blob: b9a29d10537657363b286c887d304f46f02a9a37 [file] [log] [blame]
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* Common eBPF ELF object loading operations.
*
* Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
* Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
* Copyright (C) 2015 Huawei Inc.
* Copyright (C) 2017 Nicira, Inc.
* Copyright (C) 2019 Isovalent, Inc.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <libgen.h>
#include <inttypes.h>
#include <limits.h>
#include <string.h>
#include <unistd.h>
#include <endian.h>
#include <fcntl.h>
#include <errno.h>
#include <ctype.h>
#include <asm/unistd.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/filter.h>
#include <linux/limits.h>
#include <linux/perf_event.h>
#include <linux/ring_buffer.h>
#include <linux/version.h>
#include <sys/epoll.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/vfs.h>
#include <sys/utsname.h>
#include <sys/resource.h>
#include <libelf.h>
#include <gelf.h>
#include <zlib.h>
#include "libbpf.h"
#include "bpf.h"
#include "btf.h"
#include "str_error.h"
#include "libbpf_internal.h"
#include "hashmap.h"
#include "bpf_gen_internal.h"
#ifndef BPF_FS_MAGIC
#define BPF_FS_MAGIC 0xcafe4a11
#endif
#define BPF_INSN_SZ (sizeof(struct bpf_insn))
/* vsprintf() in __base_pr() uses nonliteral format string. It may break
* compilation if user enables corresponding warning. Disable it explicitly.
*/
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
#define __printf(a, b) __attribute__((format(printf, a, b)))
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
static const char * const attach_type_name[] = {
[BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
[BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
[BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
[BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
[BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
[BPF_CGROUP_DEVICE] = "cgroup_device",
[BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
[BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
[BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
[BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
[BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
[BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
[BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
[BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
[BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
[BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
[BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
[BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
[BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
[BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
[BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
[BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
[BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
[BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
[BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
[BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
[BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
[BPF_LIRC_MODE2] = "lirc_mode2",
[BPF_FLOW_DISSECTOR] = "flow_dissector",
[BPF_TRACE_RAW_TP] = "trace_raw_tp",
[BPF_TRACE_FENTRY] = "trace_fentry",
[BPF_TRACE_FEXIT] = "trace_fexit",
[BPF_MODIFY_RETURN] = "modify_return",
[BPF_LSM_MAC] = "lsm_mac",
[BPF_LSM_CGROUP] = "lsm_cgroup",
[BPF_SK_LOOKUP] = "sk_lookup",
[BPF_TRACE_ITER] = "trace_iter",
[BPF_XDP_DEVMAP] = "xdp_devmap",
[BPF_XDP_CPUMAP] = "xdp_cpumap",
[BPF_XDP] = "xdp",
[BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
[BPF_PERF_EVENT] = "perf_event",
[BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
};
static const char * const link_type_name[] = {
[BPF_LINK_TYPE_UNSPEC] = "unspec",
[BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
[BPF_LINK_TYPE_TRACING] = "tracing",
[BPF_LINK_TYPE_CGROUP] = "cgroup",
[BPF_LINK_TYPE_ITER] = "iter",
[BPF_LINK_TYPE_NETNS] = "netns",
[BPF_LINK_TYPE_XDP] = "xdp",
[BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
[BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
[BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
};
static const char * const map_type_name[] = {
[BPF_MAP_TYPE_UNSPEC] = "unspec",
[BPF_MAP_TYPE_HASH] = "hash",
[BPF_MAP_TYPE_ARRAY] = "array",
[BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
[BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
[BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
[BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
[BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
[BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
[BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
[BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
[BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
[BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
[BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
[BPF_MAP_TYPE_DEVMAP] = "devmap",
[BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
[BPF_MAP_TYPE_SOCKMAP] = "sockmap",
[BPF_MAP_TYPE_CPUMAP] = "cpumap",
[BPF_MAP_TYPE_XSKMAP] = "xskmap",
[BPF_MAP_TYPE_SOCKHASH] = "sockhash",
[BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
[BPF_MAP_TYPE_QUEUE] = "queue",
[BPF_MAP_TYPE_STACK] = "stack",
[BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
[BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
[BPF_MAP_TYPE_RINGBUF] = "ringbuf",
[BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
[BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
[BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
[BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
};
static const char * const prog_type_name[] = {
[BPF_PROG_TYPE_UNSPEC] = "unspec",
[BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
[BPF_PROG_TYPE_KPROBE] = "kprobe",
[BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
[BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
[BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
[BPF_PROG_TYPE_XDP] = "xdp",
[BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
[BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
[BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
[BPF_PROG_TYPE_LWT_IN] = "lwt_in",
[BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
[BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
[BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
[BPF_PROG_TYPE_SK_SKB] = "sk_skb",
[BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
[BPF_PROG_TYPE_SK_MSG] = "sk_msg",
[BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
[BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
[BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
[BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
[BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
[BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
[BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
[BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
[BPF_PROG_TYPE_TRACING] = "tracing",
[BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
[BPF_PROG_TYPE_EXT] = "ext",
[BPF_PROG_TYPE_LSM] = "lsm",
[BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
[BPF_PROG_TYPE_SYSCALL] = "syscall",
};
static int __base_pr(enum libbpf_print_level level, const char *format,
va_list args)
{
if (level == LIBBPF_DEBUG)
return 0;
return vfprintf(stderr, format, args);
}
static libbpf_print_fn_t __libbpf_pr = __base_pr;
libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
{
libbpf_print_fn_t old_print_fn = __libbpf_pr;
__libbpf_pr = fn;
return old_print_fn;
}
__printf(2, 3)
void libbpf_print(enum libbpf_print_level level, const char *format, ...)
{
va_list args;
int old_errno;
if (!__libbpf_pr)
return;
old_errno = errno;
va_start(args, format);
__libbpf_pr(level, format, args);
va_end(args);
errno = old_errno;
}
static void pr_perm_msg(int err)
{
struct rlimit limit;
char buf[100];
if (err != -EPERM || geteuid() != 0)
return;
err = getrlimit(RLIMIT_MEMLOCK, &limit);
if (err)
return;
if (limit.rlim_cur == RLIM_INFINITY)
return;
if (limit.rlim_cur < 1024)
snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
else if (limit.rlim_cur < 1024*1024)
snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
else
snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
buf);
}
#define STRERR_BUFSIZE 128
/* Copied from tools/perf/util/util.h */
#ifndef zfree
# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
#endif
#ifndef zclose
# define zclose(fd) ({ \
int ___err = 0; \
if ((fd) >= 0) \
___err = close((fd)); \
fd = -1; \
___err; })
#endif
static inline __u64 ptr_to_u64(const void *ptr)
{
return (__u64) (unsigned long) ptr;
}
int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
{
/* as of v1.0 libbpf_set_strict_mode() is a no-op */
return 0;
}
__u32 libbpf_major_version(void)
{
return LIBBPF_MAJOR_VERSION;
}
__u32 libbpf_minor_version(void)
{
return LIBBPF_MINOR_VERSION;
}
const char *libbpf_version_string(void)
{
#define __S(X) #X
#define _S(X) __S(X)
return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
#undef _S
#undef __S
}
enum reloc_type {
RELO_LD64,
RELO_CALL,
RELO_DATA,
RELO_EXTERN_VAR,
RELO_EXTERN_FUNC,
RELO_SUBPROG_ADDR,
RELO_CORE,
};
struct reloc_desc {
enum reloc_type type;
int insn_idx;
union {
const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
struct {
int map_idx;
int sym_off;
};
};
};
/* stored as sec_def->cookie for all libbpf-supported SEC()s */
enum sec_def_flags {
SEC_NONE = 0,
/* expected_attach_type is optional, if kernel doesn't support that */
SEC_EXP_ATTACH_OPT = 1,
/* legacy, only used by libbpf_get_type_names() and
* libbpf_attach_type_by_name(), not used by libbpf itself at all.
* This used to be associated with cgroup (and few other) BPF programs
* that were attachable through BPF_PROG_ATTACH command. Pretty
* meaningless nowadays, though.
*/
SEC_ATTACHABLE = 2,
SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
/* attachment target is specified through BTF ID in either kernel or
* other BPF program's BTF object */
SEC_ATTACH_BTF = 4,
/* BPF program type allows sleeping/blocking in kernel */
SEC_SLEEPABLE = 8,
/* BPF program support non-linear XDP buffer */
SEC_XDP_FRAGS = 16,
};
struct bpf_sec_def {
char *sec;
enum bpf_prog_type prog_type;
enum bpf_attach_type expected_attach_type;
long cookie;
int handler_id;
libbpf_prog_setup_fn_t prog_setup_fn;
libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
libbpf_prog_attach_fn_t prog_attach_fn;
};
/*
* bpf_prog should be a better name but it has been used in
* linux/filter.h.
