | 
|  | * | 
|  | * - from a thread that is bound to a single CPU | 
|  | * | 
|  | * - in a loop with very short iterations (e.g. a polling loop) | 
|  | */ | 
|  | bool single_task_running(void) | 
|  | { | 
|  | return raw_rq()->nr_running == 1; | 
|  | } | 
|  | EXPORT_SYMBOL(single_task_running); | 
|  |  | 
|  | unsigned long long nr_context_switches(void) | 
|  | { | 
|  | int i; | 
|  | unsigned long long sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += cpu_rq(i)->nr_switches; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Consumers of these two interfaces, like for example the cpuidle menu | 
|  | * governor, are using nonsensical data. Preferring shallow idle state selection | 
|  | * for a CPU that has IO-wait which might not even end up running the task when | 
|  | * it does become runnable. | 
|  | */ | 
|  |  | 
|  | unsigned long nr_iowait_cpu(int cpu) | 
|  | { | 
|  | return atomic_read(&cpu_rq(cpu)->nr_iowait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IO-wait accounting, and how its mostly bollocks (on SMP). | 
|  | * | 
|  | * The idea behind IO-wait account is to account the idle time that we could | 
|  | * have spend running if it were not for IO. That is, if we were to improve the | 
|  | * storage performance, we'd have a proportional reduction in IO-wait time. | 
|  | * | 
|  | * This all works nicely on UP, where, when a task blocks on IO, we account | 
|  | * idle time as IO-wait, because if the storage were faster, it could've been | 
|  | * running and we'd not be idle. | 
|  | * | 
|  | * This has been extended to SMP, by doing the same for each CPU. This however | 
|  | * is broken. | 
|  | * | 
|  | * Imagine for instance the case where two tasks block on one CPU, only the one | 
|  | * CPU will have IO-wait accounted, while the other has regular idle. Even | 
|  | * though, if the storage were faster, both could've ran at the same time, | 
|  | * utilising both CPUs. | 
|  | * | 
|  | * This means, that when looking globally, the current IO-wait accounting on | 
|  | * SMP is a lower bound, by reason of under accounting. | 
|  | * | 
|  | * Worse, since the numbers are provided per CPU, they are sometimes | 
|  | * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly | 
|  | * associated with any one particular CPU, it can wake to another CPU than it | 
|  | * blocked on. This means the per CPU IO-wait number is meaningless. | 
|  | * | 
|  | * Task CPU affinities can make all that even more 'interesting'. | 
|  | */ | 
|  |  | 
|  | unsigned long nr_iowait(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += nr_iowait_cpu(i); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * sched_exec - execve() is a valuable balancing opportunity, because at | 
|  | * this point the task has the smallest effective memory and cache footprint. | 
|  | */ | 
|  | void sched_exec(void) | 
|  | { | 
|  | struct task_struct *p = current; | 
|  | unsigned long flags; | 
|  | int dest_cpu; | 
|  |  | 
|  | raw_spin_lock_irqsave(&p->pi_lock, flags); | 
|  | dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); | 
|  | if (dest_cpu == smp_processor_id()) | 
|  | goto unlock; | 
|  |  | 
|  | if (likely(cpu_active(dest_cpu))) { | 
|  | struct migration_arg arg = { p, dest_cpu }; | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  | stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); | 
|  | return; | 
|  | } | 
|  | unlock: | 
|  | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|  | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); | 
|  |  | 
|  | EXPORT_PER_CPU_SYMBOL(kstat); | 
|  | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); | 
|  |  | 
|  | /* | 
|  | * The function fair_sched_class.update_curr accesses the struct curr | 
|  | * and its field curr->exec_start; when called from task_sched_runtime(), | 
|  | * we observe a high rate of cache misses in practice. | 
|  | * Prefetching this data results in improved performance. | 
|  | */ | 
|  | static inline void prefetch_curr_exec_start(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | struct sched_entity *curr = (&p->se)->cfs_rq->curr; | 
|  | #else | 
|  | struct sched_entity *curr = (&task_rq(p)->cfs)->curr; | 
|  | #endif | 
|  | prefetch(curr); | 
|  | prefetch(&curr->exec_start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return accounted runtime for the task. | 
|  | * In case the task is currently running, return the runtime plus current's | 
|  | * pending runtime that have not been accounted yet. | 
|  | */ | 
|  | unsigned long long task_sched_runtime(struct task_struct *p) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | u64 ns; | 
|  |  | 
|  | #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) | 
|  | /* | 
|  | * 64-bit doesn't need locks to atomically read a 64-bit value. | 
|  | * So we have a optimization chance when the task's delta_exec is 0. | 
|  | * Reading ->on_cpu is racy, but this is ok. | 
|  | * | 
|  | * If we race with it leaving CPU, we'll take a lock. So we're correct. | 
|  | * If we race with it entering CPU, unaccounted time is 0. This is | 
|  | * indistinguishable from the read occurring a few cycles earlier. | 
|  | * If we see ->on_cpu without ->on_rq, the task is leaving, and has | 
|  | * been accounted, so we're correct here as well. | 
|  | */ | 
|  | if (!p->on_cpu || !task_on_rq_queued(p)) | 
|  | return p->se.sum_exec_runtime; | 
|  | #endif | 
|  |  | 
|  | rq = task_rq_lock(p, &rf); | 
|  | /* | 
|  | * Must be ->curr _and_ ->on_rq.  If dequeued, we would | 
|  | * project cycles that may never be accounted to this | 
|  | * thread, breaking clock_gettime(). | 
|  | */ | 
|  | if (task_current(rq, p) && task_on_rq_queued(p)) { | 
|  | prefetch_curr_exec_start(p); | 
|  | update_rq_clock(rq); | 
|  | p->sched_class->update_curr(rq); | 
|  | } | 
|  | ns = p->se.sum_exec_runtime; | 
|  | task_rq_unlock(rq, p, &rf); | 
|  |  | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called by the timer code, with HZ frequency. | 
|  | * We call it with interrupts disabled. | 
|  | */ | 
|  | void scheduler_tick(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | sched_clock_tick(); | 
|  |  | 
|  | rq_lock(rq, &rf); | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | curr->sched_class->task_tick(rq, curr, 0); | 
|  | calc_global_load_tick(rq); | 
|  | psi_task_tick(rq); | 
|  |  | 
|  | rq_unlock(rq, &rf); | 
|  |  | 
|  | perf_event_task_tick(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | rq->idle_balance = idle_cpu(cpu); | 
|  | trigger_load_balance(rq); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  |  | 
|  | struct tick_work { | 
|  | int			cpu; | 
|  | atomic_t		state; | 
|  | struct delayed_work	work; | 
|  | }; | 
|  | /* Values for ->state, see diagram below. */ | 
|  | #define TICK_SCHED_REMOTE_OFFLINE	0 | 
|  | #define TICK_SCHED_REMOTE_OFFLINING	1 | 
|  | #define TICK_SCHED_REMOTE_RUNNING	2 | 
|  |  | 
|  | /* | 
|  | * State diagram for ->state: | 
|  | * | 
|  | * | 
|  | *          TICK_SCHED_REMOTE_OFFLINE | 
|  | *                    |   ^ | 
|  | *                    |   | | 
|  | *                    |   | sched_tick_remote() | 
|  | *                    |   | | 
|  | *                    |   | | 
|  | *                    +--TICK_SCHED_REMOTE_OFFLINING | 
|  | *                    |   ^ | 
|  | *                    |   | | 
|  | * sched_tick_start() |   | sched_tick_stop() | 
|  | *                    |   | | 
|  | *                    V   | | 
|  | *          TICK_SCHED_REMOTE_RUNNING | 
|  | * | 
|  | * | 
|  | * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() | 
|  | * and sched_tick_start() are happy to leave the state in RUNNING. | 
|  | */ | 
|  |  | 
|  | static struct tick_work __percpu *tick_work_cpu; | 
|  |  | 
|  | static void sched_tick_remote(struct work_struct *work) | 
|  | { | 
|  | struct delayed_work *dwork = to_delayed_work(work); | 
|  | struct tick_work *twork = container_of(dwork, struct tick_work, work); | 
|  | int cpu = twork->cpu; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct task_struct *curr; | 
|  | struct rq_flags rf; | 
|  | u64 delta; | 
|  | int os; | 
|  |  | 
|  | /* | 
|  | * Handle the tick only if it appears the remote CPU is running in full | 
|  | * dynticks mode. The check is racy by nature, but missing a tick or | 
|  | * having one too much is no big deal because the scheduler tick updates | 
|  | * statistics and checks timeslices in a time-independent way, regardless | 
|  | * of when exactly it is running. | 
|  | */ | 
|  | if (!tick_nohz_tick_stopped_cpu(cpu)) | 
|  | goto out_requeue; | 
|  |  | 
|  | rq_lock_irq(rq, &rf); | 
|  | curr = rq->curr; | 
|  | if (cpu_is_offline(cpu)) | 
|  | goto out_unlock; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | if (!is_idle_task(curr)) { | 
|  | /* | 
|  | * Make sure the next tick runs within a reasonable | 
|  | * amount of time. | 
|  | */ | 
|  | delta = rq_clock_task(rq) - curr->se.exec_start; | 
|  | WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); | 
|  | } | 
|  | curr->sched_class->task_tick(rq, curr, 0); | 
|  |  | 
|  | calc_load_nohz_remote(rq); | 
|  | out_unlock: | 
|  | rq_unlock_irq(rq, &rf); | 
|  | out_requeue: | 
|  |  | 
|  | /* | 
|  | * Run the remote tick once per second (1Hz). This arbitrary | 
|  | * frequency is large enough to avoid overload but short enough | 
|  | * to keep scheduler internal stats reasonably up to date.  But | 
|  | * first update state to reflect hotplug activity if required. | 
|  | */ | 
|  | os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); | 
|  | WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); | 
|  | if (os == TICK_SCHED_REMOTE_RUNNING) | 
|  | queue_delayed_work(system_unbound_wq, dwork, HZ); | 
|  | } | 
|  |  | 
|  | static void sched_tick_start(int cpu) | 
|  | { | 
|  | int os; | 
|  | struct tick_work *twork; | 
|  |  | 
|  | if (housekeeping_cpu(cpu, HK_FLAG_TICK)) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(!tick_work_cpu); | 
|  |  | 
|  | twork = per_cpu_ptr(tick_work_cpu, cpu); | 
|  | os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); | 
|  | WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); | 
|  | if (os == TICK_SCHED_REMOTE_OFFLINE) { | 
|  | twork->cpu = cpu; | 
|  | INIT_DELAYED_WORK(&twork->work, sched_tick_remote); | 
|  | queue_delayed_work(system_unbound_wq, &twork->work, HZ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void sched_tick_stop(int cpu) | 
|  | { | 
|  | struct tick_work *twork; | 
|  | int os; | 
|  |  | 
|  | if (housekeeping_cpu(cpu, HK_FLAG_TICK)) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(!tick_work_cpu); | 
|  |  | 
|  | twork = per_cpu_ptr(tick_work_cpu, cpu); | 
|  | /* There cannot be competing actions, but don't rely on stop-machine. */ | 
|  | os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); | 
|  | WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); | 
|  | /* Don't cancel, as this would mess up the state machine. */ | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | int __init sched_tick_offload_init(void) | 
|  | { | 
|  | tick_work_cpu = alloc_percpu(struct tick_work); | 
|  | BUG_ON(!tick_work_cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_NO_HZ_FULL */ | 
|  | static inline void sched_tick_start(int cpu) { } | 
|  | static inline void sched_tick_stop(int cpu) { } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 
|  | defined(CONFIG_TRACE_PREEMPT_TOGGLE)) | 
|  | /* | 
|  | * If the value passed in is equal to the current preempt count | 
|  | * then we just disabled preemption. Start timing the latency. | 
|  | */ | 
|  | static inline void preempt_latency_start(int val) | 
|  | { | 
|  | if (preempt_count() == val) { | 
|  | unsigned long ip = get_lock_parent_ip(); | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | current->preempt_disable_ip = ip; | 
|  | #endif | 
|  | trace_preempt_off(CALLER_ADDR0, ip); | 
|  | } | 
|  | } | 
|  |  | 
|  | void preempt_count_add(int val) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
|  | return; | 
|  | #endif | 
|  | __preempt_count_add(val); | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | /* | 
|  | * Spinlock count overflowing soon? | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 
|  | PREEMPT_MASK - 10); | 
|  | #endif | 
|  | preempt_latency_start(val); | 
|  | } | 
|  | EXPORT_SYMBOL(preempt_count_add); | 
|  | NOKPROBE_SYMBOL(preempt_count_add); | 
|  |  | 
|  | /* | 
|  | * If the value passed in equals to the current preempt count | 
|  | * then we just enabled preemption. Stop timing the latency. | 
|  | */ | 
|  | static inline void preempt_latency_stop(int val) | 
|  | { | 
|  | if (preempt_count() == val) | 
|  | trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); | 
|  | } | 
|  |  | 
|  | void preempt_count_sub(int val) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
|  | return; | 
|  | /* | 
|  | * Is the spinlock portion underflowing? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
|  | !(preempt_count() & PREEMPT_MASK))) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | preempt_latency_stop(val); | 
|  | __preempt_count_sub(val); | 
|  | } | 
|  | EXPORT_SYMBOL(preempt_count_sub); | 
|  | NOKPROBE_SYMBOL(preempt_count_sub); | 
|  |  | 
|  | #else | 
|  | static inline void preempt_latency_start(int val) { } | 
|  | static inline void preempt_latency_stop(int val) { } | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long get_preempt_disable_ip(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | return p->preempt_disable_ip; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print scheduling while atomic bug: | 
|  | */ | 
|  | static noinline void __schedule_bug(struct task_struct *prev) | 
|  | { | 
|  | /* Save this before calling printk(), since that will clobber it */ | 
|  | unsigned long preempt_disable_ip = get_preempt_disable_ip(current); | 
|  |  | 
|  | if (oops_in_progress) | 
|  | return; | 
|  |  | 
|  | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 
|  | prev->comm, prev->pid, preempt_count()); | 
|  |  | 
|  | debug_show_held_locks(prev); | 
|  | print_modules(); | 
|  | if (irqs_disabled()) | 
|  | print_irqtrace_events(prev); | 
|  | if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) | 
|  | && in_atomic_preempt_off()) { | 
|  | pr_err("Preemption disabled at:"); | 
|  | print_ip_sym(preempt_disable_ip); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | if (panic_on_warn) | 
|  | panic("scheduling while atomic\n"); | 
|  |  | 
|  | dump_stack(); | 
|  | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Various schedule()-time debugging checks and statistics: | 
|  | */ | 
|  | static inline void schedule_debug(struct task_struct *prev, bool preempt) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_STACK_END_CHECK | 
|  | if (task_stack_end_corrupted(prev)) | 
|  | panic("corrupted stack end detected inside scheduler\n"); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  | if (!preempt && prev->state && prev->non_block_count) { | 
|  | printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", | 
|  | prev->comm, prev->pid, prev->non_block_count); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (unlikely(in_atomic_preempt_off())) { | 
|  | __schedule_bug(prev); | 
|  | preempt_count_set(PREEMPT_DISABLED); | 
|  | } | 
|  | rcu_sleep_check(); | 
|  |  | 
|  | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
|  |  | 
|  | schedstat_inc(this_rq()->sched_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pick up the highest-prio task: | 
|  | */ | 
|  | static inline struct task_struct * | 
|  | pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|  | { | 
|  | const struct sched_class *class; | 
|  | struct task_struct *p; | 
|  |  | 
|  | /* | 
|  | * Optimization: we know that if all tasks are in the fair class we can | 
|  | * call that function directly, but only if the @prev task wasn't of a | 
|  | * higher scheduling class, because otherwise those loose the | 
|  | * opportunity to pull in more work from other CPUs. | 
|  | */ | 
|  | if (likely((prev->sched_class == &idle_sched_class || | 
|  | prev->sched_class == &fair_sched_class) && | 
|  | rq->nr_running == rq->cfs.h_nr_running)) { | 
|  |  | 
|  | p = fair_sched_class.pick_next_task(rq, prev, rf); | 
|  | if (unlikely(p == RETRY_TASK)) | 
|  | goto restart; | 
|  |  | 
|  | /* Assumes fair_sched_class->next == idle_sched_class */ | 
|  | if (unlikely(!p)) | 
|  | p = idle_sched_class.pick_next_task(rq, prev, rf); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | restart: | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We must do the balancing pass before put_next_task(), such | 
