| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Faraday Technology FTTMR010 timer driver | 
 |  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org> | 
 |  * | 
 |  * Based on a rewrite of arch/arm/mach-gemini/timer.c: | 
 |  * Copyright (C) 2001-2006 Storlink, Corp. | 
 |  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt> | 
 |  */ | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/sched_clock.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/delay.h> | 
 |  | 
 | /* | 
 |  * Register definitions common for all the timer variants. | 
 |  */ | 
 | #define TIMER1_COUNT		(0x00) | 
 | #define TIMER1_LOAD		(0x04) | 
 | #define TIMER1_MATCH1		(0x08) | 
 | #define TIMER1_MATCH2		(0x0c) | 
 | #define TIMER2_COUNT		(0x10) | 
 | #define TIMER2_LOAD		(0x14) | 
 | #define TIMER2_MATCH1		(0x18) | 
 | #define TIMER2_MATCH2		(0x1c) | 
 | #define TIMER3_COUNT		(0x20) | 
 | #define TIMER3_LOAD		(0x24) | 
 | #define TIMER3_MATCH1		(0x28) | 
 | #define TIMER3_MATCH2		(0x2c) | 
 | #define TIMER_CR		(0x30) | 
 |  | 
 | /* | 
 |  * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers. | 
 |  */ | 
 | #define TIMER_1_CR_ENABLE	BIT(0) | 
 | #define TIMER_1_CR_CLOCK	BIT(1) | 
 | #define TIMER_1_CR_INT		BIT(2) | 
 | #define TIMER_2_CR_ENABLE	BIT(3) | 
 | #define TIMER_2_CR_CLOCK	BIT(4) | 
 | #define TIMER_2_CR_INT		BIT(5) | 
 | #define TIMER_3_CR_ENABLE	BIT(6) | 
 | #define TIMER_3_CR_CLOCK	BIT(7) | 
 | #define TIMER_3_CR_INT		BIT(8) | 
 | #define TIMER_1_CR_UPDOWN	BIT(9) | 
 | #define TIMER_2_CR_UPDOWN	BIT(10) | 
 | #define TIMER_3_CR_UPDOWN	BIT(11) | 
 |  | 
 | /* | 
 |  * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers. | 
 |  * The aspeed timers move bits around in the control register and lacks | 
 |  * bits for setting the timer to count upwards. | 
 |  */ | 
 | #define TIMER_1_CR_ASPEED_ENABLE	BIT(0) | 
 | #define TIMER_1_CR_ASPEED_CLOCK		BIT(1) | 
 | #define TIMER_1_CR_ASPEED_INT		BIT(2) | 
 | #define TIMER_2_CR_ASPEED_ENABLE	BIT(4) | 
 | #define TIMER_2_CR_ASPEED_CLOCK		BIT(5) | 
 | #define TIMER_2_CR_ASPEED_INT		BIT(6) | 
 | #define TIMER_3_CR_ASPEED_ENABLE	BIT(8) | 
 | #define TIMER_3_CR_ASPEED_CLOCK		BIT(9) | 
 | #define TIMER_3_CR_ASPEED_INT		BIT(10) | 
 |  | 
 | /* | 
 |  * Interrupt status/mask register definitions for fttmr010/gemini/moxart | 
 |  * timers. | 
 |  * The registers don't exist and they are not needed on aspeed timers | 
 |  * because: | 
 |  *   - aspeed timer overflow interrupt is controlled by bits in Control | 
 |  *     Register (TMC30). | 
 |  *   - aspeed timers always generate interrupt when either one of the | 
 |  *     Match registers equals to Status register. | 
 |  */ | 
 | #define TIMER_INTR_STATE	(0x34) | 
 | #define TIMER_INTR_MASK		(0x38) | 
 | #define TIMER_1_INT_MATCH1	BIT(0) | 
 | #define TIMER_1_INT_MATCH2	BIT(1) | 
 | #define TIMER_1_INT_OVERFLOW	BIT(2) | 
 | #define TIMER_2_INT_MATCH1	BIT(3) | 
 | #define TIMER_2_INT_MATCH2	BIT(4) | 
 | #define TIMER_2_INT_OVERFLOW	BIT(5) | 
 | #define TIMER_3_INT_MATCH1	BIT(6) | 
 | #define TIMER_3_INT_MATCH2	BIT(7) | 
 | #define TIMER_3_INT_OVERFLOW	BIT(8) | 
 | #define TIMER_INT_ALL_MASK	0x1ff | 
 |  | 
 | struct fttmr010 { | 
 | 	void __iomem *base; | 
 | 	unsigned int tick_rate; | 
 | 	bool is_aspeed; | 
 | 	u32 t1_enable_val; | 
 | 	struct clock_event_device clkevt; | 
