|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. | 
|  | *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar | 
|  | */ | 
|  | #include <linux/sched.h>		/* test_thread_flag(), ...	*/ | 
|  | #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/ | 
|  | #include <linux/kdebug.h>		/* oops_begin/end, ...		*/ | 
|  | #include <linux/extable.h>		/* search_exception_tables	*/ | 
|  | #include <linux/memblock.h>		/* max_low_pfn			*/ | 
|  | #include <linux/kfence.h>		/* kfence_handle_page_fault	*/ | 
|  | #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/ | 
|  | #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/ | 
|  | #include <linux/perf_event.h>		/* perf_sw_event		*/ | 
|  | #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/ | 
|  | #include <linux/prefetch.h>		/* prefetchw			*/ | 
|  | #include <linux/context_tracking.h>	/* exception_enter(), ...	*/ | 
|  | #include <linux/uaccess.h>		/* faulthandler_disabled()	*/ | 
|  | #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/ | 
|  | #include <linux/mm_types.h> | 
|  |  | 
|  | #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/ | 
|  | #include <asm/traps.h>			/* dotraplinkage, ...		*/ | 
|  | #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/ | 
|  | #include <asm/vsyscall.h>		/* emulate_vsyscall		*/ | 
|  | #include <asm/vm86.h>			/* struct vm86			*/ | 
|  | #include <asm/mmu_context.h>		/* vma_pkey()			*/ | 
|  | #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/ | 
|  | #include <asm/desc.h>			/* store_idt(), ...		*/ | 
|  | #include <asm/cpu_entry_area.h>		/* exception stack		*/ | 
|  | #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/ | 
|  | #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/ | 
|  | #include <asm/vdso.h>			/* fixup_vdso_exception()	*/ | 
|  | #include <asm/irq_stack.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <asm/trace/exceptions.h> | 
|  |  | 
|  | /* | 
|  | * Returns 0 if mmiotrace is disabled, or if the fault is not | 
|  | * handled by mmiotrace: | 
|  | */ | 
|  | static nokprobe_inline int | 
|  | kmmio_fault(struct pt_regs *regs, unsigned long addr) | 
|  | { | 
|  | if (unlikely(is_kmmio_active())) | 
|  | if (kmmio_handler(regs, addr) == 1) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prefetch quirks: | 
|  | * | 
|  | * 32-bit mode: | 
|  | * | 
|  | *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 
|  | *   Check that here and ignore it.  This is AMD erratum #91. | 
|  | * | 
|  | * 64-bit mode: | 
|  | * | 
|  | *   Sometimes the CPU reports invalid exceptions on prefetch. | 
|  | *   Check that here and ignore it. | 
|  | * | 
|  | * Opcode checker based on code by Richard Brunner. | 
|  | */ | 
|  | static inline int | 
|  | check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, | 
|  | unsigned char opcode, int *prefetch) | 
|  | { | 
|  | unsigned char instr_hi = opcode & 0xf0; | 
|  | unsigned char instr_lo = opcode & 0x0f; | 
|  |  | 
|  | switch (instr_hi) { | 
|  | case 0x20: | 
|  | case 0x30: | 
|  | /* | 
|  | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | 
|  | * In X86_64 long mode, the CPU will signal invalid | 
|  | * opcode if some of these prefixes are present so | 
|  | * X86_64 will never get here anyway | 
|  | */ | 
|  | return ((instr_lo & 7) == 0x6); | 
|  | #ifdef CONFIG_X86_64 | 
|  | case 0x40: | 
|  | /* | 
|  | * In 64-bit mode 0x40..0x4F are valid REX prefixes | 
|  | */ | 
|  | return (!user_mode(regs) || user_64bit_mode(regs)); | 
|  | #endif | 
|  | case 0x60: | 
|  | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
|  | return (instr_lo & 0xC) == 0x4; | 
|  | case 0xF0: | 
|  | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | 
|  | return !instr_lo || (instr_lo>>1) == 1; | 
|  | case 0x00: | 
|  | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
|  | if (get_kernel_nofault(opcode, instr)) | 
|  | return 0; | 
|  |  | 
|  | *prefetch = (instr_lo == 0xF) && | 
|  | (opcode == 0x0D || opcode == 0x18); | 
|  | return 0; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_amd_k8_pre_npt(void) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &boot_cpu_data; | 
|  |  | 
|  | return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && | 
|  | c->x86_vendor == X86_VENDOR_AMD && | 