|  | * that when we release the rq->lock the task is in the same | 
|  | * state as before we took rq->lock. | 
|  | * | 
|  | * We can terminate the balance pass as soon as we know there is | 
|  | * a runnable task of @class priority or higher. | 
|  | */ | 
|  | for_class_range(class, prev->sched_class, &idle_sched_class) { | 
|  | if (class->balance(rq, prev, rf)) | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | put_prev_task(rq, prev); | 
|  |  | 
|  | for_each_class(class) { | 
|  | p = class->pick_next_task(rq, NULL, NULL); | 
|  | if (p) | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* The idle class should always have a runnable task: */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __schedule() is the main scheduler function. | 
|  | * | 
|  | * The main means of driving the scheduler and thus entering this function are: | 
|  | * | 
|  | *   1. Explicit blocking: mutex, semaphore, waitqueue, etc. | 
|  | * | 
|  | *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return | 
|  | *      paths. For example, see arch/x86/entry_64.S. | 
|  | * | 
|  | *      To drive preemption between tasks, the scheduler sets the flag in timer | 
|  | *      interrupt handler scheduler_tick(). | 
|  | * | 
|  | *   3. Wakeups don't really cause entry into schedule(). They add a | 
|  | *      task to the run-queue and that's it. | 
|  | * | 
|  | *      Now, if the new task added to the run-queue preempts the current | 
|  | *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets | 
|  | *      called on the nearest possible occasion: | 
|  | * | 
|  | *       - If the kernel is preemptible (CONFIG_PREEMPTION=y): | 
|  | * | 
|  | *         - in syscall or exception context, at the next outmost | 
|  | *           preempt_enable(). (this might be as soon as the wake_up()'s | 
|  | *           spin_unlock()!) | 
|  | * | 
|  | *         - in IRQ context, return from interrupt-handler to | 
|  | *           preemptible context | 
|  | * | 
|  | *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) | 
|  | *         then at the next: | 
|  | * | 
|  | *          - cond_resched() call | 
|  | *          - explicit schedule() call | 
|  | *          - return from syscall or exception to user-space | 
|  | *          - return from interrupt-handler to user-space | 
|  | * | 
|  | * WARNING: must be called with preemption disabled! | 
|  | */ | 
|  | static void __sched notrace __schedule(bool preempt) | 
|  | { | 
|  | struct task_struct *prev, *next; | 
|  | unsigned long *switch_count; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | int cpu; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | rq = cpu_rq(cpu); | 
|  | prev = rq->curr; | 
|  |  | 
|  | schedule_debug(prev, preempt); | 
|  |  | 
|  | if (sched_feat(HRTICK)) | 
|  | hrtick_clear(rq); | 
|  |  | 
|  | local_irq_disable(); | 
|  | rcu_note_context_switch(preempt); | 
|  |  | 
|  | /* | 
|  | * Make sure that signal_pending_state()->signal_pending() below | 
|  | * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) | 
|  | * done by the caller to avoid the race with signal_wake_up(). | 
|  | * | 
|  | * The membarrier system call requires a full memory barrier | 
|  | * after coming from user-space, before storing to rq->curr. | 
|  | */ | 
|  | rq_lock(rq, &rf); | 
|  | smp_mb__after_spinlock(); | 
|  |  | 
|  | /* Promote REQ to ACT */ | 
|  | rq->clock_update_flags <<= 1; | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | switch_count = &prev->nivcsw; | 
|  | if (!preempt && prev->state) { | 
|  | if (signal_pending_state(prev->state, prev)) { | 
|  | prev->state = TASK_RUNNING; | 
|  | } else { | 
|  | deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); | 
|  |  | 
|  | if (prev->in_iowait) { | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | delayacct_blkio_start(); | 
|  | } | 
|  | } | 
|  | switch_count = &prev->nvcsw; | 
|  | } | 
|  |  | 
|  | next = pick_next_task(rq, prev, &rf); | 
|  | clear_tsk_need_resched(prev); | 
|  | clear_preempt_need_resched(); | 
|  |  | 
|  | if (likely(prev != next)) { | 
|  | rq->nr_switches++; | 
|  | /* | 
|  | * RCU users of rcu_dereference(rq->curr) may not see | 
|  | * changes to task_struct made by pick_next_task(). | 
|  | */ | 
|  | RCU_INIT_POINTER(rq->curr, next); | 
|  | /* | 
|  | * The membarrier system call requires each architecture | 
|  | * to have a full memory barrier after updating | 
|  | * rq->curr, before returning to user-space. | 
|  | * | 
|  | * Here are the schemes providing that barrier on the | 
|  | * various architectures: | 
|  | * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. | 
|  | *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. | 
|  | * - finish_lock_switch() for weakly-ordered | 
|  | *   architectures where spin_unlock is a full barrier, | 
|  | * - switch_to() for arm64 (weakly-ordered, spin_unlock | 
|  | *   is a RELEASE barrier), | 
|  | */ | 
|  | ++*switch_count; | 
|  |  | 
|  | trace_sched_switch(preempt, prev, next); | 
|  |  | 
|  | /* Also unlocks the rq: */ | 
|  | rq = context_switch(rq, prev, next, &rf); | 
|  | } else { | 
|  | rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); | 
|  | rq_unlock_irq(rq, &rf); | 
|  | } | 
|  |  | 
|  | balance_callback(rq); | 
|  | } | 
|  |  | 
|  | void __noreturn do_task_dead(void) | 
|  | { | 
|  | /* Causes final put_task_struct in finish_task_switch(): */ | 
|  | set_special_state(TASK_DEAD); | 
|  |  | 
|  | /* Tell freezer to ignore us: */ | 
|  | current->flags |= PF_NOFREEZE; | 
|  |  | 
|  | __schedule(false); | 
|  | BUG(); | 
|  |  | 
|  | /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ | 
|  | for (;;) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | static inline void sched_submit_work(struct task_struct *tsk) | 
|  | { | 
|  | if (!tsk->state) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If a worker went to sleep, notify and ask workqueue whether | 
|  | * it wants to wake up a task to maintain concurrency. | 
|  | * As this function is called inside the schedule() context, | 
|  | * we disable preemption to avoid it calling schedule() again | 
|  | * in the possible wakeup of a kworker and because wq_worker_sleeping() | 
|  | * requires it. | 
|  | */ | 
|  | if (tsk->flags & PF_WQ_WORKER) { | 
|  | preempt_disable(); | 
|  | wq_worker_sleeping(tsk); | 
|  | preempt_enable_no_resched(); | 
|  | } | 
|  |  | 
|  | if (tsk_is_pi_blocked(tsk)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we are going to sleep and we have plugged IO queued, | 
|  | * make sure to submit it to avoid deadlocks. | 
|  | */ | 
|  | if (blk_needs_flush_plug(tsk)) | 
|  | blk_schedule_flush_plug(tsk); | 
|  | } | 
|  |  | 
|  | static void sched_update_worker(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->flags & PF_WQ_WORKER) | 
|  | wq_worker_running(tsk); | 
|  | } | 
|  |  | 
|  | asmlinkage __visible void __sched schedule(void) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | sched_submit_work(tsk); | 
|  | do { | 
|  | preempt_disable(); | 
|  | __schedule(false); | 
|  | sched_preempt_enable_no_resched(); | 
|  | } while (need_resched()); | 
|  | sched_update_worker(tsk); | 
|  | } | 
|  | EXPORT_SYMBOL(schedule); | 
|  |  | 
|  | /* | 
|  | * synchronize_rcu_tasks() makes sure that no task is stuck in preempted | 
|  | * state (have scheduled out non-voluntarily) by making sure that all | 
|  | * tasks have either left the run queue or have gone into user space. | 
|  | * As idle tasks do not do either, they must not ever be preempted | 
|  | * (schedule out non-voluntarily). | 
|  | * | 
|  | * schedule_idle() is similar to schedule_preempt_disable() except that it | 
|  | * never enables preemption because it does not call sched_submit_work(). | 
|  | */ | 
|  | void __sched schedule_idle(void) | 
|  | { | 
|  | /* | 
|  | * As this skips calling sched_submit_work(), which the idle task does | 
|  | * regardless because that function is a nop when the task is in a | 
|  | * TASK_RUNNING state, make sure this isn't used someplace that the | 
|  | * current task can be in any other state. Note, idle is always in the | 
|  | * TASK_RUNNING state. | 
|  | */ | 
|  | WARN_ON_ONCE(current->state); | 
|  | do { | 
|  | __schedule(false); | 
|  | } while (need_resched()); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CONTEXT_TRACKING | 
|  | asmlinkage __visible void __sched schedule_user(void) | 
|  | { | 
|  | /* | 
|  | * If we come here after a random call to set_need_resched(), | 
|  | * or we have been woken up remotely but the IPI has not yet arrived, | 
|  | * we haven't yet exited the RCU idle mode. Do it here manually until | 
|  | * we find a better solution. | 
|  | * | 
|  | * NB: There are buggy callers of this function.  Ideally we | 
|  | * should warn if prev_state != CONTEXT_USER, but that will trigger | 
|  | * too frequently to make sense yet. | 
|  | */ | 
|  | enum ctx_state prev_state = exception_enter(); | 
|  | schedule(); | 
|  | exception_exit(prev_state); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * schedule_preempt_disabled - called with preemption disabled | 
|  | * | 
|  | * Returns with preemption disabled. Note: preempt_count must be 1 | 
|  | */ | 
|  | void __sched schedule_preempt_disabled(void) | 
|  | { | 
|  | sched_preempt_enable_no_resched(); | 
|  | schedule(); | 
|  | preempt_disable(); | 
|  | } | 
|  |  | 
|  | static void __sched notrace preempt_schedule_common(void) | 
|  | { | 
|  | do { | 
|  | /* | 
|  | * Because the function tracer can trace preempt_count_sub() | 
|  | * and it also uses preempt_enable/disable_notrace(), if | 
|  | * NEED_RESCHED is set, the preempt_enable_notrace() called | 
|  | * by the function tracer will call this function again and | 
|  | * cause infinite recursion. | 
|  | * | 
|  | * Preemption must be disabled here before the function | 
|  | * tracer can trace. Break up preempt_disable() into two | 
|  | * calls. One to disable preemption without fear of being | 
|  | * traced. The other to still record the preemption latency, | 
|  | * which can also be traced by the function tracer. | 
|  | */ | 
|  | preempt_disable_notrace(); | 
|  | preempt_latency_start(1); | 
|  | __schedule(true); | 
|  | preempt_latency_stop(1); | 
|  | preempt_enable_no_resched_notrace(); | 
|  |  | 
|  | /* | 
|  | * Check again in case we missed a preemption opportunity | 
|  | * between schedule and now. | 
|  | */ | 
|  | } while (need_resched()); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPTION | 
|  | /* | 
|  | * This is the entry point to schedule() from in-kernel preemption | 
|  | * off of preempt_enable. | 
|  | */ | 
|  | asmlinkage __visible void __sched notrace preempt_schedule(void) | 
|  | { | 
|  | /* | 
|  | * If there is a non-zero preempt_count or interrupts are disabled, | 
|  | * we do not want to preempt the current task. Just return.. | 
|  | */ | 
|  | if (likely(!preemptible())) | 
|  | return; | 
|  |  | 
|  | preempt_schedule_common(); | 
|  | } | 
|  | NOKPROBE_SYMBOL(preempt_schedule); | 
|  | EXPORT_SYMBOL(preempt_schedule); | 
|  |  | 
|  | /** | 
|  | * preempt_schedule_notrace - preempt_schedule called by tracing | 
|  | * | 
|  | * The tracing infrastructure uses preempt_enable_notrace to prevent | 
|  | * recursion and tracing preempt enabling caused by the tracing | 
|  | * infrastructure itself. But as tracing can happen in areas coming | 
|  | * from userspace or just about to enter userspace, a preempt enable | 
|  | * can occur before user_exit() is called. This will cause the scheduler | 
|  | * to be called when the system is still in usermode. | 
|  | * | 
|  | * To prevent this, the preempt_enable_notrace will use this function | 
|  | * instead of preempt_schedule() to exit user context if needed before | 
|  | * calling the scheduler. | 
|  | */ | 
|  | asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) | 
|  | { | 
|  | enum ctx_state prev_ctx; | 
|  |  | 
|  | if (likely(!preemptible())) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * Because the function tracer can trace preempt_count_sub() | 
|  | * and it also uses preempt_enable/disable_notrace(), if | 
|  | * NEED_RESCHED is set, the preempt_enable_notrace() called | 
|  | * by the function tracer will call this function again and | 
|  | * cause infinite recursion. | 
|  | * | 
|  | * Preemption must be disabled here before the function | 
|  | * tracer can trace. Break up preempt_disable() into two | 
|  | * calls. One to disable preemption without fear of being | 
|  | * traced. The other to still record the preemption latency, | 
|  | * which can also be traced by the function tracer. | 
|  | */ | 
|  | preempt_disable_notrace(); | 
|  | preempt_latency_start(1); | 
|  | /* | 
|  | * Needs preempt disabled in case user_exit() is traced | 
|  | * and the tracer calls preempt_enable_notrace() causing | 
|  | * an infinite recursion. | 
|  | */ | 
|  | prev_ctx = exception_enter(); | 
|  | __schedule(true); | 
|  | exception_exit(prev_ctx); | 
|  |  | 
|  | preempt_latency_stop(1); | 
|  | preempt_enable_no_resched_notrace(); | 
|  | } while (need_resched()); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_schedule_notrace); | 
|  |  | 
|  | #endif /* CONFIG_PREEMPTION */ | 
|  |  | 
|  | /* | 
|  | * This is the entry point to schedule() from kernel preemption | 
|  | * off of irq context. | 
|  | * Note, that this is called and return with irqs disabled. This will | 
|  | * protect us against recursive calling from irq. | 
|  | */ | 
|  | asmlinkage __visible void __sched preempt_schedule_irq(void) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  |  | 
|  | /* Catch callers which need to be fixed */ | 
|  | BUG_ON(preempt_count() || !irqs_disabled()); | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  |  | 
|  | do { | 
|  | preempt_disable(); | 
|  | local_irq_enable(); | 
|  | __schedule(true); | 
|  | local_irq_disable(); | 
|  | sched_preempt_enable_no_resched(); | 
|  | } while (need_resched()); | 
|  |  | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, | 
|  | void *key) | 
|  | { | 
|  | return try_to_wake_up(curr->private, mode, wake_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(default_wake_function); | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  |  | 
|  | static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) | 
|  | { | 
|  | if (pi_task) | 
|  | prio = min(prio, pi_task->prio); | 
|  |  | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | static inline int rt_effective_prio(struct task_struct *p, int prio) | 
|  | { | 
|  | struct task_struct *pi_task = rt_mutex_get_top_task(p); | 
|  |  | 
|  | return __rt_effective_prio(pi_task, prio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rt_mutex_setprio - set the current priority of a task | 
|  | * @p: task to boost | 
|  | * @pi_task: donor task | 
|  | * | 
|  | * This function changes the 'effective' priority of a task. It does | 
|  | * not touch ->normal_prio like __setscheduler(). | 
|  | * | 
|  | * Used by the rt_mutex code to implement priority inheritance | 
|  | * logic. Call site only calls if the priority of the task changed. | 
|  | */ | 
|  | void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) | 
|  | { | 
|  | int prio, oldprio, queued, running, queue_flag = | 
|  | DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
|  | const struct sched_class *prev_class; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* XXX used to be waiter->prio, not waiter->task->prio */ | 
|  | prio = __rt_effective_prio(pi_task, p->normal_prio); | 
|  |  | 
|  | /* | 
|  | * If nothing changed; bail early. | 
|  | */ | 
|  | if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) | 
|  | return; | 
|  |  | 
|  | rq = __task_rq_lock(p, &rf); | 
|  | update_rq_clock(rq); | 
|  | /* | 
|  | * Set under pi_lock && rq->lock, such that the value can be used under | 
|  | * either lock. | 
|  | * | 
|  | * Note that there is loads of tricky to make this pointer cache work | 
|  | * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to | 
|  | * ensure a task is de-boosted (pi_task is set to NULL) before the | 
|  | * task is allowed to run again (and can exit). This ensures the pointer | 
|  | * points to a blocked task -- which guaratees the task is present. | 
|  | */ | 
|  | p->pi_top_task = pi_task; | 
|  |  | 
|  | /* | 
|  | * For FIFO/RR we only need to set prio, if that matches we're done. | 
|  | */ | 
|  | if (prio == p->prio && !dl_prio(prio)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Idle task boosting is a nono in general. There is one | 
|  | * exception, when PREEMPT_RT and NOHZ is active: | 
