|  | /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ | 
|  | #ifndef _BTRFS_CTREE_H_ | 
|  | #define _BTRFS_CTREE_H_ | 
|  |  | 
|  | #include <linux/btrfs.h> | 
|  | #include <linux/types.h> | 
|  | #ifdef __KERNEL__ | 
|  | #include <linux/stddef.h> | 
|  | #else | 
|  | #include <stddef.h> | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This header contains the structure definitions and constants used | 
|  | * by file system objects that can be retrieved using | 
|  | * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that | 
|  | * is needed to describe a leaf node's key or item contents. | 
|  | */ | 
|  |  | 
|  | /* holds pointers to all of the tree roots */ | 
|  | #define BTRFS_ROOT_TREE_OBJECTID 1ULL | 
|  |  | 
|  | /* stores information about which extents are in use, and reference counts */ | 
|  | #define BTRFS_EXTENT_TREE_OBJECTID 2ULL | 
|  |  | 
|  | /* | 
|  | * chunk tree stores translations from logical -> physical block numbering | 
|  | * the super block points to the chunk tree | 
|  | */ | 
|  | #define BTRFS_CHUNK_TREE_OBJECTID 3ULL | 
|  |  | 
|  | /* | 
|  | * stores information about which areas of a given device are in use. | 
|  | * one per device.  The tree of tree roots points to the device tree | 
|  | */ | 
|  | #define BTRFS_DEV_TREE_OBJECTID 4ULL | 
|  |  | 
|  | /* one per subvolume, storing files and directories */ | 
|  | #define BTRFS_FS_TREE_OBJECTID 5ULL | 
|  |  | 
|  | /* directory objectid inside the root tree */ | 
|  | #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL | 
|  |  | 
|  | /* holds checksums of all the data extents */ | 
|  | #define BTRFS_CSUM_TREE_OBJECTID 7ULL | 
|  |  | 
|  | /* holds quota configuration and tracking */ | 
|  | #define BTRFS_QUOTA_TREE_OBJECTID 8ULL | 
|  |  | 
|  | /* for storing items that use the BTRFS_UUID_KEY* types */ | 
|  | #define BTRFS_UUID_TREE_OBJECTID 9ULL | 
|  |  | 
|  | /* tracks free space in block groups. */ | 
|  | #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL | 
|  |  | 
|  | /* device stats in the device tree */ | 
|  | #define BTRFS_DEV_STATS_OBJECTID 0ULL | 
|  |  | 
|  | /* for storing balance parameters in the root tree */ | 
|  | #define BTRFS_BALANCE_OBJECTID -4ULL | 
|  |  | 
|  | /* orphan objectid for tracking unlinked/truncated files */ | 
|  | #define BTRFS_ORPHAN_OBJECTID -5ULL | 
|  |  | 
|  | /* does write ahead logging to speed up fsyncs */ | 
|  | #define BTRFS_TREE_LOG_OBJECTID -6ULL | 
|  | #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL | 
|  |  | 
|  | /* for space balancing */ | 
|  | #define BTRFS_TREE_RELOC_OBJECTID -8ULL | 
|  | #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL | 
|  |  | 
|  | /* | 
|  | * extent checksums all have this objectid | 
|  | * this allows them to share the logging tree | 
|  | * for fsyncs | 
|  | */ | 
|  | #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL | 
|  |  | 
|  | /* For storing free space cache */ | 
|  | #define BTRFS_FREE_SPACE_OBJECTID -11ULL | 
|  |  | 
|  | /* | 
|  | * The inode number assigned to the special inode for storing | 
|  | * free ino cache | 
|  | */ | 
|  | #define BTRFS_FREE_INO_OBJECTID -12ULL | 
|  |  | 
|  | /* dummy objectid represents multiple objectids */ | 
|  | #define BTRFS_MULTIPLE_OBJECTIDS -255ULL | 
|  |  | 
|  | /* | 
|  | * All files have objectids in this range. | 
|  | */ | 
|  | #define BTRFS_FIRST_FREE_OBJECTID 256ULL | 
|  | #define BTRFS_LAST_FREE_OBJECTID -256ULL | 
|  | #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL | 
|  |  | 
|  |  | 
|  | /* | 
|  | * the device items go into the chunk tree.  The key is in the form | 
|  | * [ 1 BTRFS_DEV_ITEM_KEY device_id ] | 
|  | */ | 
|  | #define BTRFS_DEV_ITEMS_OBJECTID 1ULL | 
|  |  | 
|  | #define BTRFS_BTREE_INODE_OBJECTID 1 | 
|  |  | 
|  | #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 | 
|  |  | 
|  | #define BTRFS_DEV_REPLACE_DEVID 0ULL | 
|  |  | 
|  | /* | 
|  | * inode items have the data typically returned from stat and store other | 
|  | * info about object characteristics.  There is one for every file and dir in | 
|  | * the FS | 
|  | */ | 
|  | #define BTRFS_INODE_ITEM_KEY		1 | 
|  | #define BTRFS_INODE_REF_KEY		12 | 
|  | #define BTRFS_INODE_EXTREF_KEY		13 | 