|  | c->x86 == 0xf && c->x86_model < 0x40); | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) | 
|  | { | 
|  | unsigned char *max_instr; | 
|  | unsigned char *instr; | 
|  | int prefetch = 0; | 
|  |  | 
|  | /* Erratum #91 affects AMD K8, pre-NPT CPUs */ | 
|  | if (!is_amd_k8_pre_npt()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If it was a exec (instruction fetch) fault on NX page, then | 
|  | * do not ignore the fault: | 
|  | */ | 
|  | if (error_code & X86_PF_INSTR) | 
|  | return 0; | 
|  |  | 
|  | instr = (void *)convert_ip_to_linear(current, regs); | 
|  | max_instr = instr + 15; | 
|  |  | 
|  | /* | 
|  | * This code has historically always bailed out if IP points to a | 
|  | * not-present page (e.g. due to a race).  No one has ever | 
|  | * complained about this. | 
|  | */ | 
|  | pagefault_disable(); | 
|  |  | 
|  | while (instr < max_instr) { | 
|  | unsigned char opcode; | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | if (get_user(opcode, (unsigned char __user *) instr)) | 
|  | break; | 
|  | } else { | 
|  | if (get_kernel_nofault(opcode, instr)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | instr++; | 
|  |  | 
|  | if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | pagefault_enable(); | 
|  | return prefetch; | 
|  | } | 
|  |  | 
|  | DEFINE_SPINLOCK(pgd_lock); | 
|  | LIST_HEAD(pgd_list); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | unsigned index = pgd_index(address); | 
|  | pgd_t *pgd_k; | 
|  | p4d_t *p4d, *p4d_k; | 
|  | pud_t *pud, *pud_k; | 
|  | pmd_t *pmd, *pmd_k; | 
|  |  | 
|  | pgd += index; | 
|  | pgd_k = init_mm.pgd + index; | 
|  |  | 
|  | if (!pgd_present(*pgd_k)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * set_pgd(pgd, *pgd_k); here would be useless on PAE | 
|  | * and redundant with the set_pmd() on non-PAE. As would | 
|  | * set_p4d/set_pud. | 
|  | */ | 
|  | p4d = p4d_offset(pgd, address); | 
|  | p4d_k = p4d_offset(pgd_k, address); | 
|  | if (!p4d_present(*p4d_k)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | pud_k = pud_offset(p4d_k, address); | 
|  | if (!pud_present(*pud_k)) | 
|  | return NULL; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | pmd_k = pmd_offset(pud_k, address); | 
|  |  | 
|  | if (pmd_present(*pmd) != pmd_present(*pmd_k)) | 
|  | set_pmd(pmd, *pmd_k); | 
|  |  | 
|  | if (!pmd_present(*pmd_k)) | 
|  | return NULL; | 
|  | else | 
|  | BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); | 
|  |  | 
|  | return pmd_k; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *   Handle a fault on the vmalloc or module mapping area | 
|  | * | 
|  | *   This is needed because there is a race condition between the time | 
|  | *   when the vmalloc mapping code updates the PMD to the point in time | 
|  | *   where it synchronizes this update with the other page-tables in the | 
|  | *   system. | 
|  | * | 
|  | *   In this race window another thread/CPU can map an area on the same | 
|  | *   PMD, finds it already present and does not synchronize it with the | 
|  | *   rest of the system yet. As a result v[mz]alloc might return areas | 
|  | *   which are not mapped in every page-table in the system, causing an | 
|  | *   unhandled page-fault when they are accessed. | 
|  | */ | 
|  | static noinline int vmalloc_fault(unsigned long address) | 
|  | { | 
|  | unsigned long pgd_paddr; | 
|  | pmd_t *pmd_k; | 
|  | pte_t *pte_k; | 
|  |  | 
|  | /* Make sure we are in vmalloc area: */ | 
|  | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * Synchronize this task's top level page-table | 
|  | * with the 'reference' page table. | 
|  | * | 
|  | * Do _not_ use "current" here. We might be inside | 
|  | * an interrupt in the middle of a task switch.. | 
|  | */ | 
|  | pgd_paddr = read_cr3_pa(); | 
|  | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | 
|  | if (!pmd_k) | 
|  | return -1; | 
|  |  | 
|  | if (pmd_large(*pmd_k)) | 
|  | return 0; | 
|  |  | 
|  | pte_k = pte_offset_kernel(pmd_k, address); | 
|  | if (!pte_present(*pte_k)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(vmalloc_fault); | 
|  |  | 
|  | static void __arch_sync_kernel_mappings(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = start & PMD_MASK; | 
|  | addr >= TASK_SIZE_MAX && addr < VMALLOC_END; | 
|  | addr += PMD_SIZE) { | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(&pgd_lock); | 
