|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/cleancache.h> | 
|  | #include "extent_io.h" | 
|  | #include "extent_map.h" | 
|  | #include "ctree.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "volumes.h" | 
|  | #include "check-integrity.h" | 
|  | #include "locking.h" | 
|  | #include "rcu-string.h" | 
|  | #include "backref.h" | 
|  | #include "disk-io.h" | 
|  |  | 
|  | static struct kmem_cache *extent_state_cache; | 
|  | static struct kmem_cache *extent_buffer_cache; | 
|  | static struct bio_set btrfs_bioset; | 
|  |  | 
|  | static inline bool extent_state_in_tree(const struct extent_state *state) | 
|  | { | 
|  | return !RB_EMPTY_NODE(&state->rb_node); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | static LIST_HEAD(buffers); | 
|  | static LIST_HEAD(states); | 
|  |  | 
|  | static DEFINE_SPINLOCK(leak_lock); | 
|  |  | 
|  | static inline | 
|  | void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&leak_lock, flags); | 
|  | list_add(new, head); | 
|  | spin_unlock_irqrestore(&leak_lock, flags); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void btrfs_leak_debug_del(struct list_head *entry) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&leak_lock, flags); | 
|  | list_del(entry); | 
|  | spin_unlock_irqrestore(&leak_lock, flags); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void btrfs_leak_debug_check(void) | 
|  | { | 
|  | struct extent_state *state; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | while (!list_empty(&states)) { | 
|  | state = list_entry(states.next, struct extent_state, leak_list); | 
|  | pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", | 
|  | state->start, state->end, state->state, | 
|  | extent_state_in_tree(state), | 
|  | refcount_read(&state->refs)); | 
|  | list_del(&state->leak_list); | 
|  | kmem_cache_free(extent_state_cache, state); | 
|  | } | 
|  |  | 
|  | while (!list_empty(&buffers)) { | 
|  | eb = list_entry(buffers.next, struct extent_buffer, leak_list); | 
|  | pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", | 
|  | eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); | 
|  | list_del(&eb->leak_list); | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define btrfs_debug_check_extent_io_range(tree, start, end)		\ | 
|  | __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) | 
|  | static inline void __btrfs_debug_check_extent_io_range(const char *caller, | 
|  | struct extent_io_tree *tree, u64 start, u64 end) | 
|  | { | 
|  | struct inode *inode = tree->private_data; | 
|  | u64 isize; | 
|  |  | 
|  | if (!inode || !is_data_inode(inode)) | 
|  | return; | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { | 
|  | btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, | 
|  | "%s: ino %llu isize %llu odd range [%llu,%llu]", | 
|  | caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); | 
|  | } | 
|  | } | 
|  | #else | 
|  | #define btrfs_leak_debug_add(new, head)	do {} while (0) | 
|  | #define btrfs_leak_debug_del(entry)	do {} while (0) | 
|  | #define btrfs_leak_debug_check()	do {} while (0) | 
|  | #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | struct tree_entry { | 
|  | u64 start; | 
|  | u64 end; | 
|  | struct rb_node rb_node; | 
|  | }; | 
|  |  | 
|  | struct extent_page_data { | 
|  | struct bio *bio; | 
|  | struct extent_io_tree *tree; | 
|  | /* tells writepage not to lock the state bits for this range | 
|  | * it still does the unlocking | 
|  | */ | 
|  | unsigned int extent_locked:1; | 
|  |  | 
|  | /* tells the submit_bio code to use REQ_SYNC */ | 
|  | unsigned int sync_io:1; | 
|  | }; | 
|  |  | 
|  | static int add_extent_changeset(struct extent_state *state, unsigned bits, | 
|  | struct extent_changeset *changeset, | 
|  | int set) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!changeset) | 
|  | return 0; | 
|  | if (set && (state->state & bits) == bits) | 
|  | return 0; | 
|  | if (!set && (state->state & bits) == 0) | 
|  | return 0; | 
|  | changeset->bytes_changed += state->end - state->start + 1; | 
|  | ret = ulist_add(&changeset->range_changed, state->start, state->end, | 
|  | GFP_ATOMIC); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __must_check submit_one_bio(struct bio *bio, int mirror_num, | 
|  | unsigned long bio_flags) | 
|  | { | 
|  | blk_status_t ret = 0; | 
|  | struct extent_io_tree *tree = bio->bi_private; | 
|  |  | 
|  | bio->bi_private = NULL; | 
|  |  | 
|  | if (tree->ops) | 
|  | ret = tree->ops->submit_bio_hook(tree->private_data, bio, | 
|  | mirror_num, bio_flags); | 
|  | else | 
|  | btrfsic_submit_bio(bio); | 
|  |  | 
|  | return blk_status_to_errno(ret); | 
|  | } | 
|  |  | 
|  | /* Cleanup unsubmitted bios */ | 
|  | static void end_write_bio(struct extent_page_data *epd, int ret) | 
|  | { | 
|  | if (epd->bio) { | 
|  | epd->bio->bi_status = errno_to_blk_status(ret); | 
|  | bio_endio(epd->bio); | 
|  | epd->bio = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit bio from extent page data via submit_one_bio | 
|  | * | 
|  | * Return 0 if everything is OK. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int __must_check flush_write_bio(struct extent_page_data *epd) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (epd->bio) { | 
|  | ret = submit_one_bio(epd->bio, 0, 0); | 
|  | /* | 
|  | * Clean up of epd->bio is handled by its endio function. | 
|  | * And endio is either triggered by successful bio execution | 
|  | * or the error handler of submit bio hook. | 
|  | * So at this point, no matter what happened, we don't need | 
|  | * to clean up epd->bio. | 
|  | */ | 
|  | epd->bio = NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __init extent_io_init(void) | 
|  | { | 
|  | extent_state_cache = kmem_cache_create("btrfs_extent_state", | 
|  | sizeof(struct extent_state), 0, | 
|  | SLAB_MEM_SPREAD, NULL); | 
|  | if (!extent_state_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", | 
|  | sizeof(struct extent_buffer), 0, | 
|  | SLAB_MEM_SPREAD, NULL); | 
|  | if (!extent_buffer_cache) | 
|  | goto free_state_cache; | 
|  |  | 
|  | if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, | 
|  | offsetof(struct btrfs_io_bio, bio), | 
|  | BIOSET_NEED_BVECS)) | 
|  | goto free_buffer_cache; | 
|  |  | 
|  | if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) | 
|  | goto free_bioset; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_bioset: | 
|  | bioset_exit(&btrfs_bioset); | 
|  |  | 
|  | free_buffer_cache: | 
|  | kmem_cache_destroy(extent_buffer_cache); | 
|  | extent_buffer_cache = NULL; | 
|  |  | 
|  | free_state_cache: | 
|  | kmem_cache_destroy(extent_state_cache); | 
|  | extent_state_cache = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void __cold extent_io_exit(void) | 
|  | { | 
|  | btrfs_leak_debug_check(); | 
|  |  | 
|  | /* | 
|  | * Make sure all delayed rcu free are flushed before we | 
|  | * destroy caches. | 
|  | */ | 
|  | rcu_barrier(); | 
|  | kmem_cache_destroy(extent_state_cache); | 
|  | kmem_cache_destroy(extent_buffer_cache); | 
|  | bioset_exit(&btrfs_bioset); | 
|  | } | 
|  |  | 
|  | void extent_io_tree_init(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *tree, unsigned int owner, | 
|  | void *private_data) | 
|  | { | 
|  | tree->fs_info = fs_info; | 
|  | tree->state = RB_ROOT; | 
|  | tree->ops = NULL; | 
|  | tree->dirty_bytes = 0; | 
|  | spin_lock_init(&tree->lock); | 
|  | tree->private_data = private_data; | 
|  | tree->owner = owner; | 
|  | } | 
|  |  | 
|  | void extent_io_tree_release(struct extent_io_tree *tree) | 
|  | { | 
|  | spin_lock(&tree->lock); | 
|  | /* | 
|  | * Do a single barrier for the waitqueue_active check here, the state | 
|  | * of the waitqueue should not change once extent_io_tree_release is | 
|  | * called. | 
|  | */ | 
|  | smp_mb(); | 
|  | while (!RB_EMPTY_ROOT(&tree->state)) { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  |  | 
|  | node = rb_first(&tree->state); | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | rb_erase(&state->rb_node, &tree->state); | 
|  | RB_CLEAR_NODE(&state->rb_node); | 
|  | /* | 
|  | * btree io trees aren't supposed to have tasks waiting for | 
|  | * changes in the flags of extent states ever. | 
|  | */ | 
|  | ASSERT(!waitqueue_active(&state->wq)); | 
|  | free_extent_state(state); | 
|  |  | 
|  | cond_resched_lock(&tree->lock); | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  | } | 
|  |  | 
|  | static struct extent_state *alloc_extent_state(gfp_t mask) | 
|  | { | 
|  | struct extent_state *state; | 
|  |  | 
|  | /* | 
|  | * The given mask might be not appropriate for the slab allocator, | 
|  | * drop the unsupported bits | 
|  | */ | 
|  | mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); | 
|  | state = kmem_cache_alloc(extent_state_cache, mask); | 
|  | if (!state) | 
|  | return state; | 
|  | state->state = 0; | 
|  | state->failrec = NULL; | 
|  | RB_CLEAR_NODE(&state->rb_node); | 
|  | btrfs_leak_debug_add(&state->leak_list, &states); | 
|  | refcount_set(&state->refs, 1); | 
|  | init_waitqueue_head(&state->wq); | 
|  | trace_alloc_extent_state(state, mask, _RET_IP_); | 
|  | return state; | 
|  | } | 
|  |  | 
|  | void free_extent_state(struct extent_state *state) | 
|  | { | 
|  | if (!state) | 
|  | return; | 
|  | if (refcount_dec_and_test(&state->refs)) { | 
|  | WARN_ON(extent_state_in_tree(state)); | 
|  | btrfs_leak_debug_del(&state->leak_list); | 
|  | trace_free_extent_state(state, _RET_IP_); | 
|  | kmem_cache_free(extent_state_cache, state); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct rb_node *tree_insert(struct rb_root *root, | 
|  | struct rb_node *search_start, | 
|  | u64 offset, | 
|  | struct rb_node *node, | 
|  | struct rb_node ***p_in, | 
|  | struct rb_node **parent_in) | 
|  | { | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct tree_entry *entry; | 
|  |  | 
|  | if (p_in && parent_in) { | 
|  | p = *p_in; | 
|  | parent = *parent_in; | 
|  | goto do_insert; | 
|  | } | 
|  |  | 
|  | p = search_start ? &search_start : &root->rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct tree_entry, rb_node); | 
|  |  | 
|  | if (offset < entry->start) | 
|  | p = &(*p)->rb_left; | 
|  | else if (offset > entry->end) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return parent; | 
|  | } | 
|  |  | 
|  | do_insert: | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __etree_search - searche @tree for an entry that contains @offset. Such | 
|  | * entry would have entry->start <= offset && entry->end >= offset. | 
|  | * | 
|  | * @tree - the tree to search | 
|  | * @offset - offset that should fall within an entry in @tree | 
|  | * @next_ret - pointer to the first entry whose range ends after @offset | 
|  | * @prev - pointer to the first entry whose range begins before @offset | 
|  | * @p_ret - pointer where new node should be anchored (used when inserting an | 
|  | *	    entry in the tree) | 
|  | * @parent_ret - points to entry which would have been the parent of the entry, | 
|  | *               containing @offset | 
|  | * | 
|  | * This function returns a pointer to the entry that contains @offset byte | 
|  | * address. If no such entry exists, then NULL is returned and the other | 
|  | * pointer arguments to the function are filled, otherwise the found entry is | 
|  | * returned and other pointers are left untouched. | 
|  | */ | 
|  | static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, | 
|  | struct rb_node **next_ret, | 
|  | struct rb_node **prev_ret, | 
|  | struct rb_node ***p_ret, | 
|  | struct rb_node **parent_ret) | 
|  | { | 
|  | struct rb_root *root = &tree->state; | 
|  | struct rb_node **n = &root->rb_node; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *orig_prev = NULL; | 
|  | struct tree_entry *entry; | 
|  | struct tree_entry *prev_entry = NULL; | 
|  |  | 
|  | while (*n) { | 
|  | prev = *n; | 
|  | entry = rb_entry(prev, struct tree_entry, rb_node); | 
|  | prev_entry = entry; | 
|  |  | 
|  | if (offset < entry->start) | 
|  | n = &(*n)->rb_left; | 
|  | else if (offset > entry->end) | 
|  | n = &(*n)->rb_right; | 
|  | else | 
|  | return *n; | 
|  | } | 
|  |  | 
|  | if (p_ret) | 
|  | *p_ret = n; | 
|  | if (parent_ret) | 
|  | *parent_ret = prev; | 
|  |  | 
|  | if (next_ret) { | 
|  | orig_prev = prev; | 
|  | while (prev && offset > prev_entry->end) { | 
|  | prev = rb_next(prev); | 
|  | prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
|  | } | 
|  | *next_ret = prev; | 
|  | prev = orig_prev; | 
|  | } | 
|  |  | 
|  | if (prev_ret) { | 
|  | prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
|  | while (prev && offset < prev_entry->start) { | 
|  | prev = rb_prev(prev); | 
|  | prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
|  | } | 
|  | *prev_ret = prev; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct rb_node * | 
|  | tree_search_for_insert(struct extent_io_tree *tree, | 
|  | u64 offset, | 
|  | struct rb_node ***p_ret, | 
|  | struct rb_node **parent_ret) | 
|  | { | 
|  | struct rb_node *next= NULL; | 
|  | struct rb_node *ret; | 
|  |  | 
|  | ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); | 
|  | if (!ret) | 
|  | return next; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct rb_node *tree_search(struct extent_io_tree *tree, | 
|  | u64 offset) | 
|  | { | 
|  | return tree_search_for_insert(tree, offset, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * utility function to look for merge candidates inside a given range. | 
|  | * Any extents with matching state are merged together into a single | 
|  | * extent in the tree.  Extents with EXTENT_IO in their state field | 
|  | * are not merged because the end_io handlers need to be able to do | 
|  | * operations on them without sleeping (or doing allocations/splits). | 
|  | * | 
|  | * This should be called with the tree lock held. | 
|  | */ | 
|  | static void merge_state(struct extent_io_tree *tree, | 
|  | struct extent_state *state) | 
|  | { | 
|  | struct extent_state *other; | 
|  | struct rb_node *other_node; | 
|  |  | 
|  | if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) | 
|  | return; | 
|  |  | 
|  | other_node = rb_prev(&state->rb_node); | 
|  | if (other_node) { | 
|  | other = rb_entry(other_node, struct extent_state, rb_node); | 
|  | if (other->end == state->start - 1 && | 
|  | other->state == state->state) { | 
|  | if (tree->private_data && | 
|  | is_data_inode(tree->private_data)) | 
|  | btrfs_merge_delalloc_extent(tree->private_data, | 
|  | state, other); | 
|  | state->start = other->start; | 
|  | rb_erase(&other->rb_node, &tree->state); | 
|  | RB_CLEAR_NODE(&other->rb_node); | 
|  | free_extent_state(other); | 
|  | } | 
|  | } | 
|  | other_node = rb_next(&state->rb_node); | 
|  | if (other_node) { | 
|  | other = rb_entry(other_node, struct extent_state, rb_node); | 
|  | if (other->start == state->end + 1 && | 
|  | other->state == state->state) { | 
|  | if (tree->private_data && | 
|  | is_data_inode(tree->private_data)) | 
|  | btrfs_merge_delalloc_extent(tree->private_data, | 
|  | state, other); | 
|  | state->end = other->end; | 
|  | rb_erase(&other->rb_node, &tree->state); | 
|  | RB_CLEAR_NODE(&other->rb_node); | 
|  | free_extent_state(other); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_state_bits(struct extent_io_tree *tree, | 
|  | struct extent_state *state, unsigned *bits, | 
|  | struct extent_changeset *changeset); | 
|  |  | 
|  | /* | 
|  | * insert an extent_state struct into the tree.  'bits' are set on the | 
|  | * struct before it is inserted. | 
|  | * | 
|  | * This may return -EEXIST if the extent is already there, in which case the | 
|  | * state struct is freed. | 
|  | * | 
|  | * The tree lock is not taken internally.  This is a utility function and | 
|  | * probably isn't what you want to call (see set/clear_extent_bit). | 
|  | */ | 
|  | static int insert_state(struct extent_io_tree *tree, | 
|  | struct extent_state *state, u64 start, u64 end, | 
|  | struct rb_node ***p, | 
|  | struct rb_node **parent, | 
|  | unsigned *bits, struct extent_changeset *changeset) | 
|  | { | 
|  | struct rb_node *node; | 
|  |  | 
|  | if (end < start) { | 
|  | btrfs_err(tree->fs_info, | 
|  | "insert state: end < start %llu %llu", end, start); | 
|  | WARN_ON(1); | 
|  | } | 
|  | state->start = start; | 
|  | state->end = end; | 
|  |  | 
|  | set_state_bits(tree, state, bits, changeset); | 
|  |  | 
|  | node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); | 
|  | if (node) { | 
|  | struct extent_state *found; | 
|  | found = rb_entry(node, struct extent_state, rb_node); | 
|  | btrfs_err(tree->fs_info, | 
|  | "found node %llu %llu on insert of %llu %llu", | 
|  | found->start, found->end, start, end); | 
|  | return -EEXIST; | 
|  | } | 
|  | merge_state(tree, state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split a given extent state struct in two, inserting the preallocated | 
|  | * struct 'prealloc' as the newly created second half.  'split' indicates an | 
|  | * offset inside 'orig' where it should be split. | 
|  | * | 
|  | * Before calling, | 
|  | * the tree has 'orig' at [orig->start, orig->end].  After calling, there | 
|  | * are two extent state structs in the tree: | 
|  | * prealloc: [orig->start, split - 1] | 
|  | * orig: [ split, orig->end ] | 
|  | * | 
|  | * The tree locks are not taken by this function. They need to be held | 
|  | * by the caller. | 
|  | */ | 
|  | static int split_state(struct extent_io_tree *tree, struct extent_state *orig, | 
|  | struct extent_state *prealloc, u64 split) | 
|  | { | 
|  | struct rb_node *node; | 
|  |  | 
|  | if (tree->private_data && is_data_inode(tree->private_data)) | 
|  | btrfs_split_delalloc_extent(tree->private_data, orig, split); | 
|  |  | 
|  | prealloc->start = orig->start; | 
|  | prealloc->end = split - 1; | 
|  | prealloc->state = orig->state; | 
|  | orig->start = split; | 
|  |  | 
|  | node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, | 
|  | &prealloc->rb_node, NULL, NULL); | 
|  | if (node) { | 
|  | free_extent_state(prealloc); | 
|  | return -EEXIST; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct extent_state *next_state(struct extent_state *state) | 
|  | { | 
|  | struct rb_node *next = rb_next(&state->rb_node); | 
|  | if (next) | 
|  | return rb_entry(next, struct extent_state, rb_node); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * utility function to clear some bits in an extent state struct. | 
|  | * it will optionally wake up anyone waiting on this state (wake == 1). | 
|  | * | 
|  | * If no bits are set on the state struct after clearing things, the | 
|  | * struct is freed and removed from the tree | 
|  | */ | 
|  | static struct extent_state *clear_state_bit(struct extent_io_tree *tree, | 
|  | struct extent_state *state, | 
|  | unsigned *bits, int wake, | 
|  | struct extent_changeset *changeset) | 
|  | { | 
|  | struct extent_state *next; | 
|  | unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; | 
|  | int ret; | 
|  |  | 
|  | if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { | 
|  | u64 range = state->end - state->start + 1; | 
|  | WARN_ON(range > tree->dirty_bytes); | 
|  | tree->dirty_bytes -= range; | 
|  | } | 
|  |  | 
|  | if (tree->private_data && is_data_inode(tree->private_data)) | 
|  | btrfs_clear_delalloc_extent(tree->private_data, state, bits); | 
|  |  | 
|  | ret = add_extent_changeset(state, bits_to_clear, changeset, 0); | 
|  | BUG_ON(ret < 0); | 
|  | state->state &= ~bits_to_clear; | 
|  | if (wake) | 
|  | wake_up(&state->wq); | 
|  | if (state->state == 0) { | 
|  | next = next_state(state); | 
|  | if (extent_state_in_tree(state)) { | 
|  | rb_erase(&state->rb_node, &tree->state); | 
|  | RB_CLEAR_NODE(&state->rb_node); | 
|  | free_extent_state(state); | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | } | 
|  | } else { | 
|  | merge_state(tree, state); | 
|  | next = next_state(state); | 
|  | } | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static struct extent_state * | 
|  | alloc_extent_state_atomic(struct extent_state *prealloc) | 
|  | { | 
|  | if (!prealloc) | 
|  | prealloc = alloc_extent_state(GFP_ATOMIC); | 
|  |  | 
|  | return prealloc; | 
|  | } | 
|  |  | 
|  | static void extent_io_tree_panic(struct extent_io_tree *tree, int err) | 
|  | { | 
|  | btrfs_panic(tree->fs_info, err, | 
|  | "locking error: extent tree was modified by another thread while locked"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear some bits on a range in the tree.  This may require splitting | 
|  | * or inserting elements in the tree, so the gfp mask is used to | 
|  | * indicate which allocations or sleeping are allowed. | 
|  | * | 
|  | * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove | 
|  | * the given range from the tree regardless of state (ie for truncate). | 
|  | * | 
|  | * the range [start, end] is inclusive. | 
|  | * | 
|  | * This takes the tree lock, and returns 0 on success and < 0 on error. | 
|  | */ | 
|  | int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, int wake, int delete, | 
|  | struct extent_state **cached_state, | 
|  | gfp_t mask, struct extent_changeset *changeset) | 
|  | { | 
|  | struct extent_state *state; | 
|  | struct extent_state *cached; | 
|  | struct extent_state *prealloc = NULL; | 
|  | struct rb_node *node; | 
|  | u64 last_end; | 
|  | int err; | 
|  | int clear = 0; | 
|  |  | 
|  | btrfs_debug_check_extent_io_range(tree, start, end); | 
|  | trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); | 
|  |  | 
|  | if (bits & EXTENT_DELALLOC) | 
|  | bits |= EXTENT_NORESERVE; | 
|  |  | 
|  | if (delete) | 
|  | bits |= ~EXTENT_CTLBITS; | 
|  |  | 
|  | if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) | 
|  | clear = 1; | 
|  | again: | 
|  | if (!prealloc && gfpflags_allow_blocking(mask)) { | 
|  | /* | 
|  | * Don't care for allocation failure here because we might end | 
|  | * up not needing the pre-allocated extent state at all, which | 
|  | * is the case if we only have in the tree extent states that | 
|  | * cover our input range and don't cover too any other range. | 
|  | * If we end up needing a new extent state we allocate it later. | 
|  | */ | 
|  | prealloc = alloc_extent_state(mask); | 
|  | } | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (cached_state) { | 