|  | #define BTRFS_XATTR_ITEM_KEY		24 | 
|  |  | 
|  | /* | 
|  | * fs verity items are stored under two different key types on disk. | 
|  | * The descriptor items: | 
|  | * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] | 
|  | * | 
|  | * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size | 
|  | * of the descriptor item and some extra data for encryption. | 
|  | * Starting at offset 1, these hold the generic fs verity descriptor.  The | 
|  | * latter are opaque to btrfs, we just read and write them as a blob for the | 
|  | * higher level verity code.  The most common descriptor size is 256 bytes. | 
|  | * | 
|  | * The merkle tree items: | 
|  | * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] | 
|  | * | 
|  | * These also start at offset 0, and correspond to the merkle tree bytes.  When | 
|  | * fsverity asks for page 0 of the merkle tree, we pull up one page starting at | 
|  | * offset 0 for this key type.  These are also opaque to btrfs, we're blindly | 
|  | * storing whatever fsverity sends down. | 
|  | */ | 
|  | #define BTRFS_VERITY_DESC_ITEM_KEY	36 | 
|  | #define BTRFS_VERITY_MERKLE_ITEM_KEY	37 | 
|  |  | 
|  | #define BTRFS_ORPHAN_ITEM_KEY		48 | 
|  | /* reserve 2-15 close to the inode for later flexibility */ | 
|  |  | 
|  | /* | 
|  | * dir items are the name -> inode pointers in a directory.  There is one | 
|  | * for every name in a directory. | 
|  | */ | 
|  | #define BTRFS_DIR_LOG_ITEM_KEY  60 | 
|  | #define BTRFS_DIR_LOG_INDEX_KEY 72 | 
|  | #define BTRFS_DIR_ITEM_KEY	84 | 
|  | #define BTRFS_DIR_INDEX_KEY	96 | 
|  | /* | 
|  | * extent data is for file data | 
|  | */ | 
|  | #define BTRFS_EXTENT_DATA_KEY	108 | 
|  |  | 
|  | /* | 
|  | * extent csums are stored in a separate tree and hold csums for | 
|  | * an entire extent on disk. | 
|  | */ | 
|  | #define BTRFS_EXTENT_CSUM_KEY	128 | 
|  |  | 
|  | /* | 
|  | * root items point to tree roots.  They are typically in the root | 
|  | * tree used by the super block to find all the other trees | 
|  | */ | 
|  | #define BTRFS_ROOT_ITEM_KEY	132 | 
|  |  | 
|  | /* | 
|  | * root backrefs tie subvols and snapshots to the directory entries that | 
|  | * reference them | 
|  | */ | 
|  | #define BTRFS_ROOT_BACKREF_KEY	144 | 
|  |  | 
|  | /* | 
|  | * root refs make a fast index for listing all of the snapshots and | 
|  | * subvolumes referenced by a given root.  They point directly to the | 
|  | * directory item in the root that references the subvol | 
|  | */ | 
|  | #define BTRFS_ROOT_REF_KEY	156 | 
|  |  | 
|  | /* | 
|  | * extent items are in the extent map tree.  These record which blocks | 
|  | * are used, and how many references there are to each block | 
|  | */ | 
|  | #define BTRFS_EXTENT_ITEM_KEY	168 | 
|  |  | 
|  | /* | 
|  | * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know | 
|  | * the length, so we save the level in key->offset instead of the length. | 
|  | */ | 
|  | #define BTRFS_METADATA_ITEM_KEY	169 | 
|  |  | 
|  | #define BTRFS_TREE_BLOCK_REF_KEY	176 | 
|  |  | 
|  | #define BTRFS_EXTENT_DATA_REF_KEY	178 | 
|  |  | 
|  | #define BTRFS_EXTENT_REF_V0_KEY		180 | 
|  |  | 
|  | #define BTRFS_SHARED_BLOCK_REF_KEY	182 | 
|  |  | 
|  | #define BTRFS_SHARED_DATA_REF_KEY	184 | 
|  |  | 
|  | /* | 
|  | * block groups give us hints into the extent allocation trees.  Which | 
|  | * blocks are free etc etc | 
|  | */ | 
|  | #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 | 
|  |  | 
|  | /* | 
|  | * Every block group is represented in the free space tree by a free space info | 
|  | * item, which stores some accounting information. It is keyed on | 
|  | * (block_group_start, FREE_SPACE_INFO, block_group_length). | 
|  | */ | 
|  | #define BTRFS_FREE_SPACE_INFO_KEY 198 | 
|  |  | 
|  | /* | 
|  | * A free space extent tracks an extent of space that is free in a block group. | 
|  | * It is keyed on (start, FREE_SPACE_EXTENT, length). | 
|  | */ | 
|  | #define BTRFS_FREE_SPACE_EXTENT_KEY 199 | 
|  |  | 
|  | /* | 
|  | * When a block group becomes very fragmented, we convert it to use bitmaps | 
|  | * instead of extents. A free space bitmap is keyed on | 
|  | * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with | 
|  | * (length / sectorsize) bits. | 