|  | * | 
|  | * The idle task calls get_next_timer_interrupt() and holds | 
|  | * the timer wheel base->lock on the CPU and another CPU wants | 
|  | * to access the timer (probably to cancel it). We can safely | 
|  | * ignore the boosting request, as the idle CPU runs this code | 
|  | * with interrupts disabled and will complete the lock | 
|  | * protected section without being interrupted. So there is no | 
|  | * real need to boost. | 
|  | */ | 
|  | if (unlikely(p == rq->idle)) { | 
|  | WARN_ON(p != rq->curr); | 
|  | WARN_ON(p->pi_blocked_on); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | trace_sched_pi_setprio(p, pi_task); | 
|  | oldprio = p->prio; | 
|  |  | 
|  | if (oldprio == prio) | 
|  | queue_flag &= ~DEQUEUE_MOVE; | 
|  |  | 
|  | prev_class = p->sched_class; | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  | if (queued) | 
|  | dequeue_task(rq, p, queue_flag); | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | /* | 
|  | * Boosting condition are: | 
|  | * 1. -rt task is running and holds mutex A | 
|  | *      --> -dl task blocks on mutex A | 
|  | * | 
|  | * 2. -dl task is running and holds mutex A | 
|  | *      --> -dl task blocks on mutex A and could preempt the | 
|  | *          running task | 
|  | */ | 
|  | if (dl_prio(prio)) { | 
|  | if (!dl_prio(p->normal_prio) || | 
|  | (pi_task && dl_prio(pi_task->prio) && | 
|  | dl_entity_preempt(&pi_task->dl, &p->dl))) { | 
|  | p->dl.dl_boosted = 1; | 
|  | queue_flag |= ENQUEUE_REPLENISH; | 
|  | } else | 
|  | p->dl.dl_boosted = 0; | 
|  | p->sched_class = &dl_sched_class; | 
|  | } else if (rt_prio(prio)) { | 
|  | if (dl_prio(oldprio)) | 
|  | p->dl.dl_boosted = 0; | 
|  | if (oldprio < prio) | 
|  | queue_flag |= ENQUEUE_HEAD; | 
|  | p->sched_class = &rt_sched_class; | 
|  | } else { | 
|  | if (dl_prio(oldprio)) | 
|  | p->dl.dl_boosted = 0; | 
|  | if (rt_prio(oldprio)) | 
|  | p->rt.timeout = 0; | 
|  | p->sched_class = &fair_sched_class; | 
|  | } | 
|  |  | 
|  | p->prio = prio; | 
|  |  | 
|  | if (queued) | 
|  | enqueue_task(rq, p, queue_flag); | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  |  | 
|  | check_class_changed(rq, p, prev_class, oldprio); | 
|  | out_unlock: | 
|  | /* Avoid rq from going away on us: */ | 
|  | preempt_disable(); | 
|  | __task_rq_unlock(rq, &rf); | 
|  |  | 
|  | balance_callback(rq); | 
|  | preempt_enable(); | 
|  | } | 
|  | #else | 
|  | static inline int rt_effective_prio(struct task_struct *p, int prio) | 
|  | { | 
|  | return prio; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void set_user_nice(struct task_struct *p, long nice) | 
|  | { | 
|  | bool queued, running; | 
|  | int old_prio, delta; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) | 
|  | return; | 
|  | /* | 
|  | * We have to be careful, if called from sys_setpriority(), | 
|  | * the task might be in the middle of scheduling on another CPU. | 
|  | */ | 
|  | rq = task_rq_lock(p, &rf); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | /* | 
|  | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | * allow the 'normal' nice value to be set - but as expected | 
|  | * it wont have any effect on scheduling until the task is | 
|  | * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: | 
|  | */ | 
|  | if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | goto out_unlock; | 
|  | } | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  | if (queued) | 
|  | dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | set_load_weight(p, true); | 
|  | old_prio = p->prio; | 
|  | p->prio = effective_prio(p); | 
|  | delta = p->prio - old_prio; | 
|  |  | 
|  | if (queued) { | 
|  | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
|  | /* | 
|  | * If the task increased its priority or is running and | 
|  | * lowered its priority, then reschedule its CPU: | 
|  | */ | 
|  | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
|  | resched_curr(rq); | 
|  | } | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  | out_unlock: | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | } | 
|  | EXPORT_SYMBOL(set_user_nice); | 
|  |  | 
|  | /* | 
|  | * can_nice - check if a task can reduce its nice value | 
|  | * @p: task | 
|  | * @nice: nice value | 
|  | */ | 
|  | int can_nice(const struct task_struct *p, const int nice) | 
|  | { | 
|  | /* Convert nice value [19,-20] to rlimit style value [1,40]: */ | 
|  | int nice_rlim = nice_to_rlimit(nice); | 
|  |  | 
|  | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || | 
|  | capable(CAP_SYS_NICE)); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_NICE | 
|  |  | 
|  | /* | 
|  | * sys_nice - change the priority of the current process. | 
|  | * @increment: priority increment | 
|  | * | 
|  | * sys_setpriority is a more generic, but much slower function that | 
|  | * does similar things. | 
|  | */ | 
|  | SYSCALL_DEFINE1(nice, int, increment) | 
|  | { | 
|  | long nice, retval; | 
|  |  | 
|  | /* | 
|  | * Setpriority might change our priority at the same moment. | 
|  | * We don't have to worry. Conceptually one call occurs first | 
|  | * and we have a single winner. | 
|  | */ | 
|  | increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); | 
|  | nice = task_nice(current) + increment; | 
|  |  | 
|  | nice = clamp_val(nice, MIN_NICE, MAX_NICE); | 
|  | if (increment < 0 && !can_nice(current, nice)) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setnice(current, nice); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | set_user_nice(current, nice); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_prio - return the priority value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: The priority value as seen by users in /proc. | 
|  | * RT tasks are offset by -200. Normal tasks are centered | 
|  | * around 0, value goes from -16 to +15. | 
|  | */ | 
|  | int task_prio(const struct task_struct *p) | 
|  | { | 
|  | return p->prio - MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_cpu - is a given CPU idle currently? | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * Return: 1 if the CPU is currently idle. 0 otherwise. | 
|  | */ | 
|  | int idle_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (rq->curr != rq->idle) | 
|  | return 0; | 
|  |  | 
|  | if (rq->nr_running) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (!llist_empty(&rq->wake_list)) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * available_idle_cpu - is a given CPU idle for enqueuing work. | 
|  | * @cpu: the CPU in question. | 
|  | * | 
|  | * Return: 1 if the CPU is currently idle. 0 otherwise. | 
|  | */ | 
|  | int available_idle_cpu(int cpu) | 
|  | { | 
|  | if (!idle_cpu(cpu)) | 
|  | return 0; | 
|  |  | 
|  | if (vcpu_is_preempted(cpu)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_task - return the idle task for a given CPU. | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * Return: The idle task for the CPU @cpu. | 
|  | */ | 
|  | struct task_struct *idle_task(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_process_by_pid - find a process with a matching PID value. | 
|  | * @pid: the pid in question. | 
|  | * | 
|  | * The task of @pid, if found. %NULL otherwise. | 
|  | */ | 
|  | static struct task_struct *find_process_by_pid(pid_t pid) | 
|  | { | 
|  | return pid ? find_task_by_vpid(pid) : current; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_setparam() passes in -1 for its policy, to let the functions | 
|  | * it calls know not to change it. | 
|  | */ | 
|  | #define SETPARAM_POLICY	-1 | 
|  |  | 
|  | static void __setscheduler_params(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | int policy = attr->sched_policy; | 
|  |  | 
|  | if (policy == SETPARAM_POLICY) | 
|  | policy = p->policy; | 
|  |  | 
|  | p->policy = policy; | 
|  |  | 
|  | if (dl_policy(policy)) | 
|  | __setparam_dl(p, attr); | 
|  | else if (fair_policy(policy)) | 
|  | p->static_prio = NICE_TO_PRIO(attr->sched_nice); | 
|  |  | 
|  | /* | 
|  | * __sched_setscheduler() ensures attr->sched_priority == 0 when | 
|  | * !rt_policy. Always setting this ensures that things like | 
|  | * getparam()/getattr() don't report silly values for !rt tasks. | 
|  | */ | 
|  | p->rt_priority = attr->sched_priority; | 
|  | p->normal_prio = normal_prio(p); | 
|  | set_load_weight(p, true); | 
|  | } | 
|  |  | 
|  | /* Actually do priority change: must hold pi & rq lock. */ | 
|  | static void __setscheduler(struct rq *rq, struct task_struct *p, | 
|  | const struct sched_attr *attr, bool keep_boost) | 
|  | { | 
|  | /* | 
|  | * If params can't change scheduling class changes aren't allowed | 
|  | * either. | 
|  | */ | 
|  | if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) | 
|  | return; | 
|  |  | 
|  | __setscheduler_params(p, attr); | 
|  |  | 
|  | /* | 
|  | * Keep a potential priority boosting if called from | 
|  | * sched_setscheduler(). | 
|  | */ | 
|  | p->prio = normal_prio(p); | 
|  | if (keep_boost) | 
|  | p->prio = rt_effective_prio(p, p->prio); | 
|  |  | 
|  | if (dl_prio(p->prio)) | 
|  | p->sched_class = &dl_sched_class; | 
|  | else if (rt_prio(p->prio)) | 
|  | p->sched_class = &rt_sched_class; | 
|  | else | 
|  | p->sched_class = &fair_sched_class; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the target process has a UID that matches the current process's: | 
|  | */ | 
|  | static bool check_same_owner(struct task_struct *p) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *pcred; | 
|  | bool match; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pcred = __task_cred(p); | 
|  | match = (uid_eq(cred->euid, pcred->euid) || | 
|  | uid_eq(cred->euid, pcred->uid)); | 
|  | rcu_read_unlock(); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | static int __sched_setscheduler(struct task_struct *p, | 
|  | const struct sched_attr *attr, | 
|  | bool user, bool pi) | 
|  | { | 
|  | int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : | 
|  | MAX_RT_PRIO - 1 - attr->sched_priority; | 
|  | int retval, oldprio, oldpolicy = -1, queued, running; | 
|  | int new_effective_prio, policy = attr->sched_policy; | 
|  | const struct sched_class *prev_class; | 
|  | struct rq_flags rf; | 
|  | int reset_on_fork; | 
|  | int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* The pi code expects interrupts enabled */ | 
|  | BUG_ON(pi && in_interrupt()); | 
|  | recheck: | 
|  | /* Double check policy once rq lock held: */ | 
|  | if (policy < 0) { | 
|  | reset_on_fork = p->sched_reset_on_fork; | 
|  | policy = oldpolicy = p->policy; | 
|  | } else { | 
|  | reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); | 
|  |  | 
|  | if (!valid_policy(policy)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
|  | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
|  | * SCHED_BATCH and SCHED_IDLE is 0. | 
|  | */ | 
|  | if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || | 
|  | (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) | 
|  | return -EINVAL; | 
|  | if ((dl_policy(policy) && !__checkparam_dl(attr)) || | 
|  | (rt_policy(policy) != (attr->sched_priority != 0))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Allow unprivileged RT tasks to decrease priority: | 
|  | */ | 
|  | if (user && !capable(CAP_SYS_NICE)) { | 
|  | if (fair_policy(policy)) { | 
|  | if (attr->sched_nice < task_nice(p) && | 
|  | !can_nice(p, attr->sched_nice)) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (rt_policy(policy)) { | 
|  | unsigned long rlim_rtprio = | 
|  | task_rlimit(p, RLIMIT_RTPRIO); | 
|  |  | 
|  | /* Can't set/change the rt policy: */ | 
|  | if (policy != p->policy && !rlim_rtprio) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Can't increase priority: */ | 
|  | if (attr->sched_priority > p->rt_priority && | 
|  | attr->sched_priority > rlim_rtprio) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can't set/change SCHED_DEADLINE policy at all for now | 
|  | * (safest behavior); in the future we would like to allow | 
|  | * unprivileged DL tasks to increase their relative deadline | 
|  | * or reduce their runtime (both ways reducing utilization) | 
|  | */ | 
|  | if (dl_policy(policy)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Treat SCHED_IDLE as nice 20. Only allow a switch to | 
|  | * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | 
|  | */ | 
|  | if (task_has_idle_policy(p) && !idle_policy(policy)) { | 
|  | if (!can_nice(p, task_nice(p))) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* Can't change other user's priorities: */ | 
|  | if (!check_same_owner(p)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Normal users shall not reset the sched_reset_on_fork flag: */ | 
|  | if (p->sched_reset_on_fork && !reset_on_fork) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (user) { | 
|  | if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = security_task_setscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Update task specific "requested" clamps */ | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { | 
|  | retval = uclamp_validate(p, attr); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if (pi) | 
|  | cpuset_read_lock(); | 
|  |  | 
|  | /* | 
|  | * Make sure no PI-waiters arrive (or leave) while we are | 
|  | * changing the priority of the task: | 
|  | * | 
|  | * To be able to change p->policy safely, the appropriate | 
|  | * runqueue lock must be held. | 
|  | */ | 
|  | rq = task_rq_lock(p, &rf); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | /* | 
|  | * Changing the policy of the stop threads its a very bad idea: | 
|  | */ | 
|  | if (p == rq->stop) { | 
|  | retval = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If not changing anything there's no need to proceed further, | 
|  | * but store a possible modification of reset_on_fork. | 
|  | */ | 
|  | if (unlikely(policy == p->policy)) { | 
|  | if (fair_policy(policy) && attr->sched_nice != task_nice(p)) | 
|  | goto change; | 
|  | if (rt_policy(policy) && attr->sched_priority != p->rt_priority) | 
|  | goto change; | 
|  | if (dl_policy(policy) && dl_param_changed(p, attr)) | 
|  | goto change; | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) | 
|  | goto change; | 
|  |  | 
|  | p->sched_reset_on_fork = reset_on_fork; | 
|  | retval = 0; | 
|  | goto unlock; | 
|  | } | 
|  | change: | 
|  |  | 
|  | if (user) { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * Do not allow realtime tasks into groups that have no runtime | 
|  | * assigned. | 
|  | */ | 
|  | if (rt_bandwidth_enabled() && rt_policy(policy) && | 
|  | task_group(p)->rt_bandwidth.rt_runtime == 0 && | 
|  | !task_group_is_autogroup(task_group(p))) { | 
|  | retval = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | if (dl_bandwidth_enabled() && dl_policy(policy) && | 
|  | !(attr->sched_flags & SCHED_FLAG_SUGOV)) { | 
|  | cpumask_t *span = rq->rd->span; | 
|  |  | 
|  | /* | 
|  | * Don't allow tasks with an affinity mask smaller than | 
|  | * the entire root_domain to become SCHED_DEADLINE. We | 
|  | * will also fail if there's no bandwidth available. | 
|  | */ | 
|  | if (!cpumask_subset(span, p->cpus_ptr) || | 
|  | rq->rd->dl_bw.bw == 0) { | 
|  | retval = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Re-check policy now with rq lock held: */ | 
|  | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | policy = oldpolicy = -1; | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | if (pi) | 
|  | cpuset_read_unlock(); | 
|  | goto recheck; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If setscheduling to SCHED_DEADLINE (or changing the parameters | 
|  | * of a SCHED_DEADLINE task) we need to check if enough bandwidth | 
|  | * is available. | 
|  | */ | 
|  | if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { | 
|  | retval = -EBUSY; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | p->sched_reset_on_fork = reset_on_fork; | 
|  | oldprio = p->prio; | 
|  |  | 
|  | if (pi) { | 
|  | /* | 
|  | * Take priority boosted tasks into account. If the new | 
|  | * effective priority is unchanged, we just store the new | 
|  | * normal parameters and do not touch the scheduler class and | 
|  | * the runqueue. This will be done when the task deboost | 
|  | * itself. | 
|  | */ | 
|  | new_effective_prio = rt_effective_prio(p, newprio); | 
|  | if (new_effective_prio == oldprio) | 
|  | queue_flags &= ~DEQUEUE_MOVE; | 
|  | } | 
|  |  | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  | if (queued) | 
|  | dequeue_task(rq, p, queue_flags); | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | prev_class = p->sched_class; | 
|  |  | 
|  | __setscheduler(rq, p, attr, pi); | 