|  | list_for_each_entry(page, &pgd_list, lru) { | 
|  | spinlock_t *pgt_lock; | 
|  |  | 
|  | /* the pgt_lock only for Xen */ | 
|  | pgt_lock = &pgd_page_get_mm(page)->page_table_lock; | 
|  |  | 
|  | spin_lock(pgt_lock); | 
|  | vmalloc_sync_one(page_address(page), addr); | 
|  | spin_unlock(pgt_lock); | 
|  | } | 
|  | spin_unlock(&pgd_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void arch_sync_kernel_mappings(unsigned long start, unsigned long end) | 
|  | { | 
|  | __arch_sync_kernel_mappings(start, end); | 
|  | #ifdef CONFIG_KMSAN | 
|  | /* | 
|  | * KMSAN maintains two additional metadata page mappings for the | 
|  | * [VMALLOC_START, VMALLOC_END) range. These mappings start at | 
|  | * KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START and | 
|  | * have to be synced together with the vmalloc memory mapping. | 
|  | */ | 
|  | if (start >= VMALLOC_START && end < VMALLOC_END) { | 
|  | __arch_sync_kernel_mappings( | 
|  | start - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START, | 
|  | end - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START); | 
|  | __arch_sync_kernel_mappings( | 
|  | start - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START, | 
|  | end - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool low_pfn(unsigned long pfn) | 
|  | { | 
|  | return pfn < max_low_pfn; | 
|  | } | 
|  |  | 
|  | static void dump_pagetable(unsigned long address) | 
|  | { | 
|  | pgd_t *base = __va(read_cr3_pa()); | 
|  | pgd_t *pgd = &base[pgd_index(address)]; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); | 
|  | if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) | 
|  | goto out; | 
|  | #define pr_pde pr_cont | 
|  | #else | 
|  | #define pr_pde pr_info | 
|  | #endif | 
|  | p4d = p4d_offset(pgd, address); | 
|  | pud = pud_offset(p4d, address); | 
|  | pmd = pmd_offset(pud, address); | 
|  | pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); | 
|  | #undef pr_pde | 
|  |  | 
|  | /* | 
|  | * We must not directly access the pte in the highpte | 
|  | * case if the page table is located in highmem. | 
|  | * And let's rather not kmap-atomic the pte, just in case | 
|  | * it's allocated already: | 
|  | */ | 
|  | if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, address); | 
|  | pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); | 
|  | out: | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_X86_64: */ | 
|  |  | 
|  | #ifdef CONFIG_CPU_SUP_AMD | 
|  | static const char errata93_warning[] = | 
|  | KERN_ERR | 
|  | "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | 
|  | "******* Working around it, but it may cause SEGVs or burn power.\n" | 
|  | "******* Please consider a BIOS update.\n" | 
|  | "******* Disabling USB legacy in the BIOS may also help.\n"; | 
|  | #endif | 
|  |  | 
|  | static int bad_address(void *p) | 
|  | { | 
|  | unsigned long dummy; | 
|  |  | 
|  | return get_kernel_nofault(dummy, (unsigned long *)p); | 
|  | } | 
|  |  | 
|  | static void dump_pagetable(unsigned long address) | 
|  | { | 
|  | pgd_t *base = __va(read_cr3_pa()); | 
|  | pgd_t *pgd = base + pgd_index(address); | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (bad_address(pgd)) | 
|  | goto bad; | 
|  |  | 
|  | pr_info("PGD %lx ", pgd_val(*pgd)); | 
|  |  | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (bad_address(p4d)) | 
|  | goto bad; | 
|  |  | 
|  | pr_cont("P4D %lx ", p4d_val(*p4d)); | 
|  | if (!p4d_present(*p4d) || p4d_large(*p4d)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | if (bad_address(pud)) | 
|  | goto bad; | 
|  |  | 
|  | pr_cont("PUD %lx ", pud_val(*pud)); | 
|  | if (!pud_present(*pud) || pud_large(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (bad_address(pmd)) | 
|  | goto bad; | 
|  |  | 
|  | pr_cont("PMD %lx ", pmd_val(*pmd)); | 
|  | if (!pmd_present(*pmd) || pmd_large(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, address); | 
|  | if (bad_address(pte)) | 
|  | goto bad; | 
|  |  | 
|  | pr_cont("PTE %lx", pte_val(*pte)); | 
|  | out: | 
|  | pr_cont("\n"); | 
|  | return; | 
|  | bad: | 
|  | pr_info("BAD\n"); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_X86_64 */ | 
|  |  | 
|  | /* | 
|  | * Workaround for K8 erratum #93 & buggy BIOS. | 