*/
struct bpf_program {
char *name;
char *sec_name;
size_t sec_idx;
const struct bpf_sec_def *sec_def;
/* this program's instruction offset (in number of instructions)
* within its containing ELF section
*/
size_t sec_insn_off;
/* number of original instructions in ELF section belonging to this
* program, not taking into account subprogram instructions possible
* appended later during relocation
*/
size_t sec_insn_cnt;
/* Offset (in number of instructions) of the start of instruction
* belonging to this BPF program within its containing main BPF
* program. For the entry-point (main) BPF program, this is always
* zero. For a sub-program, this gets reset before each of main BPF
* programs are processed and relocated and is used to determined
* whether sub-program was already appended to the main program, and
* if yes, at which instruction offset.
*/
size_t sub_insn_off;
/* instructions that belong to BPF program; insns[0] is located at
* sec_insn_off instruction within its ELF section in ELF file, so
* when mapping ELF file instruction index to the local instruction,
* one needs to subtract sec_insn_off; and vice versa.
*/
struct bpf_insn *insns;
/* actual number of instruction in this BPF program's image; for
* entry-point BPF programs this includes the size of main program
* itself plus all the used sub-programs, appended at the end
*/
size_t insns_cnt;
struct reloc_desc *reloc_desc;
int nr_reloc;
/* BPF verifier log settings */
char *log_buf;
size_t log_size;
__u32 log_level;
struct bpf_object *obj;
int fd;
bool autoload;
bool autoattach;
bool mark_btf_static;
enum bpf_prog_type type;
enum bpf_attach_type expected_attach_type;
int prog_ifindex;
__u32 attach_btf_obj_fd;
__u32 attach_btf_id;
__u32 attach_prog_fd;
void *func_info;
__u32 func_info_rec_size;
__u32 func_info_cnt;
void *line_info;
__u32 line_info_rec_size;
__u32 line_info_cnt;
__u32 prog_flags;
};
struct bpf_struct_ops {
const char *tname;
const struct btf_type *type;
struct bpf_program **progs;
__u32 *kern_func_off;
/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
void *data;
/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
* btf_vmlinux's format.
* struct bpf_struct_ops_tcp_congestion_ops {
* [... some other kernel fields ...]
* struct tcp_congestion_ops data;
* }
* kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
* bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
* from "data".
*/
void *kern_vdata;
__u32 type_id;
};
#define DATA_SEC ".data"
#define BSS_SEC ".bss"
#define RODATA_SEC ".rodata"
#define KCONFIG_SEC ".kconfig"
#define KSYMS_SEC ".ksyms"
#define STRUCT_OPS_SEC ".struct_ops"
enum libbpf_map_type {
LIBBPF_MAP_UNSPEC,
LIBBPF_MAP_DATA,
LIBBPF_MAP_BSS,
LIBBPF_MAP_RODATA,
LIBBPF_MAP_KCONFIG,
};
struct bpf_map_def {
unsigned int type;
unsigned int key_size;
unsigned int value_size;
unsigned int max_entries;
unsigned int map_flags;
};
struct bpf_map {
struct bpf_object *obj;
char *name;
/* real_name is defined for special internal maps (.rodata*,
* .data*, .bss, .kconfig) and preserves their original ELF section
* name. This is important to be be able to find corresponding BTF
* DATASEC information.
*/
char *real_name;
int fd;
int sec_idx;
size_t sec_offset;
int map_ifindex;
int inner_map_fd;
struct bpf_map_def def;
__u32 numa_node;
__u32 btf_var_idx;
__u32 btf_key_type_id;
__u32 btf_value_type_id;
__u32 btf_vmlinux_value_type_id;
enum libbpf_map_type libbpf_type;
void *mmaped;
struct bpf_struct_ops *st_ops;
struct bpf_map *inner_map;
void **init_slots;
int init_slots_sz;
char *pin_path;
bool pinned;
bool reused;
bool autocreate;
__u64 map_extra;
};
enum extern_type {
EXT_UNKNOWN,
EXT_KCFG,
EXT_KSYM,
};
enum kcfg_type {
KCFG_UNKNOWN,
KCFG_CHAR,
KCFG_BOOL,
KCFG_INT,
KCFG_TRISTATE,
KCFG_CHAR_ARR,
};
struct extern_desc {
enum extern_type type;
int sym_idx;
int btf_id;
int sec_btf_id;
const char *name;
bool is_set;
bool is_weak;
union {
struct {
enum kcfg_type type;
int sz;
int align;
int data_off;
bool is_signed;
} kcfg;
struct {
unsigned long long addr;
/* target btf_id of the corresponding kernel var. */
int kernel_btf_obj_fd;
int kernel_btf_id;
/* local btf_id of the ksym extern's type. */
__u32 type_id;
/* BTF fd index to be patched in for insn->off, this is
* 0 for vmlinux BTF, index in obj->fd_array for module
* BTF
*/
__s16 btf_fd_idx;
} ksym;
};
};
struct module_btf {
struct btf *btf;
char *name;
__u32 id;
int fd;
int fd_array_idx;
};
enum sec_type {
SEC_UNUSED = 0,
SEC_RELO,
SEC_BSS,
SEC_DATA,
SEC_RODATA,
};
struct elf_sec_desc {
enum sec_type sec_type;
Elf64_Shdr *shdr;
Elf_Data *data;
};
struct elf_state {
int fd;
const void *obj_buf;
size_t obj_buf_sz;
Elf *elf;
Elf64_Ehdr *ehdr;
Elf_Data *symbols;
Elf_Data *st_ops_data;
size_t shstrndx; /* section index for section name strings */
size_t strtabidx;
struct elf_sec_desc *secs;
size_t sec_cnt;
int btf_maps_shndx;
__u32 btf_maps_sec_btf_id;
int text_shndx;
int symbols_shndx;
int st_ops_shndx;
};
struct usdt_manager;
struct bpf_object {
char name[BPF_OBJ_NAME_LEN];
char license[64];
__u32 kern_version;
struct bpf_program *programs;
size_t nr_programs;
struct bpf_map *maps;
size_t nr_maps;
size_t maps_cap;
char *kconfig;
struct extern_desc *externs;
int nr_extern;
int kconfig_map_idx;
bool loaded;
bool has_subcalls;
bool has_rodata;
struct bpf_gen *gen_loader;
/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
struct elf_state efile;
struct btf *btf;
struct btf_ext *btf_ext;
/* Parse and load BTF vmlinux if any of the programs in the object need
* it at load time.
*/
struct btf *btf_vmlinux;
/* Path to the custom BTF to be used for BPF CO-RE relocations as an
* override for vmlinux BTF.
*/
char *btf_custom_path;
/* vmlinux BTF override for CO-RE relocations */
struct btf *btf_vmlinux_override;
/* Lazily initialized kernel module BTFs */
struct module_btf *btf_modules;
bool btf_modules_loaded;
size_t btf_module_cnt;
size_t btf_module_cap;
/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
char *log_buf;
size_t log_size;
__u32 log_level;
int *fd_array;
size_t fd_array_cap;
size_t fd_array_cnt;
struct usdt_manager *usdt_man;
char path[];
};
static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
void bpf_program__unload(struct bpf_program *prog)
{
if (!prog)
return;
zclose(prog->fd);
zfree(&prog->func_info);
zfree(&prog->line_info);
}
static void bpf_program__exit(struct bpf_program *prog)
{
if (!prog)
return;
bpf_program__unload(prog);
zfree(&prog->name);
zfree(&prog->sec_name);
zfree(&prog->insns);
zfree(&prog->reloc_desc);
prog->nr_reloc = 0;
prog->insns_cnt = 0;
prog->sec_idx = -1;
}
static bool insn_is_subprog_call(const struct bpf_insn *insn)
{
return BPF_CLASS(insn->code) == BPF_JMP &&
BPF_OP(insn->code) == BPF_CALL &&
BPF_SRC(insn->code) == BPF_K &&
insn->src_reg == BPF_PSEUDO_CALL &&
insn->dst_reg == 0 &&
insn->off == 0;
}
static bool is_call_insn(const struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_CALL);
}
static bool insn_is_pseudo_func(struct bpf_insn *insn)
{
return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
}
static int
bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
const char *name, size_t sec_idx, const char *sec_name,
size_t sec_off, void *insn_data, size_t insn_data_sz)
{
if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
sec_name, name, sec_off, insn_data_sz);
return -EINVAL;
}
memset(prog, 0, sizeof(*prog));
prog->obj = obj;
prog->sec_idx = sec_idx;
prog->sec_insn_off = sec_off / BPF_INSN_SZ;
prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
/* insns_cnt can later be increased by appending used subprograms */
prog->insns_cnt = prog->sec_insn_cnt;
prog->type = BPF_PROG_TYPE_UNSPEC;
prog->fd = -1;
/* libbpf's convention for SEC("?abc...") is that it's just like
* SEC("abc...") but the corresponding bpf_program starts out with
* autoload set to false.