|  | */ | 
|  | #define BTRFS_FREE_SPACE_BITMAP_KEY 200 | 
|  |  | 
|  | #define BTRFS_DEV_EXTENT_KEY	204 | 
|  | #define BTRFS_DEV_ITEM_KEY	216 | 
|  | #define BTRFS_CHUNK_ITEM_KEY	228 | 
|  |  | 
|  | /* | 
|  | * Records the overall state of the qgroups. | 
|  | * There's only one instance of this key present, | 
|  | * (0, BTRFS_QGROUP_STATUS_KEY, 0) | 
|  | */ | 
|  | #define BTRFS_QGROUP_STATUS_KEY         240 | 
|  | /* | 
|  | * Records the currently used space of the qgroup. | 
|  | * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). | 
|  | */ | 
|  | #define BTRFS_QGROUP_INFO_KEY           242 | 
|  | /* | 
|  | * Contains the user configured limits for the qgroup. | 
|  | * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). | 
|  | */ | 
|  | #define BTRFS_QGROUP_LIMIT_KEY          244 | 
|  | /* | 
|  | * Records the child-parent relationship of qgroups. For | 
|  | * each relation, 2 keys are present: | 
|  | * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) | 
|  | * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) | 
|  | */ | 
|  | #define BTRFS_QGROUP_RELATION_KEY       246 | 
|  |  | 
|  | /* | 
|  | * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. | 
|  | */ | 
|  | #define BTRFS_BALANCE_ITEM_KEY	248 | 
|  |  | 
|  | /* | 
|  | * The key type for tree items that are stored persistently, but do not need to | 
|  | * exist for extended period of time. The items can exist in any tree. | 
|  | * | 
|  | * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] | 
|  | * | 
|  | * Existing items: | 
|  | * | 
|  | * - balance status item | 
|  | *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) | 
|  | */ | 
|  | #define BTRFS_TEMPORARY_ITEM_KEY	248 | 
|  |  | 
|  | /* | 
|  | * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY | 
|  | */ | 
|  | #define BTRFS_DEV_STATS_KEY		249 | 
|  |  | 
|  | /* | 
|  | * The key type for tree items that are stored persistently and usually exist | 
|  | * for a long period, eg. filesystem lifetime. The item kinds can be status | 
|  | * information, stats or preference values. The item can exist in any tree. | 
|  | * | 
|  | * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] | 
|  | * | 
|  | * Existing items: | 
|  | * | 
|  | * - device statistics, store IO stats in the device tree, one key for all | 
|  | *   stats | 
|  | *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) | 
|  | */ | 
|  | #define BTRFS_PERSISTENT_ITEM_KEY	249 | 
|  |  | 
|  | /* | 
|  | * Persistently stores the device replace state in the device tree. | 
|  | * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). | 
|  | */ | 
|  | #define BTRFS_DEV_REPLACE_KEY	250 | 
|  |  | 
|  | /* | 
|  | * Stores items that allow to quickly map UUIDs to something else. | 
|  | * These items are part of the filesystem UUID tree. | 
|  | * The key is built like this: | 
|  | * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). | 
|  | */ | 
|  | #if BTRFS_UUID_SIZE != 16 | 
|  | #error "UUID items require BTRFS_UUID_SIZE == 16!" | 
|  | #endif | 
|  | #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */ | 
|  | #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to | 
|  | * received subvols */ | 
|  |  | 
|  | /* | 
|  | * string items are for debugging.  They just store a short string of | 
|  | * data in the FS | 
|  | */ | 
|  | #define BTRFS_STRING_ITEM_KEY	253 | 
|  |  | 
|  | /* Maximum metadata block size (nodesize) */ | 
|  | #define BTRFS_MAX_METADATA_BLOCKSIZE			65536 | 
|  |  | 
|  | /* 32 bytes in various csum fields */ | 
|  | #define BTRFS_CSUM_SIZE 32 | 
|  |  | 
|  | /* csum types */ | 
|  | enum btrfs_csum_type { | 
|  | BTRFS_CSUM_TYPE_CRC32	= 0, | 
|  | BTRFS_CSUM_TYPE_XXHASH	= 1, | 
|  | BTRFS_CSUM_TYPE_SHA256	= 2, | 
|  | BTRFS_CSUM_TYPE_BLAKE2	= 3, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * flags definitions for directory entry item type | 
|  | * | 
|  | * Used by: | 
|  | * struct btrfs_dir_item.type | 
|  | * | 
|  | * Values 0..7 must match common file type values in fs_types.h. | 
|  | */ | 
|  | #define BTRFS_FT_UNKNOWN	0 | 
|  | #define BTRFS_FT_REG_FILE	1 | 
|  | #define BTRFS_FT_DIR		2 | 
|  | #define BTRFS_FT_CHRDEV		3 | 
|  | #define BTRFS_FT_BLKDEV		4 | 
|  | #define BTRFS_FT_FIFO		5 | 