 | #ifdef CONFIG_ARM | 
 | 	struct delay_timer delay_timer; | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * A local singleton used by sched_clock and delay timer reads, which are | 
 |  * fast and stateless | 
 |  */ | 
 | static struct fttmr010 *local_fttmr; | 
 |  | 
 | static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt) | 
 | { | 
 | 	return container_of(evt, struct fttmr010, clkevt); | 
 | } | 
 |  | 
 | static unsigned long fttmr010_read_current_timer_up(void) | 
 | { | 
 | 	return readl(local_fttmr->base + TIMER2_COUNT); | 
 | } | 
 |  | 
 | static unsigned long fttmr010_read_current_timer_down(void) | 
 | { | 
 | 	return ~readl(local_fttmr->base + TIMER2_COUNT); | 
 | } | 
 |  | 
 | static u64 notrace fttmr010_read_sched_clock_up(void) | 
 | { | 
 | 	return fttmr010_read_current_timer_up(); | 
 | } | 
 |  | 
 | static u64 notrace fttmr010_read_sched_clock_down(void) | 
 | { | 
 | 	return fttmr010_read_current_timer_down(); | 
 | } | 
 |  | 
 | static int fttmr010_timer_set_next_event(unsigned long cycles, | 
 | 				       struct clock_event_device *evt) | 
 | { | 
 | 	struct fttmr010 *fttmr010 = to_fttmr010(evt); | 
 | 	u32 cr; | 
 |  | 
 | 	/* Stop */ | 
 | 	cr = readl(fttmr010->base + TIMER_CR); | 
 | 	cr &= ~fttmr010->t1_enable_val; | 
 | 	writel(cr, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	if (fttmr010->is_aspeed) { | 
 | 		/* | 
 | 		 * ASPEED Timer Controller will load TIMER1_LOAD register | 
 | 		 * into TIMER1_COUNT register when the timer is re-enabled. | 
 | 		 */ | 
 | 		writel(cycles, fttmr010->base + TIMER1_LOAD); | 
 | 	} else { | 
 | 		/* Setup the match register forward in time */ | 
 | 		cr = readl(fttmr010->base + TIMER1_COUNT); | 
 | 		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1); | 
 | 	} | 
 |  | 
 | 	/* Start */ | 
 | 	cr = readl(fttmr010->base + TIMER_CR); | 
 | 	cr |= fttmr010->t1_enable_val; | 
 | 	writel(cr, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fttmr010_timer_shutdown(struct clock_event_device *evt) | 
 | { | 
 | 	struct fttmr010 *fttmr010 = to_fttmr010(evt); | 
 | 	u32 cr; | 
 |  | 
 | 	/* Stop */ | 
 | 	cr = readl(fttmr010->base + TIMER_CR); | 
 | 	cr &= ~fttmr010->t1_enable_val; | 
 | 	writel(cr, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fttmr010_timer_set_oneshot(struct clock_event_device *evt) | 
 | { | 
 | 	struct fttmr010 *fttmr010 = to_fttmr010(evt); | 
 | 	u32 cr; | 
 |  | 
 | 	/* Stop */ | 
 | 	cr = readl(fttmr010->base + TIMER_CR); | 
 | 	cr &= ~fttmr010->t1_enable_val; | 
 | 	writel(cr, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	/* Setup counter start from 0 or ~0 */ | 
 | 	writel(0, fttmr010->base + TIMER1_COUNT); | 
 | 	if (fttmr010->is_aspeed) { | 
 | 		writel(~0, fttmr010->base + TIMER1_LOAD); | 
 | 	} else { | 
 | 		writel(0, fttmr010->base + TIMER1_LOAD); | 
 |  | 
 | 		/* Enable interrupt */ | 
 | 		cr = readl(fttmr010->base + TIMER_INTR_MASK); | 
 | 		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2); | 
 | 		cr |= TIMER_1_INT_MATCH1; | 
 | 		writel(cr, fttmr010->base + TIMER_INTR_MASK); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fttmr010_timer_set_periodic(struct clock_event_device *evt) | 
 | { | 
 | 	struct fttmr010 *fttmr010 = to_fttmr010(evt); | 
 | 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ); | 
 | 	u32 cr; | 
 |  | 
 | 	/* Stop */ | 