*/
if (sec_name[0] == '?') {
prog->autoload = false;
/* from now on forget there was ? in section name */
sec_name++;
} else {
prog->autoload = true;
}
prog->autoattach = true;
/* inherit object's log_level */
prog->log_level = obj->log_level;
prog->sec_name = strdup(sec_name);
if (!prog->sec_name)
goto errout;
prog->name = strdup(name);
if (!prog->name)
goto errout;
prog->insns = malloc(insn_data_sz);
if (!prog->insns)
goto errout;
memcpy(prog->insns, insn_data, insn_data_sz);
return 0;
errout:
pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
bpf_program__exit(prog);
return -ENOMEM;
}
static int
bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
const char *sec_name, int sec_idx)
{
Elf_Data *symbols = obj->efile.symbols;
struct bpf_program *prog, *progs;
void *data = sec_data->d_buf;
size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
int nr_progs, err, i;
const char *name;
Elf64_Sym *sym;
progs = obj->programs;
nr_progs = obj->nr_programs;
nr_syms = symbols->d_size / sizeof(Elf64_Sym);
sec_off = 0;
for (i = 0; i < nr_syms; i++) {
sym = elf_sym_by_idx(obj, i);
if (sym->st_shndx != sec_idx)
continue;
if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
continue;
prog_sz = sym->st_size;
sec_off = sym->st_value;
name = elf_sym_str(obj, sym->st_name);
if (!name) {
pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
sec_name, sec_off);
return -LIBBPF_ERRNO__FORMAT;
}
if (sec_off + prog_sz > sec_sz) {
pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
sec_name, sec_off);
return -LIBBPF_ERRNO__FORMAT;
}
if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
return -ENOTSUP;
}
pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
if (!progs) {
/*
* In this case the original obj->programs
* is still valid, so don't need special treat for
* bpf_close_object().
*/
pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
sec_name, name);
return -ENOMEM;
}
obj->programs = progs;
prog = &progs[nr_progs];
err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
sec_off, data + sec_off, prog_sz);
if (err)
return err;
/* if function is a global/weak symbol, but has restricted
* (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
* as static to enable more permissive BPF verification mode
* with more outside context available to BPF verifier
*/
if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
&& (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
prog->mark_btf_static = true;
nr_progs++;
obj->nr_programs = nr_progs;
}
return 0;
}
__u32 get_kernel_version(void)
{
/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
* but Ubuntu provides /proc/version_signature file, as described at
* https://ubuntu.com/kernel, with an example contents below, which we
* can use to get a proper LINUX_VERSION_CODE.
*
* Ubuntu 5.4.0-12.15-generic 5.4.8
*
* In the above, 5.4.8 is what kernel is actually expecting, while
* uname() call will return 5.4.0 in info.release.
*/
const char *ubuntu_kver_file = "/proc/version_signature";
__u32 major, minor, patch;
struct utsname info;
if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
FILE *f;
f = fopen(ubuntu_kver_file, "r");
if (f) {
if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
fclose(f);
return KERNEL_VERSION(major, minor, patch);
}
fclose(f);
}
/* something went wrong, fall back to uname() approach */
}
uname(&info);
if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
return 0;
return KERNEL_VERSION(major, minor, patch);
}
static const struct btf_member *
find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
{
struct btf_member *m;
int i;
for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
if (btf_member_bit_offset(t, i) == bit_offset)
return m;
}
return NULL;
}
static const struct btf_member *
find_member_by_name(const struct btf *btf, const struct btf_type *t,
const char *name)
{
struct btf_member *m;
int i;
for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
return m;
}
return NULL;
}
#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
const char *name, __u32 kind);
static int
find_struct_ops_kern_types(const struct btf *btf, const char *tname,
const struct btf_type **type, __u32 *type_id,
const struct btf_type **vtype, __u32 *vtype_id,
const struct btf_member **data_member)
{
const struct btf_type *kern_type, *kern_vtype;
const struct btf_member *kern_data_member;
__s32 kern_vtype_id, kern_type_id;
__u32 i;
kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
if (kern_type_id < 0) {
pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
tname);
return kern_type_id;
}
kern_type = btf__type_by_id(btf, kern_type_id);
/* Find the corresponding "map_value" type that will be used
* in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
* find "struct bpf_struct_ops_tcp_congestion_ops" from the
* btf_vmlinux.
*/
kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
tname, BTF_KIND_STRUCT);
if (kern_vtype_id < 0) {
pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
STRUCT_OPS_VALUE_PREFIX, tname);
return kern_vtype_id;
}
kern_vtype = btf__type_by_id(btf, kern_vtype_id);
/* Find "struct tcp_congestion_ops" from
* struct bpf_struct_ops_tcp_congestion_ops {
* [ ... ]
* struct tcp_congestion_ops data;
* }
*/
kern_data_member = btf_members(kern_vtype);
for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
if (kern_data_member->type == kern_type_id)
break;
}
if (i == btf_vlen(kern_vtype)) {
pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
tname, STRUCT_OPS_VALUE_PREFIX, tname);
return -EINVAL;
}
*type = kern_type;
*type_id = kern_type_id;
*vtype = kern_vtype;
*vtype_id = kern_vtype_id;
*data_member = kern_data_member;
return 0;
}
static bool bpf_map__is_struct_ops(const struct bpf_map *map)
{
return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
}
/* Init the map's fields that depend on kern_btf */
static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
const struct btf *btf,
const struct btf *kern_btf)
{
const struct btf_member *member, *kern_member, *kern_data_member;
const struct btf_type *type, *kern_type, *kern_vtype;
__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
struct bpf_struct_ops *st_ops;
void *data, *kern_data;
const char *tname;
int err;
st_ops = map->st_ops;
type = st_ops->type;
tname = st_ops->tname;
err = find_struct_ops_kern_types(kern_btf, tname,
&kern_type, &kern_type_id,
&kern_vtype, &kern_vtype_id,
&kern_data_member);
if (err)
return err;
pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
map->def.value_size = kern_vtype->size;
map->btf_vmlinux_value_type_id = kern_vtype_id;
st_ops->kern_vdata = calloc(1, kern_vtype->size);
if (!st_ops->kern_vdata)
return -ENOMEM;
data = st_ops->data;
kern_data_off = kern_data_member->offset / 8;
kern_data = st_ops->kern_vdata + kern_data_off;
member = btf_members(type);
for (i = 0; i < btf_vlen(type); i++, member++) {
const struct btf_type *mtype, *kern_mtype;
__u32 mtype_id, kern_mtype_id;
void *mdata, *kern_mdata;
__s64 msize, kern_msize;
__u32 moff, kern_moff;
__u32 kern_member_idx;
const char *mname;
mname = btf__name_by_offset(btf, member->name_off);
kern_member = find_member_by_name(kern_btf, kern_type, mname);
if (!kern_member) {
pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
map->name, mname);
return -ENOTSUP;
}
kern_member_idx = kern_member - btf_members(kern_type);
if (btf_member_bitfield_size(type, i) ||
btf_member_bitfield_size(kern_type, kern_member_idx)) {
pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
map->name, mname);
return -ENOTSUP;
}
moff = member->offset / 8;
kern_moff = kern_member->offset / 8;
mdata = data + moff;
kern_mdata = kern_data + kern_moff;
mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
&kern_mtype_id);
if (BTF_INFO_KIND(mtype->info) !=
BTF_INFO_KIND(kern_mtype->info)) {
pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
map->name, mname, BTF_INFO_KIND(mtype->info),
BTF_INFO_KIND(kern_mtype->info));
return -ENOTSUP;
}
if (btf_is_ptr(mtype)) {
struct bpf_program *prog;
prog = st_ops->progs[i];
if (!prog)
continue;
kern_mtype = skip_mods_and_typedefs(kern_btf,
kern_mtype->type,
&kern_mtype_id);
/* mtype->type must be a func_proto which was
* guaranteed in bpf_object__collect_st_ops_relos(),
* so only check kern_mtype for func_proto here.