|  | __setscheduler_uclamp(p, attr); | 
|  |  | 
|  | if (queued) { | 
|  | /* | 
|  | * We enqueue to tail when the priority of a task is | 
|  | * increased (user space view). | 
|  | */ | 
|  | if (oldprio < p->prio) | 
|  | queue_flags |= ENQUEUE_HEAD; | 
|  |  | 
|  | enqueue_task(rq, p, queue_flags); | 
|  | } | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  |  | 
|  | check_class_changed(rq, p, prev_class, oldprio); | 
|  |  | 
|  | /* Avoid rq from going away on us: */ | 
|  | preempt_disable(); | 
|  | task_rq_unlock(rq, p, &rf); | 
|  |  | 
|  | if (pi) { | 
|  | cpuset_read_unlock(); | 
|  | rt_mutex_adjust_pi(p); | 
|  | } | 
|  |  | 
|  | /* Run balance callbacks after we've adjusted the PI chain: */ | 
|  | balance_callback(rq); | 
|  | preempt_enable(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unlock: | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | if (pi) | 
|  | cpuset_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int _sched_setscheduler(struct task_struct *p, int policy, | 
|  | const struct sched_param *param, bool check) | 
|  | { | 
|  | struct sched_attr attr = { | 
|  | .sched_policy   = policy, | 
|  | .sched_priority = param->sched_priority, | 
|  | .sched_nice	= PRIO_TO_NICE(p->static_prio), | 
|  | }; | 
|  |  | 
|  | /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ | 
|  | if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { | 
|  | attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
|  | policy &= ~SCHED_RESET_ON_FORK; | 
|  | attr.sched_policy = policy; | 
|  | } | 
|  |  | 
|  | return __sched_setscheduler(p, &attr, check, true); | 
|  | } | 
|  | /** | 
|  | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | * | 
|  | * NOTE that the task may be already dead. | 
|  | */ | 
|  | int sched_setscheduler(struct task_struct *p, int policy, | 
|  | const struct sched_param *param) | 
|  | { | 
|  | return _sched_setscheduler(p, policy, param, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
|  |  | 
|  | int sched_setattr(struct task_struct *p, const struct sched_attr *attr) | 
|  | { | 
|  | return __sched_setscheduler(p, attr, true, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setattr); | 
|  |  | 
|  | int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) | 
|  | { | 
|  | return __sched_setscheduler(p, attr, false, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Just like sched_setscheduler, only don't bother checking if the | 
|  | * current context has permission.  For example, this is needed in | 
|  | * stop_machine(): we create temporary high priority worker threads, | 
|  | * but our caller might not have that capability. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 
|  | const struct sched_param *param) | 
|  | { | 
|  | return _sched_setscheduler(p, policy, param, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); | 
|  |  | 
|  | static int | 
|  | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lparam; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | return -EFAULT; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (likely(p)) | 
|  | get_task_struct(p); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (likely(p)) { | 
|  | retval = sched_setscheduler(p, policy, &lparam); | 
|  | put_task_struct(p); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mimics kernel/events/core.c perf_copy_attr(). | 
|  | */ | 
|  | static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) | 
|  | { | 
|  | u32 size; | 
|  | int ret; | 
|  |  | 
|  | /* Zero the full structure, so that a short copy will be nice: */ | 
|  | memset(attr, 0, sizeof(*attr)); | 
|  |  | 
|  | ret = get_user(size, &uattr->size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* ABI compatibility quirk: */ | 
|  | if (!size) | 
|  | size = SCHED_ATTR_SIZE_VER0; | 
|  | if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) | 
|  | goto err_size; | 
|  |  | 
|  | ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); | 
|  | if (ret) { | 
|  | if (ret == -E2BIG) | 
|  | goto err_size; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && | 
|  | size < SCHED_ATTR_SIZE_VER1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * XXX: Do we want to be lenient like existing syscalls; or do we want | 
|  | * to be strict and return an error on out-of-bounds values? | 
|  | */ | 
|  | attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_size: | 
|  | put_user(sizeof(*attr), &uattr->size); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | * @pid: the pid in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) | 
|  | { | 
|  | if (policy < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_sched_setscheduler(pid, policy, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | 
|  | { | 
|  | return do_sched_setscheduler(pid, SETPARAM_POLICY, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setattr - same as above, but with extended sched_attr | 
|  | * @pid: the pid in question. | 
|  | * @uattr: structure containing the extended parameters. | 
|  | * @flags: for future extension. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, | 
|  | unsigned int, flags) | 
|  | { | 
|  | struct sched_attr attr; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!uattr || pid < 0 || flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = sched_copy_attr(uattr, &attr); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if ((int)attr.sched_policy < 0) | 
|  | return -EINVAL; | 
|  | if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) | 
|  | attr.sched_policy = SETPARAM_POLICY; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (likely(p)) | 
|  | get_task_struct(p); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (likely(p)) { | 
|  | retval = sched_setattr(p, &attr); | 
|  | put_task_struct(p); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | * @pid: the pid in question. | 
|  | * | 
|  | * Return: On success, the policy of the thread. Otherwise, a negative error | 
|  | * code. | 
|  | */ | 
|  | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | rcu_read_lock(); | 
|  | p = find_process_by_pid(pid); | 
|  | if (p) { | 
|  | retval = security_task_getscheduler(p); | 
|  | if (!retval) | 
|  | retval = p->policy | 
|  | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getparam - get the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the RT priority. | 
|  | * | 
|  | * Return: On success, 0 and the RT priority is in @param. Otherwise, an error | 
|  | * code. | 
|  | */ | 
|  | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | 
|  | { | 
|  | struct sched_param lp = { .sched_priority = 0 }; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = find_process_by_pid(pid); | 
|  | retval = -ESRCH; | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (task_has_rt_policy(p)) | 
|  | lp.sched_priority = p->rt_priority; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | */ | 
|  | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the kernel size attribute structure (which might be larger | 
|  | * than what user-space knows about) to user-space. | 
|  | * | 
|  | * Note that all cases are valid: user-space buffer can be larger or | 
|  | * smaller than the kernel-space buffer. The usual case is that both | 
|  | * have the same size. | 
|  | */ | 
|  | static int | 
|  | sched_attr_copy_to_user(struct sched_attr __user *uattr, | 
|  | struct sched_attr *kattr, | 
|  | unsigned int usize) | 
|  | { | 
|  | unsigned int ksize = sizeof(*kattr); | 
|  |  | 
|  | if (!access_ok(uattr, usize)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * sched_getattr() ABI forwards and backwards compatibility: | 
|  | * | 
|  | * If usize == ksize then we just copy everything to user-space and all is good. | 
|  | * | 
|  | * If usize < ksize then we only copy as much as user-space has space for, | 
|  | * this keeps ABI compatibility as well. We skip the rest. | 
|  | * | 
|  | * If usize > ksize then user-space is using a newer version of the ABI, | 
|  | * which part the kernel doesn't know about. Just ignore it - tooling can | 
|  | * detect the kernel's knowledge of attributes from the attr->size value | 
|  | * which is set to ksize in this case. | 
|  | */ | 
|  | kattr->size = min(usize, ksize); | 
|  |  | 
|  | if (copy_to_user(uattr, kattr, kattr->size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getattr - similar to sched_getparam, but with sched_attr | 
|  | * @pid: the pid in question. | 
|  | * @uattr: structure containing the extended parameters. | 
|  | * @usize: sizeof(attr) for fwd/bwd comp. | 
|  | * @flags: for future extension. | 
|  | */ | 
|  | SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, | 
|  | unsigned int, usize, unsigned int, flags) | 
|  | { | 
|  | struct sched_attr kattr = { }; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!uattr || pid < 0 || usize > PAGE_SIZE || | 
|  | usize < SCHED_ATTR_SIZE_VER0 || flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = find_process_by_pid(pid); | 
|  | retval = -ESRCH; | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | kattr.sched_policy = p->policy; | 
|  | if (p->sched_reset_on_fork) | 
|  | kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
|  | if (task_has_dl_policy(p)) | 
|  | __getparam_dl(p, &kattr); | 
|  | else if (task_has_rt_policy(p)) | 
|  | kattr.sched_priority = p->rt_priority; | 
|  | else | 
|  | kattr.sched_nice = task_nice(p); | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  | kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; | 
|  | kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; | 
|  | #endif | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return sched_attr_copy_to_user(uattr, &kattr, usize); | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 
|  | { | 
|  | cpumask_var_t cpus_allowed, new_mask; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) { | 
|  | rcu_read_unlock(); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* Prevent p going away */ | 
|  | get_task_struct(p); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (p->flags & PF_NO_SETAFFINITY) { | 
|  | retval = -EINVAL; | 
|  | goto out_put_task; | 
|  | } | 
|  | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 
|  | retval = -ENOMEM; | 
|  | goto out_put_task; | 
|  | } | 
|  | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | 
|  | retval = -ENOMEM; | 
|  | goto out_free_cpus_allowed; | 
|  | } | 
|  | retval = -EPERM; | 
|  | if (!check_same_owner(p)) { | 
|  | rcu_read_lock(); | 
|  | if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { | 
|  | rcu_read_unlock(); | 
|  | goto out_free_new_mask; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | retval = security_task_setscheduler(p); | 
|  | if (retval) | 
|  | goto out_free_new_mask; | 
|  |  | 
|  |  | 
|  | cpuset_cpus_allowed(p, cpus_allowed); | 
|  | cpumask_and(new_mask, in_mask, cpus_allowed); | 
|  |  | 
|  | /* | 
|  | * Since bandwidth control happens on root_domain basis, | 
|  | * if admission test is enabled, we only admit -deadline | 
|  | * tasks allowed to run on all the CPUs in the task's | 
|  | * root_domain. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { | 
|  | rcu_read_lock(); | 
|  | if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { | 
|  | retval = -EBUSY; | 
|  | rcu_read_unlock(); | 
|  | goto out_free_new_mask; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif | 
|  | again: | 
|  | retval = __set_cpus_allowed_ptr(p, new_mask, true); | 
|  |  | 
|  | if (!retval) { | 
|  | cpuset_cpus_allowed(p, cpus_allowed); | 
|  | if (!cpumask_subset(new_mask, cpus_allowed)) { | 
|  | /* | 
|  | * We must have raced with a concurrent cpuset | 
|  | * update. Just reset the cpus_allowed to the | 
|  | * cpuset's cpus_allowed | 
|  | */ | 
|  | cpumask_copy(new_mask, cpus_allowed); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | out_free_new_mask: | 
|  | free_cpumask_var(new_mask); | 
|  | out_free_cpus_allowed: | 
|  | free_cpumask_var(cpus_allowed); | 
|  | out_put_task: | 
|  | put_task_struct(p); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | struct cpumask *new_mask) | 
|  | { | 
|  | if (len < cpumask_size()) | 
|  | cpumask_clear(new_mask); | 
|  | else if (len > cpumask_size()) | 
|  | len = cpumask_size(); | 
|  |  | 
|  | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setaffinity - set the CPU affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to the new CPU mask | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | 
|  | unsigned long __user *, user_mask_ptr) | 
|  | { | 
|  | cpumask_var_t new_mask; | 
|  | int retval; | 
|  |  | 
|  | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | 
|  | if (retval == 0) | 
|  | retval = sched_setaffinity(pid, new_mask); | 
|  | free_cpumask_var(new_mask); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 
|  | { | 
|  | struct task_struct *p; | 
|  | unsigned long flags; | 
|  | int retval; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | raw_spin_lock_irqsave(&p->pi_lock, flags); | 
|  | cpumask_and(mask, &p->cpus_mask, cpu_active_mask); | 
|  | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getaffinity - get the CPU affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to hold the current CPU mask | 
|  | * | 
|  | * Return: size of CPU mask copied to user_mask_ptr on success. An | 
|  | * error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | 
|  | unsigned long __user *, user_mask_ptr) | 
|  | { | 
|  | int ret; | 
|  | cpumask_var_t mask; | 
|  |  | 
|  | if ((len * BITS_PER_BYTE) < nr_cpu_ids) | 
|  | return -EINVAL; | 
|  | if (len & (sizeof(unsigned long)-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = sched_getaffinity(pid, mask); | 
|  | if (ret == 0) { | 
|  | unsigned int retlen = min(len, cpumask_size()); | 
|  |  | 
|  | if (copy_to_user(user_mask_ptr, mask, retlen)) | 
|  | ret = -EFAULT; | 
|  | else | 
|  | ret = retlen; | 
|  | } | 
|  | free_cpumask_var(mask); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_yield - yield the current processor to other threads. | 
|  | * | 
|  | * This function yields the current CPU to other tasks. If there are no | 
|  | * other threads running on this CPU then this function will return. | 
|  | * | 
|  | * Return: 0. | 
|  | */ | 
|  | static void do_sched_yield(void) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = this_rq_lock_irq(&rf); | 
|  |  | 
|  | schedstat_inc(rq->yld_count); | 
|  | current->sched_class->yield_task(rq); | 
|  |  | 
|  | preempt_disable(); | 
|  | rq_unlock_irq(rq, &rf); | 
|  | sched_preempt_enable_no_resched(); | 
|  |  | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE0(sched_yield) | 
|  | { | 
|  | do_sched_yield(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_PREEMPTION | 
|  | int __sched _cond_resched(void) | 
|  | { | 
|  | if (should_resched(0)) { | 
|  | preempt_schedule_common(); | 
|  | return 1; | 
|  | } | 
|  | rcu_all_qs(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(_cond_resched); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|  | * call schedule, and on return reacquire the lock. | 
|  | * | 
|  | * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level | 
|  | * operations here to prevent schedule() from being called twice (once via | 
|  | * spin_unlock(), once by hand). | 
|  | */ | 
|  | int __cond_resched_lock(spinlock_t *lock) | 
|  | { | 
|  | int resched = should_resched(PREEMPT_LOCK_OFFSET); | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held(lock); | 
|  |  | 
|  | if (spin_needbreak(lock) || resched) { | 
|  | spin_unlock(lock); | 
|  | if (resched) | 
|  | preempt_schedule_common(); | 
|  | else | 
|  | cpu_relax(); | 
|  | ret = 1; | 
|  | spin_lock(lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__cond_resched_lock); | 
|  |  | 
|  | /** | 
|  | * yield - yield the current processor to other threads. | 
|  | * | 
|  | * Do not ever use this function, there's a 99% chance you're doing it wrong. | 
|  | * | 
|  | * The scheduler is at all times free to pick the calling task as the most | 
|  | * eligible task to run, if removing the yield() call from your code breaks | 
|  | * it, its already broken. | 
|  | * | 
|  | * Typical broken usage is: | 
|  | * | 
|  | * while (!event) | 
|  | *	yield(); | 
|  | * | 
|  | * where one assumes that yield() will let 'the other' process run that will | 
|  | * make event true. If the current task is a SCHED_FIFO task that will never | 
|  | * happen. Never use yield() as a progress guarantee!! | 
|  | * | 
|  | * If you want to use yield() to wait for something, use wait_event(). | 
|  | * If you want to use yield() to be 'nice' for others, use cond_resched(). | 