 | 	cr = readl(fttmr010->base + TIMER_CR); | 
 | 	cr &= ~fttmr010->t1_enable_val; | 
 | 	writel(cr, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	/* Setup timer to fire at 1/HZ intervals. */ | 
 | 	if (fttmr010->is_aspeed) { | 
 | 		writel(period, fttmr010->base + TIMER1_LOAD); | 
 | 	} else { | 
 | 		cr = 0xffffffff - (period - 1); | 
 | 		writel(cr, fttmr010->base + TIMER1_COUNT); | 
 | 		writel(cr, fttmr010->base + TIMER1_LOAD); | 
 |  | 
 | 		/* Enable interrupt on overflow */ | 
 | 		cr = readl(fttmr010->base + TIMER_INTR_MASK); | 
 | 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2); | 
 | 		cr |= TIMER_1_INT_OVERFLOW; | 
 | 		writel(cr, fttmr010->base + TIMER_INTR_MASK); | 
 | 	} | 
 |  | 
 | 	/* Start the timer */ | 
 | 	cr = readl(fttmr010->base + TIMER_CR); | 
 | 	cr |= fttmr010->t1_enable_val; | 
 | 	writel(cr, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * IRQ handler for the timer | 
 |  */ | 
 | static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct clock_event_device *evt = dev_id; | 
 |  | 
 | 	evt->event_handler(evt); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed) | 
 | { | 
 | 	struct fttmr010 *fttmr010; | 
 | 	int irq; | 
 | 	struct clk *clk; | 
 | 	int ret; | 
 | 	u32 val; | 
 |  | 
 | 	/* | 
 | 	 * These implementations require a clock reference. | 
 | 	 * FIXME: we currently only support clocking using PCLK | 
 | 	 * and using EXTCLK is not supported in the driver. | 
 | 	 */ | 
 | 	clk = of_clk_get_by_name(np, "PCLK"); | 
 | 	if (IS_ERR(clk)) { | 
 | 		pr_err("could not get PCLK\n"); | 
 | 		return PTR_ERR(clk); | 
 | 	} | 
 | 	ret = clk_prepare_enable(clk); | 
 | 	if (ret) { | 
 | 		pr_err("failed to enable PCLK\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL); | 
 | 	if (!fttmr010) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_disable_clock; | 
 | 	} | 
 | 	fttmr010->tick_rate = clk_get_rate(clk); | 
 |  | 
 | 	fttmr010->base = of_iomap(np, 0); | 
 | 	if (!fttmr010->base) { | 
 | 		pr_err("Can't remap registers\n"); | 
 | 		ret = -ENXIO; | 
 | 		goto out_free; | 
 | 	} | 
 | 	/* IRQ for timer 1 */ | 
 | 	irq = irq_of_parse_and_map(np, 0); | 
 | 	if (irq <= 0) { | 
 | 		pr_err("Can't parse IRQ\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The Aspeed timers move bits around in the control register. | 
 | 	 */ | 
 | 	if (is_aspeed) { | 
 | 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE | | 
 | 			TIMER_1_CR_ASPEED_INT; | 
 | 		fttmr010->is_aspeed = true; | 
 | 	} else { | 
 | 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT; | 
 |  | 
 | 		/* | 
 | 		 * Reset the interrupt mask and status | 
 | 		 */ | 
 | 		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK); | 
 | 		writel(0, fttmr010->base + TIMER_INTR_STATE); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed, | 
 | 	 * where everything just counts down. | 
 | 	 */ | 
 | 	if (is_aspeed) | 
 | 		val = TIMER_2_CR_ASPEED_ENABLE; | 
 | 	else { | 
 | 		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN | | 
 | 			TIMER_2_CR_UPDOWN; | 
 | 	} | 
 | 	writel(val, fttmr010->base + TIMER_CR); | 
 |  | 
 | 	/* | 
 | 	 * Setup free-running clocksource timer (interrupts | 
 | 	 * disabled.) | 
 | 	 */ | 
 | 	local_fttmr = fttmr010; | 
 | 	writel(0, fttmr010->base + TIMER2_COUNT); | 
 | 	writel(0, fttmr010->base + TIMER2_MATCH1); | 