|  | cached = *cached_state; | 
|  |  | 
|  | if (clear) { | 
|  | *cached_state = NULL; | 
|  | cached_state = NULL; | 
|  | } | 
|  |  | 
|  | if (cached && extent_state_in_tree(cached) && | 
|  | cached->start <= start && cached->end > start) { | 
|  | if (clear) | 
|  | refcount_dec(&cached->refs); | 
|  | state = cached; | 
|  | goto hit_next; | 
|  | } | 
|  | if (clear) | 
|  | free_extent_state(cached); | 
|  | } | 
|  | /* | 
|  | * this search will find the extents that end after | 
|  | * our range starts | 
|  | */ | 
|  | node = tree_search(tree, start); | 
|  | if (!node) | 
|  | goto out; | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | hit_next: | 
|  | if (state->start > end) | 
|  | goto out; | 
|  | WARN_ON(state->end < start); | 
|  | last_end = state->end; | 
|  |  | 
|  | /* the state doesn't have the wanted bits, go ahead */ | 
|  | if (!(state->state & bits)) { | 
|  | state = next_state(state); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *     | ---- desired range ---- | | 
|  | *  | state | or | 
|  | *  | ------------- state -------------- | | 
|  | * | 
|  | * We need to split the extent we found, and may flip | 
|  | * bits on second half. | 
|  | * | 
|  | * If the extent we found extends past our range, we | 
|  | * just split and search again.  It'll get split again | 
|  | * the next time though. | 
|  | * | 
|  | * If the extent we found is inside our range, we clear | 
|  | * the desired bit on it. | 
|  | */ | 
|  |  | 
|  | if (state->start < start) { | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | BUG_ON(!prealloc); | 
|  | err = split_state(tree, state, prealloc, start); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | prealloc = NULL; | 
|  | if (err) | 
|  | goto out; | 
|  | if (state->end <= end) { | 
|  | state = clear_state_bit(tree, state, &bits, wake, | 
|  | changeset); | 
|  | goto next; | 
|  | } | 
|  | goto search_again; | 
|  | } | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | *                        | state | | 
|  | * We need to split the extent, and clear the bit | 
|  | * on the first half | 
|  | */ | 
|  | if (state->start <= end && state->end > end) { | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | BUG_ON(!prealloc); | 
|  | err = split_state(tree, state, prealloc, end + 1); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | if (wake) | 
|  | wake_up(&state->wq); | 
|  |  | 
|  | clear_state_bit(tree, prealloc, &bits, wake, changeset); | 
|  |  | 
|  | prealloc = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | state = clear_state_bit(tree, state, &bits, wake, changeset); | 
|  | next: | 
|  | if (last_end == (u64)-1) | 
|  | goto out; | 
|  | start = last_end + 1; | 
|  | if (start <= end && state && !need_resched()) | 
|  | goto hit_next; | 
|  |  | 
|  | search_again: | 
|  | if (start > end) | 
|  | goto out; | 
|  | spin_unlock(&tree->lock); | 
|  | if (gfpflags_allow_blocking(mask)) | 
|  | cond_resched(); | 
|  | goto again; | 
|  |  | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | if (prealloc) | 
|  | free_extent_state(prealloc); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void wait_on_state(struct extent_io_tree *tree, | 
|  | struct extent_state *state) | 
|  | __releases(tree->lock) | 
|  | __acquires(tree->lock) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&tree->lock); | 
|  | schedule(); | 
|  | spin_lock(&tree->lock); | 
|  | finish_wait(&state->wq, &wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * waits for one or more bits to clear on a range in the state tree. | 
|  | * The range [start, end] is inclusive. | 
|  | * The tree lock is taken by this function | 
|  | */ | 
|  | static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned long bits) | 
|  | { | 
|  | struct extent_state *state; | 
|  | struct rb_node *node; | 
|  |  | 
|  | btrfs_debug_check_extent_io_range(tree, start, end); | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | again: | 
|  | while (1) { | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts | 
|  | */ | 
|  | node = tree_search(tree, start); | 
|  | process_node: | 
|  | if (!node) | 
|  | break; | 
|  |  | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  |  | 
|  | if (state->start > end) | 
|  | goto out; | 
|  |  | 
|  | if (state->state & bits) { | 
|  | start = state->start; | 
|  | refcount_inc(&state->refs); | 
|  | wait_on_state(tree, state); | 
|  | free_extent_state(state); | 
|  | goto again; | 
|  | } | 
|  | start = state->end + 1; | 
|  |  | 
|  | if (start > end) | 
|  | break; | 
|  |  | 
|  | if (!cond_resched_lock(&tree->lock)) { | 
|  | node = rb_next(node); | 
|  | goto process_node; | 
|  | } | 
|  | } | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | } | 
|  |  | 
|  | static void set_state_bits(struct extent_io_tree *tree, | 
|  | struct extent_state *state, | 
|  | unsigned *bits, struct extent_changeset *changeset) | 
|  | { | 
|  | unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; | 
|  | int ret; | 
|  |  | 
|  | if (tree->private_data && is_data_inode(tree->private_data)) | 
|  | btrfs_set_delalloc_extent(tree->private_data, state, bits); | 
|  |  | 
|  | if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { | 
|  | u64 range = state->end - state->start + 1; | 
|  | tree->dirty_bytes += range; | 
|  | } | 
|  | ret = add_extent_changeset(state, bits_to_set, changeset, 1); | 
|  | BUG_ON(ret < 0); | 
|  | state->state |= bits_to_set; | 
|  | } | 
|  |  | 
|  | static void cache_state_if_flags(struct extent_state *state, | 
|  | struct extent_state **cached_ptr, | 
|  | unsigned flags) | 
|  | { | 
|  | if (cached_ptr && !(*cached_ptr)) { | 
|  | if (!flags || (state->state & flags)) { | 
|  | *cached_ptr = state; | 
|  | refcount_inc(&state->refs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cache_state(struct extent_state *state, | 
|  | struct extent_state **cached_ptr) | 
|  | { | 
|  | return cache_state_if_flags(state, cached_ptr, | 
|  | EXTENT_LOCKED | EXTENT_BOUNDARY); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set some bits on a range in the tree.  This may require allocations or | 
|  | * sleeping, so the gfp mask is used to indicate what is allowed. | 
|  | * | 
|  | * If any of the exclusive bits are set, this will fail with -EEXIST if some | 
|  | * part of the range already has the desired bits set.  The start of the | 
|  | * existing range is returned in failed_start in this case. | 
|  | * | 
|  | * [start, end] is inclusive This takes the tree lock. | 
|  | */ | 
|  |  | 
|  | static int __must_check | 
|  | __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, unsigned exclusive_bits, | 
|  | u64 *failed_start, struct extent_state **cached_state, | 
|  | gfp_t mask, struct extent_changeset *changeset) | 
|  | { | 
|  | struct extent_state *state; | 
|  | struct extent_state *prealloc = NULL; | 
|  | struct rb_node *node; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent; | 
|  | int err = 0; | 
|  | u64 last_start; | 
|  | u64 last_end; | 
|  |  | 
|  | btrfs_debug_check_extent_io_range(tree, start, end); | 
|  | trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); | 
|  |  | 
|  | again: | 
|  | if (!prealloc && gfpflags_allow_blocking(mask)) { | 
|  | /* | 
|  | * Don't care for allocation failure here because we might end | 
|  | * up not needing the pre-allocated extent state at all, which | 
|  | * is the case if we only have in the tree extent states that | 
|  | * cover our input range and don't cover too any other range. | 
|  | * If we end up needing a new extent state we allocate it later. | 
|  | */ | 
|  | prealloc = alloc_extent_state(mask); | 
|  | } | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (cached_state && *cached_state) { | 
|  | state = *cached_state; | 
|  | if (state->start <= start && state->end > start && | 
|  | extent_state_in_tree(state)) { | 
|  | node = &state->rb_node; | 
|  | goto hit_next; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search_for_insert(tree, start, &p, &parent); | 
|  | if (!node) { | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | BUG_ON(!prealloc); | 
|  | err = insert_state(tree, prealloc, start, end, | 
|  | &p, &parent, &bits, changeset); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | cache_state(prealloc, cached_state); | 
|  | prealloc = NULL; | 
|  | goto out; | 
|  | } | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | hit_next: | 
|  | last_start = state->start; | 
|  | last_end = state->end; | 
|  |  | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | * | state | | 
|  | * | 
|  | * Just lock what we found and keep going | 
|  | */ | 
|  | if (state->start == start && state->end <= end) { | 
|  | if (state->state & exclusive_bits) { | 
|  | *failed_start = state->start; | 
|  | err = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | set_state_bits(tree, state, &bits, changeset); | 
|  | cache_state(state, cached_state); | 
|  | merge_state(tree, state); | 
|  | if (last_end == (u64)-1) | 
|  | goto out; | 
|  | start = last_end + 1; | 
|  | state = next_state(state); | 
|  | if (start < end && state && state->start == start && | 
|  | !need_resched()) | 
|  | goto hit_next; | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *     | ---- desired range ---- | | 
|  | * | state | | 
|  | *   or | 
|  | * | ------------- state -------------- | | 
|  | * | 
|  | * We need to split the extent we found, and may flip bits on | 
|  | * second half. | 
|  | * | 
|  | * If the extent we found extends past our | 
|  | * range, we just split and search again.  It'll get split | 
|  | * again the next time though. | 
|  | * | 
|  | * If the extent we found is inside our range, we set the | 
|  | * desired bit on it. | 
|  | */ | 
|  | if (state->start < start) { | 
|  | if (state->state & exclusive_bits) { | 
|  | *failed_start = start; | 
|  | err = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | BUG_ON(!prealloc); | 
|  | err = split_state(tree, state, prealloc, start); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | prealloc = NULL; | 
|  | if (err) | 
|  | goto out; | 
|  | if (state->end <= end) { | 
|  | set_state_bits(tree, state, &bits, changeset); | 
|  | cache_state(state, cached_state); | 
|  | merge_state(tree, state); | 
|  | if (last_end == (u64)-1) | 
|  | goto out; | 
|  | start = last_end + 1; | 
|  | state = next_state(state); | 
|  | if (start < end && state && state->start == start && | 
|  | !need_resched()) | 
|  | goto hit_next; | 
|  | } | 
|  | goto search_again; | 
|  | } | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | *     | state | or               | state | | 
|  | * | 
|  | * There's a hole, we need to insert something in it and | 
|  | * ignore the extent we found. | 
|  | */ | 
|  | if (state->start > start) { | 
|  | u64 this_end; | 
|  | if (end < last_start) | 
|  | this_end = end; | 
|  | else | 
|  | this_end = last_start - 1; | 
|  |  | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | BUG_ON(!prealloc); | 
|  |  | 
|  | /* | 
|  | * Avoid to free 'prealloc' if it can be merged with | 
|  | * the later extent. | 
|  | */ | 
|  | err = insert_state(tree, prealloc, start, this_end, | 
|  | NULL, NULL, &bits, changeset); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | cache_state(prealloc, cached_state); | 
|  | prealloc = NULL; | 
|  | start = this_end + 1; | 
|  | goto search_again; | 
|  | } | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | *                        | state | | 
|  | * We need to split the extent, and set the bit | 
|  | * on the first half | 
|  | */ | 
|  | if (state->start <= end && state->end > end) { | 
|  | if (state->state & exclusive_bits) { | 
|  | *failed_start = start; | 
|  | err = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | BUG_ON(!prealloc); | 
|  | err = split_state(tree, state, prealloc, end + 1); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | set_state_bits(tree, prealloc, &bits, changeset); | 
|  | cache_state(prealloc, cached_state); | 
|  | merge_state(tree, prealloc); | 
|  | prealloc = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | search_again: | 
|  | if (start > end) | 
|  | goto out; | 
|  | spin_unlock(&tree->lock); | 
|  | if (gfpflags_allow_blocking(mask)) | 
|  | cond_resched(); | 
|  | goto again; | 
|  |  | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | if (prealloc) | 
|  | free_extent_state(prealloc); | 
|  |  | 
|  | return err; | 
|  |  | 
|  | } | 
|  |  | 
|  | int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, u64 * failed_start, | 
|  | struct extent_state **cached_state, gfp_t mask) | 
|  | { | 
|  | return __set_extent_bit(tree, start, end, bits, 0, failed_start, | 
|  | cached_state, mask, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * convert_extent_bit - convert all bits in a given range from one bit to | 
|  | * 			another | 
|  | * @tree:	the io tree to search | 
|  | * @start:	the start offset in bytes | 
|  | * @end:	the end offset in bytes (inclusive) | 
|  | * @bits:	the bits to set in this range | 
|  | * @clear_bits:	the bits to clear in this range | 
|  | * @cached_state:	state that we're going to cache | 
|  | * | 
|  | * This will go through and set bits for the given range.  If any states exist | 
|  | * already in this range they are set with the given bit and cleared of the | 
|  | * clear_bits.  This is only meant to be used by things that are mergeable, ie | 
|  | * converting from say DELALLOC to DIRTY.  This is not meant to be used with | 
|  | * boundary bits like LOCK. | 
|  | * | 
|  | * All allocations are done with GFP_NOFS. | 
|  | */ | 
|  | int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, unsigned clear_bits, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | struct extent_state *state; | 
|  | struct extent_state *prealloc = NULL; | 
|  | struct rb_node *node; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent; | 
|  | int err = 0; | 
|  | u64 last_start; | 
|  | u64 last_end; | 
|  | bool first_iteration = true; | 
|  |  | 
|  | btrfs_debug_check_extent_io_range(tree, start, end); | 
|  | trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, | 
|  | clear_bits); | 
|  |  | 
|  | again: | 
|  | if (!prealloc) { | 
|  | /* | 
|  | * Best effort, don't worry if extent state allocation fails | 
|  | * here for the first iteration. We might have a cached state | 
|  | * that matches exactly the target range, in which case no | 
|  | * extent state allocations are needed. We'll only know this | 
|  | * after locking the tree. | 
|  | */ | 
|  | prealloc = alloc_extent_state(GFP_NOFS); | 
|  | if (!prealloc && !first_iteration) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (cached_state && *cached_state) { | 
|  | state = *cached_state; | 
|  | if (state->start <= start && state->end > start && | 
|  | extent_state_in_tree(state)) { | 
|  | node = &state->rb_node; | 
|  | goto hit_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search_for_insert(tree, start, &p, &parent); | 
|  | if (!node) { | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | if (!prealloc) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | err = insert_state(tree, prealloc, start, end, | 
|  | &p, &parent, &bits, NULL); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  | cache_state(prealloc, cached_state); | 
|  | prealloc = NULL; | 
|  | goto out; | 
|  | } | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | hit_next: | 
|  | last_start = state->start; | 
|  | last_end = state->end; | 
|  |  | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | * | state | | 
|  | * | 
|  | * Just lock what we found and keep going | 
|  | */ | 
|  | if (state->start == start && state->end <= end) { | 
|  | set_state_bits(tree, state, &bits, NULL); | 
|  | cache_state(state, cached_state); | 
|  | state = clear_state_bit(tree, state, &clear_bits, 0, NULL); | 
|  | if (last_end == (u64)-1) | 
|  | goto out; | 
|  | start = last_end + 1; | 
|  | if (start < end && state && state->start == start && | 
|  | !need_resched()) | 
|  | goto hit_next; | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *     | ---- desired range ---- | | 
|  | * | state | | 
|  | *   or | 
|  | * | ------------- state -------------- | | 
|  | * | 
|  | * We need to split the extent we found, and may flip bits on | 
|  | * second half. | 
|  | * | 
|  | * If the extent we found extends past our | 
|  | * range, we just split and search again.  It'll get split | 
|  | * again the next time though. | 
|  | * | 
|  | * If the extent we found is inside our range, we set the | 
|  | * desired bit on it. | 
|  | */ | 
|  | if (state->start < start) { | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | if (!prealloc) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | err = split_state(tree, state, prealloc, start); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  | prealloc = NULL; | 
|  | if (err) | 
|  | goto out; | 
|  | if (state->end <= end) { | 
|  | set_state_bits(tree, state, &bits, NULL); | 
|  | cache_state(state, cached_state); | 
|  | state = clear_state_bit(tree, state, &clear_bits, 0, | 
|  | NULL); | 
|  | if (last_end == (u64)-1) | 
|  | goto out; | 
|  | start = last_end + 1; | 
|  | if (start < end && state && state->start == start && | 
|  | !need_resched()) | 
|  | goto hit_next; | 
|  | } | 
|  | goto search_again; | 
|  | } | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | *     | state | or               | state | | 
|  | * | 
|  | * There's a hole, we need to insert something in it and | 
|  | * ignore the extent we found. | 
|  | */ | 
|  | if (state->start > start) { | 
|  | u64 this_end; | 
|  | if (end < last_start) | 
|  | this_end = end; | 
|  | else | 
|  | this_end = last_start - 1; | 
|  |  | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | if (!prealloc) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid to free 'prealloc' if it can be merged with | 
|  | * the later extent. | 
|  | */ | 
|  | err = insert_state(tree, prealloc, start, this_end, | 
|  | NULL, NULL, &bits, NULL); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  | cache_state(prealloc, cached_state); | 
|  | prealloc = NULL; | 
|  | start = this_end + 1; | 
|  | goto search_again; | 
|  | } | 
|  | /* | 
|  | * | ---- desired range ---- | | 
|  | *                        | state | | 
|  | * We need to split the extent, and set the bit | 
|  | * on the first half | 
|  | */ | 
|  | if (state->start <= end && state->end > end) { | 
|  | prealloc = alloc_extent_state_atomic(prealloc); | 
|  | if (!prealloc) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = split_state(tree, state, prealloc, end + 1); | 
|  | if (err) | 
|  | extent_io_tree_panic(tree, err); | 
|  |  | 
|  | set_state_bits(tree, prealloc, &bits, NULL); | 
|  | cache_state(prealloc, cached_state); | 
|  | clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); | 
|  | prealloc = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | search_again: | 
|  | if (start > end) | 
|  | goto out; | 
|  | spin_unlock(&tree->lock); | 
|  | cond_resched(); | 
|  | first_iteration = false; | 
|  | goto again; | 
|  |  | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | if (prealloc) | 
|  | free_extent_state(prealloc); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* wrappers around set/clear extent bit */ | 
|  | int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, struct extent_changeset *changeset) | 
|  | { | 
|  | /* | 
|  | * We don't support EXTENT_LOCKED yet, as current changeset will | 
|  | * record any bits changed, so for EXTENT_LOCKED case, it will | 
|  | * either fail with -EEXIST or changeset will record the whole | 
|  | * range. | 
|  | */ | 
|  | BUG_ON(bits & EXTENT_LOCKED); | 
|  |  | 
|  | return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, | 
|  | changeset); | 
|  | } | 
|  |  | 
|  | int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits) | 
|  | { | 
|  | return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, | 
|  | GFP_NOWAIT, NULL); | 
|  | } | 
|  |  | 
|  | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, int wake, int delete, | 
|  | struct extent_state **cached) | 
|  | { | 
|  | return __clear_extent_bit(tree, start, end, bits, wake, delete, | 
|  | cached, GFP_NOFS, NULL); | 
|  | } | 
|  |  | 
|  | int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, struct extent_changeset *changeset) | 
|  | { | 
|  | /* | 
|  | * Don't support EXTENT_LOCKED case, same reason as | 
|  | * set_record_extent_bits(). | 
|  | */ | 
|  | BUG_ON(bits & EXTENT_LOCKED); | 
|  |  | 
|  | return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, | 
|  | changeset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * either insert or lock state struct between start and end use mask to tell | 
|  | * us if waiting is desired. | 
|  | */ | 
|  | int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | int err; | 
|  | u64 failed_start; | 
|  |  | 
|  | while (1) { | 
|  | err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, | 
|  | EXTENT_LOCKED, &failed_start, | 
|  | cached_state, GFP_NOFS, NULL); | 
|  | if (err == -EEXIST) { | 
|  | wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); | 
|  | start = failed_start; | 
|  | } else | 
|  | break; | 
|  | WARN_ON(start > end); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) | 
|  | { | 
|  | int err; | 
|  | u64 failed_start; | 
|  |  | 
|  | err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, | 
|  | &failed_start, NULL, GFP_NOFS, NULL); | 
|  | if (err == -EEXIST) { | 
|  | if (failed_start > start) | 
|  | clear_extent_bit(tree, start, failed_start - 1, | 
|  | EXTENT_LOCKED, 1, 0, NULL); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) | 
|  | { | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  |  | 
|  | while (index <= end_index) { | 
|  | page = find_get_page(inode->i_mapping, index); | 
|  | BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
|  | clear_page_dirty_for_io(page); | 
|  | put_page(page); | 
|  | index++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) | 
|  | { | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  |  | 
|  | while (index <= end_index) { | 
|  | page = find_get_page(inode->i_mapping, index); | 
|  | BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
|  | __set_page_dirty_nobuffers(page); | 