|  | * If you still want to use yield(), do not! | 
|  | */ | 
|  | void __sched yield(void) | 
|  | { | 
|  | set_current_state(TASK_RUNNING); | 
|  | do_sched_yield(); | 
|  | } | 
|  | EXPORT_SYMBOL(yield); | 
|  |  | 
|  | /** | 
|  | * yield_to - yield the current processor to another thread in | 
|  | * your thread group, or accelerate that thread toward the | 
|  | * processor it's on. | 
|  | * @p: target task | 
|  | * @preempt: whether task preemption is allowed or not | 
|  | * | 
|  | * It's the caller's job to ensure that the target task struct | 
|  | * can't go away on us before we can do any checks. | 
|  | * | 
|  | * Return: | 
|  | *	true (>0) if we indeed boosted the target task. | 
|  | *	false (0) if we failed to boost the target. | 
|  | *	-ESRCH if there's no task to yield to. | 
|  | */ | 
|  | int __sched yield_to(struct task_struct *p, bool preempt) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct rq *rq, *p_rq; | 
|  | unsigned long flags; | 
|  | int yielded = 0; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rq = this_rq(); | 
|  |  | 
|  | again: | 
|  | p_rq = task_rq(p); | 
|  | /* | 
|  | * If we're the only runnable task on the rq and target rq also | 
|  | * has only one task, there's absolutely no point in yielding. | 
|  | */ | 
|  | if (rq->nr_running == 1 && p_rq->nr_running == 1) { | 
|  | yielded = -ESRCH; | 
|  | goto out_irq; | 
|  | } | 
|  |  | 
|  | double_rq_lock(rq, p_rq); | 
|  | if (task_rq(p) != p_rq) { | 
|  | double_rq_unlock(rq, p_rq); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (!curr->sched_class->yield_to_task) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (curr->sched_class != p->sched_class) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (task_running(p_rq, p) || p->state) | 
|  | goto out_unlock; | 
|  |  | 
|  | yielded = curr->sched_class->yield_to_task(rq, p, preempt); | 
|  | if (yielded) { | 
|  | schedstat_inc(rq->yld_count); | 
|  | /* | 
|  | * Make p's CPU reschedule; pick_next_entity takes care of | 
|  | * fairness. | 
|  | */ | 
|  | if (preempt && rq != p_rq) | 
|  | resched_curr(p_rq); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | double_rq_unlock(rq, p_rq); | 
|  | out_irq: | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | if (yielded > 0) | 
|  | schedule(); | 
|  |  | 
|  | return yielded; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(yield_to); | 
|  |  | 
|  | int io_schedule_prepare(void) | 
|  | { | 
|  | int old_iowait = current->in_iowait; | 
|  |  | 
|  | current->in_iowait = 1; | 
|  | blk_schedule_flush_plug(current); | 
|  |  | 
|  | return old_iowait; | 
|  | } | 
|  |  | 
|  | void io_schedule_finish(int token) | 
|  | { | 
|  | current->in_iowait = token; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 
|  | * that process accounting knows that this is a task in IO wait state. | 
|  | */ | 
|  | long __sched io_schedule_timeout(long timeout) | 
|  | { | 
|  | int token; | 
|  | long ret; | 
|  |  | 
|  | token = io_schedule_prepare(); | 
|  | ret = schedule_timeout(timeout); | 
|  | io_schedule_finish(token); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(io_schedule_timeout); | 
|  |  | 
|  | void __sched io_schedule(void) | 
|  | { | 
|  | int token; | 
|  |  | 
|  | token = io_schedule_prepare(); | 
|  | schedule(); | 
|  | io_schedule_finish(token); | 
|  | } | 
|  | EXPORT_SYMBOL(io_schedule); | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * Return: On success, this syscall returns the maximum | 
|  | * rt_priority that can be used by a given scheduling class. | 
|  | * On failure, a negative error code is returned. | 
|  | */ | 
|  | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = MAX_USER_RT_PRIO-1; | 
|  | break; | 
|  | case SCHED_DEADLINE: | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * Return: On success, this syscall returns the minimum | 
|  | * rt_priority that can be used by a given scheduling class. | 
|  | * On failure, a negative error code is returned. | 
|  | */ | 
|  | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = 1; | 
|  | break; | 
|  | case SCHED_DEADLINE: | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) | 
|  | { | 
|  | struct task_struct *p; | 
|  | unsigned int time_slice; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | int retval; | 
|  |  | 
|  | if (pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | rcu_read_lock(); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | rq = task_rq_lock(p, &rf); | 
|  | time_slice = 0; | 
|  | if (p->sched_class->get_rr_interval) | 
|  | time_slice = p->sched_class->get_rr_interval(rq, p); | 
|  | task_rq_unlock(rq, p, &rf); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | jiffies_to_timespec64(time_slice, t); | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_rr_get_interval - return the default timeslice of a process. | 
|  | * @pid: pid of the process. | 
|  | * @interval: userspace pointer to the timeslice value. | 
|  | * | 
|  | * this syscall writes the default timeslice value of a given process | 
|  | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | * | 
|  | * Return: On success, 0 and the timeslice is in @interval. Otherwise, | 
|  | * an error code. | 
|  | */ | 
|  | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | 
|  | struct __kernel_timespec __user *, interval) | 
|  | { | 
|  | struct timespec64 t; | 
|  | int retval = sched_rr_get_interval(pid, &t); | 
|  |  | 
|  | if (retval == 0) | 
|  | retval = put_timespec64(&t, interval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|  | SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, | 
|  | struct old_timespec32 __user *, interval) | 
|  | { | 
|  | struct timespec64 t; | 
|  | int retval = sched_rr_get_interval(pid, &t); | 
|  |  | 
|  | if (retval == 0) | 
|  | retval = put_old_timespec32(&t, interval); | 
|  | return retval; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void sched_show_task(struct task_struct *p) | 
|  | { | 
|  | unsigned long free = 0; | 
|  | int ppid; | 
|  |  | 
|  | if (!try_get_task_stack(p)) | 
|  | return; | 
|  |  | 
|  | printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); | 
|  |  | 
|  | if (p->state == TASK_RUNNING) | 
|  | printk(KERN_CONT "  running task    "); | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | free = stack_not_used(p); | 
|  | #endif | 
|  | ppid = 0; | 
|  | rcu_read_lock(); | 
|  | if (pid_alive(p)) | 
|  | ppid = task_pid_nr(rcu_dereference(p->real_parent)); | 
|  | rcu_read_unlock(); | 
|  | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | 
|  | task_pid_nr(p), ppid, | 
|  | (unsigned long)task_thread_info(p)->flags); | 
|  |  | 
|  | print_worker_info(KERN_INFO, p); | 
|  | show_stack(p, NULL); | 
|  | put_task_stack(p); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_show_task); | 
|  |  | 
|  | static inline bool | 
|  | state_filter_match(unsigned long state_filter, struct task_struct *p) | 
|  | { | 
|  | /* no filter, everything matches */ | 
|  | if (!state_filter) | 
|  | return true; | 
|  |  | 
|  | /* filter, but doesn't match */ | 
|  | if (!(p->state & state_filter)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows | 
|  | * TASK_KILLABLE). | 
|  | */ | 
|  | if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | void show_state_filter(unsigned long state_filter) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | printk(KERN_INFO | 
|  | "  task                PC stack   pid father\n"); | 
|  | #else | 
|  | printk(KERN_INFO | 
|  | "  task                        PC stack   pid father\n"); | 
|  | #endif | 
|  | rcu_read_lock(); | 
|  | for_each_process_thread(g, p) { | 
|  | /* | 
|  | * reset the NMI-timeout, listing all files on a slow | 
|  | * console might take a lot of time: | 
|  | * Also, reset softlockup watchdogs on all CPUs, because | 
|  | * another CPU might be blocked waiting for us to process | 
|  | * an IPI. | 
|  | */ | 
|  | touch_nmi_watchdog(); | 
|  | touch_all_softlockup_watchdogs(); | 
|  | if (state_filter_match(state_filter, p)) | 
|  | sched_show_task(p); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | if (!state_filter) | 
|  | sysrq_sched_debug_show(); | 
|  | #endif | 
|  | rcu_read_unlock(); | 
|  | /* | 
|  | * Only show locks if all tasks are dumped: | 
|  | */ | 
|  | if (!state_filter) | 
|  | debug_show_all_locks(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_idle - set up an idle thread for a given CPU | 
|  | * @idle: task in question | 
|  | * @cpu: CPU the idle task belongs to | 
|  | * | 
|  | * NOTE: this function does not set the idle thread's NEED_RESCHED | 
|  | * flag, to make booting more robust. | 
|  | */ | 
|  | void init_idle(struct task_struct *idle, int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | __sched_fork(0, idle); | 
|  |  | 
|  | raw_spin_lock_irqsave(&idle->pi_lock, flags); | 
|  | raw_spin_lock(&rq->lock); | 
|  |  | 
|  | idle->state = TASK_RUNNING; | 
|  | idle->se.exec_start = sched_clock(); | 
|  | idle->flags |= PF_IDLE; | 
|  |  | 
|  | kasan_unpoison_task_stack(idle); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Its possible that init_idle() gets called multiple times on a task, | 
|  | * in that case do_set_cpus_allowed() will not do the right thing. | 
|  | * | 
|  | * And since this is boot we can forgo the serialization. | 
|  | */ | 
|  | set_cpus_allowed_common(idle, cpumask_of(cpu)); | 
|  | #endif | 
|  | /* | 
|  | * We're having a chicken and egg problem, even though we are | 
|  | * holding rq->lock, the CPU isn't yet set to this CPU so the | 
|  | * lockdep check in task_group() will fail. | 
|  | * | 
|  | * Similar case to sched_fork(). / Alternatively we could | 
|  | * use task_rq_lock() here and obtain the other rq->lock. | 
|  | * | 
|  | * Silence PROVE_RCU | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | __set_task_cpu(idle, cpu); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | rq->idle = idle; | 
|  | rcu_assign_pointer(rq->curr, idle); | 
|  | idle->on_rq = TASK_ON_RQ_QUEUED; | 
|  | #ifdef CONFIG_SMP | 
|  | idle->on_cpu = 1; | 
|  | #endif | 
|  | raw_spin_unlock(&rq->lock); | 
|  | raw_spin_unlock_irqrestore(&idle->pi_lock, flags); | 
|  |  | 
|  | /* Set the preempt count _outside_ the spinlocks! */ | 
|  | init_idle_preempt_count(idle, cpu); | 
|  |  | 
|  | /* | 
|  | * The idle tasks have their own, simple scheduling class: | 
|  | */ | 
|  | idle->sched_class = &idle_sched_class; | 
|  | ftrace_graph_init_idle_task(idle, cpu); | 
|  | vtime_init_idle(idle, cpu); | 
|  | #ifdef CONFIG_SMP | 
|  | sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | int cpuset_cpumask_can_shrink(const struct cpumask *cur, | 
|  | const struct cpumask *trial) | 
|  | { | 
|  | int ret = 1; | 
|  |  | 
|  | if (!cpumask_weight(cur)) | 
|  | return ret; | 
|  |  | 
|  | ret = dl_cpuset_cpumask_can_shrink(cur, trial); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int task_can_attach(struct task_struct *p, | 
|  | const struct cpumask *cs_cpus_allowed) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Kthreads which disallow setaffinity shouldn't be moved | 
|  | * to a new cpuset; we don't want to change their CPU | 
|  | * affinity and isolating such threads by their set of | 
|  | * allowed nodes is unnecessary.  Thus, cpusets are not | 
|  | * applicable for such threads.  This prevents checking for | 
|  | * success of set_cpus_allowed_ptr() on all attached tasks | 
|  | * before cpus_mask may be changed. | 
|  | */ | 
|  | if (p->flags & PF_NO_SETAFFINITY) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, | 
|  | cs_cpus_allowed)) | 
|  | ret = dl_task_can_attach(p, cs_cpus_allowed); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool sched_smp_initialized __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* Migrate current task p to target_cpu */ | 
|  | int migrate_task_to(struct task_struct *p, int target_cpu) | 
|  | { | 
|  | struct migration_arg arg = { p, target_cpu }; | 
|  | int curr_cpu = task_cpu(p); | 
|  |  | 
|  | if (curr_cpu == target_cpu) | 
|  | return 0; | 
|  |  | 
|  | if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* TODO: This is not properly updating schedstats */ | 
|  |  | 
|  | trace_sched_move_numa(p, curr_cpu, target_cpu); | 
|  | return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Requeue a task on a given node and accurately track the number of NUMA | 
|  | * tasks on the runqueues | 
|  | */ | 
|  | void sched_setnuma(struct task_struct *p, int nid) | 
|  | { | 
|  | bool queued, running; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &rf); | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  |  | 
|  | if (queued) | 
|  | dequeue_task(rq, p, DEQUEUE_SAVE); | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | p->numa_preferred_nid = nid; | 
|  |  | 
|  | if (queued) | 
|  | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Ensure that the idle task is using init_mm right before its CPU goes | 
|  | * offline. | 
|  | */ | 
|  | void idle_task_exit(void) | 
|  | { | 
|  | struct mm_struct *mm = current->active_mm; | 
|  |  | 
|  | BUG_ON(cpu_online(smp_processor_id())); | 
|  | BUG_ON(current != this_rq()->idle); | 
|  |  | 
|  | if (mm != &init_mm) { | 
|  | switch_mm(mm, &init_mm, current); | 
|  | finish_arch_post_lock_switch(); | 
|  | } | 
|  |  | 
|  | /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since this CPU is going 'away' for a while, fold any nr_active delta | 
|  | * we might have. Assumes we're called after migrate_tasks() so that the | 
|  | * nr_active count is stable. We need to take the teardown thread which | 
|  | * is calling this into account, so we hand in adjust = 1 to the load | 
|  | * calculation. | 
|  | * | 
|  | * Also see the comment "Global load-average calculations". | 
|  | */ | 
|  | static void calc_load_migrate(struct rq *rq) | 
|  | { | 
|  | long delta = calc_load_fold_active(rq, 1); | 
|  | if (delta) | 
|  | atomic_long_add(delta, &calc_load_tasks); | 
|  | } | 
|  |  | 
|  | static struct task_struct *__pick_migrate_task(struct rq *rq) | 
|  | { | 
|  | const struct sched_class *class; | 
|  | struct task_struct *next; | 
|  |  | 
|  | for_each_class(class) { | 
|  | next = class->pick_next_task(rq, NULL, NULL); | 
|  | if (next) { | 
|  | next->sched_class->put_prev_task(rq, next); | 
|  | return next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The idle class should always have a runnable task */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate all tasks from the rq, sleeping tasks will be migrated by | 
|  | * try_to_wake_up()->select_task_rq(). | 
|  | * | 
|  | * Called with rq->lock held even though we'er in stop_machine() and | 
|  | * there's no concurrency possible, we hold the required locks anyway | 
|  | * because of lock validation efforts. | 
|  | */ | 
|  | static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) | 
|  | { | 
|  | struct rq *rq = dead_rq; | 
|  | struct task_struct *next, *stop = rq->stop; | 
|  | struct rq_flags orf = *rf; | 
|  | int dest_cpu; | 
|  |  | 
|  | /* | 
|  | * Fudge the rq selection such that the below task selection loop | 
|  | * doesn't get stuck on the currently eligible stop task. | 
|  | * | 
|  | * We're currently inside stop_machine() and the rq is either stuck | 
|  | * in the stop_machine_cpu_stop() loop, or we're executing this code, | 
|  | * either way we should never end up calling schedule() until we're | 
|  | * done here. | 
|  | */ | 
|  | rq->stop = NULL; | 
|  |  | 
|  | /* | 
|  | * put_prev_task() and pick_next_task() sched | 
|  | * class method both need to have an up-to-date | 
|  | * value of rq->clock[_task] | 
|  | */ | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | for (;;) { | 
|  | /* | 
|  | * There's this thread running, bail when that's the only | 
|  | * remaining thread: | 
|  | */ | 
|  | if (rq->nr_running == 1) | 
|  | break; | 
|  |  | 
|  | next = __pick_migrate_task(rq); | 
|  |  | 
|  | /* | 
|  | * Rules for changing task_struct::cpus_mask are holding | 
|  | * both pi_lock and rq->lock, such that holding either | 
|  | * stabilizes the mask. | 
|  | * | 
|  | * Drop rq->lock is not quite as disastrous as it usually is | 
|  | * because !cpu_active at this point, which means load-balance | 
|  | * will not interfere. Also, stop-machine. | 
|  | */ | 
|  | rq_unlock(rq, rf); | 
|  | raw_spin_lock(&next->pi_lock); | 
|  | rq_relock(rq, rf); | 
|  |  | 
|  | /* | 
|  | * Since we're inside stop-machine, _nothing_ should have | 
|  | * changed the task, WARN if weird stuff happened, because in | 
|  | * that case the above rq->lock drop is a fail too. | 
|  | */ | 