|  | * | 
|  | * BIOS SMM functions are required to use a specific workaround | 
|  | * to avoid corruption of the 64bit RIP register on C stepping K8. | 
|  | * | 
|  | * A lot of BIOS that didn't get tested properly miss this. | 
|  | * | 
|  | * The OS sees this as a page fault with the upper 32bits of RIP cleared. | 
|  | * Try to work around it here. | 
|  | * | 
|  | * Note we only handle faults in kernel here. | 
|  | * Does nothing on 32-bit. | 
|  | */ | 
|  | static int is_errata93(struct pt_regs *regs, unsigned long address) | 
|  | { | 
|  | #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) | 
|  | if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD | 
|  | || boot_cpu_data.x86 != 0xf) | 
|  | return 0; | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | return 0; | 
|  |  | 
|  | if (address != regs->ip) | 
|  | return 0; | 
|  |  | 
|  | if ((address >> 32) != 0) | 
|  | return 0; | 
|  |  | 
|  | address |= 0xffffffffUL << 32; | 
|  | if ((address >= (u64)_stext && address <= (u64)_etext) || | 
|  | (address >= MODULES_VADDR && address <= MODULES_END)) { | 
|  | printk_once(errata93_warning); | 
|  | regs->ip = address; | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Work around K8 erratum #100 K8 in compat mode occasionally jumps | 
|  | * to illegal addresses >4GB. | 
|  | * | 
|  | * We catch this in the page fault handler because these addresses | 
|  | * are not reachable. Just detect this case and return.  Any code | 
|  | * segment in LDT is compatibility mode. | 
|  | */ | 
|  | static int is_errata100(struct pt_regs *regs, unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) | 
|  | return 1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Pentium F0 0F C7 C8 bug workaround: */ | 
|  | static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_X86_F00F_BUG | 
|  | if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && | 
|  | idt_is_f00f_address(address)) { | 
|  | handle_invalid_op(regs); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) | 
|  | { | 
|  | u32 offset = (index >> 3) * sizeof(struct desc_struct); | 
|  | unsigned long addr; | 
|  | struct ldttss_desc desc; | 
|  |  | 
|  | if (index == 0) { | 
|  | pr_alert("%s: NULL\n", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (offset + sizeof(struct ldttss_desc) >= gdt->size) { | 
|  | pr_alert("%s: 0x%hx -- out of bounds\n", name, index); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), | 
|  | sizeof(struct ldttss_desc))) { | 
|  | pr_alert("%s: 0x%hx -- GDT entry is not readable\n", | 
|  | name, index); | 
|  | return; | 
|  | } | 
|  |  | 
|  | addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); | 
|  | #ifdef CONFIG_X86_64 | 
|  | addr |= ((u64)desc.base3 << 32); | 
|  | #endif | 
|  | pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", | 
|  | name, index, addr, (desc.limit0 | (desc.limit1 << 16))); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) | 
|  | { | 
|  | if (!oops_may_print()) | 
|  | return; | 
|  |  | 
|  | if (error_code & X86_PF_INSTR) { | 
|  | unsigned int level; | 
|  | pgd_t *pgd; | 
|  | pte_t *pte; | 
|  |  | 
|  | pgd = __va(read_cr3_pa()); | 
|  | pgd += pgd_index(address); | 
|  |  | 
|  | pte = lookup_address_in_pgd(pgd, address, &level); | 
|  |  | 
|  | if (pte && pte_present(*pte) && !pte_exec(*pte)) | 
|  | pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", | 
|  | from_kuid(&init_user_ns, current_uid())); | 
|  | if (pte && pte_present(*pte) && pte_exec(*pte) && | 
|  | (pgd_flags(*pgd) & _PAGE_USER) && | 
|  | (__read_cr4() & X86_CR4_SMEP)) | 
|  | pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", | 
|  | from_kuid(&init_user_ns, current_uid())); | 
|  | } | 
|  |  | 
|  | if (address < PAGE_SIZE && !user_mode(regs)) | 
|  | pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", | 
|  | (void *)address); | 
|  | else | 
|  | pr_alert("BUG: unable to handle page fault for address: %px\n", | 
|  | (void *)address); | 
|  |  | 
|  | pr_alert("#PF: %s %s in %s mode\n", | 
|  | (error_code & X86_PF_USER)  ? "user" : "supervisor", | 
|  | (error_code & X86_PF_INSTR) ? "instruction fetch" : | 
|  | (error_code & X86_PF_WRITE) ? "write access" : | 
|  | "read access", | 
|  | user_mode(regs) ? "user" : "kernel"); | 