|  | account_page_redirty(page); | 
|  | put_page(page); | 
|  | index++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* find the first state struct with 'bits' set after 'start', and | 
|  | * return it.  tree->lock must be held.  NULL will returned if | 
|  | * nothing was found after 'start' | 
|  | */ | 
|  | static struct extent_state * | 
|  | find_first_extent_bit_state(struct extent_io_tree *tree, | 
|  | u64 start, unsigned bits) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  |  | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search(tree, start); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | if (state->end >= start && (state->state & bits)) | 
|  | return state; | 
|  |  | 
|  | node = rb_next(node); | 
|  | if (!node) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find the first offset in the io tree with 'bits' set. zero is | 
|  | * returned if we find something, and *start_ret and *end_ret are | 
|  | * set to reflect the state struct that was found. | 
|  | * | 
|  | * If nothing was found, 1 is returned. If found something, return 0. | 
|  | */ | 
|  | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, | 
|  | u64 *start_ret, u64 *end_ret, unsigned bits, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | struct extent_state *state; | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (cached_state && *cached_state) { | 
|  | state = *cached_state; | 
|  | if (state->end == start - 1 && extent_state_in_tree(state)) { | 
|  | while ((state = next_state(state)) != NULL) { | 
|  | if (state->state & bits) | 
|  | goto got_it; | 
|  | } | 
|  | free_extent_state(*cached_state); | 
|  | *cached_state = NULL; | 
|  | goto out; | 
|  | } | 
|  | free_extent_state(*cached_state); | 
|  | *cached_state = NULL; | 
|  | } | 
|  |  | 
|  | state = find_first_extent_bit_state(tree, start, bits); | 
|  | got_it: | 
|  | if (state) { | 
|  | cache_state_if_flags(state, cached_state, 0); | 
|  | *start_ret = state->start; | 
|  | *end_ret = state->end; | 
|  | ret = 0; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_first_clear_extent_bit - find the first range that has @bits not set. | 
|  | * This range could start before @start. | 
|  | * | 
|  | * @tree - the tree to search | 
|  | * @start - the offset at/after which the found extent should start | 
|  | * @start_ret - records the beginning of the range | 
|  | * @end_ret - records the end of the range (inclusive) | 
|  | * @bits - the set of bits which must be unset | 
|  | * | 
|  | * Since unallocated range is also considered one which doesn't have the bits | 
|  | * set it's possible that @end_ret contains -1, this happens in case the range | 
|  | * spans (last_range_end, end of device]. In this case it's up to the caller to | 
|  | * trim @end_ret to the appropriate size. | 
|  | */ | 
|  | void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, | 
|  | u64 *start_ret, u64 *end_ret, unsigned bits) | 
|  | { | 
|  | struct extent_state *state; | 
|  | struct rb_node *node, *prev = NULL, *next; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  |  | 
|  | /* Find first extent with bits cleared */ | 
|  | while (1) { | 
|  | node = __etree_search(tree, start, &next, &prev, NULL, NULL); | 
|  | if (!node && !next && !prev) { | 
|  | /* | 
|  | * Tree is completely empty, send full range and let | 
|  | * caller deal with it | 
|  | */ | 
|  | *start_ret = 0; | 
|  | *end_ret = -1; | 
|  | goto out; | 
|  | } else if (!node && !next) { | 
|  | /* | 
|  | * We are past the last allocated chunk, set start at | 
|  | * the end of the last extent. | 
|  | */ | 
|  | state = rb_entry(prev, struct extent_state, rb_node); | 
|  | *start_ret = state->end + 1; | 
|  | *end_ret = -1; | 
|  | goto out; | 
|  | } else if (!node) { | 
|  | node = next; | 
|  | } | 
|  | /* | 
|  | * At this point 'node' either contains 'start' or start is | 
|  | * before 'node' | 
|  | */ | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  |  | 
|  | if (in_range(start, state->start, state->end - state->start + 1)) { | 
|  | if (state->state & bits) { | 
|  | /* | 
|  | * |--range with bits sets--| | 
|  | *    | | 
|  | *    start | 
|  | */ | 
|  | start = state->end + 1; | 
|  | } else { | 
|  | /* | 
|  | * 'start' falls within a range that doesn't | 
|  | * have the bits set, so take its start as | 
|  | * the beginning of the desired range | 
|  | * | 
|  | * |--range with bits cleared----| | 
|  | *      | | 
|  | *      start | 
|  | */ | 
|  | *start_ret = state->start; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * |---prev range---|---hole/unset---|---node range---| | 
|  | *                          | | 
|  | *                        start | 
|  | * | 
|  | *                        or | 
|  | * | 
|  | * |---hole/unset--||--first node--| | 
|  | * 0   | | 
|  | *    start | 
|  | */ | 
|  | if (prev) { | 
|  | state = rb_entry(prev, struct extent_state, | 
|  | rb_node); | 
|  | *start_ret = state->end + 1; | 
|  | } else { | 
|  | *start_ret = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the longest stretch from start until an entry which has the | 
|  | * bits set | 
|  | */ | 
|  | while (1) { | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | if (state->end >= start && !(state->state & bits)) { | 
|  | *end_ret = state->end; | 
|  | } else { | 
|  | *end_ret = state->start - 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | node = rb_next(node); | 
|  | if (!node) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find a contiguous range of bytes in the file marked as delalloc, not | 
|  | * more than 'max_bytes'.  start and end are used to return the range, | 
|  | * | 
|  | * true is returned if we find something, false if nothing was in the tree | 
|  | */ | 
|  | static noinline bool find_delalloc_range(struct extent_io_tree *tree, | 
|  | u64 *start, u64 *end, u64 max_bytes, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  | u64 cur_start = *start; | 
|  | bool found = false; | 
|  | u64 total_bytes = 0; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  |  | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search(tree, cur_start); | 
|  | if (!node) { | 
|  | *end = (u64)-1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | if (found && (state->start != cur_start || | 
|  | (state->state & EXTENT_BOUNDARY))) { | 
|  | goto out; | 
|  | } | 
|  | if (!(state->state & EXTENT_DELALLOC)) { | 
|  | if (!found) | 
|  | *end = state->end; | 
|  | goto out; | 
|  | } | 
|  | if (!found) { | 
|  | *start = state->start; | 
|  | *cached_state = state; | 
|  | refcount_inc(&state->refs); | 
|  | } | 
|  | found = true; | 
|  | *end = state->end; | 
|  | cur_start = state->end + 1; | 
|  | node = rb_next(node); | 
|  | total_bytes += state->end - state->start + 1; | 
|  | if (total_bytes >= max_bytes) | 
|  | break; | 
|  | if (!node) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int __process_pages_contig(struct address_space *mapping, | 
|  | struct page *locked_page, | 
|  | pgoff_t start_index, pgoff_t end_index, | 
|  | unsigned long page_ops, pgoff_t *index_ret); | 
|  |  | 
|  | static noinline void __unlock_for_delalloc(struct inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  |  | 
|  | ASSERT(locked_page); | 
|  | if (index == locked_page->index && end_index == index) | 
|  | return; | 
|  |  | 
|  | __process_pages_contig(inode->i_mapping, locked_page, index, end_index, | 
|  | PAGE_UNLOCK, NULL); | 
|  | } | 
|  |  | 
|  | static noinline int lock_delalloc_pages(struct inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 delalloc_start, | 
|  | u64 delalloc_end) | 
|  | { | 
|  | unsigned long index = delalloc_start >> PAGE_SHIFT; | 
|  | unsigned long index_ret = index; | 
|  | unsigned long end_index = delalloc_end >> PAGE_SHIFT; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(locked_page); | 
|  | if (index == locked_page->index && index == end_index) | 
|  | return 0; | 
|  |  | 
|  | ret = __process_pages_contig(inode->i_mapping, locked_page, index, | 
|  | end_index, PAGE_LOCK, &index_ret); | 
|  | if (ret == -EAGAIN) | 
|  | __unlock_for_delalloc(inode, locked_page, delalloc_start, | 
|  | (u64)index_ret << PAGE_SHIFT); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and lock a contiguous range of bytes in the file marked as delalloc, no | 
|  | * more than @max_bytes.  @Start and @end are used to return the range, | 
|  | * | 
|  | * Return: true if we find something | 
|  | *         false if nothing was in the tree | 
|  | */ | 
|  | EXPORT_FOR_TESTS | 
|  | noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, | 
|  | struct page *locked_page, u64 *start, | 
|  | u64 *end) | 
|  | { | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  | u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | bool found; | 
|  | struct extent_state *cached_state = NULL; | 
|  | int ret; | 
|  | int loops = 0; | 
|  |  | 
|  | again: | 
|  | /* step one, find a bunch of delalloc bytes starting at start */ | 
|  | delalloc_start = *start; | 
|  | delalloc_end = 0; | 
|  | found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, | 
|  | max_bytes, &cached_state); | 
|  | if (!found || delalloc_end <= *start) { | 
|  | *start = delalloc_start; | 
|  | *end = delalloc_end; | 
|  | free_extent_state(cached_state); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start comes from the offset of locked_page.  We have to lock | 
|  | * pages in order, so we can't process delalloc bytes before | 
|  | * locked_page | 
|  | */ | 
|  | if (delalloc_start < *start) | 
|  | delalloc_start = *start; | 
|  |  | 
|  | /* | 
|  | * make sure to limit the number of pages we try to lock down | 
|  | */ | 
|  | if (delalloc_end + 1 - delalloc_start > max_bytes) | 
|  | delalloc_end = delalloc_start + max_bytes - 1; | 
|  |  | 
|  | /* step two, lock all the pages after the page that has start */ | 
|  | ret = lock_delalloc_pages(inode, locked_page, | 
|  | delalloc_start, delalloc_end); | 
|  | ASSERT(!ret || ret == -EAGAIN); | 
|  | if (ret == -EAGAIN) { | 
|  | /* some of the pages are gone, lets avoid looping by | 
|  | * shortening the size of the delalloc range we're searching | 
|  | */ | 
|  | free_extent_state(cached_state); | 
|  | cached_state = NULL; | 
|  | if (!loops) { | 
|  | max_bytes = PAGE_SIZE; | 
|  | loops = 1; | 
|  | goto again; | 
|  | } else { | 
|  | found = false; | 
|  | goto out_failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* step three, lock the state bits for the whole range */ | 
|  | lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); | 
|  |  | 
|  | /* then test to make sure it is all still delalloc */ | 
|  | ret = test_range_bit(tree, delalloc_start, delalloc_end, | 
|  | EXTENT_DELALLOC, 1, cached_state); | 
|  | if (!ret) { | 
|  | unlock_extent_cached(tree, delalloc_start, delalloc_end, | 
|  | &cached_state); | 
|  | __unlock_for_delalloc(inode, locked_page, | 
|  | delalloc_start, delalloc_end); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | free_extent_state(cached_state); | 
|  | *start = delalloc_start; | 
|  | *end = delalloc_end; | 
|  | out_failed: | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int __process_pages_contig(struct address_space *mapping, | 
|  | struct page *locked_page, | 
|  | pgoff_t start_index, pgoff_t end_index, | 
|  | unsigned long page_ops, pgoff_t *index_ret) | 
|  | { | 
|  | unsigned long nr_pages = end_index - start_index + 1; | 
|  | unsigned long pages_locked = 0; | 
|  | pgoff_t index = start_index; | 
|  | struct page *pages[16]; | 
|  | unsigned ret; | 
|  | int err = 0; | 
|  | int i; | 
|  |  | 
|  | if (page_ops & PAGE_LOCK) { | 
|  | ASSERT(page_ops == PAGE_LOCK); | 
|  | ASSERT(index_ret && *index_ret == start_index); | 
|  | } | 
|  |  | 
|  | if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) | 
|  | mapping_set_error(mapping, -EIO); | 
|  |  | 
|  | while (nr_pages > 0) { | 
|  | ret = find_get_pages_contig(mapping, index, | 
|  | min_t(unsigned long, | 
|  | nr_pages, ARRAY_SIZE(pages)), pages); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * Only if we're going to lock these pages, | 
|  | * can we find nothing at @index. | 
|  | */ | 
|  | ASSERT(page_ops & PAGE_LOCK); | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ret; i++) { | 
|  | if (page_ops & PAGE_SET_PRIVATE2) | 
|  | SetPagePrivate2(pages[i]); | 
|  |  | 
|  | if (locked_page && pages[i] == locked_page) { | 
|  | put_page(pages[i]); | 
|  | pages_locked++; | 
|  | continue; | 
|  | } | 
|  | if (page_ops & PAGE_CLEAR_DIRTY) | 
|  | clear_page_dirty_for_io(pages[i]); | 
|  | if (page_ops & PAGE_SET_WRITEBACK) | 
|  | set_page_writeback(pages[i]); | 
|  | if (page_ops & PAGE_SET_ERROR) | 
|  | SetPageError(pages[i]); | 
|  | if (page_ops & PAGE_END_WRITEBACK) | 
|  | end_page_writeback(pages[i]); | 
|  | if (page_ops & PAGE_UNLOCK) | 
|  | unlock_page(pages[i]); | 
|  | if (page_ops & PAGE_LOCK) { | 
|  | lock_page(pages[i]); | 
|  | if (!PageDirty(pages[i]) || | 
|  | pages[i]->mapping != mapping) { | 
|  | unlock_page(pages[i]); | 
|  | for (; i < ret; i++) | 
|  | put_page(pages[i]); | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | put_page(pages[i]); | 
|  | pages_locked++; | 
|  | } | 
|  | nr_pages -= ret; | 
|  | index += ret; | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | if (err && index_ret) | 
|  | *index_ret = start_index + pages_locked - 1; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, | 
|  | struct page *locked_page, | 
|  | unsigned clear_bits, | 
|  | unsigned long page_ops) | 
|  | { | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, | 
|  | NULL); | 
|  |  | 
|  | __process_pages_contig(inode->i_mapping, locked_page, | 
|  | start >> PAGE_SHIFT, end >> PAGE_SHIFT, | 
|  | page_ops, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * count the number of bytes in the tree that have a given bit(s) | 
|  | * set.  This can be fairly slow, except for EXTENT_DIRTY which is | 
|  | * cached.  The total number found is returned. | 
|  | */ | 
|  | u64 count_range_bits(struct extent_io_tree *tree, | 
|  | u64 *start, u64 search_end, u64 max_bytes, | 
|  | unsigned bits, int contig) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  | u64 cur_start = *start; | 
|  | u64 total_bytes = 0; | 
|  | u64 last = 0; | 
|  | int found = 0; | 
|  |  | 
|  | if (WARN_ON(search_end <= cur_start)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (cur_start == 0 && bits == EXTENT_DIRTY) { | 
|  | total_bytes = tree->dirty_bytes; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search(tree, cur_start); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | if (state->start > search_end) | 
|  | break; | 
|  | if (contig && found && state->start > last + 1) | 
|  | break; | 
|  | if (state->end >= cur_start && (state->state & bits) == bits) { | 
|  | total_bytes += min(search_end, state->end) + 1 - | 
|  | max(cur_start, state->start); | 
|  | if (total_bytes >= max_bytes) | 
|  | break; | 
|  | if (!found) { | 
|  | *start = max(cur_start, state->start); | 
|  | found = 1; | 
|  | } | 
|  | last = state->end; | 
|  | } else if (contig && found) { | 
|  | break; | 
|  | } | 
|  | node = rb_next(node); | 
|  | if (!node) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | return total_bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set the private field for a given byte offset in the tree.  If there isn't | 
|  | * an extent_state there already, this does nothing. | 
|  | */ | 
|  | static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, | 
|  | struct io_failure_record *failrec) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search(tree, start); | 
|  | if (!node) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | if (state->start != start) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | state->failrec = failrec; | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, | 
|  | struct io_failure_record **failrec) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | /* | 
|  | * this search will find all the extents that end after | 
|  | * our range starts. | 
|  | */ | 
|  | node = tree_search(tree, start); | 
|  | if (!node) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | if (state->start != start) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | *failrec = state->failrec; | 
|  | out: | 
|  | spin_unlock(&tree->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * searches a range in the state tree for a given mask. | 
|  | * If 'filled' == 1, this returns 1 only if every extent in the tree | 
|  | * has the bits set.  Otherwise, 1 is returned if any bit in the | 
|  | * range is found set. | 
|  | */ | 
|  | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
|  | unsigned bits, int filled, struct extent_state *cached) | 
|  | { | 
|  | struct extent_state *state = NULL; | 
|  | struct rb_node *node; | 
|  | int bitset = 0; | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (cached && extent_state_in_tree(cached) && cached->start <= start && | 
|  | cached->end > start) | 
|  | node = &cached->rb_node; | 
|  | else | 
|  | node = tree_search(tree, start); | 
|  | while (node && start <= end) { | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  |  | 
|  | if (filled && state->start > start) { | 
|  | bitset = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (state->start > end) | 
|  | break; | 
|  |  | 
|  | if (state->state & bits) { | 
|  | bitset = 1; | 
|  | if (!filled) | 
|  | break; | 
|  | } else if (filled) { | 
|  | bitset = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (state->end == (u64)-1) | 
|  | break; | 
|  |  | 
|  | start = state->end + 1; | 
|  | if (start > end) | 
|  | break; | 
|  | node = rb_next(node); | 
|  | if (!node) { | 
|  | if (filled) | 
|  | bitset = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  | return bitset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to set a given page up to date if all the | 
|  | * extents in the tree for that page are up to date | 
|  | */ | 
|  | static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) | 
|  | { | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) | 
|  | SetPageUptodate(page); | 
|  | } | 
|  |  | 
|  | int free_io_failure(struct extent_io_tree *failure_tree, | 
|  | struct extent_io_tree *io_tree, | 
|  | struct io_failure_record *rec) | 
|  | { | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | set_state_failrec(failure_tree, rec->start, NULL); | 
|  | ret = clear_extent_bits(failure_tree, rec->start, | 
|  | rec->start + rec->len - 1, | 
|  | EXTENT_LOCKED | EXTENT_DIRTY); | 
|  | if (ret) | 
|  | err = ret; | 
|  |  | 
|  | ret = clear_extent_bits(io_tree, rec->start, | 
|  | rec->start + rec->len - 1, | 
|  | EXTENT_DAMAGED); | 
|  | if (ret && !err) | 
|  | err = ret; | 
|  |  | 
|  | kfree(rec); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this bypasses the standard btrfs submit functions deliberately, as | 
|  | * the standard behavior is to write all copies in a raid setup. here we only | 
|  | * want to write the one bad copy. so we do the mapping for ourselves and issue | 
|  | * submit_bio directly. | 
|  | * to avoid any synchronization issues, wait for the data after writing, which | 
|  | * actually prevents the read that triggered the error from finishing. | 
|  | * currently, there can be no more than two copies of every data bit. thus, | 
|  | * exactly one rewrite is required. | 
|  | */ | 
|  | int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, | 
|  | u64 length, u64 logical, struct page *page, | 
|  | unsigned int pg_offset, int mirror_num) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct btrfs_device *dev; | 
|  | u64 map_length = 0; | 
|  | u64 sector; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); | 
|  | BUG_ON(!mirror_num); | 
|  |  | 
|  | bio = btrfs_io_bio_alloc(1); | 
|  | bio->bi_iter.bi_size = 0; | 
|  | map_length = length; | 
|  |  | 
|  | /* | 
|  | * Avoid races with device replace and make sure our bbio has devices | 
|  | * associated to its stripes that don't go away while we are doing the | 
|  | * read repair operation. | 
|  | */ | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | if (btrfs_is_parity_mirror(fs_info, logical, length)) { | 
|  | /* | 
|  | * Note that we don't use BTRFS_MAP_WRITE because it's supposed | 
|  | * to update all raid stripes, but here we just want to correct | 
|  | * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad | 
|  | * stripe's dev and sector. | 
|  | */ | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, | 
|  | &map_length, &bbio, 0); | 
|  | if (ret) { | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | ASSERT(bbio->mirror_num == 1); | 
|  | } else { | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, | 
|  | &map_length, &bbio, mirror_num); | 
|  | if (ret) { | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | BUG_ON(mirror_num != bbio->mirror_num); | 
|  | } | 
|  |  | 
|  | sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; | 
|  | bio->bi_iter.bi_sector = sector; | 
|  | dev = bbio->stripes[bbio->mirror_num - 1].dev; | 
|  | btrfs_put_bbio(bbio); | 
|  | if (!dev || !dev->bdev || | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | bio_set_dev(bio, dev->bdev); | 
|  | bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; | 
|  | bio_add_page(bio, page, length, pg_offset); | 
|  |  | 
|  | if (btrfsic_submit_bio_wait(bio)) { | 
|  | /* try to remap that extent elsewhere? */ | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | bio_put(bio); | 
|  | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | btrfs_info_rl_in_rcu(fs_info, | 
|  | "read error corrected: ino %llu off %llu (dev %s sector %llu)", | 
|  | ino, start, | 
|  | rcu_str_deref(dev->name), sector); | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | u64 start = eb->start; | 
|  | int i, num_pages = num_extent_pages(eb); | 
|  | int ret = 0; | 
|  |  | 
|  | if (sb_rdonly(fs_info->sb)) | 
|  | return -EROFS; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, | 
|  | start - page_offset(p), mirror_num); | 
|  | if (ret) | 
|  | break; | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * each time an IO finishes, we do a fast check in the IO failure tree | 
|  | * to see if we need to process or clean up an io_failure_record | 
|  | */ | 
|  | int clean_io_failure(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *failure_tree, | 