|  | #define BTRFS_FT_SOCK		6 | 
|  | #define BTRFS_FT_SYMLINK	7 | 
|  | #define BTRFS_FT_XATTR		8 | 
|  | #define BTRFS_FT_MAX		9 | 
|  |  | 
|  | /* | 
|  | * The key defines the order in the tree, and so it also defines (optimal) | 
|  | * block layout. | 
|  | * | 
|  | * objectid corresponds to the inode number. | 
|  | * | 
|  | * type tells us things about the object, and is a kind of stream selector. | 
|  | * so for a given inode, keys with type of 1 might refer to the inode data, | 
|  | * type of 2 may point to file data in the btree and type == 3 may point to | 
|  | * extents. | 
|  | * | 
|  | * offset is the starting byte offset for this key in the stream. | 
|  | * | 
|  | * btrfs_disk_key is in disk byte order.  struct btrfs_key is always | 
|  | * in cpu native order.  Otherwise they are identical and their sizes | 
|  | * should be the same (ie both packed) | 
|  | */ | 
|  | struct btrfs_disk_key { | 
|  | __le64 objectid; | 
|  | __u8 type; | 
|  | __le64 offset; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_key { | 
|  | __u64 objectid; | 
|  | __u8 type; | 
|  | __u64 offset; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_dev_item { | 
|  | /* the internal btrfs device id */ | 
|  | __le64 devid; | 
|  |  | 
|  | /* size of the device */ | 
|  | __le64 total_bytes; | 
|  |  | 
|  | /* bytes used */ | 
|  | __le64 bytes_used; | 
|  |  | 
|  | /* optimal io alignment for this device */ | 
|  | __le32 io_align; | 
|  |  | 
|  | /* optimal io width for this device */ | 
|  | __le32 io_width; | 
|  |  | 
|  | /* minimal io size for this device */ | 
|  | __le32 sector_size; | 
|  |  | 
|  | /* type and info about this device */ | 
|  | __le64 type; | 
|  |  | 
|  | /* expected generation for this device */ | 
|  | __le64 generation; | 
|  |  | 
|  | /* | 
|  | * starting byte of this partition on the device, | 
|  | * to allow for stripe alignment in the future | 
|  | */ | 
|  | __le64 start_offset; | 
|  |  | 
|  | /* grouping information for allocation decisions */ | 
|  | __le32 dev_group; | 
|  |  | 
|  | /* seek speed 0-100 where 100 is fastest */ | 
|  | __u8 seek_speed; | 
|  |  | 
|  | /* bandwidth 0-100 where 100 is fastest */ | 
|  | __u8 bandwidth; | 
|  |  | 
|  | /* btrfs generated uuid for this device */ | 
|  | __u8 uuid[BTRFS_UUID_SIZE]; | 
|  |  | 
|  | /* uuid of FS who owns this device */ | 
|  | __u8 fsid[BTRFS_UUID_SIZE]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_stripe { | 
|  | __le64 devid; | 
|  | __le64 offset; | 
|  | __u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_chunk { | 
|  | /* size of this chunk in bytes */ | 
|  | __le64 length; | 
|  |  | 
|  | /* objectid of the root referencing this chunk */ | 
|  | __le64 owner; | 
|  |  | 
|  | __le64 stripe_len; | 
|  | __le64 type; | 
|  |  | 
|  | /* optimal io alignment for this chunk */ | 
|  | __le32 io_align; | 
|  |  | 
|  | /* optimal io width for this chunk */ | 
|  | __le32 io_width; | 
|  |  | 
|  | /* minimal io size for this chunk */ | 
|  | __le32 sector_size; | 
|  |  | 
|  | /* 2^16 stripes is quite a lot, a second limit is the size of a single | 
|  | * item in the btree | 
|  | */ | 
|  | __le16 num_stripes; | 
|  |  | 
|  | /* sub stripes only matter for raid10 */ | 
|  | __le16 sub_stripes; | 
|  | struct btrfs_stripe stripe; | 
|  | /* additional stripes go here */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define BTRFS_FREE_SPACE_EXTENT	1 | 
|  | #define BTRFS_FREE_SPACE_BITMAP	2 | 
|  |  | 
|  | struct btrfs_free_space_entry { | 
|  | __le64 offset; | 
|  | __le64 bytes; | 
|  | __u8 type; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_free_space_header { | 
|  | struct btrfs_disk_key location; | 
|  | __le64 generation; | 
|  | __le64 num_entries; | 
|  | __le64 num_bitmaps; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0) | 
|  | #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1) | 
|  |  | 
|  | /* Super block flags */ | 
|  | /* Errors detected */ | 
|  | #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2) | 
|  |  | 
|  | #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32) | 
|  | #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33) | 
|  | #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34) | 