|  | pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, | 
|  | !(error_code & X86_PF_PROT) ? "not-present page" : | 
|  | (error_code & X86_PF_RSVD)  ? "reserved bit violation" : | 
|  | (error_code & X86_PF_PK)    ? "protection keys violation" : | 
|  | "permissions violation"); | 
|  |  | 
|  | if (!(error_code & X86_PF_USER) && user_mode(regs)) { | 
|  | struct desc_ptr idt, gdt; | 
|  | u16 ldtr, tr; | 
|  |  | 
|  | /* | 
|  | * This can happen for quite a few reasons.  The more obvious | 
|  | * ones are faults accessing the GDT, or LDT.  Perhaps | 
|  | * surprisingly, if the CPU tries to deliver a benign or | 
|  | * contributory exception from user code and gets a page fault | 
|  | * during delivery, the page fault can be delivered as though | 
|  | * it originated directly from user code.  This could happen | 
|  | * due to wrong permissions on the IDT, GDT, LDT, TSS, or | 
|  | * kernel or IST stack. | 
|  | */ | 
|  | store_idt(&idt); | 
|  |  | 
|  | /* Usable even on Xen PV -- it's just slow. */ | 
|  | native_store_gdt(&gdt); | 
|  |  | 
|  | pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", | 
|  | idt.address, idt.size, gdt.address, gdt.size); | 
|  |  | 
|  | store_ldt(ldtr); | 
|  | show_ldttss(&gdt, "LDTR", ldtr); | 
|  |  | 
|  | store_tr(tr); | 
|  | show_ldttss(&gdt, "TR", tr); | 
|  | } | 
|  |  | 
|  | dump_pagetable(address); | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | pgtable_bad(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | unsigned long flags; | 
|  | int sig; | 
|  |  | 
|  | flags = oops_begin(); | 
|  | tsk = current; | 
|  | sig = SIGKILL; | 
|  |  | 
|  | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | 
|  | tsk->comm, address); | 
|  | dump_pagetable(address); | 
|  |  | 
|  | if (__die("Bad pagetable", regs, error_code)) | 
|  | sig = 0; | 
|  |  | 
|  | oops_end(flags, regs, sig); | 
|  | } | 
|  |  | 
|  | static void sanitize_error_code(unsigned long address, | 
|  | unsigned long *error_code) | 
|  | { | 
|  | /* | 
|  | * To avoid leaking information about the kernel page | 
|  | * table layout, pretend that user-mode accesses to | 
|  | * kernel addresses are always protection faults. | 
|  | * | 
|  | * NB: This means that failed vsyscalls with vsyscall=none | 
|  | * will have the PROT bit.  This doesn't leak any | 
|  | * information and does not appear to cause any problems. | 
|  | */ | 
|  | if (address >= TASK_SIZE_MAX) | 
|  | *error_code |= X86_PF_PROT; | 
|  | } | 
|  |  | 
|  | static void set_signal_archinfo(unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | tsk->thread.trap_nr = X86_TRAP_PF; | 
|  | tsk->thread.error_code = error_code | X86_PF_USER; | 
|  | tsk->thread.cr2 = address; | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | page_fault_oops(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | struct stack_info info; | 
|  | #endif | 
|  | unsigned long flags; | 
|  | int sig; | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | /* | 
|  | * Implicit kernel access from user mode?  Skip the stack | 
|  | * overflow and EFI special cases. | 
|  | */ | 
|  | goto oops; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | /* | 
|  | * Stack overflow?  During boot, we can fault near the initial | 
|  | * stack in the direct map, but that's not an overflow -- check | 
|  | * that we're in vmalloc space to avoid this. | 
|  | */ | 
|  | if (is_vmalloc_addr((void *)address) && | 
|  | get_stack_guard_info((void *)address, &info)) { | 
|  | /* | 
|  | * We're likely to be running with very little stack space | 
|  | * left.  It's plausible that we'd hit this condition but | 
|  | * double-fault even before we get this far, in which case | 
|  | * we're fine: the double-fault handler will deal with it. | 
|  | * | 
|  | * We don't want to make it all the way into the oops code | 
|  | * and then double-fault, though, because we're likely to | 
|  | * break the console driver and lose most of the stack dump. | 
|  | */ | 
|  | call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), | 
|  | handle_stack_overflow, | 
|  | ASM_CALL_ARG3, | 
|  | , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); | 
|  |  | 
|  | unreachable(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Buggy firmware could access regions which might page fault.  If | 