|  | struct extent_io_tree *io_tree, u64 start, | 
|  | struct page *page, u64 ino, unsigned int pg_offset) | 
|  | { | 
|  | u64 private; | 
|  | struct io_failure_record *failrec; | 
|  | struct extent_state *state; | 
|  | int num_copies; | 
|  | int ret; | 
|  |  | 
|  | private = 0; | 
|  | ret = count_range_bits(failure_tree, &private, (u64)-1, 1, | 
|  | EXTENT_DIRTY, 0); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = get_state_failrec(failure_tree, start, &failrec); | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(!failrec->this_mirror); | 
|  |  | 
|  | if (failrec->in_validation) { | 
|  | /* there was no real error, just free the record */ | 
|  | btrfs_debug(fs_info, | 
|  | "clean_io_failure: freeing dummy error at %llu", | 
|  | failrec->start); | 
|  | goto out; | 
|  | } | 
|  | if (sb_rdonly(fs_info->sb)) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&io_tree->lock); | 
|  | state = find_first_extent_bit_state(io_tree, | 
|  | failrec->start, | 
|  | EXTENT_LOCKED); | 
|  | spin_unlock(&io_tree->lock); | 
|  |  | 
|  | if (state && state->start <= failrec->start && | 
|  | state->end >= failrec->start + failrec->len - 1) { | 
|  | num_copies = btrfs_num_copies(fs_info, failrec->logical, | 
|  | failrec->len); | 
|  | if (num_copies > 1)  { | 
|  | repair_io_failure(fs_info, ino, start, failrec->len, | 
|  | failrec->logical, page, pg_offset, | 
|  | failrec->failed_mirror); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | free_io_failure(failure_tree, io_tree, failrec); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can be called when | 
|  | * - hold extent lock | 
|  | * - under ordered extent | 
|  | * - the inode is freeing | 
|  | */ | 
|  | void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct extent_io_tree *failure_tree = &inode->io_failure_tree; | 
|  | struct io_failure_record *failrec; | 
|  | struct extent_state *state, *next; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&failure_tree->state)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&failure_tree->lock); | 
|  | state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); | 
|  | while (state) { | 
|  | if (state->start > end) | 
|  | break; | 
|  |  | 
|  | ASSERT(state->end <= end); | 
|  |  | 
|  | next = next_state(state); | 
|  |  | 
|  | failrec = state->failrec; | 
|  | free_extent_state(state); | 
|  | kfree(failrec); | 
|  |  | 
|  | state = next; | 
|  | } | 
|  | spin_unlock(&failure_tree->lock); | 
|  | } | 
|  |  | 
|  | int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, | 
|  | struct io_failure_record **failrec_ret) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct io_failure_record *failrec; | 
|  | struct extent_map *em; | 
|  | struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
|  | int ret; | 
|  | u64 logical; | 
|  |  | 
|  | ret = get_state_failrec(failure_tree, start, &failrec); | 
|  | if (ret) { | 
|  | failrec = kzalloc(sizeof(*failrec), GFP_NOFS); | 
|  | if (!failrec) | 
|  | return -ENOMEM; | 
|  |  | 
|  | failrec->start = start; | 
|  | failrec->len = end - start + 1; | 
|  | failrec->this_mirror = 0; | 
|  | failrec->bio_flags = 0; | 
|  | failrec->in_validation = 0; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, start, failrec->len); | 
|  | if (!em) { | 
|  | read_unlock(&em_tree->lock); | 
|  | kfree(failrec); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (em->start > start || em->start + em->len <= start) { | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  | } | 
|  | read_unlock(&em_tree->lock); | 
|  | if (!em) { | 
|  | kfree(failrec); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | logical = start - em->start; | 
|  | logical = em->block_start + logical; | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
|  | logical = em->block_start; | 
|  | failrec->bio_flags = EXTENT_BIO_COMPRESSED; | 
|  | extent_set_compress_type(&failrec->bio_flags, | 
|  | em->compress_type); | 
|  | } | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", | 
|  | logical, start, failrec->len); | 
|  |  | 
|  | failrec->logical = logical; | 
|  | free_extent_map(em); | 
|  |  | 
|  | /* set the bits in the private failure tree */ | 
|  | ret = set_extent_bits(failure_tree, start, end, | 
|  | EXTENT_LOCKED | EXTENT_DIRTY); | 
|  | if (ret >= 0) | 
|  | ret = set_state_failrec(failure_tree, start, failrec); | 
|  | /* set the bits in the inode's tree */ | 
|  | if (ret >= 0) | 
|  | ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); | 
|  | if (ret < 0) { | 
|  | kfree(failrec); | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | btrfs_debug(fs_info, | 
|  | "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", | 
|  | failrec->logical, failrec->start, failrec->len, | 
|  | failrec->in_validation); | 
|  | /* | 
|  | * when data can be on disk more than twice, add to failrec here | 
|  | * (e.g. with a list for failed_mirror) to make | 
|  | * clean_io_failure() clean all those errors at once. | 
|  | */ | 
|  | } | 
|  |  | 
|  | *failrec_ret = failrec; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, | 
|  | struct io_failure_record *failrec, int failed_mirror) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | int num_copies; | 
|  |  | 
|  | num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); | 
|  | if (num_copies == 1) { | 
|  | /* | 
|  | * we only have a single copy of the data, so don't bother with | 
|  | * all the retry and error correction code that follows. no | 
|  | * matter what the error is, it is very likely to persist. | 
|  | */ | 
|  | btrfs_debug(fs_info, | 
|  | "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", | 
|  | num_copies, failrec->this_mirror, failed_mirror); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * there are two premises: | 
|  | *	a) deliver good data to the caller | 
|  | *	b) correct the bad sectors on disk | 
|  | */ | 
|  | if (failed_bio_pages > 1) { | 
|  | /* | 
|  | * to fulfill b), we need to know the exact failing sectors, as | 
|  | * we don't want to rewrite any more than the failed ones. thus, | 
|  | * we need separate read requests for the failed bio | 
|  | * | 
|  | * if the following BUG_ON triggers, our validation request got | 
|  | * merged. we need separate requests for our algorithm to work. | 
|  | */ | 
|  | BUG_ON(failrec->in_validation); | 
|  | failrec->in_validation = 1; | 
|  | failrec->this_mirror = failed_mirror; | 
|  | } else { | 
|  | /* | 
|  | * we're ready to fulfill a) and b) alongside. get a good copy | 
|  | * of the failed sector and if we succeed, we have setup | 
|  | * everything for repair_io_failure to do the rest for us. | 
|  | */ | 
|  | if (failrec->in_validation) { | 
|  | BUG_ON(failrec->this_mirror != failed_mirror); | 
|  | failrec->in_validation = 0; | 
|  | failrec->this_mirror = 0; | 
|  | } | 
|  | failrec->failed_mirror = failed_mirror; | 
|  | failrec->this_mirror++; | 
|  | if (failrec->this_mirror == failed_mirror) | 
|  | failrec->this_mirror++; | 
|  | } | 
|  |  | 
|  | if (failrec->this_mirror > num_copies) { | 
|  | btrfs_debug(fs_info, | 
|  | "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", | 
|  | num_copies, failrec->this_mirror, failed_mirror); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, | 
|  | struct io_failure_record *failrec, | 
|  | struct page *page, int pg_offset, int icsum, | 
|  | bio_end_io_t *endio_func, void *data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct bio *bio; | 
|  | struct btrfs_io_bio *btrfs_failed_bio; | 
|  | struct btrfs_io_bio *btrfs_bio; | 
|  |  | 
|  | bio = btrfs_io_bio_alloc(1); | 
|  | bio->bi_end_io = endio_func; | 
|  | bio->bi_iter.bi_sector = failrec->logical >> 9; | 
|  | bio_set_dev(bio, fs_info->fs_devices->latest_bdev); | 
|  | bio->bi_iter.bi_size = 0; | 
|  | bio->bi_private = data; | 
|  |  | 
|  | btrfs_failed_bio = btrfs_io_bio(failed_bio); | 
|  | if (btrfs_failed_bio->csum) { | 
|  | u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
|  |  | 
|  | btrfs_bio = btrfs_io_bio(bio); | 
|  | btrfs_bio->csum = btrfs_bio->csum_inline; | 
|  | icsum *= csum_size; | 
|  | memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, | 
|  | csum_size); | 
|  | } | 
|  |  | 
|  | bio_add_page(bio, page, failrec->len, pg_offset); | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a generic handler for readpage errors. If other copies exist, read | 
|  | * those and write back good data to the failed position. Does not investigate | 
|  | * in remapping the failed extent elsewhere, hoping the device will be smart | 
|  | * enough to do this as needed | 
|  | */ | 
|  | static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, | 
|  | struct page *page, u64 start, u64 end, | 
|  | int failed_mirror) | 
|  | { | 
|  | struct io_failure_record *failrec; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  | struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
|  | struct bio *bio; | 
|  | int read_mode = 0; | 
|  | blk_status_t status; | 
|  | int ret; | 
|  | unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT; | 
|  |  | 
|  | BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); | 
|  |  | 
|  | ret = btrfs_get_io_failure_record(inode, start, end, &failrec); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, | 
|  | failed_mirror)) { | 
|  | free_io_failure(failure_tree, tree, failrec); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (failed_bio_pages > 1) | 
|  | read_mode |= REQ_FAILFAST_DEV; | 
|  |  | 
|  | phy_offset >>= inode->i_sb->s_blocksize_bits; | 
|  | bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, | 
|  | start - page_offset(page), | 
|  | (int)phy_offset, failed_bio->bi_end_io, | 
|  | NULL); | 
|  | bio->bi_opf = REQ_OP_READ | read_mode; | 
|  |  | 
|  | btrfs_debug(btrfs_sb(inode->i_sb), | 
|  | "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", | 
|  | read_mode, failrec->this_mirror, failrec->in_validation); | 
|  |  | 
|  | status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, | 
|  | failrec->bio_flags); | 
|  | if (status) { | 
|  | free_io_failure(failure_tree, tree, failrec); | 
|  | bio_put(bio); | 
|  | ret = blk_status_to_errno(status); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* lots and lots of room for performance fixes in the end_bio funcs */ | 
|  |  | 
|  | void end_extent_writepage(struct page *page, int err, u64 start, u64 end) | 
|  | { | 
|  | int uptodate = (err == 0); | 
|  | int ret = 0; | 
|  |  | 
|  | btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); | 
|  |  | 
|  | if (!uptodate) { | 
|  | ClearPageUptodate(page); | 
|  | SetPageError(page); | 
|  | ret = err < 0 ? err : -EIO; | 
|  | mapping_set_error(page->mapping, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after a writepage IO is done, we need to: | 
|  | * clear the uptodate bits on error | 
|  | * clear the writeback bits in the extent tree for this IO | 
|  | * end_page_writeback if the page has no more pending IO | 
|  | * | 
|  | * Scheduling is not allowed, so the extent state tree is expected | 
|  | * to have one and only one object corresponding to this IO. | 
|  | */ | 
|  | static void end_bio_extent_writepage(struct bio *bio) | 
|  | { | 
|  | int error = blk_status_to_errno(bio->bi_status); | 
|  | struct bio_vec *bvec; | 
|  | u64 start; | 
|  | u64 end; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct page *page = bvec->bv_page; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  |  | 
|  | /* We always issue full-page reads, but if some block | 
|  | * in a page fails to read, blk_update_request() will | 
|  | * advance bv_offset and adjust bv_len to compensate. | 
|  | * Print a warning for nonzero offsets, and an error | 
|  | * if they don't add up to a full page.  */ | 
|  | if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { | 
|  | if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) | 
|  | btrfs_err(fs_info, | 
|  | "partial page write in btrfs with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  | else | 
|  | btrfs_info(fs_info, | 
|  | "incomplete page write in btrfs with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  | } | 
|  |  | 
|  | start = page_offset(page); | 
|  | end = start + bvec->bv_offset + bvec->bv_len - 1; | 
|  |  | 
|  | end_extent_writepage(page, error, start, end); | 
|  | end_page_writeback(page); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, | 
|  | int uptodate) | 
|  | { | 
|  | struct extent_state *cached = NULL; | 
|  | u64 end = start + len - 1; | 
|  |  | 
|  | if (uptodate && tree->track_uptodate) | 
|  | set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); | 
|  | unlock_extent_cached_atomic(tree, start, end, &cached); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after a readpage IO is done, we need to: | 
|  | * clear the uptodate bits on error | 
|  | * set the uptodate bits if things worked | 
|  | * set the page up to date if all extents in the tree are uptodate | 
|  | * clear the lock bit in the extent tree | 
|  | * unlock the page if there are no other extents locked for it | 
|  | * | 
|  | * Scheduling is not allowed, so the extent state tree is expected | 
|  | * to have one and only one object corresponding to this IO. | 
|  | */ | 
|  | static void end_bio_extent_readpage(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | int uptodate = !bio->bi_status; | 
|  | struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); | 
|  | struct extent_io_tree *tree, *failure_tree; | 
|  | u64 offset = 0; | 
|  | u64 start; | 
|  | u64 end; | 
|  | u64 len; | 
|  | u64 extent_start = 0; | 
|  | u64 extent_len = 0; | 
|  | int mirror; | 
|  | int ret; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct page *page = bvec->bv_page; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | bool data_inode = btrfs_ino(BTRFS_I(inode)) | 
|  | != BTRFS_BTREE_INODE_OBJECTID; | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", | 
|  | (u64)bio->bi_iter.bi_sector, bio->bi_status, | 
|  | io_bio->mirror_num); | 
|  | tree = &BTRFS_I(inode)->io_tree; | 
|  | failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
|  |  | 
|  | /* We always issue full-page reads, but if some block | 
|  | * in a page fails to read, blk_update_request() will | 
|  | * advance bv_offset and adjust bv_len to compensate. | 
|  | * Print a warning for nonzero offsets, and an error | 
|  | * if they don't add up to a full page.  */ | 
|  | if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { | 
|  | if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) | 
|  | btrfs_err(fs_info, | 
|  | "partial page read in btrfs with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  | else | 
|  | btrfs_info(fs_info, | 
|  | "incomplete page read in btrfs with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  | } | 
|  |  | 
|  | start = page_offset(page); | 
|  | end = start + bvec->bv_offset + bvec->bv_len - 1; | 
|  | len = bvec->bv_len; | 
|  |  | 
|  | mirror = io_bio->mirror_num; | 
|  | if (likely(uptodate)) { | 
|  | ret = tree->ops->readpage_end_io_hook(io_bio, offset, | 
|  | page, start, end, | 
|  | mirror); | 
|  | if (ret) | 
|  | uptodate = 0; | 
|  | else | 
|  | clean_io_failure(BTRFS_I(inode)->root->fs_info, | 
|  | failure_tree, tree, start, | 
|  | page, | 
|  | btrfs_ino(BTRFS_I(inode)), 0); | 
|  | } | 
|  |  | 
|  | if (likely(uptodate)) | 
|  | goto readpage_ok; | 
|  |  | 
|  | if (data_inode) { | 
|  |  | 
|  | /* | 
|  | * The generic bio_readpage_error handles errors the | 
|  | * following way: If possible, new read requests are | 
|  | * created and submitted and will end up in | 
|  | * end_bio_extent_readpage as well (if we're lucky, | 
|  | * not in the !uptodate case). In that case it returns | 
|  | * 0 and we just go on with the next page in our bio. | 
|  | * If it can't handle the error it will return -EIO and | 
|  | * we remain responsible for that page. | 
|  | */ | 
|  | ret = bio_readpage_error(bio, offset, page, start, end, | 
|  | mirror); | 
|  | if (ret == 0) { | 
|  | uptodate = !bio->bi_status; | 
|  | offset += len; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
|  | eb->read_mirror = mirror; | 
|  | atomic_dec(&eb->io_pages); | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, | 
|  | &eb->bflags)) | 
|  | btree_readahead_hook(eb, -EIO); | 
|  | } | 
|  | readpage_ok: | 
|  | if (likely(uptodate)) { | 
|  | loff_t i_size = i_size_read(inode); | 
|  | pgoff_t end_index = i_size >> PAGE_SHIFT; | 
|  | unsigned off; | 
|  |  | 
|  | /* Zero out the end if this page straddles i_size */ | 
|  | off = offset_in_page(i_size); | 
|  | if (page->index == end_index && off) | 
|  | zero_user_segment(page, off, PAGE_SIZE); | 
|  | SetPageUptodate(page); | 
|  | } else { | 
|  | ClearPageUptodate(page); | 
|  | SetPageError(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | offset += len; | 
|  |  | 
|  | if (unlikely(!uptodate)) { | 
|  | if (extent_len) { | 
|  | endio_readpage_release_extent(tree, | 
|  | extent_start, | 
|  | extent_len, 1); | 
|  | extent_start = 0; | 
|  | extent_len = 0; | 
|  | } | 
|  | endio_readpage_release_extent(tree, start, | 
|  | end - start + 1, 0); | 
|  | } else if (!extent_len) { | 
|  | extent_start = start; | 
|  | extent_len = end + 1 - start; | 
|  | } else if (extent_start + extent_len == start) { | 
|  | extent_len += end + 1 - start; | 
|  | } else { | 
|  | endio_readpage_release_extent(tree, extent_start, | 
|  | extent_len, uptodate); | 
|  | extent_start = start; | 
|  | extent_len = end + 1 - start; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (extent_len) | 
|  | endio_readpage_release_extent(tree, extent_start, extent_len, | 
|  | uptodate); | 
|  | btrfs_io_bio_free_csum(io_bio); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the members up to but not including 'bio'. Use after allocating a | 
|  | * new bio by bio_alloc_bioset as it does not initialize the bytes outside of | 
|  | * 'bio' because use of __GFP_ZERO is not supported. | 
|  | */ | 
|  | static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) | 
|  | { | 
|  | memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following helpers allocate a bio. As it's backed by a bioset, it'll | 
|  | * never fail.  We're returning a bio right now but you can call btrfs_io_bio | 
|  | * for the appropriate container_of magic | 
|  | */ | 
|  | struct bio *btrfs_bio_alloc(u64 first_byte) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); | 
|  | bio->bi_iter.bi_sector = first_byte >> 9; | 
|  | btrfs_io_bio_init(btrfs_io_bio(bio)); | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | struct bio *btrfs_bio_clone(struct bio *bio) | 
|  | { | 
|  | struct btrfs_io_bio *btrfs_bio; | 
|  | struct bio *new; | 
|  |  | 
|  | /* Bio allocation backed by a bioset does not fail */ | 
|  | new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); | 
|  | btrfs_bio = btrfs_io_bio(new); | 
|  | btrfs_io_bio_init(btrfs_bio); | 
|  | btrfs_bio->iter = bio->bi_iter; | 
|  | return new; | 
|  | } | 
|  |  | 
|  | struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | /* Bio allocation backed by a bioset does not fail */ | 
|  | bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); | 
|  | btrfs_io_bio_init(btrfs_io_bio(bio)); | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct btrfs_io_bio *btrfs_bio; | 
|  |  | 
|  | /* this will never fail when it's backed by a bioset */ | 
|  | bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); | 
|  | ASSERT(bio); | 
|  |  | 
|  | btrfs_bio = btrfs_io_bio(bio); | 
|  | btrfs_io_bio_init(btrfs_bio); | 
|  |  | 
|  | bio_trim(bio, offset >> 9, size >> 9); | 
|  | btrfs_bio->iter = bio->bi_iter; | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @opf:	bio REQ_OP_* and REQ_* flags as one value | 
|  | * @tree:	tree so we can call our merge_bio hook | 
|  | * @wbc:	optional writeback control for io accounting | 
|  | * @page:	page to add to the bio | 
|  | * @pg_offset:	offset of the new bio or to check whether we are adding | 
|  | *              a contiguous page to the previous one | 
|  | * @size:	portion of page that we want to write | 
|  | * @offset:	starting offset in the page | 
|  | * @bdev:	attach newly created bios to this bdev | 
|  | * @bio_ret:	must be valid pointer, newly allocated bio will be stored there | 
|  | * @end_io_func:     end_io callback for new bio | 
|  | * @mirror_num:	     desired mirror to read/write | 
|  | * @prev_bio_flags:  flags of previous bio to see if we can merge the current one | 
|  | * @bio_flags:	flags of the current bio to see if we can merge them | 
|  | */ | 
|  | static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, | 
|  | struct writeback_control *wbc, | 
|  | struct page *page, u64 offset, | 
|  | size_t size, unsigned long pg_offset, | 
|  | struct block_device *bdev, | 
|  | struct bio **bio_ret, | 
|  | bio_end_io_t end_io_func, | 
|  | int mirror_num, | 
|  | unsigned long prev_bio_flags, | 
|  | unsigned long bio_flags, | 
|  | bool force_bio_submit) | 
|  | { | 
|  | int ret = 0; | 
|  | struct bio *bio; | 
|  | size_t page_size = min_t(size_t, size, PAGE_SIZE); | 
|  | sector_t sector = offset >> 9; | 
|  |  | 
|  | ASSERT(bio_ret); | 
|  |  | 
|  | if (*bio_ret) { | 
|  | bool contig; | 
|  | bool can_merge = true; | 
|  |  | 
|  | bio = *bio_ret; | 
|  | if (prev_bio_flags & EXTENT_BIO_COMPRESSED) | 
|  | contig = bio->bi_iter.bi_sector == sector; | 
|  | else | 
|  | contig = bio_end_sector(bio) == sector; | 
|  |  | 
|  | ASSERT(tree->ops); | 
|  | if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) | 
|  | can_merge = false; | 
|  |  | 
|  | if (prev_bio_flags != bio_flags || !contig || !can_merge || | 
|  | force_bio_submit || | 
|  | bio_add_page(bio, page, page_size, pg_offset) < page_size) { | 
|  | ret = submit_one_bio(bio, mirror_num, prev_bio_flags); | 
|  | if (ret < 0) { | 
|  | *bio_ret = NULL; | 
|  | return ret; | 
|  | } | 
|  | bio = NULL; | 
|  | } else { | 
|  | if (wbc) | 
|  | wbc_account_cgroup_owner(wbc, page, page_size); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bio = btrfs_bio_alloc(offset); | 
|  | bio_set_dev(bio, bdev); | 
|  | bio_add_page(bio, page, page_size, pg_offset); | 
|  | bio->bi_end_io = end_io_func; | 
|  | bio->bi_private = tree; | 
|  | bio->bi_write_hint = page->mapping->host->i_write_hint; | 
|  | bio->bi_opf = opf; | 