|  | if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { | 
|  | raw_spin_unlock(&next->pi_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Find suitable destination for @next, with force if needed. */ | 
|  | dest_cpu = select_fallback_rq(dead_rq->cpu, next); | 
|  | rq = __migrate_task(rq, rf, next, dest_cpu); | 
|  | if (rq != dead_rq) { | 
|  | rq_unlock(rq, rf); | 
|  | rq = dead_rq; | 
|  | *rf = orf; | 
|  | rq_relock(rq, rf); | 
|  | } | 
|  | raw_spin_unlock(&next->pi_lock); | 
|  | } | 
|  |  | 
|  | rq->stop = stop; | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | void set_rq_online(struct rq *rq) | 
|  | { | 
|  | if (!rq->online) { | 
|  | const struct sched_class *class; | 
|  |  | 
|  | cpumask_set_cpu(rq->cpu, rq->rd->online); | 
|  | rq->online = 1; | 
|  |  | 
|  | for_each_class(class) { | 
|  | if (class->rq_online) | 
|  | class->rq_online(rq); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_rq_offline(struct rq *rq) | 
|  | { | 
|  | if (rq->online) { | 
|  | const struct sched_class *class; | 
|  |  | 
|  | for_each_class(class) { | 
|  | if (class->rq_offline) | 
|  | class->rq_offline(rq); | 
|  | } | 
|  |  | 
|  | cpumask_clear_cpu(rq->cpu, rq->rd->online); | 
|  | rq->online = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to mark begin/end of suspend/resume: | 
|  | */ | 
|  | static int num_cpus_frozen; | 
|  |  | 
|  | /* | 
|  | * Update cpusets according to cpu_active mask.  If cpusets are | 
|  | * disabled, cpuset_update_active_cpus() becomes a simple wrapper | 
|  | * around partition_sched_domains(). | 
|  | * | 
|  | * If we come here as part of a suspend/resume, don't touch cpusets because we | 
|  | * want to restore it back to its original state upon resume anyway. | 
|  | */ | 
|  | static void cpuset_cpu_active(void) | 
|  | { | 
|  | if (cpuhp_tasks_frozen) { | 
|  | /* | 
|  | * num_cpus_frozen tracks how many CPUs are involved in suspend | 
|  | * resume sequence. As long as this is not the last online | 
|  | * operation in the resume sequence, just build a single sched | 
|  | * domain, ignoring cpusets. | 
|  | */ | 
|  | partition_sched_domains(1, NULL, NULL); | 
|  | if (--num_cpus_frozen) | 
|  | return; | 
|  | /* | 
|  | * This is the last CPU online operation. So fall through and | 
|  | * restore the original sched domains by considering the | 
|  | * cpuset configurations. | 
|  | */ | 
|  | cpuset_force_rebuild(); | 
|  | } | 
|  | cpuset_update_active_cpus(); | 
|  | } | 
|  |  | 
|  | static int cpuset_cpu_inactive(unsigned int cpu) | 
|  | { | 
|  | if (!cpuhp_tasks_frozen) { | 
|  | if (dl_cpu_busy(cpu)) | 
|  | return -EBUSY; | 
|  | cpuset_update_active_cpus(); | 
|  | } else { | 
|  | num_cpus_frozen++; | 
|  | partition_sched_domains(1, NULL, NULL); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sched_cpu_activate(unsigned int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | /* | 
|  | * When going up, increment the number of cores with SMT present. | 
|  | */ | 
|  | if (cpumask_weight(cpu_smt_mask(cpu)) == 2) | 
|  | static_branch_inc_cpuslocked(&sched_smt_present); | 
|  | #endif | 
|  | set_cpu_active(cpu, true); | 
|  |  | 
|  | if (sched_smp_initialized) { | 
|  | sched_domains_numa_masks_set(cpu); | 
|  | cpuset_cpu_active(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put the rq online, if not already. This happens: | 
|  | * | 
|  | * 1) In the early boot process, because we build the real domains | 
|  | *    after all CPUs have been brought up. | 
|  | * | 
|  | * 2) At runtime, if cpuset_cpu_active() fails to rebuild the | 
|  | *    domains. | 
|  | */ | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | if (rq->rd) { | 
|  | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
|  | set_rq_online(rq); | 
|  | } | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sched_cpu_deactivate(unsigned int cpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | set_cpu_active(cpu, false); | 
|  | /* | 
|  | * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU | 
|  | * users of this state to go away such that all new such users will | 
|  | * observe it. | 
|  | * | 
|  | * Do sync before park smpboot threads to take care the rcu boost case. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | /* | 
|  | * When going down, decrement the number of cores with SMT present. | 
|  | */ | 
|  | if (cpumask_weight(cpu_smt_mask(cpu)) == 2) | 
|  | static_branch_dec_cpuslocked(&sched_smt_present); | 
|  | #endif | 
|  |  | 
|  | if (!sched_smp_initialized) | 
|  | return 0; | 
|  |  | 
|  | ret = cpuset_cpu_inactive(cpu); | 
|  | if (ret) { | 
|  | set_cpu_active(cpu, true); | 
|  | return ret; | 
|  | } | 
|  | sched_domains_numa_masks_clear(cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sched_rq_cpu_starting(unsigned int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | rq->calc_load_update = calc_load_update; | 
|  | update_max_interval(); | 
|  | } | 
|  |  | 
|  | int sched_cpu_starting(unsigned int cpu) | 
|  | { | 
|  | sched_rq_cpu_starting(cpu); | 
|  | sched_tick_start(cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | int sched_cpu_dying(unsigned int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | /* Handle pending wakeups and then migrate everything off */ | 
|  | sched_ttwu_pending(); | 
|  | sched_tick_stop(cpu); | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | if (rq->rd) { | 
|  | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
|  | set_rq_offline(rq); | 
|  | } | 
|  | migrate_tasks(rq, &rf); | 
|  | BUG_ON(rq->nr_running != 1); | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  |  | 
|  | calc_load_migrate(rq); | 
|  | update_max_interval(); | 
|  | nohz_balance_exit_idle(rq); | 
|  | hrtick_clear(rq); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | sched_init_numa(); | 
|  |  | 
|  | /* | 
|  | * There's no userspace yet to cause hotplug operations; hence all the | 
|  | * CPU masks are stable and all blatant races in the below code cannot | 
|  | * happen. | 
|  | */ | 
|  | mutex_lock(&sched_domains_mutex); | 
|  | sched_init_domains(cpu_active_mask); | 
|  | mutex_unlock(&sched_domains_mutex); | 
|  |  | 
|  | /* Move init over to a non-isolated CPU */ | 
|  | if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) | 
|  | BUG(); | 
|  | sched_init_granularity(); | 
|  |  | 
|  | init_sched_rt_class(); | 
|  | init_sched_dl_class(); | 
|  |  | 
|  | sched_smp_initialized = true; | 
|  | } | 
|  |  | 
|  | static int __init migration_init(void) | 
|  | { | 
|  | sched_cpu_starting(smp_processor_id()); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(migration_init); | 
|  |  | 
|  | #else | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | sched_init_granularity(); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | int in_sched_functions(unsigned long addr) | 
|  | { | 
|  | return in_lock_functions(addr) || | 
|  | (addr >= (unsigned long)__sched_text_start | 
|  | && addr < (unsigned long)__sched_text_end); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | /* | 
|  | * Default task group. | 
|  | * Every task in system belongs to this group at bootup. | 
|  | */ | 
|  | struct task_group root_task_group; | 
|  | LIST_HEAD(task_groups); | 
|  |  | 
|  | /* Cacheline aligned slab cache for task_group */ | 
|  | static struct kmem_cache *task_group_cache __read_mostly; | 
|  | #endif | 
|  |  | 
|  | DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); | 
|  | DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); | 
|  |  | 
|  | void __init sched_init(void) | 
|  | { | 
|  | unsigned long ptr = 0; | 
|  | int i; | 
|  |  | 
|  | wait_bit_init(); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | ptr += 2 * nr_cpu_ids * sizeof(void **); | 
|  | #endif | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | ptr += 2 * nr_cpu_ids * sizeof(void **); | 
|  | #endif | 
|  | if (ptr) { | 
|  | ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | root_task_group.se = (struct sched_entity **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | root_task_group.rt_rq = (struct rt_rq **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  | } | 
|  | #ifdef CONFIG_CPUMASK_OFFSTACK | 
|  | for_each_possible_cpu(i) { | 
|  | per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( | 
|  | cpumask_size(), GFP_KERNEL, cpu_to_node(i)); | 
|  | per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( | 
|  | cpumask_size(), GFP_KERNEL, cpu_to_node(i)); | 
|  | } | 
|  | #endif /* CONFIG_CPUMASK_OFFSTACK */ | 
|  |  | 
|  | init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); | 
|  | init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | init_defrootdomain(); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | init_rt_bandwidth(&root_task_group.rt_bandwidth, | 
|  | global_rt_period(), global_rt_runtime()); | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | task_group_cache = KMEM_CACHE(task_group, 0); | 
|  |  | 
|  | list_add(&root_task_group.list, &task_groups); | 
|  | INIT_LIST_HEAD(&root_task_group.children); | 
|  | INIT_LIST_HEAD(&root_task_group.siblings); | 
|  | autogroup_init(&init_task); | 
|  | #endif /* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | raw_spin_lock_init(&rq->lock); | 
|  | rq->nr_running = 0; | 
|  | rq->calc_load_active = 0; | 
|  | rq->calc_load_update = jiffies + LOAD_FREQ; | 
|  | init_cfs_rq(&rq->cfs); | 
|  | init_rt_rq(&rq->rt); | 
|  | init_dl_rq(&rq->dl); | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | root_task_group.shares = ROOT_TASK_GROUP_LOAD; | 
|  | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 
|  | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | 
|  | /* | 
|  | * How much CPU bandwidth does root_task_group get? | 
|  | * | 
|  | * In case of task-groups formed thr' the cgroup filesystem, it | 
|  | * gets 100% of the CPU resources in the system. This overall | 
|  | * system CPU resource is divided among the tasks of | 
|  | * root_task_group and its child task-groups in a fair manner, | 
|  | * based on each entity's (task or task-group's) weight | 
|  | * (se->load.weight). | 
|  | * | 
|  | * In other words, if root_task_group has 10 tasks of weight | 
|  | * 1024) and two child groups A0 and A1 (of weight 1024 each), | 
|  | * then A0's share of the CPU resource is: | 
|  | * | 
|  | *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 
|  | * | 
|  | * We achieve this by letting root_task_group's tasks sit | 
|  | * directly in rq->cfs (i.e root_task_group->se[] = NULL). | 
|  | */ | 
|  | init_cfs_bandwidth(&root_task_group.cfs_bandwidth); | 
|  | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | rq->sd = NULL; | 
|  | rq->rd = NULL; | 
|  | rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; | 
|  | rq->balance_callback = NULL; | 
|  | rq->active_balance = 0; | 
|  | rq->next_balance = jiffies; | 
|  | rq->push_cpu = 0; | 
|  | rq->cpu = i; | 
|  | rq->online = 0; | 
|  | rq->idle_stamp = 0; | 
|  | rq->avg_idle = 2*sysctl_sched_migration_cost; | 
|  | rq->max_idle_balance_cost = sysctl_sched_migration_cost; | 
|  |  | 
|  | INIT_LIST_HEAD(&rq->cfs_tasks); | 
|  |  | 
|  | rq_attach_root(rq, &def_root_domain); | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | rq->last_load_update_tick = jiffies; | 
|  | rq->last_blocked_load_update_tick = jiffies; | 
|  | atomic_set(&rq->nohz_flags, 0); | 
|  | #endif | 
|  | #endif /* CONFIG_SMP */ | 
|  | hrtick_rq_init(rq); | 
|  | atomic_set(&rq->nr_iowait, 0); | 
|  | } | 
|  |  | 
|  | set_load_weight(&init_task, false); | 
|  |  | 
|  | /* | 
|  | * The boot idle thread does lazy MMU switching as well: | 
|  | */ | 
|  | mmgrab(&init_mm); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | /* | 
|  | * Make us the idle thread. Technically, schedule() should not be | 
|  | * called from this thread, however somewhere below it might be, | 
|  | * but because we are the idle thread, we just pick up running again | 
|  | * when this runqueue becomes "idle". | 
|  | */ | 
|  | init_idle(current, smp_processor_id()); | 
|  |  | 
|  | calc_load_update = jiffies + LOAD_FREQ; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | idle_thread_set_boot_cpu(); | 
|  | #endif | 
|  | init_sched_fair_class(); | 
|  |  | 
|  | init_schedstats(); | 
|  |  | 
|  | psi_init(); | 
|  |  | 
|  | init_uclamp(); | 
|  |  | 
|  | scheduler_running = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  | static inline int preempt_count_equals(int preempt_offset) | 
|  | { | 
|  | int nested = preempt_count() + rcu_preempt_depth(); | 
|  |  | 
|  | return (nested == preempt_offset); | 
|  | } | 
|  |  | 
|  | void __might_sleep(const char *file, int line, int preempt_offset) | 
|  | { | 
|  | /* | 
|  | * Blocking primitives will set (and therefore destroy) current->state, | 
|  | * since we will exit with TASK_RUNNING make sure we enter with it, | 
|  | * otherwise we will destroy state. | 
|  | */ | 
|  | WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, | 
|  | "do not call blocking ops when !TASK_RUNNING; " | 
|  | "state=%lx set at [<%p>] %pS\n", | 
|  | current->state, | 
|  | (void *)current->task_state_change, | 
|  | (void *)current->task_state_change); | 
|  |  | 
|  | ___might_sleep(file, line, preempt_offset); | 
|  | } | 
|  | EXPORT_SYMBOL(__might_sleep); | 
|  |  | 
|  | void ___might_sleep(const char *file, int line, int preempt_offset) | 
|  | { | 
|  | /* Ratelimiting timestamp: */ | 
|  | static unsigned long prev_jiffy; | 
|  |  | 
|  | unsigned long preempt_disable_ip; | 
|  |  | 
|  | /* WARN_ON_ONCE() by default, no rate limit required: */ | 
|  | rcu_sleep_check(); | 
|  |  | 
|  | if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && | 
|  | !is_idle_task(current) && !current->non_block_count) || | 
|  | system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || | 
|  | oops_in_progress) | 
|  | return; | 
|  |  | 
|  | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | return; | 
|  | prev_jiffy = jiffies; | 
|  |  | 
|  | /* Save this before calling printk(), since that will clobber it: */ | 
|  | preempt_disable_ip = get_preempt_disable_ip(current); | 
|  |  | 
|  | printk(KERN_ERR | 
|  | "BUG: sleeping function called from invalid context at %s:%d\n", | 
|  | file, line); | 
|  | printk(KERN_ERR | 
|  | "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", | 
|  | in_atomic(), irqs_disabled(), current->non_block_count, | 
|  | current->pid, current->comm); | 
|  |  | 
|  | if (task_stack_end_corrupted(current)) | 
|  | printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); | 
|  |  | 
|  | debug_show_held_locks(current); | 
|  | if (irqs_disabled()) | 
|  | print_irqtrace_events(current); | 
|  | if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) | 
|  | && !preempt_count_equals(preempt_offset)) { | 
|  | pr_err("Preemption disabled at:"); | 
|  | print_ip_sym(preempt_disable_ip); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | dump_stack(); | 
|  | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|  | } | 
|  | EXPORT_SYMBOL(___might_sleep); | 
|  |  | 
|  | void __cant_sleep(const char *file, int line, int preempt_offset) | 
|  | { | 
|  | static unsigned long prev_jiffy; | 
|  |  | 
|  | if (irqs_disabled()) | 
|  | return; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) | 
|  | return; | 
|  |  | 
|  | if (preempt_count() > preempt_offset) | 
|  | return; | 
|  |  | 
|  | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | return; | 
|  | prev_jiffy = jiffies; | 
|  |  | 
|  | printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); | 
|  | printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 
|  | in_atomic(), irqs_disabled(), | 
|  | current->pid, current->comm); | 
|  |  | 
|  | debug_show_held_locks(current); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__cant_sleep); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | void normalize_rt_tasks(void) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | struct sched_attr attr = { | 
|  | .sched_policy = SCHED_NORMAL, | 
|  | }; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | for_each_process_thread(g, p) { | 
|  | /* | 
|  | * Only normalize user tasks: | 
|  | */ | 
|  | if (p->flags & PF_KTHREAD) | 
|  | continue; | 
|  |  | 
|  | p->se.exec_start = 0; | 
|  | schedstat_set(p->se.statistics.wait_start,  0); | 
|  | schedstat_set(p->se.statistics.sleep_start, 0); | 
|  | schedstat_set(p->se.statistics.block_start, 0); | 
|  |  | 
|  | if (!dl_task(p) && !rt_task(p)) { | 
|  | /* | 
|  | * Renice negative nice level userspace | 
|  | * tasks back to 0: | 
|  | */ | 
|  | if (task_nice(p) < 0) | 