|  | * this happens, EFI has a special OOPS path that will try to | 
|  | * avoid hanging the system. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_EFI)) | 
|  | efi_crash_gracefully_on_page_fault(address); | 
|  |  | 
|  | /* Only not-present faults should be handled by KFENCE. */ | 
|  | if (!(error_code & X86_PF_PROT) && | 
|  | kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) | 
|  | return; | 
|  |  | 
|  | oops: | 
|  | /* | 
|  | * Oops. The kernel tried to access some bad page. We'll have to | 
|  | * terminate things with extreme prejudice: | 
|  | */ | 
|  | flags = oops_begin(); | 
|  |  | 
|  | show_fault_oops(regs, error_code, address); | 
|  |  | 
|  | if (task_stack_end_corrupted(current)) | 
|  | printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); | 
|  |  | 
|  | sig = SIGKILL; | 
|  | if (__die("Oops", regs, error_code)) | 
|  | sig = 0; | 
|  |  | 
|  | /* Executive summary in case the body of the oops scrolled away */ | 
|  | printk(KERN_DEFAULT "CR2: %016lx\n", address); | 
|  |  | 
|  | oops_end(flags, regs, sig); | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address, int signal, int si_code, | 
|  | u32 pkey) | 
|  | { | 
|  | WARN_ON_ONCE(user_mode(regs)); | 
|  |  | 
|  | /* Are we prepared to handle this kernel fault? */ | 
|  | if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { | 
|  | /* | 
|  | * Any interrupt that takes a fault gets the fixup. This makes | 
|  | * the below recursive fault logic only apply to a faults from | 
|  | * task context. | 
|  | */ | 
|  | if (in_interrupt()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Per the above we're !in_interrupt(), aka. task context. | 
|  | * | 
|  | * In this case we need to make sure we're not recursively | 
|  | * faulting through the emulate_vsyscall() logic. | 
|  | */ | 
|  | if (current->thread.sig_on_uaccess_err && signal) { | 
|  | sanitize_error_code(address, &error_code); | 
|  |  | 
|  | set_signal_archinfo(address, error_code); | 
|  |  | 
|  | if (si_code == SEGV_PKUERR) { | 
|  | force_sig_pkuerr((void __user *)address, pkey); | 
|  | } else { | 
|  | /* XXX: hwpoison faults will set the wrong code. */ | 
|  | force_sig_fault(signal, si_code, (void __user *)address); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Barring that, we can do the fixup and be happy. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AMD erratum #91 manifests as a spurious page fault on a PREFETCH | 
|  | * instruction. | 
|  | */ | 
|  | if (is_prefetch(regs, error_code, address)) | 
|  | return; | 
|  |  | 
|  | page_fault_oops(regs, error_code, address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print out info about fatal segfaults, if the show_unhandled_signals | 
|  | * sysctl is set: | 
|  | */ | 
|  | static inline void | 
|  | show_signal_msg(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address, struct task_struct *tsk) | 
|  | { | 
|  | const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; | 
|  | /* This is a racy snapshot, but it's better than nothing. */ | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (!unhandled_signal(tsk, SIGSEGV)) | 
|  | return; | 
|  |  | 
|  | if (!printk_ratelimit()) | 
|  | return; | 
|  |  | 
|  | printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", | 
|  | loglvl, tsk->comm, task_pid_nr(tsk), address, | 
|  | (void *)regs->ip, (void *)regs->sp, error_code); | 
|  |  | 
|  | print_vma_addr(KERN_CONT " in ", regs->ip); | 
|  |  | 
|  | /* | 
|  | * Dump the likely CPU where the fatal segfault happened. | 
|  | * This can help identify faulty hardware. | 
|  | */ | 
|  | printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, | 
|  | topology_core_id(cpu), topology_physical_package_id(cpu)); | 
|  |  | 
|  |  | 
|  | printk(KERN_CONT "\n"); | 
|  |  | 
|  | show_opcodes(regs, loglvl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The (legacy) vsyscall page is the long page in the kernel portion | 
|  | * of the address space that has user-accessible permissions. | 
|  | */ | 
|  | static bool is_vsyscall_vaddr(unsigned long vaddr) | 
|  | { | 
|  | return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address, u32 pkey, int si_code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | kernelmode_fixup_or_oops(regs, error_code, address, | 