|  | if (wbc) { | 
|  | wbc_init_bio(wbc, bio); | 
|  | wbc_account_cgroup_owner(wbc, page, page_size); | 
|  | } | 
|  |  | 
|  | *bio_ret = bio; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void attach_extent_buffer_page(struct extent_buffer *eb, | 
|  | struct page *page) | 
|  | { | 
|  | if (!PagePrivate(page)) { | 
|  | SetPagePrivate(page); | 
|  | get_page(page); | 
|  | set_page_private(page, (unsigned long)eb); | 
|  | } else { | 
|  | WARN_ON(page->private != (unsigned long)eb); | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_page_extent_mapped(struct page *page) | 
|  | { | 
|  | if (!PagePrivate(page)) { | 
|  | SetPagePrivate(page); | 
|  | get_page(page); | 
|  | set_page_private(page, EXTENT_PAGE_PRIVATE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct extent_map * | 
|  | __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, | 
|  | u64 start, u64 len, get_extent_t *get_extent, | 
|  | struct extent_map **em_cached) | 
|  | { | 
|  | struct extent_map *em; | 
|  |  | 
|  | if (em_cached && *em_cached) { | 
|  | em = *em_cached; | 
|  | if (extent_map_in_tree(em) && start >= em->start && | 
|  | start < extent_map_end(em)) { | 
|  | refcount_inc(&em->refs); | 
|  | return em; | 
|  | } | 
|  |  | 
|  | free_extent_map(em); | 
|  | *em_cached = NULL; | 
|  | } | 
|  |  | 
|  | em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); | 
|  | if (em_cached && !IS_ERR_OR_NULL(em)) { | 
|  | BUG_ON(*em_cached); | 
|  | refcount_inc(&em->refs); | 
|  | *em_cached = em; | 
|  | } | 
|  | return em; | 
|  | } | 
|  | /* | 
|  | * basic readpage implementation.  Locked extent state structs are inserted | 
|  | * into the tree that are removed when the IO is done (by the end_io | 
|  | * handlers) | 
|  | * XXX JDM: This needs looking at to ensure proper page locking | 
|  | * return 0 on success, otherwise return error | 
|  | */ | 
|  | static int __do_readpage(struct extent_io_tree *tree, | 
|  | struct page *page, | 
|  | get_extent_t *get_extent, | 
|  | struct extent_map **em_cached, | 
|  | struct bio **bio, int mirror_num, | 
|  | unsigned long *bio_flags, unsigned int read_flags, | 
|  | u64 *prev_em_start) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | u64 start = page_offset(page); | 
|  | const u64 end = start + PAGE_SIZE - 1; | 
|  | u64 cur = start; | 
|  | u64 extent_offset; | 
|  | u64 last_byte = i_size_read(inode); | 
|  | u64 block_start; | 
|  | u64 cur_end; | 
|  | struct extent_map *em; | 
|  | struct block_device *bdev; | 
|  | int ret = 0; | 
|  | int nr = 0; | 
|  | size_t pg_offset = 0; | 
|  | size_t iosize; | 
|  | size_t disk_io_size; | 
|  | size_t blocksize = inode->i_sb->s_blocksize; | 
|  | unsigned long this_bio_flag = 0; | 
|  |  | 
|  | set_page_extent_mapped(page); | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | if (cleancache_get_page(page) == 0) { | 
|  | BUG_ON(blocksize != PAGE_SIZE); | 
|  | unlock_extent(tree, start, end); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (page->index == last_byte >> PAGE_SHIFT) { | 
|  | char *userpage; | 
|  | size_t zero_offset = offset_in_page(last_byte); | 
|  |  | 
|  | if (zero_offset) { | 
|  | iosize = PAGE_SIZE - zero_offset; | 
|  | userpage = kmap_atomic(page); | 
|  | memset(userpage + zero_offset, 0, iosize); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(userpage); | 
|  | } | 
|  | } | 
|  | while (cur <= end) { | 
|  | bool force_bio_submit = false; | 
|  | u64 offset; | 
|  |  | 
|  | if (cur >= last_byte) { | 
|  | char *userpage; | 
|  | struct extent_state *cached = NULL; | 
|  |  | 
|  | iosize = PAGE_SIZE - pg_offset; | 
|  | userpage = kmap_atomic(page); | 
|  | memset(userpage + pg_offset, 0, iosize); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(userpage); | 
|  | set_extent_uptodate(tree, cur, cur + iosize - 1, | 
|  | &cached, GFP_NOFS); | 
|  | unlock_extent_cached(tree, cur, | 
|  | cur + iosize - 1, &cached); | 
|  | break; | 
|  | } | 
|  | em = __get_extent_map(inode, page, pg_offset, cur, | 
|  | end - cur + 1, get_extent, em_cached); | 
|  | if (IS_ERR_OR_NULL(em)) { | 
|  | SetPageError(page); | 
|  | unlock_extent(tree, cur, end); | 
|  | break; | 
|  | } | 
|  | extent_offset = cur - em->start; | 
|  | BUG_ON(extent_map_end(em) <= cur); | 
|  | BUG_ON(end < cur); | 
|  |  | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
|  | this_bio_flag |= EXTENT_BIO_COMPRESSED; | 
|  | extent_set_compress_type(&this_bio_flag, | 
|  | em->compress_type); | 
|  | } | 
|  |  | 
|  | iosize = min(extent_map_end(em) - cur, end - cur + 1); | 
|  | cur_end = min(extent_map_end(em) - 1, end); | 
|  | iosize = ALIGN(iosize, blocksize); | 
|  | if (this_bio_flag & EXTENT_BIO_COMPRESSED) { | 
|  | disk_io_size = em->block_len; | 
|  | offset = em->block_start; | 
|  | } else { | 
|  | offset = em->block_start + extent_offset; | 
|  | disk_io_size = iosize; | 
|  | } | 
|  | bdev = em->bdev; | 
|  | block_start = em->block_start; | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | block_start = EXTENT_MAP_HOLE; | 
|  |  | 
|  | /* | 
|  | * If we have a file range that points to a compressed extent | 
|  | * and it's followed by a consecutive file range that points to | 
|  | * to the same compressed extent (possibly with a different | 
|  | * offset and/or length, so it either points to the whole extent | 
|  | * or only part of it), we must make sure we do not submit a | 
|  | * single bio to populate the pages for the 2 ranges because | 
|  | * this makes the compressed extent read zero out the pages | 
|  | * belonging to the 2nd range. Imagine the following scenario: | 
|  | * | 
|  | *  File layout | 
|  | *  [0 - 8K]                     [8K - 24K] | 
|  | *    |                               | | 
|  | *    |                               | | 
|  | * points to extent X,         points to extent X, | 
|  | * offset 4K, length of 8K     offset 0, length 16K | 
|  | * | 
|  | * [extent X, compressed length = 4K uncompressed length = 16K] | 
|  | * | 
|  | * If the bio to read the compressed extent covers both ranges, | 
|  | * it will decompress extent X into the pages belonging to the | 
|  | * first range and then it will stop, zeroing out the remaining | 
|  | * pages that belong to the other range that points to extent X. | 
|  | * So here we make sure we submit 2 bios, one for the first | 
|  | * range and another one for the third range. Both will target | 
|  | * the same physical extent from disk, but we can't currently | 
|  | * make the compressed bio endio callback populate the pages | 
|  | * for both ranges because each compressed bio is tightly | 
|  | * coupled with a single extent map, and each range can have | 
|  | * an extent map with a different offset value relative to the | 
|  | * uncompressed data of our extent and different lengths. This | 
|  | * is a corner case so we prioritize correctness over | 
|  | * non-optimal behavior (submitting 2 bios for the same extent). | 
|  | */ | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && | 
|  | prev_em_start && *prev_em_start != (u64)-1 && | 
|  | *prev_em_start != em->start) | 
|  | force_bio_submit = true; | 
|  |  | 
|  | if (prev_em_start) | 
|  | *prev_em_start = em->start; | 
|  |  | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | /* we've found a hole, just zero and go on */ | 
|  | if (block_start == EXTENT_MAP_HOLE) { | 
|  | char *userpage; | 
|  | struct extent_state *cached = NULL; | 
|  |  | 
|  | userpage = kmap_atomic(page); | 
|  | memset(userpage + pg_offset, 0, iosize); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(userpage); | 
|  |  | 
|  | set_extent_uptodate(tree, cur, cur + iosize - 1, | 
|  | &cached, GFP_NOFS); | 
|  | unlock_extent_cached(tree, cur, | 
|  | cur + iosize - 1, &cached); | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | continue; | 
|  | } | 
|  | /* the get_extent function already copied into the page */ | 
|  | if (test_range_bit(tree, cur, cur_end, | 
|  | EXTENT_UPTODATE, 1, NULL)) { | 
|  | check_page_uptodate(tree, page); | 
|  | unlock_extent(tree, cur, cur + iosize - 1); | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | continue; | 
|  | } | 
|  | /* we have an inline extent but it didn't get marked up | 
|  | * to date.  Error out | 
|  | */ | 
|  | if (block_start == EXTENT_MAP_INLINE) { | 
|  | SetPageError(page); | 
|  | unlock_extent(tree, cur, cur + iosize - 1); | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, | 
|  | page, offset, disk_io_size, | 
|  | pg_offset, bdev, bio, | 
|  | end_bio_extent_readpage, mirror_num, | 
|  | *bio_flags, | 
|  | this_bio_flag, | 
|  | force_bio_submit); | 
|  | if (!ret) { | 
|  | nr++; | 
|  | *bio_flags = this_bio_flag; | 
|  | } else { | 
|  | SetPageError(page); | 
|  | unlock_extent(tree, cur, cur + iosize - 1); | 
|  | goto out; | 
|  | } | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | } | 
|  | out: | 
|  | if (!nr) { | 
|  | if (!PageError(page)) | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void contiguous_readpages(struct extent_io_tree *tree, | 
|  | struct page *pages[], int nr_pages, | 
|  | u64 start, u64 end, | 
|  | struct extent_map **em_cached, | 
|  | struct bio **bio, | 
|  | unsigned long *bio_flags, | 
|  | u64 *prev_em_start) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); | 
|  | int index; | 
|  |  | 
|  | btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL); | 
|  |  | 
|  | for (index = 0; index < nr_pages; index++) { | 
|  | __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, | 
|  | bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); | 
|  | put_page(pages[index]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __extent_read_full_page(struct extent_io_tree *tree, | 
|  | struct page *page, | 
|  | get_extent_t *get_extent, | 
|  | struct bio **bio, int mirror_num, | 
|  | unsigned long *bio_flags, | 
|  | unsigned int read_flags) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | int ret; | 
|  |  | 
|  | btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL); | 
|  |  | 
|  | ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, | 
|  | bio_flags, read_flags, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_read_full_page(struct extent_io_tree *tree, struct page *page, | 
|  | get_extent_t *get_extent, int mirror_num) | 
|  | { | 
|  | struct bio *bio = NULL; | 
|  | unsigned long bio_flags = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, | 
|  | &bio_flags, 0); | 
|  | if (bio) | 
|  | ret = submit_one_bio(bio, mirror_num, bio_flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void update_nr_written(struct writeback_control *wbc, | 
|  | unsigned long nr_written) | 
|  | { | 
|  | wbc->nr_to_write -= nr_written; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for __extent_writepage, doing all of the delayed allocation setup. | 
|  | * | 
|  | * This returns 1 if btrfs_run_delalloc_range function did all the work required | 
|  | * to write the page (copy into inline extent).  In this case the IO has | 
|  | * been started and the page is already unlocked. | 
|  | * | 
|  | * This returns 0 if all went well (page still locked) | 
|  | * This returns < 0 if there were errors (page still locked) | 
|  | */ | 
|  | static noinline_for_stack int writepage_delalloc(struct inode *inode, | 
|  | struct page *page, struct writeback_control *wbc, | 
|  | u64 delalloc_start, unsigned long *nr_written) | 
|  | { | 
|  | u64 page_end = delalloc_start + PAGE_SIZE - 1; | 
|  | bool found; | 
|  | u64 delalloc_to_write = 0; | 
|  | u64 delalloc_end = 0; | 
|  | int ret; | 
|  | int page_started = 0; | 
|  |  | 
|  |  | 
|  | while (delalloc_end < page_end) { | 
|  | found = find_lock_delalloc_range(inode, page, | 
|  | &delalloc_start, | 
|  | &delalloc_end); | 
|  | if (!found) { | 
|  | delalloc_start = delalloc_end + 1; | 
|  | continue; | 
|  | } | 
|  | ret = btrfs_run_delalloc_range(inode, page, delalloc_start, | 
|  | delalloc_end, &page_started, nr_written, wbc); | 
|  | if (ret) { | 
|  | SetPageError(page); | 
|  | /* | 
|  | * btrfs_run_delalloc_range should return < 0 for error | 
|  | * but just in case, we use > 0 here meaning the IO is | 
|  | * started, so we don't want to return > 0 unless | 
|  | * things are going well. | 
|  | */ | 
|  | ret = ret < 0 ? ret : -EIO; | 
|  | goto done; | 
|  | } | 
|  | /* | 
|  | * delalloc_end is already one less than the total length, so | 
|  | * we don't subtract one from PAGE_SIZE | 
|  | */ | 
|  | delalloc_to_write += (delalloc_end - delalloc_start + | 
|  | PAGE_SIZE) >> PAGE_SHIFT; | 
|  | delalloc_start = delalloc_end + 1; | 
|  | } | 
|  | if (wbc->nr_to_write < delalloc_to_write) { | 
|  | int thresh = 8192; | 
|  |  | 
|  | if (delalloc_to_write < thresh * 2) | 
|  | thresh = delalloc_to_write; | 
|  | wbc->nr_to_write = min_t(u64, delalloc_to_write, | 
|  | thresh); | 
|  | } | 
|  |  | 
|  | /* did the fill delalloc function already unlock and start | 
|  | * the IO? | 
|  | */ | 
|  | if (page_started) { | 
|  | /* | 
|  | * we've unlocked the page, so we can't update | 
|  | * the mapping's writeback index, just update | 
|  | * nr_to_write. | 
|  | */ | 
|  | wbc->nr_to_write -= *nr_written; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for __extent_writepage.  This calls the writepage start hooks, | 
|  | * and does the loop to map the page into extents and bios. | 
|  | * | 
|  | * We return 1 if the IO is started and the page is unlocked, | 
|  | * 0 if all went well (page still locked) | 
|  | * < 0 if there were errors (page still locked) | 
|  | */ | 
|  | static noinline_for_stack int __extent_writepage_io(struct inode *inode, | 
|  | struct page *page, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd, | 
|  | loff_t i_size, | 
|  | unsigned long nr_written, | 
|  | unsigned int write_flags, int *nr_ret) | 
|  | { | 
|  | struct extent_io_tree *tree = epd->tree; | 
|  | u64 start = page_offset(page); | 
|  | u64 page_end = start + PAGE_SIZE - 1; | 
|  | u64 end; | 
|  | u64 cur = start; | 
|  | u64 extent_offset; | 
|  | u64 block_start; | 
|  | u64 iosize; | 
|  | struct extent_map *em; | 
|  | struct block_device *bdev; | 
|  | size_t pg_offset = 0; | 
|  | size_t blocksize; | 
|  | int ret = 0; | 
|  | int nr = 0; | 
|  | bool compressed; | 
|  |  | 
|  | ret = btrfs_writepage_cow_fixup(page, start, page_end); | 
|  | if (ret) { | 
|  | /* Fixup worker will requeue */ | 
|  | if (ret == -EBUSY) | 
|  | wbc->pages_skipped++; | 
|  | else | 
|  | redirty_page_for_writepage(wbc, page); | 
|  |  | 
|  | update_nr_written(wbc, nr_written); | 
|  | unlock_page(page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we don't want to touch the inode after unlocking the page, | 
|  | * so we update the mapping writeback index now | 
|  | */ | 
|  | update_nr_written(wbc, nr_written + 1); | 
|  |  | 
|  | end = page_end; | 
|  | if (i_size <= start) { | 
|  | btrfs_writepage_endio_finish_ordered(page, start, page_end, 1); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  |  | 
|  | while (cur <= end) { | 
|  | u64 em_end; | 
|  | u64 offset; | 
|  |  | 
|  | if (cur >= i_size) { | 
|  | btrfs_writepage_endio_finish_ordered(page, cur, | 
|  | page_end, 1); | 
|  | break; | 
|  | } | 
|  | em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, | 
|  | end - cur + 1, 1); | 
|  | if (IS_ERR_OR_NULL(em)) { | 
|  | SetPageError(page); | 
|  | ret = PTR_ERR_OR_ZERO(em); | 
|  | break; | 
|  | } | 
|  |  | 
|  | extent_offset = cur - em->start; | 
|  | em_end = extent_map_end(em); | 
|  | BUG_ON(em_end <= cur); | 
|  | BUG_ON(end < cur); | 
|  | iosize = min(em_end - cur, end - cur + 1); | 
|  | iosize = ALIGN(iosize, blocksize); | 
|  | offset = em->block_start + extent_offset; | 
|  | bdev = em->bdev; | 
|  | block_start = em->block_start; | 
|  | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | /* | 
|  | * compressed and inline extents are written through other | 
|  | * paths in the FS | 
|  | */ | 
|  | if (compressed || block_start == EXTENT_MAP_HOLE || | 
|  | block_start == EXTENT_MAP_INLINE) { | 
|  | /* | 
|  | * end_io notification does not happen here for | 
|  | * compressed extents | 
|  | */ | 
|  | if (!compressed) | 
|  | btrfs_writepage_endio_finish_ordered(page, cur, | 
|  | cur + iosize - 1, | 
|  | 1); | 
|  | else if (compressed) { | 
|  | /* we don't want to end_page_writeback on | 
|  | * a compressed extent.  this happens | 
|  | * elsewhere | 
|  | */ | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | cur += iosize; | 
|  | pg_offset += iosize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_set_range_writeback(tree, cur, cur + iosize - 1); | 
|  | if (!PageWriteback(page)) { | 
|  | btrfs_err(BTRFS_I(inode)->root->fs_info, | 
|  | "page %lu not writeback, cur %llu end %llu", | 
|  | page->index, cur, end); | 
|  | } | 
|  |  | 
|  | ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, | 
|  | page, offset, iosize, pg_offset, | 
|  | bdev, &epd->bio, | 
|  | end_bio_extent_writepage, | 
|  | 0, 0, 0, false); | 
|  | if (ret) { | 
|  | SetPageError(page); | 
|  | if (PageWriteback(page)) | 
|  | end_page_writeback(page); | 
|  | } | 
|  |  | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | nr++; | 
|  | } | 
|  | done: | 
|  | *nr_ret = nr; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the writepage semantics are similar to regular writepage.  extent | 
|  | * records are inserted to lock ranges in the tree, and as dirty areas | 
|  | * are found, they are marked writeback.  Then the lock bits are removed | 
|  | * and the end_io handler clears the writeback ranges | 
|  | * | 
|  | * Return 0 if everything goes well. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int __extent_writepage(struct page *page, struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | u64 start = page_offset(page); | 
|  | u64 page_end = start + PAGE_SIZE - 1; | 
|  | int ret; | 
|  | int nr = 0; | 
|  | size_t pg_offset = 0; | 
|  | loff_t i_size = i_size_read(inode); | 
|  | unsigned long end_index = i_size >> PAGE_SHIFT; | 
|  | unsigned int write_flags = 0; | 
|  | unsigned long nr_written = 0; | 
|  |  | 
|  | write_flags = wbc_to_write_flags(wbc); | 
|  |  | 
|  | trace___extent_writepage(page, inode, wbc); | 
|  |  | 
|  | WARN_ON(!PageLocked(page)); | 
|  |  | 
|  | ClearPageError(page); | 
|  |  | 
|  | pg_offset = offset_in_page(i_size); | 
|  | if (page->index > end_index || | 
|  | (page->index == end_index && !pg_offset)) { | 
|  | page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (page->index == end_index) { | 
|  | char *userpage; | 
|  |  | 
|  | userpage = kmap_atomic(page); | 
|  | memset(userpage + pg_offset, 0, | 
|  | PAGE_SIZE - pg_offset); | 
|  | kunmap_atomic(userpage); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  |  | 
|  | pg_offset = 0; | 
|  |  | 
|  | set_page_extent_mapped(page); | 
|  |  | 
|  | if (!epd->extent_locked) { | 
|  | ret = writepage_delalloc(inode, page, wbc, start, &nr_written); | 
|  | if (ret == 1) | 
|  | goto done_unlocked; | 
|  | if (ret) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = __extent_writepage_io(inode, page, wbc, epd, | 
|  | i_size, nr_written, write_flags, &nr); | 
|  | if (ret == 1) | 
|  | goto done_unlocked; | 
|  |  | 
|  | done: | 
|  | if (nr == 0) { | 
|  | /* make sure the mapping tag for page dirty gets cleared */ | 
|  | set_page_writeback(page); | 
|  | end_page_writeback(page); | 
|  | } | 
|  | if (PageError(page)) { | 
|  | ret = ret < 0 ? ret : -EIO; | 
|  | end_extent_writepage(page, ret, start, page_end); | 
|  | } | 
|  | unlock_page(page); | 
|  | ASSERT(ret <= 0); | 
|  | return ret; | 
|  |  | 
|  | done_unlocked: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void wait_on_extent_buffer_writeback(struct extent_buffer *eb) | 
|  | { | 
|  | wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | static void end_extent_buffer_writeback(struct extent_buffer *eb) | 
|  | { | 
|  | clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
|  | smp_mb__after_atomic(); | 
|  | wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock eb pages and flush the bio if we can't the locks | 
|  | * | 
|  | * Return  0 if nothing went wrong | 
|  | * Return >0 is same as 0, except bio is not submitted | 
|  | * Return <0 if something went wrong, no page is locked | 
|  | */ | 
|  | static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int i, num_pages, failed_page_nr; | 
|  | int flush = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!btrfs_try_tree_write_lock(eb)) { | 
|  | ret = flush_write_bio(epd); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | flush = 1; | 
|  | btrfs_tree_lock(eb); | 
|  | } | 
|  |  | 
|  | if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { | 
|  | btrfs_tree_unlock(eb); | 
|  | if (!epd->sync_io) | 
|  | return 0; | 
|  | if (!flush) { | 
|  | ret = flush_write_bio(epd); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | flush = 1; | 
|  | } | 
|  | while (1) { | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | btrfs_tree_lock(eb); | 
|  | if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) | 
|  | break; | 
|  | btrfs_tree_unlock(eb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to do this to prevent races in people who check if the eb is | 
|  | * under IO since we can end up having no IO bits set for a short period | 
|  | * of time. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
|  | set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | -eb->len, | 
|  | fs_info->dirty_metadata_batch); | 
|  | ret = 1; | 
|  | } else { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | btrfs_tree_unlock(eb); | 
|  |  | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | if (!trylock_page(p)) { | 
|  | if (!flush) { | 
|  | int err; | 
|  |  | 
|  | err = flush_write_bio(epd); | 
|  | if (err < 0) { | 
|  | ret = err; | 
|  | failed_page_nr = i; | 
|  | goto err_unlock; | 
|  | } | 
|  | flush = 1; | 
|  | } | 
|  | lock_page(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | err_unlock: | 
|  | /* Unlock already locked pages */ | 
|  | for (i = 0; i < failed_page_nr; i++) | 
|  | unlock_page(eb->pages[i]); | 
|  | /* | 
|  | * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. | 
|  | * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can | 
|  | * be made and undo everything done before. | 
|  | */ | 