*/
if (!btf_is_func_proto(kern_mtype)) {
pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
map->name, mname);
return -ENOTSUP;
}
prog->attach_btf_id = kern_type_id;
prog->expected_attach_type = kern_member_idx;
st_ops->kern_func_off[i] = kern_data_off + kern_moff;
pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
map->name, mname, prog->name, moff,
kern_moff);
continue;
}
msize = btf__resolve_size(btf, mtype_id);
kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
map->name, mname, (ssize_t)msize,
(ssize_t)kern_msize);
return -ENOTSUP;
}
pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
map->name, mname, (unsigned int)msize,
moff, kern_moff);
memcpy(kern_mdata, mdata, msize);
}
return 0;
}
static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
{
struct bpf_map *map;
size_t i;
int err;
for (i = 0; i < obj->nr_maps; i++) {
map = &obj->maps[i];
if (!bpf_map__is_struct_ops(map))
continue;
err = bpf_map__init_kern_struct_ops(map, obj->btf,
obj->btf_vmlinux);
if (err)
return err;
}
return 0;
}
static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
{
const struct btf_type *type, *datasec;
const struct btf_var_secinfo *vsi;
struct bpf_struct_ops *st_ops;
const char *tname, *var_name;
__s32 type_id, datasec_id;
const struct btf *btf;
struct bpf_map *map;
__u32 i;
if (obj->efile.st_ops_shndx == -1)
return 0;
btf = obj->btf;
datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
BTF_KIND_DATASEC);
if (datasec_id < 0) {
pr_warn("struct_ops init: DATASEC %s not found\n",
STRUCT_OPS_SEC);
return -EINVAL;
}
datasec = btf__type_by_id(btf, datasec_id);
vsi = btf_var_secinfos(datasec);
for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
type = btf__type_by_id(obj->btf, vsi->type);
var_name = btf__name_by_offset(obj->btf, type->name_off);
type_id = btf__resolve_type(obj->btf, vsi->type);
if (type_id < 0) {
pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
vsi->type, STRUCT_OPS_SEC);
return -EINVAL;
}
type = btf__type_by_id(obj->btf, type_id);
tname = btf__name_by_offset(obj->btf, type->name_off);
if (!tname[0]) {
pr_warn("struct_ops init: anonymous type is not supported\n");
return -ENOTSUP;
}
if (!btf_is_struct(type)) {
pr_warn("struct_ops init: %s is not a struct\n", tname);
return -EINVAL;
}
map = bpf_object__add_map(obj);
if (IS_ERR(map))
return PTR_ERR(map);
map->sec_idx = obj->efile.st_ops_shndx;
map->sec_offset = vsi->offset;
map->name = strdup(var_name);
if (!map->name)
return -ENOMEM;
map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
map->def.key_size = sizeof(int);
map->def.value_size = type->size;
map->def.max_entries = 1;
map->st_ops = calloc(1, sizeof(*map->st_ops));
if (!map->st_ops)
return -ENOMEM;
st_ops = map->st_ops;
st_ops->data = malloc(type->size);
st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
st_ops->kern_func_off = malloc(btf_vlen(type) *
sizeof(*st_ops->kern_func_off));
if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
return -ENOMEM;
if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
var_name, STRUCT_OPS_SEC);
return -EINVAL;
}
memcpy(st_ops->data,
obj->efile.st_ops_data->d_buf + vsi->offset,
type->size);
st_ops->tname = tname;
st_ops->type = type;
st_ops->type_id = type_id;
pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
tname, type_id, var_name, vsi->offset);
}
return 0;
}
static struct bpf_object *bpf_object__new(const char *path,
const void *obj_buf,
size_t obj_buf_sz,
const char *obj_name)
{
struct bpf_object *obj;
char *end;
obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
if (!obj) {
pr_warn("alloc memory failed for %s\n", path);
return ERR_PTR(-ENOMEM);
}
strcpy(obj->path, path);
if (obj_name) {
libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
} else {
/* Using basename() GNU version which doesn't modify arg. */
libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
end = strchr(obj->name, '.');
if (end)
*end = 0;
}
obj->efile.fd = -1;
/*
* Caller of this function should also call
* bpf_object__elf_finish() after data collection to return
* obj_buf to user. If not, we should duplicate the buffer to
* avoid user freeing them before elf finish.
*/
obj->efile.obj_buf = obj_buf;
obj->efile.obj_buf_sz = obj_buf_sz;
obj->efile.btf_maps_shndx = -1;
obj->efile.st_ops_shndx = -1;
obj->kconfig_map_idx = -1;
obj->kern_version = get_kernel_version();
obj->loaded = false;
return obj;
}
static void bpf_object__elf_finish(struct bpf_object *obj)
{
if (!obj->efile.elf)
return;
elf_end(obj->efile.elf);
obj->efile.elf = NULL;
obj->efile.symbols = NULL;
obj->efile.st_ops_data = NULL;
zfree(&obj->efile.secs);
obj->efile.sec_cnt = 0;
zclose(obj->efile.fd);
obj->efile.obj_buf = NULL;
obj->efile.obj_buf_sz = 0;
}
static int bpf_object__elf_init(struct bpf_object *obj)
{
Elf64_Ehdr *ehdr;
int err = 0;
Elf *elf;
if (obj->efile.elf) {
pr_warn("elf: init internal error\n");
return -LIBBPF_ERRNO__LIBELF;
}
if (obj->efile.obj_buf_sz > 0) {
/* obj_buf should have been validated by bpf_object__open_mem(). */
elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
} else {
obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
if (obj->efile.fd < 0) {
char errmsg[STRERR_BUFSIZE], *cp;
err = -errno;
cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
return err;
}
elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
}
if (!elf) {
pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
err = -LIBBPF_ERRNO__LIBELF;
goto errout;
}
obj->efile.elf = elf;
if (elf_kind(elf) != ELF_K_ELF) {
err = -LIBBPF_ERRNO__FORMAT;
pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
goto errout;
}
if (gelf_getclass(elf) != ELFCLASS64) {
err = -LIBBPF_ERRNO__FORMAT;
pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
goto errout;
}
obj->efile.ehdr = ehdr = elf64_getehdr(elf);
if (!obj->efile.ehdr) {
pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
err = -LIBBPF_ERRNO__FORMAT;
goto errout;
}
if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
pr_warn("elf: failed to get section names section index for %s: %s\n",
obj->path, elf_errmsg(-1));
err = -LIBBPF_ERRNO__FORMAT;
goto errout;
}
/* Elf is corrupted/truncated, avoid calling elf_strptr. */
if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
pr_warn("elf: failed to get section names strings from %s: %s\n",
obj->path, elf_errmsg(-1));
err = -LIBBPF_ERRNO__FORMAT;
goto errout;
}
/* Old LLVM set e_machine to EM_NONE */
if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
err = -LIBBPF_ERRNO__FORMAT;
goto errout;
}
return 0;
errout:
bpf_object__elf_finish(obj);
return err;
}
static int bpf_object__check_endianness(struct bpf_object *obj)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
return 0;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
return 0;
#else
# error "Unrecognized __BYTE_ORDER__"
#endif
pr_warn("elf: endianness mismatch in %s.\n", obj->path);
return -LIBBPF_ERRNO__ENDIAN;
}
static int
bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
{
if (!data) {
pr_warn("invalid license section in %s\n", obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
* go over allowed ELF data section buffer
*/
libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
pr_debug("license of %s is %s\n", obj->path, obj->license);
return 0;
}
static int
bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
{
__u32 kver;
if (!data || size != sizeof(kver)) {
pr_warn("invalid kver section in %s\n", obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
memcpy(&kver, data, sizeof(kver));
obj->kern_version = kver;
pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
return 0;
}
static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
{
if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
type == BPF_MAP_TYPE_HASH_OF_MAPS)
return true;
return false;
}
static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
{
Elf_Data *data;
Elf_Scn *scn;
if (!name)
return -EINVAL;
scn = elf_sec_by_name(obj, name);
data = elf_sec_data(obj, scn);
if (data) {
*size = data->d_size;
return 0; /* found it */
}
return -ENOENT;
}
static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
{
Elf_Data *symbols = obj->efile.symbols;
const char *sname;
size_t si;
if (!name || !off)
return -EINVAL;
for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
Elf64_Sym *sym = elf_sym_by_idx(obj, si);
if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
continue;
if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
ELF64_ST_BIND(sym->st_info) != STB_WEAK)
continue;
sname = elf_sym_str(obj, sym->st_name);
if (!sname) {
pr_warn("failed to get sym name string for var %s\n", name);
return -EIO;
}
if (strcmp(name, sname) == 0) {
*off = sym->st_value;
return 0;
}
}
return -ENOENT;
}
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
{
struct bpf_map *map;
int err;
err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
sizeof(*obj->maps), obj->nr_maps + 1);
if (err)
return ERR_PTR(err);
map = &obj->maps[obj->nr_maps++];
map->obj = obj;
map->fd = -1;
map->inner_map_fd = -1;
map->autocreate = true;
return map;
}
static size_t bpf_map_mmap_sz(const struct bpf_map *map)
{
long page_sz = sysconf(_SC_PAGE_SIZE);
size_t map_sz;
map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
map_sz = roundup(map_sz, page_sz);
return map_sz;
}
static char *internal_map_name(struct bpf_object *obj, const char *real_name)
{
char map_name[BPF_OBJ_NAME_LEN], *p;
int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
/* This is one of the more confusing parts of libbpf for various
* reasons, some of which are historical. The original idea for naming
* internal names was to include as much of BPF object name prefix as
* possible, so that it can be distinguished from similar internal
* maps of a different BPF object.