|  | #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35) | 
|  | #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * items in the extent btree are used to record the objectid of the | 
|  | * owner of the block and the number of references | 
|  | */ | 
|  |  | 
|  | struct btrfs_extent_item { | 
|  | __le64 refs; | 
|  | __le64 generation; | 
|  | __le64 flags; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_extent_item_v0 { | 
|  | __le32 refs; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  |  | 
|  | #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0) | 
|  | #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1) | 
|  |  | 
|  | /* following flags only apply to tree blocks */ | 
|  |  | 
|  | /* use full backrefs for extent pointers in the block */ | 
|  | #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8) | 
|  |  | 
|  | /* | 
|  | * this flag is only used internally by scrub and may be changed at any time | 
|  | * it is only declared here to avoid collisions | 
|  | */ | 
|  | #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48) | 
|  |  | 
|  | struct btrfs_tree_block_info { | 
|  | struct btrfs_disk_key key; | 
|  | __u8 level; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_extent_data_ref { | 
|  | __le64 root; | 
|  | __le64 objectid; | 
|  | __le64 offset; | 
|  | __le32 count; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_shared_data_ref { | 
|  | __le32 count; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_extent_inline_ref { | 
|  | __u8 type; | 
|  | __le64 offset; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /* dev extents record free space on individual devices.  The owner | 
|  | * field points back to the chunk allocation mapping tree that allocated | 
|  | * the extent.  The chunk tree uuid field is a way to double check the owner | 
|  | */ | 
|  | struct btrfs_dev_extent { | 
|  | __le64 chunk_tree; | 
|  | __le64 chunk_objectid; | 
|  | __le64 chunk_offset; | 
|  | __le64 length; | 
|  | __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_inode_ref { | 
|  | __le64 index; | 
|  | __le16 name_len; | 
|  | /* name goes here */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_inode_extref { | 
|  | __le64 parent_objectid; | 
|  | __le64 index; | 
|  | __le16 name_len; | 
|  | __u8   name[0]; | 
|  | /* name goes here */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_timespec { | 
|  | __le64 sec; | 
|  | __le32 nsec; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_inode_item { | 
|  | /* nfs style generation number */ | 
|  | __le64 generation; | 
|  | /* transid that last touched this inode */ | 
|  | __le64 transid; | 
|  | __le64 size; | 
|  | __le64 nbytes; | 
|  | __le64 block_group; | 
|  | __le32 nlink; | 
|  | __le32 uid; | 
|  | __le32 gid; | 
|  | __le32 mode; | 
|  | __le64 rdev; | 
|  | __le64 flags; | 
|  |  | 
|  | /* modification sequence number for NFS */ | 
|  | __le64 sequence; | 
|  |  | 
|  | /* | 
|  | * a little future expansion, for more than this we can | 
|  | * just grow the inode item and version it | 
|  | */ | 
|  | __le64 reserved[4]; | 
|  | struct btrfs_timespec atime; | 
|  | struct btrfs_timespec ctime; | 
|  | struct btrfs_timespec mtime; | 
|  | struct btrfs_timespec otime; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_dir_log_item { | 
|  | __le64 end; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_dir_item { | 
|  | struct btrfs_disk_key location; | 
|  | __le64 transid; | 
|  | __le16 data_len; | 
|  | __le16 name_len; | 
|  | __u8 type; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0) | 
|  |  | 
|  | /* | 
|  | * Internal in-memory flag that a subvolume has been marked for deletion but | 
|  | * still visible as a directory | 
|  | */ | 
|  | #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48) | 
|  |  | 
|  | struct btrfs_root_item { | 
|  | struct btrfs_inode_item inode; | 
|  | __le64 generation; | 
|  | __le64 root_dirid; | 
|  | __le64 bytenr; | 
|  | __le64 byte_limit; | 
|  | __le64 bytes_used; | 
|  | __le64 last_snapshot; | 
|  | __le64 flags; | 
|  | __le32 refs; | 
|  | struct btrfs_disk_key drop_progress; | 
|  | __u8 drop_level; | 
|  | __u8 level; | 
|  |  | 
|  | /* | 