|  | SIGSEGV, si_code, pkey); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!(error_code & X86_PF_USER)) { | 
|  | /* Implicit user access to kernel memory -- just oops */ | 
|  | page_fault_oops(regs, error_code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User mode accesses just cause a SIGSEGV. | 
|  | * It's possible to have interrupts off here: | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* | 
|  | * Valid to do another page fault here because this one came | 
|  | * from user space: | 
|  | */ | 
|  | if (is_prefetch(regs, error_code, address)) | 
|  | return; | 
|  |  | 
|  | if (is_errata100(regs, address)) | 
|  | return; | 
|  |  | 
|  | sanitize_error_code(address, &error_code); | 
|  |  | 
|  | if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) | 
|  | return; | 
|  |  | 
|  | if (likely(show_unhandled_signals)) | 
|  | show_signal_msg(regs, error_code, address, tsk); | 
|  |  | 
|  | set_signal_archinfo(address, error_code); | 
|  |  | 
|  | if (si_code == SEGV_PKUERR) | 
|  | force_sig_pkuerr((void __user *)address, pkey); | 
|  | else | 
|  | force_sig_fault(SIGSEGV, si_code, (void __user *)address); | 
|  |  | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __bad_area(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address, u32 pkey, int si_code) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * Fix it, but check if it's kernel or user first.. | 
|  | */ | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); | 
|  | } | 
|  |  | 
|  | static inline bool bad_area_access_from_pkeys(unsigned long error_code, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | /* This code is always called on the current mm */ | 
|  | bool foreign = false; | 
|  |  | 
|  | if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) | 
|  | return false; | 
|  | if (error_code & X86_PF_PK) | 
|  | return true; | 
|  | /* this checks permission keys on the VMA: */ | 
|  | if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), | 
|  | (error_code & X86_PF_INSTR), foreign)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | bad_area_access_error(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address, struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * This OSPKE check is not strictly necessary at runtime. | 
|  | * But, doing it this way allows compiler optimizations | 
|  | * if pkeys are compiled out. | 
|  | */ | 
|  | if (bad_area_access_from_pkeys(error_code, vma)) { | 
|  | /* | 
|  | * A protection key fault means that the PKRU value did not allow | 
|  | * access to some PTE.  Userspace can figure out what PKRU was | 
|  | * from the XSAVE state.  This function captures the pkey from | 
|  | * the vma and passes it to userspace so userspace can discover | 
|  | * which protection key was set on the PTE. | 
|  | * | 
|  | * If we get here, we know that the hardware signaled a X86_PF_PK | 
|  | * fault and that there was a VMA once we got in the fault | 
|  | * handler.  It does *not* guarantee that the VMA we find here | 
|  | * was the one that we faulted on. | 
|  | * | 
|  | * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4); | 
|  | * 2. T1   : set PKRU to deny access to pkey=4, touches page | 
|  | * 3. T1   : faults... | 
|  | * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5); | 
|  | * 5. T1   : enters fault handler, takes mmap_lock, etc... | 
|  | * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really | 
|  | *	     faulted on a pte with its pkey=4. | 
|  | */ | 
|  | u32 pkey = vma_pkey(vma); | 
|  |  | 
|  | __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); | 
|  | } else { | 
|  | __bad_area(regs, error_code, address, 0, SEGV_ACCERR); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, | 
|  | vm_fault_t fault) | 
|  | { | 
|  | /* Kernel mode? Handle exceptions or die: */ | 
|  | if (!user_mode(regs)) { | 
|  | kernelmode_fixup_or_oops(regs, error_code, address, | 
|  | SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* User-space => ok to do another page fault: */ | 
|  | if (is_prefetch(regs, error_code, address)) | 
|  | return; | 
|  |  | 
|  | sanitize_error_code(address, &error_code); | 
|  |  | 
|  | if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) | 
|  | return; | 
|  |  | 