|  | set_user_nice(p, 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | __sched_setscheduler(p, &attr, false, false); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MAGIC_SYSRQ */ | 
|  |  | 
|  | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) | 
|  | /* | 
|  | * These functions are only useful for the IA64 MCA handling, or kdb. | 
|  | * | 
|  | * They can only be called when the whole system has been | 
|  | * stopped - every CPU needs to be quiescent, and no scheduling | 
|  | * activity can take place. Using them for anything else would | 
|  | * be a serious bug, and as a result, they aren't even visible | 
|  | * under any other configuration. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * curr_task - return the current task for a given CPU. | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | * | 
|  | * Return: The current task for @cpu. | 
|  | */ | 
|  | struct task_struct *curr_task(int cpu) | 
|  | { | 
|  | return cpu_curr(cpu); | 
|  | } | 
|  |  | 
|  | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | 
|  |  | 
|  | #ifdef CONFIG_IA64 | 
|  | /** | 
|  | * ia64_set_curr_task - set the current task for a given CPU. | 
|  | * @cpu: the processor in question. | 
|  | * @p: the task pointer to set. | 
|  | * | 
|  | * Description: This function must only be used when non-maskable interrupts | 
|  | * are serviced on a separate stack. It allows the architecture to switch the | 
|  | * notion of the current task on a CPU in a non-blocking manner. This function | 
|  | * must be called with all CPU's synchronized, and interrupts disabled, the | 
|  | * and caller must save the original value of the current task (see | 
|  | * curr_task() above) and restore that value before reenabling interrupts and | 
|  | * re-starting the system. | 
|  | * | 
|  | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | */ | 
|  | void ia64_set_curr_task(int cpu, struct task_struct *p) | 
|  | { | 
|  | cpu_curr(cpu) = p; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | /* task_group_lock serializes the addition/removal of task groups */ | 
|  | static DEFINE_SPINLOCK(task_group_lock); | 
|  |  | 
|  | static inline void alloc_uclamp_sched_group(struct task_group *tg, | 
|  | struct task_group *parent) | 
|  | { | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | enum uclamp_id clamp_id; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) { | 
|  | uclamp_se_set(&tg->uclamp_req[clamp_id], | 
|  | uclamp_none(clamp_id), false); | 
|  | tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void sched_free_group(struct task_group *tg) | 
|  | { | 
|  | free_fair_sched_group(tg); | 
|  | free_rt_sched_group(tg); | 
|  | autogroup_free(tg); | 
|  | kmem_cache_free(task_group_cache, tg); | 
|  | } | 
|  |  | 
|  | /* allocate runqueue etc for a new task group */ | 
|  | struct task_group *sched_create_group(struct task_group *parent) | 
|  | { | 
|  | struct task_group *tg; | 
|  |  | 
|  | tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); | 
|  | if (!tg) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (!alloc_fair_sched_group(tg, parent)) | 
|  | goto err; | 
|  |  | 
|  | if (!alloc_rt_sched_group(tg, parent)) | 
|  | goto err; | 
|  |  | 
|  | alloc_uclamp_sched_group(tg, parent); | 
|  |  | 
|  | return tg; | 
|  |  | 
|  | err: | 
|  | sched_free_group(tg); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | void sched_online_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&task_group_lock, flags); | 
|  | list_add_rcu(&tg->list, &task_groups); | 
|  |  | 
|  | /* Root should already exist: */ | 
|  | WARN_ON(!parent); | 
|  |  | 
|  | tg->parent = parent; | 
|  | INIT_LIST_HEAD(&tg->children); | 
|  | list_add_rcu(&tg->siblings, &parent->children); | 
|  | spin_unlock_irqrestore(&task_group_lock, flags); | 
|  |  | 
|  | online_fair_sched_group(tg); | 
|  | } | 
|  |  | 
|  | /* rcu callback to free various structures associated with a task group */ | 
|  | static void sched_free_group_rcu(struct rcu_head *rhp) | 
|  | { | 
|  | /* Now it should be safe to free those cfs_rqs: */ | 
|  | sched_free_group(container_of(rhp, struct task_group, rcu)); | 
|  | } | 
|  |  | 
|  | void sched_destroy_group(struct task_group *tg) | 
|  | { | 
|  | /* Wait for possible concurrent references to cfs_rqs complete: */ | 
|  | call_rcu(&tg->rcu, sched_free_group_rcu); | 
|  | } | 
|  |  | 
|  | void sched_offline_group(struct task_group *tg) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* End participation in shares distribution: */ | 
|  | unregister_fair_sched_group(tg); | 
|  |  | 
|  | spin_lock_irqsave(&task_group_lock, flags); | 
|  | list_del_rcu(&tg->list); | 
|  | list_del_rcu(&tg->siblings); | 
|  | spin_unlock_irqrestore(&task_group_lock, flags); | 
|  | } | 
|  |  | 
|  | static void sched_change_group(struct task_struct *tsk, int type) | 
|  | { | 
|  | struct task_group *tg; | 
|  |  | 
|  | /* | 
|  | * All callers are synchronized by task_rq_lock(); we do not use RCU | 
|  | * which is pointless here. Thus, we pass "true" to task_css_check() | 
|  | * to prevent lockdep warnings. | 
|  | */ | 
|  | tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), | 
|  | struct task_group, css); | 
|  | tg = autogroup_task_group(tsk, tg); | 
|  | tsk->sched_task_group = tg; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | if (tsk->sched_class->task_change_group) | 
|  | tsk->sched_class->task_change_group(tsk, type); | 
|  | else | 
|  | #endif | 
|  | set_task_rq(tsk, task_cpu(tsk)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change task's runqueue when it moves between groups. | 
|  | * | 
|  | * The caller of this function should have put the task in its new group by | 
|  | * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect | 
|  | * its new group. | 
|  | */ | 
|  | void sched_move_task(struct task_struct *tsk) | 
|  | { | 
|  | int queued, running, queue_flags = | 
|  | DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(tsk, &rf); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | running = task_current(rq, tsk); | 
|  | queued = task_on_rq_queued(tsk); | 
|  |  | 
|  | if (queued) | 
|  | dequeue_task(rq, tsk, queue_flags); | 
|  | if (running) | 
|  | put_prev_task(rq, tsk); | 
|  |  | 
|  | sched_change_group(tsk, TASK_MOVE_GROUP); | 
|  |  | 
|  | if (queued) | 
|  | enqueue_task(rq, tsk, queue_flags); | 
|  | if (running) { | 
|  | set_next_task(rq, tsk); | 
|  | /* | 
|  | * After changing group, the running task may have joined a | 
|  | * throttled one but it's still the running task. Trigger a | 
|  | * resched to make sure that task can still run. | 
|  | */ | 
|  | resched_curr(rq); | 
|  | } | 
|  |  | 
|  | task_rq_unlock(rq, tsk, &rf); | 
|  | } | 
|  |  | 
|  | static inline struct task_group *css_tg(struct cgroup_subsys_state *css) | 
|  | { | 
|  | return css ? container_of(css, struct task_group, css) : NULL; | 
|  | } | 
|  |  | 
|  | static struct cgroup_subsys_state * | 
|  | cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
|  | { | 
|  | struct task_group *parent = css_tg(parent_css); | 
|  | struct task_group *tg; | 
|  |  | 
|  | if (!parent) { | 
|  | /* This is early initialization for the top cgroup */ | 
|  | return &root_task_group.css; | 
|  | } | 
|  |  | 
|  | tg = sched_create_group(parent); | 
|  | if (IS_ERR(tg)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return &tg->css; | 
|  | } | 
|  |  | 
|  | /* Expose task group only after completing cgroup initialization */ | 
|  | static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct task_group *tg = css_tg(css); | 
|  | struct task_group *parent = css_tg(css->parent); | 
|  |  | 
|  | if (parent) | 
|  | sched_online_group(tg, parent); | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | /* Propagate the effective uclamp value for the new group */ | 
|  | cpu_util_update_eff(css); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct task_group *tg = css_tg(css); | 
|  |  | 
|  | sched_offline_group(tg); | 
|  | } | 
|  |  | 
|  | static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct task_group *tg = css_tg(css); | 
|  |  | 
|  | /* | 
|  | * Relies on the RCU grace period between css_released() and this. | 
|  | */ | 
|  | sched_free_group(tg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called before wake_up_new_task(), therefore we really only | 
|  | * have to set its group bits, all the other stuff does not apply. | 
|  | */ | 
|  | static void cpu_cgroup_fork(struct task_struct *task) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(task, &rf); | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | sched_change_group(task, TASK_SET_GROUP); | 
|  |  | 
|  | task_rq_unlock(rq, task, &rf); | 
|  | } | 
|  |  | 
|  | static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct cgroup_subsys_state *css; | 
|  | int ret = 0; | 
|  |  | 
|  | cgroup_taskset_for_each(task, css, tset) { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | if (!sched_rt_can_attach(css_tg(css), task)) | 
|  | return -EINVAL; | 
|  | #endif | 
|  | /* | 
|  | * Serialize against wake_up_new_task() such that if its | 
|  | * running, we're sure to observe its full state. | 
|  | */ | 
|  | raw_spin_lock_irq(&task->pi_lock); | 
|  | /* | 
|  | * Avoid calling sched_move_task() before wake_up_new_task() | 
|  | * has happened. This would lead to problems with PELT, due to | 
|  | * move wanting to detach+attach while we're not attached yet. | 
|  | */ | 
|  | if (task->state == TASK_NEW) | 
|  | ret = -EINVAL; | 
|  | raw_spin_unlock_irq(&task->pi_lock); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cpu_cgroup_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | cgroup_taskset_for_each(task, css, tset) | 
|  | sched_move_task(task); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | static void cpu_util_update_eff(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct cgroup_subsys_state *top_css = css; | 
|  | struct uclamp_se *uc_parent = NULL; | 
|  | struct uclamp_se *uc_se = NULL; | 
|  | unsigned int eff[UCLAMP_CNT]; | 
|  | enum uclamp_id clamp_id; | 
|  | unsigned int clamps; | 
|  |  | 
|  | css_for_each_descendant_pre(css, top_css) { | 
|  | uc_parent = css_tg(css)->parent | 
|  | ? css_tg(css)->parent->uclamp : NULL; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) { | 
|  | /* Assume effective clamps matches requested clamps */ | 
|  | eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; | 
|  | /* Cap effective clamps with parent's effective clamps */ | 
|  | if (uc_parent && | 
|  | eff[clamp_id] > uc_parent[clamp_id].value) { | 
|  | eff[clamp_id] = uc_parent[clamp_id].value; | 
|  | } | 
|  | } | 
|  | /* Ensure protection is always capped by limit */ | 
|  | eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); | 
|  |  | 
|  | /* Propagate most restrictive effective clamps */ | 
|  | clamps = 0x0; | 
|  | uc_se = css_tg(css)->uclamp; | 
|  | for_each_clamp_id(clamp_id) { | 
|  | if (eff[clamp_id] == uc_se[clamp_id].value) | 
|  | continue; | 
|  | uc_se[clamp_id].value = eff[clamp_id]; | 
|  | uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); | 
|  | clamps |= (0x1 << clamp_id); | 
|  | } | 
|  | if (!clamps) { | 
|  | css = css_rightmost_descendant(css); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Immediately update descendants RUNNABLE tasks */ | 
|  | uclamp_update_active_tasks(css, clamps); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Integer 10^N with a given N exponent by casting to integer the literal "1eN" | 
|  | * C expression. Since there is no way to convert a macro argument (N) into a | 
|  | * character constant, use two levels of macros. | 
|  | */ | 
|  | #define _POW10(exp) ((unsigned int)1e##exp) | 
|  | #define POW10(exp) _POW10(exp) | 
|  |  | 
|  | struct uclamp_request { | 
|  | #define UCLAMP_PERCENT_SHIFT	2 | 
|  | #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT)) | 
|  | s64 percent; | 
|  | u64 util; | 
|  | int ret; | 
|  | }; | 
|  |  | 
|  | static inline struct uclamp_request | 
|  | capacity_from_percent(char *buf) | 
|  | { | 
|  | struct uclamp_request req = { | 
|  | .percent = UCLAMP_PERCENT_SCALE, | 
|  | .util = SCHED_CAPACITY_SCALE, | 
|  | .ret = 0, | 
|  | }; | 
|  |  | 
|  | buf = strim(buf); | 
|  | if (strcmp(buf, "max")) { | 
|  | req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, | 
|  | &req.percent); | 
|  | if (req.ret) | 
|  | return req; | 
|  | if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { | 
|  | req.ret = -ERANGE; | 
|  | return req; | 
|  | } | 
|  |  | 
|  | req.util = req.percent << SCHED_CAPACITY_SHIFT; | 
|  | req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); | 
|  | } | 
|  |  | 
|  | return req; | 
|  | } | 
|  |  | 
|  | static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, | 
|  | size_t nbytes, loff_t off, | 
|  | enum uclamp_id clamp_id) | 
|  | { | 
|  | struct uclamp_request req; | 
|  | struct task_group *tg; | 
|  |  | 
|  | req = capacity_from_percent(buf); | 
|  | if (req.ret) | 
|  | return req.ret; | 
|  |  | 
|  | static_branch_enable(&sched_uclamp_used); | 
|  |  | 
|  | mutex_lock(&uclamp_mutex); | 
|  | rcu_read_lock(); | 
|  |  | 
|  | tg = css_tg(of_css(of)); | 
|  | if (tg->uclamp_req[clamp_id].value != req.util) | 
|  | uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); | 
|  |  | 
|  | /* | 
|  | * Because of not recoverable conversion rounding we keep track of the | 
|  | * exact requested value | 
|  | */ | 
|  | tg->uclamp_pct[clamp_id] = req.percent; | 
|  |  | 
|  | /* Update effective clamps to track the most restrictive value */ | 
|  | cpu_util_update_eff(of_css(of)); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | mutex_unlock(&uclamp_mutex); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, | 
|  | loff_t off) | 
|  | { | 
|  | return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); | 
|  | } | 
|  |  | 
|  | static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, | 
|  | loff_t off) | 
|  | { | 
|  | return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); | 
|  | } | 
|  |  | 
|  | static inline void cpu_uclamp_print(struct seq_file *sf, | 
|  | enum uclamp_id clamp_id) | 
|  | { | 
|  | struct task_group *tg; | 
|  | u64 util_clamp; | 
|  | u64 percent; | 
|  | u32 rem; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tg = css_tg(seq_css(sf)); | 
|  | util_clamp = tg->uclamp_req[clamp_id].value; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (util_clamp == SCHED_CAPACITY_SCALE) { | 
|  | seq_puts(sf, "max\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | percent = tg->uclamp_pct[clamp_id]; | 
|  | percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); | 
|  | seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); | 
|  | } | 
|  |  | 
|  | static int cpu_uclamp_min_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | cpu_uclamp_print(sf, UCLAMP_MIN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_uclamp_max_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | cpu_uclamp_print(sf, UCLAMP_MAX); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_UCLAMP_TASK_GROUP */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static int cpu_shares_write_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cftype, u64 shareval) | 
|  | { | 
|  | if (shareval > scale_load_down(ULONG_MAX)) | 
|  | shareval = MAX_SHARES; | 
|  | return sched_group_set_shares(css_tg(css), scale_load(shareval)); | 
|  | } | 
|  |  | 
|  | static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct task_group *tg = css_tg(css); | 
|  |  | 
|  | return (u64) scale_load_down(tg->shares); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | static DEFINE_MUTEX(cfs_constraints_mutex); | 
|  |  | 
|  | const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ | 
|  | static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ | 
|  | /* More than 203 days if BW_SHIFT equals 20. */ | 
|  | static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; | 
|  |  | 
|  | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); | 
|  |  | 
|  | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | 
|  | { | 
|  | int i, ret = 0, runtime_enabled, runtime_was_enabled; | 
|  | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|  |  | 
|  | if (tg == &root_task_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Ensure we have at some amount of bandwidth every period.  This is | 
|  | * to prevent reaching a state of large arrears when throttled via | 
|  | * entity_tick() resulting in prolonged exit starvation. | 
|  | */ | 
|  | if (quota < min_cfs_quota_period || period < min_cfs_quota_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Likewise, bound things on the otherside by preventing insane quota | 