|  | btrfs_tree_lock(eb); | 
|  | spin_lock(&eb->refs_lock); | 
|  | set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
|  | end_extent_buffer_writeback(eb); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, | 
|  | fs_info->dirty_metadata_batch); | 
|  | btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
|  | btrfs_tree_unlock(eb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void set_btree_ioerr(struct page *page) | 
|  | { | 
|  | struct extent_buffer *eb = (struct extent_buffer *)page->private; | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | SetPageError(page); | 
|  | if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we error out, we should add back the dirty_metadata_bytes | 
|  | * to make it consistent. | 
|  | */ | 
|  | fs_info = eb->fs_info; | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | eb->len, fs_info->dirty_metadata_batch); | 
|  |  | 
|  | /* | 
|  | * If writeback for a btree extent that doesn't belong to a log tree | 
|  | * failed, increment the counter transaction->eb_write_errors. | 
|  | * We do this because while the transaction is running and before it's | 
|  | * committing (when we call filemap_fdata[write|wait]_range against | 
|  | * the btree inode), we might have | 
|  | * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it | 
|  | * returns an error or an error happens during writeback, when we're | 
|  | * committing the transaction we wouldn't know about it, since the pages | 
|  | * can be no longer dirty nor marked anymore for writeback (if a | 
|  | * subsequent modification to the extent buffer didn't happen before the | 
|  | * transaction commit), which makes filemap_fdata[write|wait]_range not | 
|  | * able to find the pages tagged with SetPageError at transaction | 
|  | * commit time. So if this happens we must abort the transaction, | 
|  | * otherwise we commit a super block with btree roots that point to | 
|  | * btree nodes/leafs whose content on disk is invalid - either garbage | 
|  | * or the content of some node/leaf from a past generation that got | 
|  | * cowed or deleted and is no longer valid. | 
|  | * | 
|  | * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would | 
|  | * not be enough - we need to distinguish between log tree extents vs | 
|  | * non-log tree extents, and the next filemap_fdatawait_range() call | 
|  | * will catch and clear such errors in the mapping - and that call might | 
|  | * be from a log sync and not from a transaction commit. Also, checking | 
|  | * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is | 
|  | * not done and would not be reliable - the eb might have been released | 
|  | * from memory and reading it back again means that flag would not be | 
|  | * set (since it's a runtime flag, not persisted on disk). | 
|  | * | 
|  | * Using the flags below in the btree inode also makes us achieve the | 
|  | * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started | 
|  | * writeback for all dirty pages and before filemap_fdatawait_range() | 
|  | * is called, the writeback for all dirty pages had already finished | 
|  | * with errors - because we were not using AS_EIO/AS_ENOSPC, | 
|  | * filemap_fdatawait_range() would return success, as it could not know | 
|  | * that writeback errors happened (the pages were no longer tagged for | 
|  | * writeback). | 
|  | */ | 
|  | switch (eb->log_index) { | 
|  | case -1: | 
|  | set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); | 
|  | break; | 
|  | case 0: | 
|  | set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); | 
|  | break; | 
|  | case 1: | 
|  | set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); | 
|  | break; | 
|  | default: | 
|  | BUG(); /* unexpected, logic error */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_bio_extent_buffer_writepage(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | struct extent_buffer *eb; | 
|  | int done; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct page *page = bvec->bv_page; | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | BUG_ON(!eb); | 
|  | done = atomic_dec_and_test(&eb->io_pages); | 
|  |  | 
|  | if (bio->bi_status || | 
|  | test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { | 
|  | ClearPageUptodate(page); | 
|  | set_btree_ioerr(page); | 
|  | } | 
|  |  | 
|  | end_page_writeback(page); | 
|  |  | 
|  | if (!done) | 
|  | continue; | 
|  |  | 
|  | end_extent_buffer_writeback(eb); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int write_one_eb(struct extent_buffer *eb, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct block_device *bdev = fs_info->fs_devices->latest_bdev; | 
|  | struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; | 
|  | u64 offset = eb->start; | 
|  | u32 nritems; | 
|  | int i, num_pages; | 
|  | unsigned long start, end; | 
|  | unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; | 
|  | int ret = 0; | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); | 
|  | num_pages = num_extent_pages(eb); | 
|  | atomic_set(&eb->io_pages, num_pages); | 
|  |  | 
|  | /* set btree blocks beyond nritems with 0 to avoid stale content. */ | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | if (btrfs_header_level(eb) > 0) { | 
|  | end = btrfs_node_key_ptr_offset(nritems); | 
|  |  | 
|  | memzero_extent_buffer(eb, end, eb->len - end); | 
|  | } else { | 
|  | /* | 
|  | * leaf: | 
|  | * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 | 
|  | */ | 
|  | start = btrfs_item_nr_offset(nritems); | 
|  | end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); | 
|  | memzero_extent_buffer(eb, start, end - start); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | clear_page_dirty_for_io(p); | 
|  | set_page_writeback(p); | 
|  | ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, | 
|  | p, offset, PAGE_SIZE, 0, bdev, | 
|  | &epd->bio, | 
|  | end_bio_extent_buffer_writepage, | 
|  | 0, 0, 0, false); | 
|  | if (ret) { | 
|  | set_btree_ioerr(p); | 
|  | if (PageWriteback(p)) | 
|  | end_page_writeback(p); | 
|  | if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) | 
|  | end_extent_buffer_writeback(eb); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | offset += PAGE_SIZE; | 
|  | update_nr_written(wbc, 1); | 
|  | unlock_page(p); | 
|  | } | 
|  |  | 
|  | if (unlikely(ret)) { | 
|  | for (; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  | clear_page_dirty_for_io(p); | 
|  | unlock_page(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btree_write_cache_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; | 
|  | struct extent_buffer *eb, *prev_eb = NULL; | 
|  | struct extent_page_data epd = { | 
|  | .bio = NULL, | 
|  | .tree = tree, | 
|  | .extent_locked = 0, | 
|  | .sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
|  | }; | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int nr_to_write_done = 0; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | pgoff_t index; | 
|  | pgoff_t end;		/* Inclusive */ | 
|  | int scanned = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | if (wbc->range_cyclic) { | 
|  | index = mapping->writeback_index; /* Start from prev offset */ | 
|  | end = -1; | 
|  | /* | 
|  | * Start from the beginning does not need to cycle over the | 
|  | * range, mark it as scanned. | 
|  | */ | 
|  | scanned = (index == 0); | 
|  | } else { | 
|  | index = wbc->range_start >> PAGE_SHIFT; | 
|  | end = wbc->range_end >> PAGE_SHIFT; | 
|  | scanned = 1; | 
|  | } | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | tag_pages_for_writeback(mapping, index, end); | 
|  | while (!done && !nr_to_write_done && (index <= end) && | 
|  | (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, | 
|  | tag))) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | if (!PagePrivate(page)) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&mapping->private_lock); | 
|  | if (!PagePrivate(page)) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  |  | 
|  | /* | 
|  | * Shouldn't happen and normally this would be a BUG_ON | 
|  | * but no sense in crashing the users box for something | 
|  | * we can survive anyway. | 
|  | */ | 
|  | if (WARN_ON(!eb)) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (eb == prev_eb) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = atomic_inc_not_zero(&eb->refs); | 
|  | spin_unlock(&mapping->private_lock); | 
|  | if (!ret) | 
|  | continue; | 
|  |  | 
|  | prev_eb = eb; | 
|  | ret = lock_extent_buffer_for_io(eb, &epd); | 
|  | if (!ret) { | 
|  | free_extent_buffer(eb); | 
|  | continue; | 
|  | } else if (ret < 0) { | 
|  | done = 1; | 
|  | free_extent_buffer(eb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = write_one_eb(eb, wbc, &epd); | 
|  | if (ret) { | 
|  | done = 1; | 
|  | free_extent_buffer(eb); | 
|  | break; | 
|  | } | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | /* | 
|  | * the filesystem may choose to bump up nr_to_write. | 
|  | * We have to make sure to honor the new nr_to_write | 
|  | * at any time | 
|  | */ | 
|  | nr_to_write_done = wbc->nr_to_write <= 0; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!scanned && !done) { | 
|  | /* | 
|  | * We hit the last page and there is more work to be done: wrap | 
|  | * back to the start of the file | 
|  | */ | 
|  | scanned = 1; | 
|  | index = 0; | 
|  | goto retry; | 
|  | } | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) { | 
|  | end_write_bio(&epd, ret); | 
|  | return ret; | 
|  | } | 
|  | /* | 
|  | * If something went wrong, don't allow any metadata write bio to be | 
|  | * submitted. | 
|  | * | 
|  | * This would prevent use-after-free if we had dirty pages not | 
|  | * cleaned up, which can still happen by fuzzed images. | 
|  | * | 
|  | * - Bad extent tree | 
|  | *   Allowing existing tree block to be allocated for other trees. | 
|  | * | 
|  | * - Log tree operations | 
|  | *   Exiting tree blocks get allocated to log tree, bumps its | 
|  | *   generation, then get cleaned in tree re-balance. | 
|  | *   Such tree block will not be written back, since it's clean, | 
|  | *   thus no WRITTEN flag set. | 
|  | *   And after log writes back, this tree block is not traced by | 
|  | *   any dirty extent_io_tree. | 
|  | * | 
|  | * - Offending tree block gets re-dirtied from its original owner | 
|  | *   Since it has bumped generation, no WRITTEN flag, it can be | 
|  | *   reused without COWing. This tree block will not be traced | 
|  | *   by btrfs_transaction::dirty_pages. | 
|  | * | 
|  | *   Now such dirty tree block will not be cleaned by any dirty | 
|  | *   extent io tree. Thus we don't want to submit such wild eb | 
|  | *   if the fs already has error. | 
|  | */ | 
|  | if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | ret = flush_write_bio(&epd); | 
|  | } else { | 
|  | ret = -EROFS; | 
|  | end_write_bio(&epd, ret); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 
|  | * @mapping: address space structure to write | 
|  | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
|  | * @data: data passed to __extent_writepage function | 
|  | * | 
|  | * If a page is already under I/O, write_cache_pages() skips it, even | 
|  | * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
|  | * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
|  | * and msync() need to guarantee that all the data which was dirty at the time | 
|  | * the call was made get new I/O started against them.  If wbc->sync_mode is | 
|  | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
|  | * existing IO to complete. | 
|  | */ | 
|  | static int extent_write_cache_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int nr_to_write_done = 0; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | pgoff_t index; | 
|  | pgoff_t end;		/* Inclusive */ | 
|  | pgoff_t done_index; | 
|  | int range_whole = 0; | 
|  | int scanned = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | /* | 
|  | * We have to hold onto the inode so that ordered extents can do their | 
|  | * work when the IO finishes.  The alternative to this is failing to add | 
|  | * an ordered extent if the igrab() fails there and that is a huge pain | 
|  | * to deal with, so instead just hold onto the inode throughout the | 
|  | * writepages operation.  If it fails here we are freeing up the inode | 
|  | * anyway and we'd rather not waste our time writing out stuff that is | 
|  | * going to be truncated anyway. | 
|  | */ | 
|  | if (!igrab(inode)) | 
|  | return 0; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | if (wbc->range_cyclic) { | 
|  | index = mapping->writeback_index; /* Start from prev offset */ | 
|  | end = -1; | 
|  | /* | 
|  | * Start from the beginning does not need to cycle over the | 
|  | * range, mark it as scanned. | 
|  | */ | 
|  | scanned = (index == 0); | 
|  | } else { | 
|  | index = wbc->range_start >> PAGE_SHIFT; | 
|  | end = wbc->range_end >> PAGE_SHIFT; | 
|  | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | range_whole = 1; | 
|  | scanned = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do the tagged writepage as long as the snapshot flush bit is set | 
|  | * and we are the first one who do the filemap_flush() on this inode. | 
|  | * | 
|  | * The nr_to_write == LONG_MAX is needed to make sure other flushers do | 
|  | * not race in and drop the bit. | 
|  | */ | 
|  | if (range_whole && wbc->nr_to_write == LONG_MAX && | 
|  | test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | wbc->tagged_writepages = 1; | 
|  |  | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag_pages_for_writeback(mapping, index, end); | 
|  | done_index = index; | 
|  | while (!done && !nr_to_write_done && (index <= end) && | 
|  | (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, | 
|  | &index, end, tag))) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | done_index = page->index + 1; | 
|  | /* | 
|  | * At this point we hold neither the i_pages lock nor | 
|  | * the page lock: the page may be truncated or | 
|  | * invalidated (changing page->mapping to NULL), | 
|  | * or even swizzled back from swapper_space to | 
|  | * tmpfs file mapping | 
|  | */ | 
|  | if (!trylock_page(page)) { | 
|  | ret = flush_write_bio(epd); | 
|  | BUG_ON(ret < 0); | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (wbc->sync_mode != WB_SYNC_NONE) { | 
|  | if (PageWriteback(page)) { | 
|  | ret = flush_write_bio(epd); | 
|  | BUG_ON(ret < 0); | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  |  | 
|  | if (PageWriteback(page) || | 
|  | !clear_page_dirty_for_io(page)) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = __extent_writepage(page, wbc, epd); | 
|  | if (ret < 0) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the filesystem may choose to bump up nr_to_write. | 
|  | * We have to make sure to honor the new nr_to_write | 
|  | * at any time | 
|  | */ | 
|  | nr_to_write_done = wbc->nr_to_write <= 0; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!scanned && !done) { | 
|  | /* | 
|  | * We hit the last page and there is more work to be done: wrap | 
|  | * back to the start of the file | 
|  | */ | 
|  | scanned = 1; | 
|  | index = 0; | 
|  |  | 
|  | /* | 
|  | * If we're looping we could run into a page that is locked by a | 
|  | * writer and that writer could be waiting on writeback for a | 
|  | * page in our current bio, and thus deadlock, so flush the | 
|  | * write bio here. | 
|  | */ | 
|  | ret = flush_write_bio(epd); | 
|  | if (!ret) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) | 
|  | mapping->writeback_index = done_index; | 
|  |  | 
|  | btrfs_add_delayed_iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_write_full_page(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  | struct extent_page_data epd = { | 
|  | .bio = NULL, | 
|  | .tree = &BTRFS_I(page->mapping->host)->io_tree, | 
|  | .extent_locked = 0, | 
|  | .sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
|  | }; | 
|  |  | 
|  | ret = __extent_writepage(page, wbc, &epd); | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) { | 
|  | end_write_bio(&epd, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = flush_write_bio(&epd); | 
|  | ASSERT(ret <= 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_write_locked_range(struct inode *inode, u64 start, u64 end, | 
|  | int mode) | 
|  | { | 
|  | int ret = 0; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  | struct page *page; | 
|  | unsigned long nr_pages = (end - start + PAGE_SIZE) >> | 
|  | PAGE_SHIFT; | 
|  |  | 
|  | struct extent_page_data epd = { | 
|  | .bio = NULL, | 
|  | .tree = tree, | 
|  | .extent_locked = 1, | 
|  | .sync_io = mode == WB_SYNC_ALL, | 
|  | }; | 
|  | struct writeback_control wbc_writepages = { | 
|  | .sync_mode	= mode, | 
|  | .nr_to_write	= nr_pages * 2, | 
|  | .range_start	= start, | 
|  | .range_end	= end + 1, | 
|  | }; | 
|  |  | 
|  | while (start <= end) { | 
|  | page = find_get_page(mapping, start >> PAGE_SHIFT); | 
|  | if (clear_page_dirty_for_io(page)) | 
|  | ret = __extent_writepage(page, &wbc_writepages, &epd); | 
|  | else { | 
|  | btrfs_writepage_endio_finish_ordered(page, start, | 
|  | start + PAGE_SIZE - 1, 1); | 
|  | unlock_page(page); | 
|  | } | 
|  | put_page(page); | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) { | 
|  | end_write_bio(&epd, ret); | 
|  | return ret; | 
|  | } | 
|  | ret = flush_write_bio(&epd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int ret = 0; | 
|  | struct extent_page_data epd = { | 
|  | .bio = NULL, | 
|  | .tree = &BTRFS_I(mapping->host)->io_tree, | 
|  | .extent_locked = 0, | 
|  | .sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
|  | }; | 
|  |  | 
|  | ret = extent_write_cache_pages(mapping, wbc, &epd); | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) { | 
|  | end_write_bio(&epd, ret); | 
|  | return ret; | 
|  | } | 
|  | ret = flush_write_bio(&epd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_readpages(struct address_space *mapping, struct list_head *pages, | 
|  | unsigned nr_pages) | 
|  | { | 
|  | struct bio *bio = NULL; | 
|  | unsigned long bio_flags = 0; | 
|  | struct page *pagepool[16]; | 
|  | struct extent_map *em_cached = NULL; | 
|  | struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; | 
|  | int nr = 0; | 
|  | u64 prev_em_start = (u64)-1; | 
|  |  | 
|  | while (!list_empty(pages)) { | 
|  | u64 contig_end = 0; | 
|  |  | 
|  | for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) { | 
|  | struct page *page = lru_to_page(pages); | 
|  |  | 
|  | prefetchw(&page->flags); | 
|  | list_del(&page->lru); | 
|  | if (add_to_page_cache_lru(page, mapping, page->index, | 
|  | readahead_gfp_mask(mapping))) { | 
|  | put_page(page); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pagepool[nr++] = page; | 
|  | contig_end = page_offset(page) + PAGE_SIZE - 1; | 
|  | } | 
|  |  | 
|  | if (nr) { | 
|  | u64 contig_start = page_offset(pagepool[0]); | 
|  |  | 
|  | ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); | 
|  |  | 
|  | contiguous_readpages(tree, pagepool, nr, contig_start, | 
|  | contig_end, &em_cached, &bio, &bio_flags, | 
|  | &prev_em_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (em_cached) | 
|  | free_extent_map(em_cached); | 
|  |  | 
|  | if (bio) | 
|  | return submit_one_bio(bio, 0, bio_flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * basic invalidatepage code, this waits on any locked or writeback | 
|  | * ranges corresponding to the page, and then deletes any extent state | 
|  | * records from the tree | 
|  | */ | 
|  | int extent_invalidatepage(struct extent_io_tree *tree, | 
|  | struct page *page, unsigned long offset) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | size_t blocksize = page->mapping->host->i_sb->s_blocksize; | 
|  |  | 
|  | start += ALIGN(offset, blocksize); | 
|  | if (start > end) | 
|  | return 0; | 
|  |  | 
|  | lock_extent_bits(tree, start, end, &cached_state); | 
|  | wait_on_page_writeback(page); | 
|  | clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC | | 
|  | EXTENT_DO_ACCOUNTING, 1, 1, &cached_state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper for releasepage, this tests for areas of the page that | 
|  | * are locked or under IO and drops the related state bits if it is safe | 
|  | * to drop the page. | 
|  | */ | 
|  | static int try_release_extent_state(struct extent_io_tree *tree, | 
|  | struct page *page, gfp_t mask) | 
|  | { | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | int ret = 1; | 
|  |  | 
|  | if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { | 
|  | ret = 0; | 
|  | } else { | 
|  | /* | 
|  | * at this point we can safely clear everything except the | 
|  | * locked bit and the nodatasum bit | 
|  | */ | 
|  | ret = __clear_extent_bit(tree, start, end, | 
|  | ~(EXTENT_LOCKED | EXTENT_NODATASUM), | 
|  | 0, 0, NULL, mask, NULL); | 
|  |  | 
|  | /* if clear_extent_bit failed for enomem reasons, | 
|  | * we can't allow the release to continue. | 
|  | */ | 
|  | if (ret < 0) | 
|  | ret = 0; | 
|  | else | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper for releasepage.  As long as there are no locked extents | 
|  | * in the range corresponding to the page, both state records and extent | 
|  | * map records are removed | 
|  | */ | 
|  | int try_release_extent_mapping(struct page *page, gfp_t mask) | 
|  | { | 
|  | struct extent_map *em; | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); | 
|  | struct extent_io_tree *tree = &btrfs_inode->io_tree; | 
|  | struct extent_map_tree *map = &btrfs_inode->extent_tree; | 
|  |  | 
|  | if (gfpflags_allow_blocking(mask) && | 
|  | page->mapping->host->i_size > SZ_16M) { | 
|  | u64 len; | 
|  | while (start <= end) { | 
|  | len = end - start + 1; | 
|  | write_lock(&map->lock); | 
|  | em = lookup_extent_mapping(map, start, len); | 
|  | if (!em) { | 
|  | write_unlock(&map->lock); | 
|  | break; | 
|  | } | 
|  | if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || | 
|  | em->start != start) { | 
|  | write_unlock(&map->lock); | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | if (test_range_bit(tree, em->start, | 
|  | extent_map_end(em) - 1, | 
|  | EXTENT_LOCKED, 0, NULL)) | 
|  | goto next; | 
|  | /* | 
|  | * If it's not in the list of modified extents, used | 
|  | * by a fast fsync, we can remove it. If it's being | 