* As an example, let's say we have bpf_object named 'my_object_name'
* and internal map corresponding to '.rodata' ELF section. The final
* map name advertised to user and to the kernel will be
* 'my_objec.rodata', taking first 8 characters of object name and
* entire 7 characters of '.rodata'.
* Somewhat confusingly, if internal map ELF section name is shorter
* than 7 characters, e.g., '.bss', we still reserve 7 characters
* for the suffix, even though we only have 4 actual characters, and
* resulting map will be called 'my_objec.bss', not even using all 15
* characters allowed by the kernel. Oh well, at least the truncated
* object name is somewhat consistent in this case. But if the map
* name is '.kconfig', we'll still have entirety of '.kconfig' added
* (8 chars) and thus will be left with only first 7 characters of the
* object name ('my_obje'). Happy guessing, user, that the final map
* name will be "my_obje.kconfig".
* Now, with libbpf starting to support arbitrarily named .rodata.*
* and .data.* data sections, it's possible that ELF section name is
* longer than allowed 15 chars, so we now need to be careful to take
* only up to 15 first characters of ELF name, taking no BPF object
* name characters at all. So '.rodata.abracadabra' will result in
* '.rodata.abracad' kernel and user-visible name.
* We need to keep this convoluted logic intact for .data, .bss and
* .rodata maps, but for new custom .data.custom and .rodata.custom
* maps we use their ELF names as is, not prepending bpf_object name
* in front. We still need to truncate them to 15 characters for the
* kernel. Full name can be recovered for such maps by using DATASEC
* BTF type associated with such map's value type, though.
*/
if (sfx_len >= BPF_OBJ_NAME_LEN)
sfx_len = BPF_OBJ_NAME_LEN - 1;
/* if there are two or more dots in map name, it's a custom dot map */
if (strchr(real_name + 1, '.') != NULL)
pfx_len = 0;
else
pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
sfx_len, real_name);
/* sanitise map name to characters allowed by kernel */
for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
if (!isalnum(*p) && *p != '_' && *p != '.')
*p = '_';
return strdup(map_name);
}
static int
bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
static int
bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
const char *real_name, int sec_idx, void *data, size_t data_sz)
{
struct bpf_map_def *def;
struct bpf_map *map;
int err;
map = bpf_object__add_map(obj);
if (IS_ERR(map))
return PTR_ERR(map);
map->libbpf_type = type;
map->sec_idx = sec_idx;
map->sec_offset = 0;
map->real_name = strdup(real_name);
map->name = internal_map_name(obj, real_name);
if (!map->real_name || !map->name) {
zfree(&map->real_name);
zfree(&map->name);
return -ENOMEM;
}
def = &map->def;
def->type = BPF_MAP_TYPE_ARRAY;
def->key_size = sizeof(int);
def->value_size = data_sz;
def->max_entries = 1;
def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
? BPF_F_RDONLY_PROG : 0;
def->map_flags |= BPF_F_MMAPABLE;
pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
map->name, map->sec_idx, map->sec_offset, def->map_flags);
map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (map->mmaped == MAP_FAILED) {
err = -errno;
map->mmaped = NULL;
pr_warn("failed to alloc map '%s' content buffer: %d\n",
map->name, err);
zfree(&map->real_name);
zfree(&map->name);
return err;
}
/* failures are fine because of maps like .rodata.str1.1 */
(void) bpf_map_find_btf_info(obj, map);
if (data)
memcpy(map->mmaped, data, data_sz);
pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
return 0;
}
static int bpf_object__init_global_data_maps(struct bpf_object *obj)
{
struct elf_sec_desc *sec_desc;
const char *sec_name;
int err = 0, sec_idx;
/*
* Populate obj->maps with libbpf internal maps.
*/
for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
sec_desc = &obj->efile.secs[sec_idx];
/* Skip recognized sections with size 0. */
if (!sec_desc->data || sec_desc->data->d_size == 0)
continue;
switch (sec_desc->sec_type) {
case SEC_DATA:
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
sec_name, sec_idx,
sec_desc->data->d_buf,
sec_desc->data->d_size);
break;
case SEC_RODATA:
obj->has_rodata = true;
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
sec_name, sec_idx,
sec_desc->data->d_buf,
sec_desc->data->d_size);
break;
case SEC_BSS:
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
sec_name, sec_idx,
NULL,
sec_desc->data->d_size);
break;
default:
/* skip */
break;
}
if (err)
return err;
}
return 0;
}
static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
const void *name)
{
int i;
for (i = 0; i < obj->nr_extern; i++) {
if (strcmp(obj->externs[i].name, name) == 0)
return &obj->externs[i];
}
return NULL;
}
static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
char value)
{
switch (ext->kcfg.type) {
case KCFG_BOOL:
if (value == 'm') {
pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
ext->name, value);
return -EINVAL;
}
*(bool *)ext_val = value == 'y' ? true : false;
break;
case KCFG_TRISTATE:
if (value == 'y')
*(enum libbpf_tristate *)ext_val = TRI_YES;
else if (value == 'm')
*(enum libbpf_tristate *)ext_val = TRI_MODULE;
else /* value == 'n' */
*(enum libbpf_tristate *)ext_val = TRI_NO;
break;
case KCFG_CHAR:
*(char *)ext_val = value;
break;
case KCFG_UNKNOWN:
case KCFG_INT:
case KCFG_CHAR_ARR:
default:
pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
ext->name, value);
return -EINVAL;
}
ext->is_set = true;
return 0;
}
static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
const char *value)
{
size_t len;
if (ext->kcfg.type != KCFG_CHAR_ARR) {
pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
ext->name, value);
return -EINVAL;
}
len = strlen(value);
if (value[len - 1] != '"') {
pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
ext->name, value);
return -EINVAL;
}
/* strip quotes */
len -= 2;
if (len >= ext->kcfg.sz) {
pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
ext->name, value, len, ext->kcfg.sz - 1);
len = ext->kcfg.sz - 1;
}
memcpy(ext_val, value + 1, len);
ext_val[len] = '\0';
ext->is_set = true;
return 0;
}
static int parse_u64(const char *value, __u64 *res)
{
char *value_end;
int err;
errno = 0;
*res = strtoull(value, &value_end, 0);
if (errno) {
err = -errno;
pr_warn("failed to parse '%s' as integer: %d\n", value, err);
return err;
}
if (*value_end) {
pr_warn("failed to parse '%s' as integer completely\n", value);
return -EINVAL;
}
return 0;
}
static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
{
int bit_sz = ext->kcfg.sz * 8;
if (ext->kcfg.sz == 8)
return true;
/* Validate that value stored in u64 fits in integer of `ext->sz`
* bytes size without any loss of information. If the target integer
* is signed, we rely on the following limits of integer type of
* Y bits and subsequent transformation:
*
* -2^(Y-1) <= X <= 2^(Y-1) - 1
* 0 <= X + 2^(Y-1) <= 2^Y - 1
* 0 <= X + 2^(Y-1) < 2^Y
*
* For unsigned target integer, check that all the (64 - Y) bits are
* zero.