 | 	writel(0, fttmr010->base + TIMER2_MATCH2); | 
 |  | 
 | 	if (fttmr010->is_aspeed) { | 
 | 		writel(~0, fttmr010->base + TIMER2_LOAD); | 
 | 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT, | 
 | 				      "FTTMR010-TIMER2", | 
 | 				      fttmr010->tick_rate, | 
 | 				      300, 32, clocksource_mmio_readl_down); | 
 | 		sched_clock_register(fttmr010_read_sched_clock_down, 32, | 
 | 				     fttmr010->tick_rate); | 
 | 	} else { | 
 | 		writel(0, fttmr010->base + TIMER2_LOAD); | 
 | 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT, | 
 | 				      "FTTMR010-TIMER2", | 
 | 				      fttmr010->tick_rate, | 
 | 				      300, 32, clocksource_mmio_readl_up); | 
 | 		sched_clock_register(fttmr010_read_sched_clock_up, 32, | 
 | 				     fttmr010->tick_rate); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Setup clockevent timer (interrupt-driven) on timer 1. | 
 | 	 */ | 
 | 	writel(0, fttmr010->base + TIMER1_COUNT); | 
 | 	writel(0, fttmr010->base + TIMER1_LOAD); | 
 | 	writel(0, fttmr010->base + TIMER1_MATCH1); | 
 | 	writel(0, fttmr010->base + TIMER1_MATCH2); | 
 | 	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER, | 
 | 			  "FTTMR010-TIMER1", &fttmr010->clkevt); | 
 | 	if (ret) { | 
 | 		pr_err("FTTMR010-TIMER1 no IRQ\n"); | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	fttmr010->clkevt.name = "FTTMR010-TIMER1"; | 
 | 	/* Reasonably fast and accurate clock event */ | 
 | 	fttmr010->clkevt.rating = 300; | 
 | 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | | 
 | 		CLOCK_EVT_FEAT_ONESHOT; | 
 | 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event; | 
 | 	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown; | 
 | 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic; | 
 | 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot; | 
 | 	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown; | 
 | 	fttmr010->clkevt.cpumask = cpumask_of(0); | 
 | 	fttmr010->clkevt.irq = irq; | 
 | 	clockevents_config_and_register(&fttmr010->clkevt, | 
 | 					fttmr010->tick_rate, | 
 | 					1, 0xffffffff); | 
 |  | 
 | #ifdef CONFIG_ARM | 
 | 	/* Also use this timer for delays */ | 
 | 	if (fttmr010->is_aspeed) | 
 | 		fttmr010->delay_timer.read_current_timer = | 
 | 			fttmr010_read_current_timer_down; | 
 | 	else | 
 | 		fttmr010->delay_timer.read_current_timer = | 
 | 			fttmr010_read_current_timer_up; | 
 | 	fttmr010->delay_timer.freq = fttmr010->tick_rate; | 
 | 	register_current_timer_delay(&fttmr010->delay_timer); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unmap: | 
 | 	iounmap(fttmr010->base); | 
 | out_free: | 
 | 	kfree(fttmr010); | 
 | out_disable_clock: | 
 | 	clk_disable_unprepare(clk); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static __init int aspeed_timer_init(struct device_node *np) | 
 | { | 
 | 	return fttmr010_common_init(np, true); | 
 | } | 
 |  | 
 | static __init int fttmr010_timer_init(struct device_node *np) | 
 | { | 
 | 	return fttmr010_common_init(np, false); | 
 | } | 
 |  | 
 | TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init); | 
 | TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init); | 
 | TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init); | 
 | TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init); | 
 | TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init); |