|  | * The following fields appear after subvol_uuids+subvol_times | 
|  | * were introduced. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This generation number is used to test if the new fields are valid | 
|  | * and up to date while reading the root item. Every time the root item | 
|  | * is written out, the "generation" field is copied into this field. If | 
|  | * anyone ever mounted the fs with an older kernel, we will have | 
|  | * mismatching generation values here and thus must invalidate the | 
|  | * new fields. See btrfs_update_root and btrfs_find_last_root for | 
|  | * details. | 
|  | * the offset of generation_v2 is also used as the start for the memset | 
|  | * when invalidating the fields. | 
|  | */ | 
|  | __le64 generation_v2; | 
|  | __u8 uuid[BTRFS_UUID_SIZE]; | 
|  | __u8 parent_uuid[BTRFS_UUID_SIZE]; | 
|  | __u8 received_uuid[BTRFS_UUID_SIZE]; | 
|  | __le64 ctransid; /* updated when an inode changes */ | 
|  | __le64 otransid; /* trans when created */ | 
|  | __le64 stransid; /* trans when sent. non-zero for received subvol */ | 
|  | __le64 rtransid; /* trans when received. non-zero for received subvol */ | 
|  | struct btrfs_timespec ctime; | 
|  | struct btrfs_timespec otime; | 
|  | struct btrfs_timespec stime; | 
|  | struct btrfs_timespec rtime; | 
|  | __le64 reserved[8]; /* for future */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /* | 
|  | * Btrfs root item used to be smaller than current size.  The old format ends | 
|  | * at where member generation_v2 is. | 
|  | */ | 
|  | static inline __u32 btrfs_legacy_root_item_size(void) | 
|  | { | 
|  | return offsetof(struct btrfs_root_item, generation_v2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used for both forward and backward root refs | 
|  | */ | 
|  | struct btrfs_root_ref { | 
|  | __le64 dirid; | 
|  | __le64 sequence; | 
|  | __le16 name_len; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_disk_balance_args { | 
|  | /* | 
|  | * profiles to operate on, single is denoted by | 
|  | * BTRFS_AVAIL_ALLOC_BIT_SINGLE | 
|  | */ | 
|  | __le64 profiles; | 
|  |  | 
|  | /* | 
|  | * usage filter | 
|  | * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' | 
|  | * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max | 
|  | */ | 
|  | union { | 
|  | __le64 usage; | 
|  | struct { | 
|  | __le32 usage_min; | 
|  | __le32 usage_max; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /* devid filter */ | 
|  | __le64 devid; | 
|  |  | 
|  | /* devid subset filter [pstart..pend) */ | 
|  | __le64 pstart; | 
|  | __le64 pend; | 
|  |  | 
|  | /* btrfs virtual address space subset filter [vstart..vend) */ | 
|  | __le64 vstart; | 
|  | __le64 vend; | 
|  |  | 
|  | /* | 
|  | * profile to convert to, single is denoted by | 
|  | * BTRFS_AVAIL_ALLOC_BIT_SINGLE | 
|  | */ | 
|  | __le64 target; | 
|  |  | 
|  | /* BTRFS_BALANCE_ARGS_* */ | 
|  | __le64 flags; | 
|  |  | 
|  | /* | 
|  | * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' | 
|  | * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum | 
|  | * and maximum | 
|  | */ | 
|  | union { | 
|  | __le64 limit; | 
|  | struct { | 
|  | __le32 limit_min; | 
|  | __le32 limit_max; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Process chunks that cross stripes_min..stripes_max devices, | 
|  | * BTRFS_BALANCE_ARGS_STRIPES_RANGE | 
|  | */ | 
|  | __le32 stripes_min; | 
|  | __le32 stripes_max; | 
|  |  | 
|  | __le64 unused[6]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /* | 
|  | * store balance parameters to disk so that balance can be properly | 
|  | * resumed after crash or unmount | 
|  | */ | 
|  | struct btrfs_balance_item { | 
|  | /* BTRFS_BALANCE_* */ | 
|  | __le64 flags; | 
|  |  | 
|  | struct btrfs_disk_balance_args data; | 
|  | struct btrfs_disk_balance_args meta; | 
|  | struct btrfs_disk_balance_args sys; | 
|  |  | 
|  | __le64 unused[4]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | enum { | 
|  | BTRFS_FILE_EXTENT_INLINE   = 0, | 
|  | BTRFS_FILE_EXTENT_REG      = 1, | 
|  | BTRFS_FILE_EXTENT_PREALLOC = 2, | 
|  | BTRFS_NR_FILE_EXTENT_TYPES = 3, | 
|  | }; | 
|  |  | 
|  | struct btrfs_file_extent_item { | 
|  | /* | 
|  | * transaction id that created this extent | 
|  | */ | 
|  | __le64 generation; | 