|  | * logged we can safely remove it since fsync took an | 
|  | * extra reference on the em. | 
|  | */ | 
|  | if (list_empty(&em->list) || | 
|  | test_bit(EXTENT_FLAG_LOGGING, &em->flags)) { | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &btrfs_inode->runtime_flags); | 
|  | remove_extent_mapping(map, em); | 
|  | /* once for the rb tree */ | 
|  | free_extent_map(em); | 
|  | } | 
|  | next: | 
|  | start = extent_map_end(em); | 
|  | write_unlock(&map->lock); | 
|  |  | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  |  | 
|  | cond_resched(); /* Allow large-extent preemption. */ | 
|  | } | 
|  | } | 
|  | return try_release_extent_state(tree, page, mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function for fiemap, which doesn't want to see any holes. | 
|  | * This maps until we find something past 'last' | 
|  | */ | 
|  | static struct extent_map *get_extent_skip_holes(struct inode *inode, | 
|  | u64 offset, u64 last) | 
|  | { | 
|  | u64 sectorsize = btrfs_inode_sectorsize(inode); | 
|  | struct extent_map *em; | 
|  | u64 len; | 
|  |  | 
|  | if (offset >= last) | 
|  | return NULL; | 
|  |  | 
|  | while (1) { | 
|  | len = last - offset; | 
|  | if (len == 0) | 
|  | break; | 
|  | len = ALIGN(len, sectorsize); | 
|  | em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); | 
|  | if (IS_ERR_OR_NULL(em)) | 
|  | return em; | 
|  |  | 
|  | /* if this isn't a hole return it */ | 
|  | if (em->block_start != EXTENT_MAP_HOLE) | 
|  | return em; | 
|  |  | 
|  | /* this is a hole, advance to the next extent */ | 
|  | offset = extent_map_end(em); | 
|  | free_extent_map(em); | 
|  | if (offset >= last) | 
|  | break; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To cache previous fiemap extent | 
|  | * | 
|  | * Will be used for merging fiemap extent | 
|  | */ | 
|  | struct fiemap_cache { | 
|  | u64 offset; | 
|  | u64 phys; | 
|  | u64 len; | 
|  | u32 flags; | 
|  | bool cached; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Helper to submit fiemap extent. | 
|  | * | 
|  | * Will try to merge current fiemap extent specified by @offset, @phys, | 
|  | * @len and @flags with cached one. | 
|  | * And only when we fails to merge, cached one will be submitted as | 
|  | * fiemap extent. | 
|  | * | 
|  | * Return value is the same as fiemap_fill_next_extent(). | 
|  | */ | 
|  | static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, | 
|  | struct fiemap_cache *cache, | 
|  | u64 offset, u64 phys, u64 len, u32 flags) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!cache->cached) | 
|  | goto assign; | 
|  |  | 
|  | /* | 
|  | * Sanity check, extent_fiemap() should have ensured that new | 
|  | * fiemap extent won't overlap with cached one. | 
|  | * Not recoverable. | 
|  | * | 
|  | * NOTE: Physical address can overlap, due to compression | 
|  | */ | 
|  | if (cache->offset + cache->len > offset) { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only merges fiemap extents if | 
|  | * 1) Their logical addresses are continuous | 
|  | * | 
|  | * 2) Their physical addresses are continuous | 
|  | *    So truly compressed (physical size smaller than logical size) | 
|  | *    extents won't get merged with each other | 
|  | * | 
|  | * 3) Share same flags except FIEMAP_EXTENT_LAST | 
|  | *    So regular extent won't get merged with prealloc extent | 
|  | */ | 
|  | if (cache->offset + cache->len  == offset && | 
|  | cache->phys + cache->len == phys  && | 
|  | (cache->flags & ~FIEMAP_EXTENT_LAST) == | 
|  | (flags & ~FIEMAP_EXTENT_LAST)) { | 
|  | cache->len += len; | 
|  | cache->flags |= flags; | 
|  | goto try_submit_last; | 
|  | } | 
|  |  | 
|  | /* Not mergeable, need to submit cached one */ | 
|  | ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
|  | cache->len, cache->flags); | 
|  | cache->cached = false; | 
|  | if (ret) | 
|  | return ret; | 
|  | assign: | 
|  | cache->cached = true; | 
|  | cache->offset = offset; | 
|  | cache->phys = phys; | 
|  | cache->len = len; | 
|  | cache->flags = flags; | 
|  | try_submit_last: | 
|  | if (cache->flags & FIEMAP_EXTENT_LAST) { | 
|  | ret = fiemap_fill_next_extent(fieinfo, cache->offset, | 
|  | cache->phys, cache->len, cache->flags); | 
|  | cache->cached = false; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emit last fiemap cache | 
|  | * | 
|  | * The last fiemap cache may still be cached in the following case: | 
|  | * 0		      4k		    8k | 
|  | * |<- Fiemap range ->| | 
|  | * |<------------  First extent ----------->| | 
|  | * | 
|  | * In this case, the first extent range will be cached but not emitted. | 
|  | * So we must emit it before ending extent_fiemap(). | 
|  | */ | 
|  | static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, | 
|  | struct fiemap_cache *cache) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!cache->cached) | 
|  | return 0; | 
|  |  | 
|  | ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
|  | cache->len, cache->flags); | 
|  | cache->cached = false; | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
|  | __u64 start, __u64 len) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 off = start; | 
|  | u64 max = start + len; | 
|  | u32 flags = 0; | 
|  | u32 found_type; | 
|  | u64 last; | 
|  | u64 last_for_get_extent = 0; | 
|  | u64 disko = 0; | 
|  | u64 isize = i_size_read(inode); | 
|  | struct btrfs_key found_key; | 
|  | struct extent_map *em = NULL; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct fiemap_cache cache = { 0 }; | 
|  | struct ulist *roots; | 
|  | struct ulist *tmp_ulist; | 
|  | int end = 0; | 
|  | u64 em_start = 0; | 
|  | u64 em_len = 0; | 
|  | u64 em_end = 0; | 
|  |  | 
|  | if (len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | roots = ulist_alloc(GFP_KERNEL); | 
|  | tmp_ulist = ulist_alloc(GFP_KERNEL); | 
|  | if (!roots || !tmp_ulist) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_ulist; | 
|  | } | 
|  |  | 
|  | start = round_down(start, btrfs_inode_sectorsize(inode)); | 
|  | len = round_up(max, btrfs_inode_sectorsize(inode)) - start; | 
|  |  | 
|  | /* | 
|  | * lookup the last file extent.  We're not using i_size here | 
|  | * because there might be preallocation past i_size | 
|  | */ | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, | 
|  | btrfs_ino(BTRFS_I(inode)), -1, 0); | 
|  | if (ret < 0) { | 
|  | goto out_free_ulist; | 
|  | } else { | 
|  | WARN_ON(!ret); | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
|  | found_type = found_key.type; | 
|  |  | 
|  | /* No extents, but there might be delalloc bits */ | 
|  | if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || | 
|  | found_type != BTRFS_EXTENT_DATA_KEY) { | 
|  | /* have to trust i_size as the end */ | 
|  | last = (u64)-1; | 
|  | last_for_get_extent = isize; | 
|  | } else { | 
|  | /* | 
|  | * remember the start of the last extent.  There are a | 
|  | * bunch of different factors that go into the length of the | 
|  | * extent, so its much less complex to remember where it started | 
|  | */ | 
|  | last = found_key.offset; | 
|  | last_for_get_extent = last + 1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * we might have some extents allocated but more delalloc past those | 
|  | * extents.  so, we trust isize unless the start of the last extent is | 
|  | * beyond isize | 
|  | */ | 
|  | if (last < isize) { | 
|  | last = (u64)-1; | 
|  | last_for_get_extent = isize; | 
|  | } | 
|  |  | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, | 
|  | &cached_state); | 
|  |  | 
|  | em = get_extent_skip_holes(inode, start, last_for_get_extent); | 
|  | if (!em) | 
|  | goto out; | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (!end) { | 
|  | u64 offset_in_extent = 0; | 
|  |  | 
|  | /* break if the extent we found is outside the range */ | 
|  | if (em->start >= max || extent_map_end(em) < off) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * get_extent may return an extent that starts before our | 
|  | * requested range.  We have to make sure the ranges | 
|  | * we return to fiemap always move forward and don't | 
|  | * overlap, so adjust the offsets here | 
|  | */ | 
|  | em_start = max(em->start, off); | 
|  |  | 
|  | /* | 
|  | * record the offset from the start of the extent | 
|  | * for adjusting the disk offset below.  Only do this if the | 
|  | * extent isn't compressed since our in ram offset may be past | 
|  | * what we have actually allocated on disk. | 
|  | */ | 
|  | if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
|  | offset_in_extent = em_start - em->start; | 
|  | em_end = extent_map_end(em); | 
|  | em_len = em_end - em_start; | 
|  | flags = 0; | 
|  | if (em->block_start < EXTENT_MAP_LAST_BYTE) | 
|  | disko = em->block_start + offset_in_extent; | 
|  | else | 
|  | disko = 0; | 
|  |  | 
|  | /* | 
|  | * bump off for our next call to get_extent | 
|  | */ | 
|  | off = extent_map_end(em); | 
|  | if (off >= max) | 
|  | end = 1; | 
|  |  | 
|  | if (em->block_start == EXTENT_MAP_LAST_BYTE) { | 
|  | end = 1; | 
|  | flags |= FIEMAP_EXTENT_LAST; | 
|  | } else if (em->block_start == EXTENT_MAP_INLINE) { | 
|  | flags |= (FIEMAP_EXTENT_DATA_INLINE | | 
|  | FIEMAP_EXTENT_NOT_ALIGNED); | 
|  | } else if (em->block_start == EXTENT_MAP_DELALLOC) { | 
|  | flags |= (FIEMAP_EXTENT_DELALLOC | | 
|  | FIEMAP_EXTENT_UNKNOWN); | 
|  | } else if (fieinfo->fi_extents_max) { | 
|  | u64 bytenr = em->block_start - | 
|  | (em->start - em->orig_start); | 
|  |  | 
|  | /* | 
|  | * As btrfs supports shared space, this information | 
|  | * can be exported to userspace tools via | 
|  | * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0 | 
|  | * then we're just getting a count and we can skip the | 
|  | * lookup stuff. | 
|  | */ | 
|  | ret = btrfs_check_shared(root, | 
|  | btrfs_ino(BTRFS_I(inode)), | 
|  | bytenr, roots, tmp_ulist); | 
|  | if (ret < 0) | 
|  | goto out_free; | 
|  | if (ret) | 
|  | flags |= FIEMAP_EXTENT_SHARED; | 
|  | ret = 0; | 
|  | } | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
|  | flags |= FIEMAP_EXTENT_ENCODED; | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | flags |= FIEMAP_EXTENT_UNWRITTEN; | 
|  |  | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  | if ((em_start >= last) || em_len == (u64)-1 || | 
|  | (last == (u64)-1 && isize <= em_end)) { | 
|  | flags |= FIEMAP_EXTENT_LAST; | 
|  | end = 1; | 
|  | } | 
|  |  | 
|  | /* now scan forward to see if this is really the last extent. */ | 
|  | em = get_extent_skip_holes(inode, off, last_for_get_extent); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  | if (!em) { | 
|  | flags |= FIEMAP_EXTENT_LAST; | 
|  | end = 1; | 
|  | } | 
|  | ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, | 
|  | em_len, flags); | 
|  | if (ret) { | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  | out_free: | 
|  | if (!ret) | 
|  | ret = emit_last_fiemap_cache(fieinfo, &cache); | 
|  | free_extent_map(em); | 
|  | out: | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, | 
|  | &cached_state); | 
|  |  | 
|  | out_free_ulist: | 
|  | btrfs_free_path(path); | 
|  | ulist_free(roots); | 
|  | ulist_free(tmp_ulist); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __free_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | btrfs_leak_debug_del(&eb->leak_list); | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  |  | 
|  | int extent_buffer_under_io(struct extent_buffer *eb) | 
|  | { | 
|  | return (atomic_read(&eb->io_pages) || | 
|  | test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || | 
|  | test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all pages attached to the extent buffer. | 
|  | */ | 
|  | static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  | int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | BUG_ON(extent_buffer_under_io(eb)); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *page = eb->pages[i]; | 
|  |  | 
|  | if (!page) | 
|  | continue; | 
|  | if (mapped) | 
|  | spin_lock(&page->mapping->private_lock); | 
|  | /* | 
|  | * We do this since we'll remove the pages after we've | 
|  | * removed the eb from the radix tree, so we could race | 
|  | * and have this page now attached to the new eb.  So | 
|  | * only clear page_private if it's still connected to | 
|  | * this eb. | 
|  | */ | 
|  | if (PagePrivate(page) && | 
|  | page->private == (unsigned long)eb) { | 
|  | BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | BUG_ON(PageDirty(page)); | 
|  | BUG_ON(PageWriteback(page)); | 
|  | /* | 
|  | * We need to make sure we haven't be attached | 
|  | * to a new eb. | 
|  | */ | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | /* One for the page private */ | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | if (mapped) | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  |  | 
|  | /* One for when we allocated the page */ | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for releasing the extent buffer. | 
|  | */ | 
|  | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | btrfs_release_extent_buffer_pages(eb); | 
|  | __free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | static struct extent_buffer * | 
|  | __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, | 
|  | unsigned long len) | 
|  | { | 
|  | struct extent_buffer *eb = NULL; | 
|  |  | 
|  | eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); | 
|  | eb->start = start; | 
|  | eb->len = len; | 
|  | eb->fs_info = fs_info; | 
|  | eb->bflags = 0; | 
|  | rwlock_init(&eb->lock); | 
|  | atomic_set(&eb->blocking_readers, 0); | 
|  | eb->blocking_writers = 0; | 
|  | eb->lock_nested = false; | 
|  | init_waitqueue_head(&eb->write_lock_wq); | 
|  | init_waitqueue_head(&eb->read_lock_wq); | 
|  |  | 
|  | btrfs_leak_debug_add(&eb->leak_list, &buffers); | 
|  |  | 
|  | spin_lock_init(&eb->refs_lock); | 
|  | atomic_set(&eb->refs, 1); | 
|  | atomic_set(&eb->io_pages, 0); | 
|  |  | 
|  | /* | 
|  | * Sanity checks, currently the maximum is 64k covered by 16x 4k pages | 
|  | */ | 
|  | BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE | 
|  | > MAX_INLINE_EXTENT_BUFFER_SIZE); | 
|  | BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | eb->spinning_writers = 0; | 
|  | atomic_set(&eb->spinning_readers, 0); | 
|  | atomic_set(&eb->read_locks, 0); | 
|  | eb->write_locks = 0; | 
|  | #endif | 
|  |  | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) | 
|  | { | 
|  | int i; | 
|  | struct page *p; | 
|  | struct extent_buffer *new; | 
|  | int num_pages = num_extent_pages(src); | 
|  |  | 
|  | new = __alloc_extent_buffer(src->fs_info, src->start, src->len); | 
|  | if (new == NULL) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | p = alloc_page(GFP_NOFS); | 
|  | if (!p) { | 
|  | btrfs_release_extent_buffer(new); | 
|  | return NULL; | 
|  | } | 
|  | attach_extent_buffer_page(new, p); | 
|  | WARN_ON(PageDirty(p)); | 
|  | SetPageUptodate(p); | 
|  | new->pages[i] = p; | 
|  | copy_page(page_address(p), page_address(src->pages[i])); | 
|  | } | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); | 
|  | set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start, unsigned long len) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | int num_pages; | 
|  | int i; | 
|  |  | 
|  | eb = __alloc_extent_buffer(fs_info, start, len); | 
|  | if (!eb) | 
|  | return NULL; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | eb->pages[i] = alloc_page(GFP_NOFS); | 
|  | if (!eb->pages[i]) | 
|  | goto err; | 
|  | } | 
|  | set_extent_buffer_uptodate(eb); | 
|  | btrfs_set_header_nritems(eb, 0); | 
|  | set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | return eb; | 
|  | err: | 
|  | for (; i > 0; i--) | 
|  | __free_page(eb->pages[i - 1]); | 
|  | __free_extent_buffer(eb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); | 
|  | } | 
|  |  | 
|  | static void check_buffer_tree_ref(struct extent_buffer *eb) | 
|  | { | 
|  | int refs; | 
|  | /* | 
|  | * The TREE_REF bit is first set when the extent_buffer is added | 
|  | * to the radix tree. It is also reset, if unset, when a new reference | 
|  | * is created by find_extent_buffer. | 
|  | * | 
|  | * It is only cleared in two cases: freeing the last non-tree | 
|  | * reference to the extent_buffer when its STALE bit is set or | 
|  | * calling releasepage when the tree reference is the only reference. | 
|  | * | 
|  | * In both cases, care is taken to ensure that the extent_buffer's | 
|  | * pages are not under io. However, releasepage can be concurrently | 
|  | * called with creating new references, which is prone to race | 
|  | * conditions between the calls to check_buffer_tree_ref in those | 
|  | * codepaths and clearing TREE_REF in try_release_extent_buffer. | 
|  | * | 
|  | * The actual lifetime of the extent_buffer in the radix tree is | 
|  | * adequately protected by the refcount, but the TREE_REF bit and | 
|  | * its corresponding reference are not. To protect against this | 
|  | * class of races, we call check_buffer_tree_ref from the codepaths | 
|  | * which trigger io after they set eb->io_pages. Note that once io is | 
|  | * initiated, TREE_REF can no longer be cleared, so that is the | 
|  | * moment at which any such race is best fixed. | 
|  | */ | 
|  | refs = atomic_read(&eb->refs); | 
|  | if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | atomic_inc(&eb->refs); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | static void mark_extent_buffer_accessed(struct extent_buffer *eb, | 
|  | struct page *accessed) | 
|  | { | 
|  | int num_pages, i; | 
|  |  | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | if (p != accessed) | 
|  | mark_page_accessed(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | eb = radix_tree_lookup(&fs_info->buffer_radix, | 
|  | start >> PAGE_SHIFT); | 
|  | if (eb && atomic_inc_not_zero(&eb->refs)) { | 
|  | rcu_read_unlock(); | 
|  | /* | 
|  | * Lock our eb's refs_lock to avoid races with | 
|  | * free_extent_buffer. When we get our eb it might be flagged | 
|  | * with EXTENT_BUFFER_STALE and another task running | 
|  | * free_extent_buffer might have seen that flag set, | 
|  | * eb->refs == 2, that the buffer isn't under IO (dirty and | 
|  | * writeback flags not set) and it's still in the tree (flag | 
|  | * EXTENT_BUFFER_TREE_REF set), therefore being in the process | 
|  | * of decrementing the extent buffer's reference count twice. | 
|  | * So here we could race and increment the eb's reference count, | 
|  | * clear its stale flag, mark it as dirty and drop our reference | 
|  | * before the other task finishes executing free_extent_buffer, | 
|  | * which would later result in an attempt to free an extent | 
|  | * buffer that is dirty. | 
|  | */ | 
|  | if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { | 
|  | spin_lock(&eb->refs_lock); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  | mark_extent_buffer_accessed(eb, NULL); | 
|  | return eb; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb, *exists = NULL; | 
|  | int ret; | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | if (eb) | 
|  | return eb; | 
|  | eb = alloc_dummy_extent_buffer(fs_info, start); | 
|  | if (!eb) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | eb->fs_info = fs_info; | 
|  | again: | 
|  | ret = radix_tree_preload(GFP_NOFS); | 
|  | if (ret) { | 
|  | exists = ERR_PTR(ret); | 
|  | goto free_eb; | 
|  | } | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | ret = radix_tree_insert(&fs_info->buffer_radix, | 
|  | start >> PAGE_SHIFT, eb); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (ret == -EEXIST) { | 
|  | exists = find_extent_buffer(fs_info, start); | 
|  | if (exists) | 
|  | goto free_eb; | 
|  | else | 
|  | goto again; | 
|  | } | 
|  | check_buffer_tree_ref(eb); | 
|  | set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
|  |  | 
|  | return eb; | 
|  | free_eb: | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return exists; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | unsigned long len = fs_info->nodesize; | 
|  | int num_pages; | 
|  | int i; | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | struct extent_buffer *eb; | 
|  | struct extent_buffer *exists = NULL; | 
|  | struct page *p; | 
|  | struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
|  | int uptodate = 1; | 
|  | int ret; | 
|  |  | 
|  | if (!IS_ALIGNED(start, fs_info->sectorsize)) { | 
|  | btrfs_err(fs_info, "bad tree block start %llu", start); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | if (eb) | 
|  | return eb; | 
|  |  | 
|  | eb = __alloc_extent_buffer(fs_info, start, len); | 
|  | if (!eb) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++, index++) { | 
|  | p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); | 
|  | if (!p) { | 
|  | exists = ERR_PTR(-ENOMEM); | 
|  | goto free_eb; | 
|  | } | 
|  |  | 
|  | spin_lock(&mapping->private_lock); | 
|  | if (PagePrivate(p)) { | 
|  | /* | 
|  | * We could have already allocated an eb for this page | 
|  | * and attached one so lets see if we can get a ref on | 
|  | * the existing eb, and if we can we know it's good and | 
|  | * we can just return that one, else we know we can just | 
|  | * overwrite page->private. | 
|  | */ | 
|  | exists = (struct extent_buffer *)p->private; | 
|  | if (atomic_inc_not_zero(&exists->refs)) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | unlock_page(p); | 
|  | put_page(p); | 
|  | mark_extent_buffer_accessed(exists, p); | 
|  | goto free_eb; | 
|  | } | 
|  | exists = NULL; | 
|  |  | 
|  | /* | 
|  | * Do this so attach doesn't complain and we need to | 
|  | * drop the ref the old guy had. | 
|  | */ | 
|  | ClearPagePrivate(p); | 
|  | WARN_ON(PageDirty(p)); | 
|  | put_page(p); | 
|  | } | 
|  | attach_extent_buffer_page(eb, p); | 
|  | spin_unlock(&mapping->private_lock); | 
|  | WARN_ON(PageDirty(p)); | 
|  | eb->pages[i] = p; | 
|  | if (!PageUptodate(p)) | 
|  | uptodate = 0; | 
|  |  | 
|  | /* | 
|  | * We can't unlock the pages just yet since the extent buffer | 
|  | * hasn't been properly inserted in the radix tree, this | 
|  | * opens a race with btree_releasepage which can free a page | 
|  | * while we are still filling in all pages for the buffer and | 
|  | * we could crash. | 
|  | */ | 
|  | } | 
|  | if (uptodate) | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | again: | 