*/
if (ext->kcfg.is_signed)
return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
else
return (v >> bit_sz) == 0;
}
static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
__u64 value)
{
if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
ext->kcfg.type != KCFG_BOOL) {
pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
ext->name, (unsigned long long)value);
return -EINVAL;
}
if (ext->kcfg.type == KCFG_BOOL && value > 1) {
pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
ext->name, (unsigned long long)value);
return -EINVAL;
}
if (!is_kcfg_value_in_range(ext, value)) {
pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
ext->name, (unsigned long long)value, ext->kcfg.sz);
return -ERANGE;
}
switch (ext->kcfg.sz) {
case 1: *(__u8 *)ext_val = value; break;
case 2: *(__u16 *)ext_val = value; break;
case 4: *(__u32 *)ext_val = value; break;
case 8: *(__u64 *)ext_val = value; break;
default:
return -EINVAL;
}
ext->is_set = true;
return 0;
}
static int bpf_object__process_kconfig_line(struct bpf_object *obj,
char *buf, void *data)
{
struct extern_desc *ext;
char *sep, *value;
int len, err = 0;
void *ext_val;
__u64 num;
if (!str_has_pfx(buf, "CONFIG_"))
return 0;
sep = strchr(buf, '=');
if (!sep) {
pr_warn("failed to parse '%s': no separator\n", buf);
return -EINVAL;
}
/* Trim ending '\n' */
len = strlen(buf);
if (buf[len - 1] == '\n')
buf[len - 1] = '\0';
/* Split on '=' and ensure that a value is present. */
*sep = '\0';
if (!sep[1]) {
*sep = '=';
pr_warn("failed to parse '%s': no value\n", buf);
return -EINVAL;
}
ext = find_extern_by_name(obj, buf);
if (!ext || ext->is_set)
return 0;
ext_val = data + ext->kcfg.data_off;
value = sep + 1;
switch (*value) {
case 'y': case 'n': case 'm':
err = set_kcfg_value_tri(ext, ext_val, *value);
break;
case '"':
err = set_kcfg_value_str(ext, ext_val, value);
break;
default:
/* assume integer */
err = parse_u64(value, &num);
if (err) {
pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
return err;
}
if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
return -EINVAL;
}
err = set_kcfg_value_num(ext, ext_val, num);
break;
}
if (err)
return err;
pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
return 0;
}
static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
{
char buf[PATH_MAX];
struct utsname uts;
int len, err = 0;
gzFile file;
uname(&uts);
len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
if (len < 0)
return -EINVAL;
else if (len >= PATH_MAX)
return -ENAMETOOLONG;
/* gzopen also accepts uncompressed files. */
file = gzopen(buf, "r");
if (!file)
file = gzopen("/proc/config.gz", "r");
if (!file) {
pr_warn("failed to open system Kconfig\n");
return -ENOENT;
}
while (gzgets(file, buf, sizeof(buf))) {
err = bpf_object__process_kconfig_line(obj, buf, data);
if (err) {
pr_warn("error parsing system Kconfig line '%s': %d\n",
buf, err);
goto out;
}
}
out:
gzclose(file);
return err;
}
static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
const char *config, void *data)
{
char buf[PATH_MAX];
int err = 0;
FILE *file;
file = fmemopen((void *)config, strlen(config), "r");
if (!file) {
err = -errno;
pr_warn("failed to open in-memory Kconfig: %d\n", err);
return err;
}
while (fgets(buf, sizeof(buf), file)) {
err = bpf_object__process_kconfig_line(obj, buf, data);
if (err) {
pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
buf, err);
break;
}
}
fclose(file);
return err;
}
static int bpf_object__init_kconfig_map(struct bpf_object *obj)
{
struct extern_desc *last_ext = NULL, *ext;
size_t map_sz;
int i, err;
for (i = 0; i < obj->nr_extern; i++) {
ext = &obj->externs[i];
if (ext->type == EXT_KCFG)
last_ext = ext;
}
if (!last_ext)
return 0;
map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
".kconfig", obj->efile.symbols_shndx,
NULL, map_sz);
if (err)
return err;
obj->kconfig_map_idx = obj->nr_maps - 1;
return 0;
}
const struct btf_type *
skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
{
const struct btf_type *t = btf__type_by_id(btf, id);
if (res_id)
*res_id = id;
while (btf_is_mod(t) || btf_is_typedef(t)) {
if (res_id)
*res_id = t->type;
t = btf__type_by_id(btf, t->type);
}
return t;
}
static const struct btf_type *
resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
{
const struct btf_type *t;
t = skip_mods_and_typedefs(btf, id, NULL);
if (!btf_is_ptr(t))
return NULL;
t = skip_mods_and_typedefs(btf, t->type, res_id);
return btf_is_func_proto(t) ? t : NULL;
}
static const char *__btf_kind_str(__u16 kind)
{
switch (kind) {
case BTF_KIND_UNKN: return "void";
case BTF_KIND_INT: return "int";
case BTF_KIND_PTR: return "ptr";
case BTF_KIND_ARRAY: return "array";
case BTF_KIND_STRUCT: return "struct";
case BTF_KIND_UNION: return "union";
case BTF_KIND_ENUM: return "enum";
case BTF_KIND_FWD: return "fwd";
case BTF_KIND_TYPEDEF: return "typedef";
case BTF_KIND_VOLATILE: return "volatile";
case BTF_KIND_CONST: return "const";
case BTF_KIND_RESTRICT: return "restrict";
case BTF_KIND_FUNC: return "func";
case BTF_KIND_FUNC_PROTO: return "func_proto";
case BTF_KIND_VAR: return "var";
case BTF_KIND_DATASEC: return "datasec";
case BTF_KIND_FLOAT: return "float";
case BTF_KIND_DECL_TAG: return "decl_tag";
case BTF_KIND_TYPE_TAG: return "type_tag";
case BTF_KIND_ENUM64: return "enum64";
default: return "unknown";
}
}
const char *btf_kind_str(const struct btf_type *t)
{
return __btf_kind_str(btf_kind(t));
}
/*
* Fetch integer attribute of BTF map definition. Such attributes are
* represented using a pointer to an array, in which dimensionality of array
* encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
* encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
* type definition, while using only sizeof(void *) space in ELF data section.
*/
static bool get_map_field_int(const char *map_name, const struct btf *btf,
const struct btf_member *m, __u32 *res)
{
const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
const char *name = btf__name_by_offset(btf, m->name_off);
const struct btf_array *arr_info;
const struct btf_type *arr_t;
if (!btf_is_ptr(t)) {
pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
map_name, name, btf_kind_str(t));
return false;
}
arr_t = btf__type_by_id(btf, t->type);
if (!arr_t) {
pr_warn("map '%s': attr '%s': type [%u] not found.\n",
map_name, name, t->type);
return false;
}
if (!btf_is_array(arr_t)) {
pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
map_name, name, btf_kind_str(arr_t));
return false;
}
arr_info = btf_array(arr_t);
*res = arr_info->nelems;
return true;
}
static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
{
int len;
len = snprintf(buf, buf_sz, "%s/%s", path, name);
if (len < 0)
return -EINVAL;
if (len >= buf_sz)
return -ENAMETOOLONG;
return 0;
}
static int build_map_pin_path(struct bpf_map *map, const char *path)
{
char buf[PATH_MAX];
int err;
if (!path)
path = "/sys/fs/bpf";
err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
if (err)
return err;
return bpf_map__set_pin_path(map, buf);
}
/* should match definition in bpf_helpers.h */
enum libbpf_pin_type {
LIBBPF_PIN_NONE,
/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
LIBBPF_PIN_BY_NAME,
};
int parse_btf_map_def(const char *map_name, struct btf *btf,
const struct btf_type *def_t, bool strict,
struct btf_map_def *map_def, struct btf_map_def *inner_def)
{
const struct btf_type *t;
const struct btf_member *m;
bool is_inner = inner_def == NULL;
int vlen, i;
vlen = btf_vlen(def_t);
m = btf_members(def_t);
for (i = 0; i < vlen; i++, m++) {
const char *name = btf__name_by_offset(btf, m->name_off);
if (!name) {
pr_warn("map '%s': invalid field #%d.\n", map_name, i);
return -EINVAL;
}
if (strcmp(name, "type") == 0) {
if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
return -EINVAL;
map_def->parts |= MAP_DEF_MAP_TYPE;
} else if (strcmp(name, "max_entries") == 0) {
if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
return -EINVAL;
map_def->parts |= MAP_DEF_MAX_ENTRIES;
} else if (strcmp(name, "map_flags") == 0) {
if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
return -EINVAL;
map_def->parts |= MAP_DEF_MAP_FLAGS;
} else if (strcmp(name, "numa_node") == 0) {
if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
return -EINVAL;
map_def->parts |= MAP_DEF_NUMA_NODE;
} else if (strcmp(name, "key_size") == 0) {
__u32 sz;
if (!get_map_field_int(map_name, btf, m, &sz))
return -EINVAL;
if (map_def->key_size && map_def->key_size != sz) {
pr_warn("map '%s': conflicting key size %u != %u.\n",
map_name, map_def->key_size, sz);
return -EINVAL;
}
map_def->key_size = sz;
map_def->parts |= MAP_DEF_KEY_SIZE;
} else if (strcmp(name, "key") == 0) {
__s64 sz;
t = btf__type_by_id(btf, m->type);
if (!t) {
pr_warn("map '%s': key type [%d] not found.\n",
map_name, m->type);
return -EINVAL;
}
if (!btf_is_ptr(t)) {
pr_warn("map '%s': key spec is not PTR: %s.\n",
map_name, btf_kind_str(t));