|  | /* | 
|  | * max number of bytes to hold this extent in ram | 
|  | * when we split a compressed extent we can't know how big | 
|  | * each of the resulting pieces will be.  So, this is | 
|  | * an upper limit on the size of the extent in ram instead of | 
|  | * an exact limit. | 
|  | */ | 
|  | __le64 ram_bytes; | 
|  |  | 
|  | /* | 
|  | * 32 bits for the various ways we might encode the data, | 
|  | * including compression and encryption.  If any of these | 
|  | * are set to something a given disk format doesn't understand | 
|  | * it is treated like an incompat flag for reading and writing, | 
|  | * but not for stat. | 
|  | */ | 
|  | __u8 compression; | 
|  | __u8 encryption; | 
|  | __le16 other_encoding; /* spare for later use */ | 
|  |  | 
|  | /* are we inline data or a real extent? */ | 
|  | __u8 type; | 
|  |  | 
|  | /* | 
|  | * disk space consumed by the extent, checksum blocks are included | 
|  | * in these numbers | 
|  | * | 
|  | * At this offset in the structure, the inline extent data start. | 
|  | */ | 
|  | __le64 disk_bytenr; | 
|  | __le64 disk_num_bytes; | 
|  | /* | 
|  | * the logical offset in file blocks (no csums) | 
|  | * this extent record is for.  This allows a file extent to point | 
|  | * into the middle of an existing extent on disk, sharing it | 
|  | * between two snapshots (useful if some bytes in the middle of the | 
|  | * extent have changed | 
|  | */ | 
|  | __le64 offset; | 
|  | /* | 
|  | * the logical number of file blocks (no csums included).  This | 
|  | * always reflects the size uncompressed and without encoding. | 
|  | */ | 
|  | __le64 num_bytes; | 
|  |  | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_csum_item { | 
|  | __u8 csum; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_dev_stats_item { | 
|  | /* | 
|  | * grow this item struct at the end for future enhancements and keep | 
|  | * the existing values unchanged | 
|  | */ | 
|  | __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0 | 
|  | #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1 | 
|  |  | 
|  | struct btrfs_dev_replace_item { | 
|  | /* | 
|  | * grow this item struct at the end for future enhancements and keep | 
|  | * the existing values unchanged | 
|  | */ | 
|  | __le64 src_devid; | 
|  | __le64 cursor_left; | 
|  | __le64 cursor_right; | 
|  | __le64 cont_reading_from_srcdev_mode; | 
|  |  | 
|  | __le64 replace_state; | 
|  | __le64 time_started; | 
|  | __le64 time_stopped; | 
|  | __le64 num_write_errors; | 
|  | __le64 num_uncorrectable_read_errors; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /* different types of block groups (and chunks) */ | 
|  | #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0) | 
|  | #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1) | 
|  | #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2) | 
|  | #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3) | 
|  | #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4) | 
|  | #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5) | 
|  | #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6) | 
|  | #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7) | 
|  | #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8) | 
|  | #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9) | 
|  | #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10) | 
|  | #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ | 
|  | BTRFS_SPACE_INFO_GLOBAL_RSV) | 
|  |  | 
|  | enum btrfs_raid_types { | 
|  | BTRFS_RAID_RAID10, | 
|  | BTRFS_RAID_RAID1, | 
|  | BTRFS_RAID_DUP, | 
|  | BTRFS_RAID_RAID0, | 
|  | BTRFS_RAID_SINGLE, | 
|  | BTRFS_RAID_RAID5, | 
|  | BTRFS_RAID_RAID6, | 
|  | BTRFS_RAID_RAID1C3, | 
|  | BTRFS_RAID_RAID1C4, | 
|  | BTRFS_NR_RAID_TYPES | 
|  | }; | 
|  |  | 
|  | #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \ | 
|  | BTRFS_BLOCK_GROUP_SYSTEM |  \ | 
|  | BTRFS_BLOCK_GROUP_METADATA) | 
|  |  | 
|  | #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \ | 
|  | BTRFS_BLOCK_GROUP_RAID1 |   \ | 
|  | BTRFS_BLOCK_GROUP_RAID1C3 | \ | 
|  | BTRFS_BLOCK_GROUP_RAID1C4 | \ | 
|  | BTRFS_BLOCK_GROUP_RAID5 |   \ | 
|  | BTRFS_BLOCK_GROUP_RAID6 |   \ | 
|  | BTRFS_BLOCK_GROUP_DUP |     \ | 