|  | * periods.  This also allows us to normalize in computing quota | 
|  | * feasibility. | 
|  | */ | 
|  | if (period > max_cfs_quota_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Bound quota to defend quota against overflow during bandwidth shift. | 
|  | */ | 
|  | if (quota != RUNTIME_INF && quota > max_cfs_runtime) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Prevent race between setting of cfs_rq->runtime_enabled and | 
|  | * unthrottle_offline_cfs_rqs(). | 
|  | */ | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cfs_constraints_mutex); | 
|  | ret = __cfs_schedulable(tg, period, quota); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | runtime_enabled = quota != RUNTIME_INF; | 
|  | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; | 
|  | /* | 
|  | * If we need to toggle cfs_bandwidth_used, off->on must occur | 
|  | * before making related changes, and on->off must occur afterwards | 
|  | */ | 
|  | if (runtime_enabled && !runtime_was_enabled) | 
|  | cfs_bandwidth_usage_inc(); | 
|  | raw_spin_lock_irq(&cfs_b->lock); | 
|  | cfs_b->period = ns_to_ktime(period); | 
|  | cfs_b->quota = quota; | 
|  |  | 
|  | __refill_cfs_bandwidth_runtime(cfs_b); | 
|  |  | 
|  | /* Restart the period timer (if active) to handle new period expiry: */ | 
|  | if (runtime_enabled) | 
|  | start_cfs_bandwidth(cfs_b); | 
|  |  | 
|  | raw_spin_unlock_irq(&cfs_b->lock); | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; | 
|  | struct rq *rq = cfs_rq->rq; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock_irq(rq, &rf); | 
|  | cfs_rq->runtime_enabled = runtime_enabled; | 
|  | cfs_rq->runtime_remaining = 0; | 
|  |  | 
|  | if (cfs_rq->throttled) | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  | rq_unlock_irq(rq, &rf); | 
|  | } | 
|  | if (runtime_was_enabled && !runtime_enabled) | 
|  | cfs_bandwidth_usage_dec(); | 
|  | out_unlock: | 
|  | mutex_unlock(&cfs_constraints_mutex); | 
|  | put_online_cpus(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) | 
|  | { | 
|  | u64 quota, period; | 
|  |  | 
|  | period = ktime_to_ns(tg->cfs_bandwidth.period); | 
|  | if (cfs_quota_us < 0) | 
|  | quota = RUNTIME_INF; | 
|  | else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) | 
|  | quota = (u64)cfs_quota_us * NSEC_PER_USEC; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return tg_set_cfs_bandwidth(tg, period, quota); | 
|  | } | 
|  |  | 
|  | static long tg_get_cfs_quota(struct task_group *tg) | 
|  | { | 
|  | u64 quota_us; | 
|  |  | 
|  | if (tg->cfs_bandwidth.quota == RUNTIME_INF) | 
|  | return -1; | 
|  |  | 
|  | quota_us = tg->cfs_bandwidth.quota; | 
|  | do_div(quota_us, NSEC_PER_USEC); | 
|  |  | 
|  | return quota_us; | 
|  | } | 
|  |  | 
|  | static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) | 
|  | { | 
|  | u64 quota, period; | 
|  |  | 
|  | if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) | 
|  | return -EINVAL; | 
|  |  | 
|  | period = (u64)cfs_period_us * NSEC_PER_USEC; | 
|  | quota = tg->cfs_bandwidth.quota; | 
|  |  | 
|  | return tg_set_cfs_bandwidth(tg, period, quota); | 
|  | } | 
|  |  | 
|  | static long tg_get_cfs_period(struct task_group *tg) | 
|  | { | 
|  | u64 cfs_period_us; | 
|  |  | 
|  | cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); | 
|  | do_div(cfs_period_us, NSEC_PER_USEC); | 
|  |  | 
|  | return cfs_period_us; | 
|  | } | 
|  |  | 
|  | static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return tg_get_cfs_quota(css_tg(css)); | 
|  | } | 
|  |  | 
|  | static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cftype, s64 cfs_quota_us) | 
|  | { | 
|  | return tg_set_cfs_quota(css_tg(css), cfs_quota_us); | 
|  | } | 
|  |  | 
|  | static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return tg_get_cfs_period(css_tg(css)); | 
|  | } | 
|  |  | 
|  | static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cftype, u64 cfs_period_us) | 
|  | { | 
|  | return tg_set_cfs_period(css_tg(css), cfs_period_us); | 
|  | } | 
|  |  | 
|  | struct cfs_schedulable_data { | 
|  | struct task_group *tg; | 
|  | u64 period, quota; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * normalize group quota/period to be quota/max_period | 
|  | * note: units are usecs | 
|  | */ | 
|  | static u64 normalize_cfs_quota(struct task_group *tg, | 
|  | struct cfs_schedulable_data *d) | 
|  | { | 
|  | u64 quota, period; | 
|  |  | 
|  | if (tg == d->tg) { | 
|  | period = d->period; | 
|  | quota = d->quota; | 
|  | } else { | 
|  | period = tg_get_cfs_period(tg); | 
|  | quota = tg_get_cfs_quota(tg); | 
|  | } | 
|  |  | 
|  | /* note: these should typically be equivalent */ | 
|  | if (quota == RUNTIME_INF || quota == -1) | 
|  | return RUNTIME_INF; | 
|  |  | 
|  | return to_ratio(period, quota); | 
|  | } | 
|  |  | 
|  | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) | 
|  | { | 
|  | struct cfs_schedulable_data *d = data; | 
|  | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|  | s64 quota = 0, parent_quota = -1; | 
|  |  | 
|  | if (!tg->parent) { | 
|  | quota = RUNTIME_INF; | 
|  | } else { | 
|  | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; | 
|  |  | 
|  | quota = normalize_cfs_quota(tg, d); | 
|  | parent_quota = parent_b->hierarchical_quota; | 
|  |  | 
|  | /* | 
|  | * Ensure max(child_quota) <= parent_quota.  On cgroup2, | 
|  | * always take the min.  On cgroup1, only inherit when no | 
|  | * limit is set: | 
|  | */ | 
|  | if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { | 
|  | quota = min(quota, parent_quota); | 
|  | } else { | 
|  | if (quota == RUNTIME_INF) | 
|  | quota = parent_quota; | 
|  | else if (parent_quota != RUNTIME_INF && quota > parent_quota) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | cfs_b->hierarchical_quota = quota; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) | 
|  | { | 
|  | int ret; | 
|  | struct cfs_schedulable_data data = { | 
|  | .tg = tg, | 
|  | .period = period, | 
|  | .quota = quota, | 
|  | }; | 
|  |  | 
|  | if (quota != RUNTIME_INF) { | 
|  | do_div(data.period, NSEC_PER_USEC); | 
|  | do_div(data.quota, NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cpu_cfs_stat_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct task_group *tg = css_tg(seq_css(sf)); | 
|  | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|  |  | 
|  | seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); | 
|  | seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); | 
|  | seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); | 
|  |  | 
|  | if (schedstat_enabled() && tg != &root_task_group) { | 
|  | u64 ws = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | ws += schedstat_val(tg->se[i]->statistics.wait_sum); | 
|  |  | 
|  | seq_printf(sf, "wait_sum %llu\n", ws); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, s64 val) | 
|  | { | 
|  | return sched_group_set_rt_runtime(css_tg(css), val); | 
|  | } | 
|  |  | 
|  | static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return sched_group_rt_runtime(css_tg(css)); | 
|  | } | 
|  |  | 
|  | static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, | 
|  | struct cftype *cftype, u64 rt_period_us) | 
|  | { | 
|  | return sched_group_set_rt_period(css_tg(css), rt_period_us); | 
|  | } | 
|  |  | 
|  | static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return sched_group_rt_period(css_tg(css)); | 
|  | } | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static struct cftype cpu_legacy_files[] = { | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | { | 
|  | .name = "shares", | 
|  | .read_u64 = cpu_shares_read_u64, | 
|  | .write_u64 = cpu_shares_write_u64, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | { | 
|  | .name = "cfs_quota_us", | 
|  | .read_s64 = cpu_cfs_quota_read_s64, | 
|  | .write_s64 = cpu_cfs_quota_write_s64, | 
|  | }, | 
|  | { | 
|  | .name = "cfs_period_us", | 
|  | .read_u64 = cpu_cfs_period_read_u64, | 
|  | .write_u64 = cpu_cfs_period_write_u64, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .seq_show = cpu_cfs_stat_show, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | { | 
|  | .name = "rt_runtime_us", | 
|  | .read_s64 = cpu_rt_runtime_read, | 
|  | .write_s64 = cpu_rt_runtime_write, | 
|  | }, | 
|  | { | 
|  | .name = "rt_period_us", | 
|  | .read_u64 = cpu_rt_period_read_uint, | 
|  | .write_u64 = cpu_rt_period_write_uint, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | { | 
|  | .name = "uclamp.min", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cpu_uclamp_min_show, | 
|  | .write = cpu_uclamp_min_write, | 
|  | }, | 
|  | { | 
|  | .name = "uclamp.max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cpu_uclamp_max_show, | 
|  | .write = cpu_uclamp_max_write, | 
|  | }, | 
|  | #endif | 
|  | { }	/* Terminate */ | 
|  | }; | 
|  |  | 
|  | static int cpu_extra_stat_show(struct seq_file *sf, | 
|  | struct cgroup_subsys_state *css) | 
|  | { | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | { | 
|  | struct task_group *tg = css_tg(css); | 
|  | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|  | u64 throttled_usec; | 
|  |  | 
|  | throttled_usec = cfs_b->throttled_time; | 
|  | do_div(throttled_usec, NSEC_PER_USEC); | 
|  |  | 
|  | seq_printf(sf, "nr_periods %d\n" | 
|  | "nr_throttled %d\n" | 
|  | "throttled_usec %llu\n", | 
|  | cfs_b->nr_periods, cfs_b->nr_throttled, | 
|  | throttled_usec); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct task_group *tg = css_tg(css); | 
|  | u64 weight = scale_load_down(tg->shares); | 
|  |  | 
|  | return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); | 
|  | } | 
|  |  | 
|  | static int cpu_weight_write_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 weight) | 
|  | { | 
|  | /* | 
|  | * cgroup weight knobs should use the common MIN, DFL and MAX | 
|  | * values which are 1, 100 and 10000 respectively.  While it loses | 
|  | * a bit of range on both ends, it maps pretty well onto the shares | 
|  | * value used by scheduler and the round-trip conversions preserve | 
|  | * the original value over the entire range. | 
|  | */ | 
|  | if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) | 
|  | return -ERANGE; | 
|  |  | 
|  | weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); | 
|  |  | 
|  | return sched_group_set_shares(css_tg(css), scale_load(weight)); | 
|  | } | 
|  |  | 
|  | static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | unsigned long weight = scale_load_down(css_tg(css)->shares); | 
|  | int last_delta = INT_MAX; | 
|  | int prio, delta; | 
|  |  | 
|  | /* find the closest nice value to the current weight */ | 
|  | for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { | 
|  | delta = abs(sched_prio_to_weight[prio] - weight); | 
|  | if (delta >= last_delta) | 
|  | break; | 
|  | last_delta = delta; | 
|  | } | 
|  |  | 
|  | return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); | 
|  | } | 
|  |  | 
|  | static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, s64 nice) | 
|  | { | 
|  | unsigned long weight; | 
|  | int idx; | 
|  |  | 
|  | if (nice < MIN_NICE || nice > MAX_NICE) | 
|  | return -ERANGE; | 
|  |  | 
|  | idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; | 
|  | idx = array_index_nospec(idx, 40); | 
|  | weight = sched_prio_to_weight[idx]; | 
|  |  | 
|  | return sched_group_set_shares(css_tg(css), scale_load(weight)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, | 
|  | long period, long quota) | 
|  | { | 
|  | if (quota < 0) | 
|  | seq_puts(sf, "max"); | 
|  | else | 
|  | seq_printf(sf, "%ld", quota); | 
|  |  | 
|  | seq_printf(sf, " %ld\n", period); | 
|  | } | 
|  |  | 
|  | /* caller should put the current value in *@periodp before calling */ | 
|  | static int __maybe_unused cpu_period_quota_parse(char *buf, | 
|  | u64 *periodp, u64 *quotap) | 
|  | { | 
|  | char tok[21];	/* U64_MAX */ | 
|  |  | 
|  | if (sscanf(buf, "%20s %llu", tok, periodp) < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | *periodp *= NSEC_PER_USEC; | 
|  |  | 
|  | if (sscanf(tok, "%llu", quotap)) | 
|  | *quotap *= NSEC_PER_USEC; | 
|  | else if (!strcmp(tok, "max")) | 
|  | *quotap = RUNTIME_INF; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | static int cpu_max_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct task_group *tg = css_tg(seq_css(sf)); | 
|  |  | 
|  | cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t cpu_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct task_group *tg = css_tg(of_css(of)); | 
|  | u64 period = tg_get_cfs_period(tg); | 
|  | u64 quota; | 
|  | int ret; | 
|  |  | 
|  | ret = cpu_period_quota_parse(buf, &period, "a); | 
|  | if (!ret) | 
|  | ret = tg_set_cfs_bandwidth(tg, period, quota); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct cftype cpu_files[] = { | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | { | 
|  | .name = "weight", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = cpu_weight_read_u64, | 
|  | .write_u64 = cpu_weight_write_u64, | 
|  | }, | 
|  | { | 
|  | .name = "weight.nice", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_s64 = cpu_weight_nice_read_s64, | 
|  | .write_s64 = cpu_weight_nice_write_s64, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | { | 
|  | .name = "max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cpu_max_show, | 
|  | .write = cpu_max_write, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|  | { | 
|  | .name = "uclamp.min", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cpu_uclamp_min_show, | 
|  | .write = cpu_uclamp_min_write, | 
|  | }, | 
|  | { | 
|  | .name = "uclamp.max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cpu_uclamp_max_show, | 
|  | .write = cpu_uclamp_max_write, | 
|  | }, | 
|  | #endif | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | struct cgroup_subsys cpu_cgrp_subsys = { | 
|  | .css_alloc	= cpu_cgroup_css_alloc, | 
|  | .css_online	= cpu_cgroup_css_online, | 
|  | .css_released	= cpu_cgroup_css_released, | 
|  | .css_free	= cpu_cgroup_css_free, | 
|  | .css_extra_stat_show = cpu_extra_stat_show, | 
|  | .fork		= cpu_cgroup_fork, | 
|  | .can_attach	= cpu_cgroup_can_attach, | 
|  | .attach		= cpu_cgroup_attach, | 
|  | .legacy_cftypes	= cpu_legacy_files, | 
|  | .dfl_cftypes	= cpu_files, | 
|  | .early_init	= true, | 
|  | .threaded	= true, | 
|  | }; | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | void dump_cpu_task(int cpu) | 
|  | { | 
|  | pr_info("Task dump for CPU %d:\n", cpu); | 
|  | sched_show_task(cpu_curr(cpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nice levels are multiplicative, with a gentle 10% change for every | 
|  | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
|  | * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
|  | * that remained on nice 0. | 
|  | * | 
|  | * The "10% effect" is relative and cumulative: from _any_ nice level, | 
|  | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
|  | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
|  | * If a task goes up by ~10% and another task goes down by ~10% then | 
|  | * the relative distance between them is ~25%.) | 
|  | */ | 
|  | const int sched_prio_to_weight[40] = { | 
|  | /* -20 */     88761,     71755,     56483,     46273,     36291, | 
|  | /* -15 */     29154,     23254,     18705,     14949,     11916, | 
|  | /* -10 */      9548,      7620,      6100,      4904,      3906, | 
|  | /*  -5 */      3121,      2501,      1991,      1586,      1277, | 
|  | /*   0 */      1024,       820,       655,       526,       423, | 
|  | /*   5 */       335,       272,       215,       172,       137, | 
|  | /*  10 */       110,        87,        70,        56,        45, | 
|  | /*  15 */        36,        29,        23,        18,        15, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. | 
|  | * | 
|  | * In cases where the weight does not change often, we can use the | 
|  | * precalculated inverse to speed up arithmetics by turning divisions | 
|  | * into multiplications: | 
|  | */ | 
|  | const u32 sched_prio_to_wmult[40] = { | 
|  | /* -20 */     48388,     59856,     76040,     92818,    118348, | 
|  | /* -15 */    147320,    184698,    229616,    287308,    360437, | 
|  | /* -10 */    449829,    563644,    704093,    875809,   1099582, | 
|  | /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, | 
|  | /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, | 
|  | /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, | 
|  | /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, | 
|  | /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
|  | }; | 
|  |  | 
|  | #undef CREATE_TRACE_POINTS |