return -EINVAL;
}
sz = btf__resolve_size(btf, t->type);
if (sz < 0) {
pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
map_name, t->type, (ssize_t)sz);
return sz;
}
if (map_def->key_size && map_def->key_size != sz) {
pr_warn("map '%s': conflicting key size %u != %zd.\n",
map_name, map_def->key_size, (ssize_t)sz);
return -EINVAL;
}
map_def->key_size = sz;
map_def->key_type_id = t->type;
map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
} else if (strcmp(name, "value_size") == 0) {
__u32 sz;
if (!get_map_field_int(map_name, btf, m, &sz))
return -EINVAL;
if (map_def->value_size && map_def->value_size != sz) {
pr_warn("map '%s': conflicting value size %u != %u.\n",
map_name, map_def->value_size, sz);
return -EINVAL;
}
map_def->value_size = sz;
map_def->parts |= MAP_DEF_VALUE_SIZE;
} else if (strcmp(name, "value") == 0) {
__s64 sz;
t = btf__type_by_id(btf, m->type);
if (!t) {
pr_warn("map '%s': value type [%d] not found.\n",
map_name, m->type);
return -EINVAL;
}
if (!btf_is_ptr(t)) {
pr_warn("map '%s': value spec is not PTR: %s.\n",
map_name, btf_kind_str(t));
return -EINVAL;
}
sz = btf__resolve_size(btf, t->type);
if (sz < 0) {
pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
map_name, t->type, (ssize_t)sz);
return sz;
}
if (map_def->value_size && map_def->value_size != sz) {
pr_warn("map '%s': conflicting value size %u != %zd.\n",
map_name, map_def->value_size, (ssize_t)sz);
return -EINVAL;
}
map_def->value_size = sz;
map_def->value_type_id = t->type;
map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
}
else if (strcmp(name, "values") == 0) {
bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
char inner_map_name[128];
int err;
if (is_inner) {
pr_warn("map '%s': multi-level inner maps not supported.\n",
map_name);
return -ENOTSUP;
}
if (i != vlen - 1) {
pr_warn("map '%s': '%s' member should be last.\n",
map_name, name);
return -EINVAL;
}
if (!is_map_in_map && !is_prog_array) {
pr_warn("map '%s': should be map-in-map or prog-array.\n",
map_name);
return -ENOTSUP;
}
if (map_def->value_size && map_def->value_size != 4) {
pr_warn("map '%s': conflicting value size %u != 4.\n",
map_name, map_def->value_size);
return -EINVAL;
}
map_def->value_size = 4;
t = btf__type_by_id(btf, m->type);
if (!t) {
pr_warn("map '%s': %s type [%d] not found.\n",
map_name, desc, m->type);
return -EINVAL;
}
if (!btf_is_array(t) || btf_array(t)->nelems) {
pr_warn("map '%s': %s spec is not a zero-sized array.\n",
map_name, desc);
return -EINVAL;
}
t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
if (!btf_is_ptr(t)) {
pr_warn("map '%s': %s def is of unexpected kind %s.\n",
map_name, desc, btf_kind_str(t));
return -EINVAL;
}
t = skip_mods_and_typedefs(btf, t->type, NULL);
if (is_prog_array) {
if (!btf_is_func_proto(t)) {
pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
map_name, btf_kind_str(t));
return -EINVAL;
}
continue;
}
if (!btf_is_struct(t)) {
pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
map_name, btf_kind_str(t));
return -EINVAL;
}
snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
if (err)
return err;
map_def->parts |= MAP_DEF_INNER_MAP;
} else if (strcmp(name, "pinning") == 0) {
__u32 val;
if (is_inner) {
pr_warn("map '%s': inner def can't be pinned.\n", map_name);
return -EINVAL;
}
if (!get_map_field_int(map_name, btf, m, &val))
return -EINVAL;
if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
pr_warn("map '%s': invalid pinning value %u.\n",
map_name, val);
return -EINVAL;
}
map_def->pinning = val;
map_def->parts |= MAP_DEF_PINNING;
} else if (strcmp(name, "map_extra") == 0) {
__u32 map_extra;
if (!get_map_field_int(map_name, btf, m, &map_extra))
return -EINVAL;
map_def->map_extra = map_extra;
map_def->parts |= MAP_DEF_MAP_EXTRA;
} else {
if (strict) {
pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
return -ENOTSUP;
}
pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
}
}
if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
pr_warn("map '%s': map type isn't specified.\n", map_name);
return -EINVAL;
}
return 0;
}
static size_t adjust_ringbuf_sz(size_t sz)
{
__u32 page_sz = sysconf(_SC_PAGE_SIZE);
__u32 mul;
/* if user forgot to set any size, make sure they see error */
if (sz == 0)
return 0;
/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
* a power-of-2 multiple of kernel's page size. If user diligently
* satisified these conditions, pass the size through.
*/
if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
return sz;
/* Otherwise find closest (page_sz * power_of_2) product bigger than
* user-set size to satisfy both user size request and kernel
* requirements and substitute correct max_entries for map creation.
*/
for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
if (mul * page_sz > sz)
return mul * page_sz;
}
/* if it's impossible to satisfy the conditions (i.e., user size is
* very close to UINT_MAX but is not a power-of-2 multiple of
* page_size) then just return original size and let kernel reject it
*/
return sz;
}
static bool map_is_ringbuf(const struct bpf_map *map)
{
return map->def.type == BPF_MAP_TYPE_RINGBUF ||
map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
}
static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
{
map->def.type = def->map_type;
map->def.key_size = def->key_size;
map->def.value_size = def->value_size;
map->def.max_entries = def->max_entries;
map->def.map_flags = def->map_flags;
map->map_extra = def->map_extra;
map->numa_node = def->numa_node;
map->btf_key_type_id = def->key_type_id;
map->btf_value_type_id = def->value_type_id;
/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
if (map_is_ringbuf(map))
map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
if (def->parts & MAP_DEF_MAP_TYPE)
pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
if (def->parts & MAP_DEF_KEY_TYPE)
pr_debug("map '%s': found key [%u], sz = %u.\n",
map->name, def->key_type_id, def->key_size);
else if (def->parts & MAP_DEF_KEY_SIZE)
pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
if (def->parts & MAP_DEF_VALUE_TYPE)
pr_debug("map '%s': found value [%u], sz = %u.\n",
map->name, def->value_type_id, def->value_size);
else if (def->parts & MAP_DEF_VALUE_SIZE)
pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
if (def->parts & MAP_DEF_MAX_ENTRIES)
pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
if (def->parts & MAP_DEF_MAP_FLAGS)
pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
if (def->parts & MAP_DEF_MAP_EXTRA)
pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
(unsigned long long)def->map_extra);
if (def->parts & MAP_DEF_PINNING)
pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
if (def->parts & MAP_DEF_NUMA_NODE)
pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
if (def->parts & MAP_DEF_INNER_MAP)
pr_debug("map '%s': found inner map definition.\n", map->name);
}
static const char *btf_var_linkage_str(__u32 linkage)
{
switch (linkage) {
case BTF_VAR_STATIC: return "static";
case BTF_VAR_GLOBAL_ALLOCATED: return "global";
case BTF_VAR_GLOBAL_EXTERN: return "extern";
default: return "unknown";
}
}
static int bpf_object__init_user_btf_map(struct bpf_object *obj,
const struct btf_type *sec,
int var_idx, int sec_idx,
const Elf_Data *data, bool strict,
const char *pin_root_path)
{
struct btf_map_def map_def = {}, inner_def = {};
const struct btf_type *var, *def;
const struct btf_var_secinfo *vi;
const struct btf_var *var_extra;
const char *map_name;
struct bpf_map *map;
int err;
vi = btf_var_secinfos(sec) + var_idx;
var = btf__type_by_id(obj->btf, vi->type);
var_extra = btf_var(var);
map_name = btf__name_by_offset(obj->btf, var->name_off);
if (map_name == NULL || map_name[0] == '\0') {
pr_warn("map #%d: empty name.\n", var_idx);
return -EINVAL;
}
if ((__u64)vi->offset + vi->size > data->d_size) {
pr_warn("map '%s' BTF data is corrupted.\n", map_name);
return -EINVAL;
}
if (!btf_is_var(var)) {
pr_warn("map '%s': unexpected var kind %s.\n",
map_name, btf_kind_str(var));
return -EINVAL;
}
if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
pr_warn("map '%s': unsupported map linkage %s.\n",
map_name, btf_var_linkage_str(var_extra->linkage));
return -EOPNOTSUPP;
}
def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
if (!btf_is_struct(def)) {
pr_warn("map '%s': unexpected def kind %s.\n",
map_name, btf_kind_str(var));
return -EINVAL;
}
if (def->size > vi->size) {
pr_warn("map '%s': invalid def size.\n", map_name);
return -EINVAL;
}
map = bpf_object__add_map(obj);
if (IS_ERR(map))
return PTR_ERR(map);
map->name = strdup(map_name);
if (!map->name) {
pr_warn("map '%s': failed to alloc map name.\n", map_name);
return -ENOMEM;
}
map->libbpf_type = LIBBPF_MAP_UNSPEC;
map->def.type = BPF_MAP_TYPE_UNSPEC;
map->sec_idx = sec_idx;
map->sec_offset = vi->offset;
map->btf_var_idx = var_idx;
pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
map_name, map->sec_idx, map->sec_offset);