|  | BTRFS_BLOCK_GROUP_RAID10) | 
|  | #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \ | 
|  | BTRFS_BLOCK_GROUP_RAID6) | 
|  |  | 
|  | #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \ | 
|  | BTRFS_BLOCK_GROUP_RAID1C3 | \ | 
|  | BTRFS_BLOCK_GROUP_RAID1C4) | 
|  |  | 
|  | /* | 
|  | * We need a bit for restriper to be able to tell when chunks of type | 
|  | * SINGLE are available.  This "extended" profile format is used in | 
|  | * fs_info->avail_*_alloc_bits (in-memory) and balance item fields | 
|  | * (on-disk).  The corresponding on-disk bit in chunk.type is reserved | 
|  | * to avoid remappings between two formats in future. | 
|  | */ | 
|  | #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48) | 
|  |  | 
|  | /* | 
|  | * A fake block group type that is used to communicate global block reserve | 
|  | * size to userspace via the SPACE_INFO ioctl. | 
|  | */ | 
|  | #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49) | 
|  |  | 
|  | #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \ | 
|  | BTRFS_AVAIL_ALLOC_BIT_SINGLE) | 
|  |  | 
|  | static inline __u64 chunk_to_extended(__u64 flags) | 
|  | { | 
|  | if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) | 
|  | flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; | 
|  |  | 
|  | return flags; | 
|  | } | 
|  | static inline __u64 extended_to_chunk(__u64 flags) | 
|  | { | 
|  | return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; | 
|  | } | 
|  |  | 
|  | struct btrfs_block_group_item { | 
|  | __le64 used; | 
|  | __le64 chunk_objectid; | 
|  | __le64 flags; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_free_space_info { | 
|  | __le32 extent_count; | 
|  | __le32 flags; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) | 
|  |  | 
|  | #define BTRFS_QGROUP_LEVEL_SHIFT		48 | 
|  | static inline __u16 btrfs_qgroup_level(__u64 qgroupid) | 
|  | { | 
|  | return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is subvolume quota turned on? | 
|  | */ | 
|  | #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0) | 
|  | /* | 
|  | * RESCAN is set during the initialization phase | 
|  | */ | 
|  | #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1) | 
|  | /* | 
|  | * Some qgroup entries are known to be out of date, | 
|  | * either because the configuration has changed in a way that | 
|  | * makes a rescan necessary, or because the fs has been mounted | 
|  | * with a non-qgroup-aware version. | 
|  | * Turning qouta off and on again makes it inconsistent, too. | 
|  | */ | 
|  | #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2) | 
|  |  | 
|  | #define BTRFS_QGROUP_STATUS_VERSION        1 | 
|  |  | 
|  | struct btrfs_qgroup_status_item { | 
|  | __le64 version; | 
|  | /* | 
|  | * the generation is updated during every commit. As older | 
|  | * versions of btrfs are not aware of qgroups, it will be | 
|  | * possible to detect inconsistencies by checking the | 
|  | * generation on mount time | 
|  | */ | 
|  | __le64 generation; | 
|  |  | 
|  | /* flag definitions see above */ | 
|  | __le64 flags; | 
|  |  | 
|  | /* | 
|  | * only used during scanning to record the progress | 
|  | * of the scan. It contains a logical address | 
|  | */ | 
|  | __le64 rescan; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_qgroup_info_item { | 
|  | __le64 generation; | 
|  | __le64 rfer; | 
|  | __le64 rfer_cmpr; | 
|  | __le64 excl; | 
|  | __le64 excl_cmpr; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_qgroup_limit_item { | 
|  | /* | 
|  | * only updated when any of the other values change | 
|  | */ | 
|  | __le64 flags; | 
|  | __le64 max_rfer; | 
|  | __le64 max_excl; | 
|  | __le64 rsv_rfer; | 
|  | __le64 rsv_excl; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct btrfs_verity_descriptor_item { | 
|  | /* Size of the verity descriptor in bytes */ | 
|  | __le64 size; | 
|  | /* | 
|  | * When we implement support for fscrypt, we will need to encrypt the | 
|  | * Merkle tree for encrypted verity files. These 128 bits are for the | 
|  | * eventual storage of an fscrypt initialization vector. | 
|  | */ | 
|  | __le64 reserved[2]; | 
|  | __u8 encryption; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #endif /* _BTRFS_CTREE_H_ */ |