|  | ret = radix_tree_preload(GFP_NOFS); | 
|  | if (ret) { | 
|  | exists = ERR_PTR(ret); | 
|  | goto free_eb; | 
|  | } | 
|  |  | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | ret = radix_tree_insert(&fs_info->buffer_radix, | 
|  | start >> PAGE_SHIFT, eb); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (ret == -EEXIST) { | 
|  | exists = find_extent_buffer(fs_info, start); | 
|  | if (exists) | 
|  | goto free_eb; | 
|  | else | 
|  | goto again; | 
|  | } | 
|  | /* add one reference for the tree */ | 
|  | check_buffer_tree_ref(eb); | 
|  | set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * Now it's safe to unlock the pages because any calls to | 
|  | * btree_releasepage will correctly detect that a page belongs to a | 
|  | * live buffer and won't free them prematurely. | 
|  | */ | 
|  | for (i = 0; i < num_pages; i++) | 
|  | unlock_page(eb->pages[i]); | 
|  | return eb; | 
|  |  | 
|  | free_eb: | 
|  | WARN_ON(!atomic_dec_and_test(&eb->refs)); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | if (eb->pages[i]) | 
|  | unlock_page(eb->pages[i]); | 
|  | } | 
|  |  | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return exists; | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct extent_buffer *eb = | 
|  | container_of(head, struct extent_buffer, rcu_head); | 
|  |  | 
|  | __free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | static int release_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | lockdep_assert_held(&eb->refs_lock); | 
|  |  | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | if (atomic_dec_and_test(&eb->refs)) { | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | radix_tree_delete(&fs_info->buffer_radix, | 
|  | eb->start >> PAGE_SHIFT); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | } else { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | /* Should be safe to release our pages at this point */ | 
|  | btrfs_release_extent_buffer_pages(eb); | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { | 
|  | __free_extent_buffer(eb); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); | 
|  | return 1; | 
|  | } | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void free_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | int refs; | 
|  | int old; | 
|  | if (!eb) | 
|  | return; | 
|  |  | 
|  | while (1) { | 
|  | refs = atomic_read(&eb->refs); | 
|  | if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) | 
|  | || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && | 
|  | refs == 1)) | 
|  | break; | 
|  | old = atomic_cmpxchg(&eb->refs, refs, refs - 1); | 
|  | if (old == refs) | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (atomic_read(&eb->refs) == 2 && | 
|  | test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && | 
|  | !extent_buffer_under_io(eb) && | 
|  | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | atomic_dec(&eb->refs); | 
|  |  | 
|  | /* | 
|  | * I know this is terrible, but it's temporary until we stop tracking | 
|  | * the uptodate bits and such for the extent buffers. | 
|  | */ | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | void free_extent_buffer_stale(struct extent_buffer *eb) | 
|  | { | 
|  | if (!eb) | 
|  | return; | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | set_bit(EXTENT_BUFFER_STALE, &eb->bflags); | 
|  |  | 
|  | if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && | 
|  | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | atomic_dec(&eb->refs); | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | void clear_extent_buffer_dirty(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  | struct page *page; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (!PageDirty(page)) | 
|  | continue; | 
|  |  | 
|  | lock_page(page); | 
|  | WARN_ON(!PagePrivate(page)); | 
|  |  | 
|  | clear_page_dirty_for_io(page); | 
|  | xa_lock_irq(&page->mapping->i_pages); | 
|  | if (!PageDirty(page)) | 
|  | __xa_clear_mark(&page->mapping->i_pages, | 
|  | page_index(page), PAGECACHE_TAG_DIRTY); | 
|  | xa_unlock_irq(&page->mapping->i_pages); | 
|  | ClearPageError(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | } | 
|  |  | 
|  | bool set_extent_buffer_dirty(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  | bool was_dirty; | 
|  |  | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); | 
|  |  | 
|  | if (!was_dirty) | 
|  | for (i = 0; i < num_pages; i++) | 
|  | set_page_dirty(eb->pages[i]); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | for (i = 0; i < num_pages; i++) | 
|  | ASSERT(PageDirty(eb->pages[i])); | 
|  | #endif | 
|  |  | 
|  | return was_dirty; | 
|  | } | 
|  |  | 
|  | void clear_extent_buffer_uptodate(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  | int num_pages; | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (page) | 
|  | ClearPageUptodate(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_extent_buffer_uptodate(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  | int num_pages; | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  | int err; | 
|  | int ret = 0; | 
|  | int locked_pages = 0; | 
|  | int all_uptodate = 1; | 
|  | int num_pages; | 
|  | unsigned long num_reads = 0; | 
|  | struct bio *bio = NULL; | 
|  | unsigned long bio_flags = 0; | 
|  | struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree; | 
|  |  | 
|  | if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
|  | return 0; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (wait == WAIT_NONE) { | 
|  | if (!trylock_page(page)) | 
|  | goto unlock_exit; | 
|  | } else { | 
|  | lock_page(page); | 
|  | } | 
|  | locked_pages++; | 
|  | } | 
|  | /* | 
|  | * We need to firstly lock all pages to make sure that | 
|  | * the uptodate bit of our pages won't be affected by | 
|  | * clear_extent_buffer_uptodate(). | 
|  | */ | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (!PageUptodate(page)) { | 
|  | num_reads++; | 
|  | all_uptodate = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (all_uptodate) { | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | goto unlock_exit; | 
|  | } | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
|  | eb->read_mirror = 0; | 
|  | atomic_set(&eb->io_pages, num_reads); | 
|  | /* | 
|  | * It is possible for releasepage to clear the TREE_REF bit before we | 
|  | * set io_pages. See check_buffer_tree_ref for a more detailed comment. | 
|  | */ | 
|  | check_buffer_tree_ref(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | if (ret) { | 
|  | atomic_dec(&eb->io_pages); | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ClearPageError(page); | 
|  | err = __extent_read_full_page(tree, page, | 
|  | btree_get_extent, &bio, | 
|  | mirror_num, &bio_flags, | 
|  | REQ_META); | 
|  | if (err) { | 
|  | ret = err; | 
|  | /* | 
|  | * We use &bio in above __extent_read_full_page, | 
|  | * so we ensure that if it returns error, the | 
|  | * current page fails to add itself to bio and | 
|  | * it's been unlocked. | 
|  | * | 
|  | * We must dec io_pages by ourselves. | 
|  | */ | 
|  | atomic_dec(&eb->io_pages); | 
|  | } | 
|  | } else { | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bio) { | 
|  | err = submit_one_bio(bio, mirror_num, bio_flags); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (ret || wait != WAIT_COMPLETE) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | unlock_exit: | 
|  | while (locked_pages > 0) { | 
|  | locked_pages--; | 
|  | page = eb->pages[locked_pages]; | 
|  | unlock_page(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void read_extent_buffer(const struct extent_buffer *eb, void *dstv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char *dst = (char *)dstv; | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
|  |  | 
|  | if (start + len > eb->len) { | 
|  | WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", | 
|  | eb->start, eb->len, start, len); | 
|  | memset(dst, 0, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset = offset_in_page(start_offset + start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | cur = min(len, (PAGE_SIZE - offset)); | 
|  | kaddr = page_address(page); | 
|  | memcpy(dst, kaddr + offset, cur); | 
|  |  | 
|  | dst += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, | 
|  | void __user *dstv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char __user *dst = (char __user *)dstv; | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(start > eb->len); | 
|  | WARN_ON(start + len > eb->start + eb->len); | 
|  |  | 
|  | offset = offset_in_page(start_offset + start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | cur = min(len, (PAGE_SIZE - offset)); | 
|  | kaddr = page_address(page); | 
|  | if (probe_user_write(dst, kaddr + offset, cur)) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dst += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return 0 if the item is found within a page. | 
|  | * return 1 if the item spans two pages. | 
|  | * return -EINVAL otherwise. | 
|  | */ | 
|  | int map_private_extent_buffer(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long min_len, | 
|  | char **map, unsigned long *map_start, | 
|  | unsigned long *map_len) | 
|  | { | 
|  | size_t offset; | 
|  | char *kaddr; | 
|  | struct page *p; | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
|  | unsigned long end_i = (start_offset + start + min_len - 1) >> | 
|  | PAGE_SHIFT; | 
|  |  | 
|  | if (start + min_len > eb->len) { | 
|  | WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", | 
|  | eb->start, eb->len, start, min_len); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (i != end_i) | 
|  | return 1; | 
|  |  | 
|  | if (i == 0) { | 
|  | offset = start_offset; | 
|  | *map_start = 0; | 
|  | } else { | 
|  | offset = 0; | 
|  | *map_start = ((u64)i << PAGE_SHIFT) - start_offset; | 
|  | } | 
|  |  | 
|  | p = eb->pages[i]; | 
|  | kaddr = page_address(p); | 
|  | *map = kaddr + offset; | 
|  | *map_len = PAGE_SIZE - offset; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char *ptr = (char *)ptrv; | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(start > eb->len); | 
|  | WARN_ON(start + len > eb->start + eb->len); | 
|  |  | 
|  | offset = offset_in_page(start_offset + start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | cur = min(len, (PAGE_SIZE - offset)); | 
|  |  | 
|  | kaddr = page_address(page); | 
|  | ret = memcmp(ptr, kaddr + offset, cur); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ptr += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, | 
|  | const void *srcv) | 
|  | { | 
|  | char *kaddr; | 
|  |  | 
|  | WARN_ON(!PageUptodate(eb->pages[0])); | 
|  | kaddr = page_address(eb->pages[0]); | 
|  | memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, | 
|  | BTRFS_FSID_SIZE); | 
|  | } | 
|  |  | 
|  | void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) | 
|  | { | 
|  | char *kaddr; | 
|  |  | 
|  | WARN_ON(!PageUptodate(eb->pages[0])); | 
|  | kaddr = page_address(eb->pages[0]); | 
|  | memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, | 
|  | BTRFS_FSID_SIZE); | 
|  | } | 
|  |  | 
|  | void write_extent_buffer(struct extent_buffer *eb, const void *srcv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char *src = (char *)srcv; | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
|  |  | 
|  | WARN_ON(start > eb->len); | 
|  | WARN_ON(start + len > eb->start + eb->len); | 
|  |  | 
|  | offset = offset_in_page(start_offset + start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  |  | 
|  | cur = min(len, PAGE_SIZE - offset); | 
|  | kaddr = page_address(page); | 
|  | memcpy(kaddr + offset, src, cur); | 
|  |  | 
|  | src += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
|  |  | 
|  | WARN_ON(start > eb->len); | 
|  | WARN_ON(start + len > eb->start + eb->len); | 
|  |  | 
|  | offset = offset_in_page(start_offset + start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  |  | 
|  | cur = min(len, PAGE_SIZE - offset); | 
|  | kaddr = page_address(page); | 
|  | memset(kaddr + offset, 0, cur); | 
|  |  | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void copy_extent_buffer_full(struct extent_buffer *dst, | 
|  | struct extent_buffer *src) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  |  | 
|  | ASSERT(dst->len == src->len); | 
|  |  | 
|  | num_pages = num_extent_pages(dst); | 
|  | for (i = 0; i < num_pages; i++) | 
|  | copy_page(page_address(dst->pages[i]), | 
|  | page_address(src->pages[i])); | 
|  | } | 
|  |  | 
|  | void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | u64 dst_len = dst->len; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | size_t start_offset = offset_in_page(dst->start); | 
|  | unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; | 
|  |  | 
|  | WARN_ON(src->len != dst_len); | 
|  |  | 
|  | offset = offset_in_page(start_offset + dst_offset); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = dst->pages[i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  |  | 
|  | cur = min(len, (unsigned long)(PAGE_SIZE - offset)); | 
|  |  | 
|  | kaddr = page_address(page); | 
|  | read_extent_buffer(src, kaddr + offset, src_offset, cur); | 
|  |  | 
|  | src_offset += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * eb_bitmap_offset() - calculate the page and offset of the byte containing the | 
|  | * given bit number | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @nr: bit number | 
|  | * @page_index: return index of the page in the extent buffer that contains the | 
|  | * given bit number | 
|  | * @page_offset: return offset into the page given by page_index | 
|  | * | 
|  | * This helper hides the ugliness of finding the byte in an extent buffer which | 
|  | * contains a given bit. | 
|  | */ | 
|  | static inline void eb_bitmap_offset(struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long nr, | 
|  | unsigned long *page_index, | 
|  | size_t *page_offset) | 
|  | { | 
|  | size_t start_offset = offset_in_page(eb->start); | 
|  | size_t byte_offset = BIT_BYTE(nr); | 
|  | size_t offset; | 
|  |  | 
|  | /* | 
|  | * The byte we want is the offset of the extent buffer + the offset of | 
|  | * the bitmap item in the extent buffer + the offset of the byte in the | 
|  | * bitmap item. | 
|  | */ | 
|  | offset = start_offset + start + byte_offset; | 
|  |  | 
|  | *page_index = offset >> PAGE_SHIFT; | 
|  | *page_offset = offset_in_page(offset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * extent_buffer_test_bit - determine whether a bit in a bitmap item is set | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @nr: bit number to test | 
|  | */ | 
|  | int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long nr) | 
|  | { | 
|  | u8 *kaddr; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  |  | 
|  | eb_bitmap_offset(eb, start, nr, &i, &offset); | 
|  | page = eb->pages[i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  | kaddr = page_address(page); | 
|  | return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * extent_buffer_bitmap_set - set an area of a bitmap | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @pos: bit number of the first bit | 
|  | * @len: number of bits to set | 
|  | */ | 
|  | void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long pos, unsigned long len) | 
|  | { | 
|  | u8 *kaddr; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  | const unsigned int size = pos + len; | 
|  | int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
|  | u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); | 
|  |  | 
|  | eb_bitmap_offset(eb, start, pos, &i, &offset); | 
|  | page = eb->pages[i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  | kaddr = page_address(page); | 
|  |  | 
|  | while (len >= bits_to_set) { | 
|  | kaddr[offset] |= mask_to_set; | 
|  | len -= bits_to_set; | 
|  | bits_to_set = BITS_PER_BYTE; | 
|  | mask_to_set = ~0; | 
|  | if (++offset >= PAGE_SIZE && len > 0) { | 
|  | offset = 0; | 
|  | page = eb->pages[++i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  | kaddr = page_address(page); | 
|  | } | 
|  | } | 
|  | if (len) { | 
|  | mask_to_set &= BITMAP_LAST_BYTE_MASK(size); | 
|  | kaddr[offset] |= mask_to_set; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * extent_buffer_bitmap_clear - clear an area of a bitmap | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @pos: bit number of the first bit | 
|  | * @len: number of bits to clear | 
|  | */ | 
|  | void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long pos, unsigned long len) | 
|  | { | 
|  | u8 *kaddr; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  | const unsigned int size = pos + len; | 
|  | int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
|  | u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); | 
|  |  | 
|  | eb_bitmap_offset(eb, start, pos, &i, &offset); | 
|  | page = eb->pages[i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  | kaddr = page_address(page); | 
|  |  | 
|  | while (len >= bits_to_clear) { | 
|  | kaddr[offset] &= ~mask_to_clear; | 
|  | len -= bits_to_clear; | 
|  | bits_to_clear = BITS_PER_BYTE; | 
|  | mask_to_clear = ~0; | 
|  | if (++offset >= PAGE_SIZE && len > 0) { | 
|  | offset = 0; | 
|  | page = eb->pages[++i]; | 
|  | WARN_ON(!PageUptodate(page)); | 
|  | kaddr = page_address(page); | 
|  | } | 
|  | } | 
|  | if (len) { | 
|  | mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); | 
|  | kaddr[offset] &= ~mask_to_clear; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) | 
|  | { | 
|  | unsigned long distance = (src > dst) ? src - dst : dst - src; | 
|  | return distance < len; | 
|  | } | 
|  |  | 
|  | static void copy_pages(struct page *dst_page, struct page *src_page, | 
|  | unsigned long dst_off, unsigned long src_off, | 
|  | unsigned long len) | 
|  | { | 
|  | char *dst_kaddr = page_address(dst_page); | 
|  | char *src_kaddr; | 
|  | int must_memmove = 0; | 
|  |  | 
|  | if (dst_page != src_page) { | 
|  | src_kaddr = page_address(src_page); | 
|  | } else { | 
|  | src_kaddr = dst_kaddr; | 
|  | if (areas_overlap(src_off, dst_off, len)) | 
|  | must_memmove = 1; | 
|  | } | 
|  |  | 
|  | if (must_memmove) | 
|  | memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
|  | else | 
|  | memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
|  | } | 
|  |  | 
|  | void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | 
|  | unsigned long src_offset, unsigned long len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = dst->fs_info; | 
|  | size_t cur; | 
|  | size_t dst_off_in_page; | 
|  | size_t src_off_in_page; | 
|  | size_t start_offset = offset_in_page(dst->start); | 
|  | unsigned long dst_i; | 
|  | unsigned long src_i; | 
|  |  | 
|  | if (src_offset + len > dst->len) { | 
|  | btrfs_err(fs_info, | 
|  | "memmove bogus src_offset %lu move len %lu dst len %lu", | 
|  | src_offset, len, dst->len); | 
|  | BUG(); | 
|  | } | 
|  | if (dst_offset + len > dst->len) { | 
|  | btrfs_err(fs_info, | 
|  | "memmove bogus dst_offset %lu move len %lu dst len %lu", | 
|  | dst_offset, len, dst->len); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | while (len > 0) { | 
|  | dst_off_in_page = offset_in_page(start_offset + dst_offset); | 
|  | src_off_in_page = offset_in_page(start_offset + src_offset); | 
|  |  | 
|  | dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; | 
|  | src_i = (start_offset + src_offset) >> PAGE_SHIFT; | 
|  |  | 
|  | cur = min(len, (unsigned long)(PAGE_SIZE - | 
|  | src_off_in_page)); | 
|  | cur = min_t(unsigned long, cur, | 
|  | (unsigned long)(PAGE_SIZE - dst_off_in_page)); | 
|  |  | 
|  | copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
|  | dst_off_in_page, src_off_in_page, cur); | 
|  |  | 
|  | src_offset += cur; | 
|  | dst_offset += cur; | 
|  | len -= cur; | 
|  | } | 
|  | } | 
|  |  | 
|  | void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | 
|  | unsigned long src_offset, unsigned long len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = dst->fs_info; | 
|  | size_t cur; | 
|  | size_t dst_off_in_page; | 
|  | size_t src_off_in_page; | 
|  | unsigned long dst_end = dst_offset + len - 1; | 
|  | unsigned long src_end = src_offset + len - 1; | 
|  | size_t start_offset = offset_in_page(dst->start); | 
|  | unsigned long dst_i; | 
|  | unsigned long src_i; | 
|  |  | 
|  | if (src_offset + len > dst->len) { | 
|  | btrfs_err(fs_info, | 
|  | "memmove bogus src_offset %lu move len %lu len %lu", | 
|  | src_offset, len, dst->len); | 
|  | BUG(); | 
|  | } | 
|  | if (dst_offset + len > dst->len) { | 
|  | btrfs_err(fs_info, | 
|  | "memmove bogus dst_offset %lu move len %lu len %lu", | 
|  | dst_offset, len, dst->len); | 
|  | BUG(); | 
|  | } | 
|  | if (dst_offset < src_offset) { | 
|  | memcpy_extent_buffer(dst, dst_offset, src_offset, len); | 
|  | return; | 
|  | } | 
|  | while (len > 0) { | 
|  | dst_i = (start_offset + dst_end) >> PAGE_SHIFT; | 
|  | src_i = (start_offset + src_end) >> PAGE_SHIFT; | 
|  |  | 
|  | dst_off_in_page = offset_in_page(start_offset + dst_end); | 
|  | src_off_in_page = offset_in_page(start_offset + src_end); | 
|  |  | 
|  | cur = min_t(unsigned long, len, src_off_in_page + 1); | 
|  | cur = min(cur, dst_off_in_page + 1); | 
|  | copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
|  | dst_off_in_page - cur + 1, | 
|  | src_off_in_page - cur + 1, cur); | 
|  |  | 
|  | dst_end -= cur; | 
|  | src_end -= cur; | 
|  | len -= cur; | 
|  | } | 
|  | } | 
|  |  | 
|  | int try_release_extent_buffer(struct page *page) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | /* | 
|  | * We need to make sure nobody is attaching this page to an eb right | 
|  | * now. | 
|  | */ | 
|  | spin_lock(&page->mapping->private_lock); | 
|  | if (!PagePrivate(page)) { | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | BUG_ON(!eb); | 
|  |  | 
|  | /* | 
|  | * This is a little awful but should be ok, we need to make sure that | 
|  | * the eb doesn't disappear out from under us while we're looking at | 
|  | * this page. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  |  | 
|  | /* | 
|  | * If tree ref isn't set then we know the ref on this eb is a real ref, | 
|  | * so just return, this page will likely be freed soon anyway. | 
|  | */ | 
|  | if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return release_extent_buffer(eb); | 
|  | } |