err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
if (err)
return err;
fill_map_from_def(map, &map_def);
if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
err = build_map_pin_path(map, pin_root_path);
if (err) {
pr_warn("map '%s': couldn't build pin path.\n", map->name);
return err;
}
}
if (map_def.parts & MAP_DEF_INNER_MAP) {
map->inner_map = calloc(1, sizeof(*map->inner_map));
if (!map->inner_map)
return -ENOMEM;
map->inner_map->fd = -1;
map->inner_map->sec_idx = sec_idx;
map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
if (!map->inner_map->name)
return -ENOMEM;
sprintf(map->inner_map->name, "%s.inner", map_name);
fill_map_from_def(map->inner_map, &inner_def);
}
err = bpf_map_find_btf_info(obj, map);
if (err)
return err;
return 0;
}
static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
const char *pin_root_path)
{
const struct btf_type *sec = NULL;
int nr_types, i, vlen, err;
const struct btf_type *t;
const char *name;
Elf_Data *data;
Elf_Scn *scn;
if (obj->efile.btf_maps_shndx < 0)
return 0;
scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
data = elf_sec_data(obj, scn);
if (!scn || !data) {
pr_warn("elf: failed to get %s map definitions for %s\n",
MAPS_ELF_SEC, obj->path);
return -EINVAL;
}
nr_types = btf__type_cnt(obj->btf);
for (i = 1; i < nr_types; i++) {
t = btf__type_by_id(obj->btf, i);
if (!btf_is_datasec(t))
continue;
name = btf__name_by_offset(obj->btf, t->name_off);
if (strcmp(name, MAPS_ELF_SEC) == 0) {
sec = t;
obj->efile.btf_maps_sec_btf_id = i;
break;
}
}
if (!sec) {
pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
return -ENOENT;
}
vlen = btf_vlen(sec);
for (i = 0; i < vlen; i++) {
err = bpf_object__init_user_btf_map(obj, sec, i,
obj->efile.btf_maps_shndx,
data, strict,
pin_root_path);
if (err)
return err;
}
return 0;
}
static int bpf_object__init_maps(struct bpf_object *obj,
const struct bpf_object_open_opts *opts)
{
const char *pin_root_path;
bool strict;
int err = 0;
strict = !OPTS_GET(opts, relaxed_maps, false);
pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
err = err ?: bpf_object__init_global_data_maps(obj);
err = err ?: bpf_object__init_kconfig_map(obj);
err = err ?: bpf_object__init_struct_ops_maps(obj);
return err;
}
static bool section_have_execinstr(struct bpf_object *obj, int idx)
{
Elf64_Shdr *sh;
sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
if (!sh)
return false;
return sh->sh_flags & SHF_EXECINSTR;
}
static bool btf_needs_sanitization(struct bpf_object *obj)
{
bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
return !has_func || !has_datasec || !has_func_global || !has_float ||
!has_decl_tag || !has_type_tag || !has_enum64;
}
static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
{
bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
int enum64_placeholder_id = 0;
struct btf_type *t;
int i, j, vlen;
for (i = 1; i < btf__type_cnt(btf); i++) {
t = (struct btf_type *)btf__type_by_id(btf, i);
if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
/* replace VAR/DECL_TAG with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && btf_is_datasec(t)) {
/* replace DATASEC with STRUCT */
const struct btf_var_secinfo *v = btf_var_secinfos(t);
struct btf_member *m = btf_members(t);
struct btf_type *vt;
char *name;
name = (char *)btf__name_by_offset(btf, t->name_off);
while (*name) {
if (*name == '.')
*name = '_';
name++;
}
vlen = btf_vlen(t);
t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
for (j = 0; j < vlen; j++, v++, m++) {
/* order of field assignments is important */
m->offset = v->offset * 8;
m->type = v->type;
/* preserve variable name as member name */
vt = (void *)btf__type_by_id(btf, v->type);
m->name_off = vt->name_off;
}
} else if (!has_func && btf_is_func_proto(t)) {
/* replace FUNC_PROTO with ENUM */
vlen = btf_vlen(t);
t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
t->size = sizeof(__u32); /* kernel enforced */
} else if (!has_func && btf_is_func(t)) {
/* replace FUNC with TYPEDEF */
t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
} else if (!has_func_global && btf_is_func(t)) {
/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
} else if (!has_float && btf_is_float(t)) {
/* replace FLOAT with an equally-sized empty STRUCT;
* since C compilers do not accept e.g. "float" as a
* valid struct name, make it anonymous
*/
t->name_off = 0;
t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
} else if (!has_type_tag && btf_is_type_tag(t)) {
/* replace TYPE_TAG with a CONST */
t->name_off = 0;
t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
} else if (!has_enum64 && btf_is_enum(t)) {
/* clear the kflag */
t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
} else if (!has_enum64 && btf_is_enum64(t)) {
/* replace ENUM64 with a union */
struct btf_member *m;
if (enum64_placeholder_id == 0) {
enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
if (enum64_placeholder_id < 0)
return enum64_placeholder_id;
t = (struct btf_type *)btf__type_by_id(btf, i);
}
m = btf_members(t);
vlen = btf_vlen(t);
t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
for (j = 0; j < vlen; j++, m++) {
m->type = enum64_placeholder_id;
m->offset = 0;
}
}
}
return 0;
}
static bool libbpf_needs_btf(const struct bpf_object *obj)
{
return obj->efile.btf_maps_shndx >= 0 ||
obj->efile.st_ops_shndx >= 0 ||
obj->nr_extern > 0;
}
static bool kernel_needs_btf(const struct bpf_object *obj)
{
return obj->efile.st_ops_shndx >= 0;
}
static int bpf_object__init_btf(struct bpf_object *obj,
Elf_Data *btf_data,
Elf_Data *btf_ext_data)
{
int err = -ENOENT;
if (btf_data) {
obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
err = libbpf_get_error(obj->btf);
if (err) {
obj->btf = NULL;
pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
goto out;
}
/* enforce 8-byte pointers for BPF-targeted BTFs */
btf__set_pointer_size(obj->btf, 8);
}
if (btf_ext_data) {
struct btf_ext_info *ext_segs[3];
int seg_num, sec_num;
if (!obj->btf) {
pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
BTF_EXT_ELF_SEC, BTF_ELF_SEC);
goto out;
}
obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
err = libbpf_get_error(obj->btf_ext);
if (err) {
pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
BTF_EXT_ELF_SEC, err);
obj->btf_ext = NULL;
goto out;
}
/* setup .BTF.ext to ELF section mapping */
ext_segs[0] = &obj->btf_ext->func_info;
ext_segs[1] = &obj->btf_ext->line_info;
ext_segs[2] = &obj->btf_ext->core_relo_info;
for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
struct btf_ext_info *seg = ext_segs[seg_num];
const struct btf_ext_info_sec *sec;
const char *sec_name;
Elf_Scn *scn;
if (seg->sec_cnt == 0)
continue;
seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
if (!seg->sec_idxs) {
err = -ENOMEM;
goto out;
}
sec_num = 0;
for_each_btf_ext_sec(seg, sec) {
/* preventively increment index to avoid doing
* this before every continue below
*/
sec_num++;
sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
if (str_is_empty(sec_name))
continue;
scn = elf_sec_by_name(obj, sec_name);
if (!scn)
continue;
seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
}
}
}
out:
if (err && libbpf_needs_btf(obj)) {
pr_warn("BTF is required, but is missing or corrupted.\n");
return err;
}
return 0;
}
static int compare_vsi_off(const void *_a, const void *_b)
{
const struct btf_var_secinfo *a = _a;
const struct btf_var_secinfo *b = _b;
return a->offset - b->offset;
}
static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
struct btf_type *t)
{
__u32 size = 0, off = 0, i, vars = btf_vlen(t);
const char *name = btf__name_by_offset(btf, t->name_off);
const struct btf_type *t_var;
struct btf_var_secinfo *vsi;
const struct btf_var *var;
int ret;
if (!name) {
pr_debug("No name found in string section for DATASEC kind.\n");
return -ENOENT;
}
/* .extern datasec size and var offsets were set correctly during
* extern collection step, so just skip straight to sorting variables
*/
if (t->size)
goto sort_vars;
ret = find_elf_sec_sz(obj, name, &size);
if (ret || !size) {
pr_debug("Invalid size for section %s: %u bytes\n", name, size);
return -ENOENT;
}
t->size = size;
for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
t_var = btf__type_by_id(btf, vsi->type);
if (!t_var || !btf_is_var(t_var)) {
pr_debug("Non-VAR type seen in section %s\n", name);
return -EINVAL;
}
var = btf_var(t_var);
if (var->linkage == BTF_VAR_STATIC)
continue;
name = btf__name_by_offset(btf, t_var->name_off);
if (!name) {
pr_debug("No name found in string section for VAR kind\n");
return -ENOENT;
}
ret = find_elf_var_offset(obj, name, &off);
if (ret) {
pr_debug("No offset found in symbol table for VAR %s\n",
name);
return -ENOENT;
}
vsi->offset = off;
}
sort_vars:
qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
return 0;
}
static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
{
int err = 0;
__u32 i, n =