|  | set_signal_archinfo(address, error_code); | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { | 
|  | struct task_struct *tsk = current; | 
|  | unsigned lsb = 0; | 
|  |  | 
|  | pr_err( | 
|  | "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", | 
|  | tsk->comm, tsk->pid, address); | 
|  | if (fault & VM_FAULT_HWPOISON_LARGE) | 
|  | lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); | 
|  | if (fault & VM_FAULT_HWPOISON) | 
|  | lsb = PAGE_SHIFT; | 
|  | force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); | 
|  | } | 
|  |  | 
|  | static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) | 
|  | { | 
|  | if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) | 
|  | return 0; | 
|  |  | 
|  | if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a spurious fault caused by a stale TLB entry. | 
|  | * | 
|  | * This allows us to lazily refresh the TLB when increasing the | 
|  | * permissions of a kernel page (RO -> RW or NX -> X).  Doing it | 
|  | * eagerly is very expensive since that implies doing a full | 
|  | * cross-processor TLB flush, even if no stale TLB entries exist | 
|  | * on other processors. | 
|  | * | 
|  | * Spurious faults may only occur if the TLB contains an entry with | 
|  | * fewer permission than the page table entry.  Non-present (P = 0) | 
|  | * and reserved bit (R = 1) faults are never spurious. | 
|  | * | 
|  | * There are no security implications to leaving a stale TLB when | 
|  | * increasing the permissions on a page. | 
|  | * | 
|  | * Returns non-zero if a spurious fault was handled, zero otherwise. | 
|  | * | 
|  | * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 | 
|  | * (Optional Invalidation). | 
|  | */ | 
|  | static noinline int | 
|  | spurious_kernel_fault(unsigned long error_code, unsigned long address) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Only writes to RO or instruction fetches from NX may cause | 
|  | * spurious faults. | 
|  | * | 
|  | * These could be from user or supervisor accesses but the TLB | 
|  | * is only lazily flushed after a kernel mapping protection | 
|  | * change, so user accesses are not expected to cause spurious | 
|  | * faults. | 
|  | */ | 
|  | if (error_code != (X86_PF_WRITE | X86_PF_PROT) && | 
|  | error_code != (X86_PF_INSTR | X86_PF_PROT)) | 
|  | return 0; | 
|  |  | 
|  | pgd = init_mm.pgd + pgd_index(address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return 0; | 
|  |  | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (!p4d_present(*p4d)) | 
|  | return 0; | 
|  |  | 
|  | if (p4d_large(*p4d)) | 
|  | return spurious_kernel_fault_check(error_code, (pte_t *) p4d); | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | if (!pud_present(*pud)) | 
|  | return 0; | 
|  |  | 
|  | if (pud_large(*pud)) | 
|  | return spurious_kernel_fault_check(error_code, (pte_t *) pud); | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd)) | 
|  | return 0; | 
|  |  | 
|  | if (pmd_large(*pmd)) | 
|  | return spurious_kernel_fault_check(error_code, (pte_t *) pmd); | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, address); | 
|  | if (!pte_present(*pte)) | 
|  | return 0; | 
|  |  | 
|  | ret = spurious_kernel_fault_check(error_code, pte); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Make sure we have permissions in PMD. | 
|  | * If not, then there's a bug in the page tables: | 
|  | */ | 
|  | ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); | 
|  | WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | NOKPROBE_SYMBOL(spurious_kernel_fault); | 
|  |  | 
|  | int show_unhandled_signals = 1; | 
|  |  | 
|  | static inline int | 
|  | access_error(unsigned long error_code, struct vm_area_struct *vma) | 
|  | { | 
|  | /* This is only called for the current mm, so: */ | 
|  | bool foreign = false; | 
|  |  | 
|  | /* | 
|  | * Read or write was blocked by protection keys.  This is | 
|  | * always an unconditional error and can never result in | 
|  | * a follow-up action to resolve the fault, like a COW. | 
|  | */ | 
|  | if (error_code & X86_PF_PK) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * SGX hardware blocked the access.  This usually happens | 
|  | * when the enclave memory contents have been destroyed, like | 
|  | * after a suspend/resume cycle. In any case, the kernel can't | 
|  | * fix the cause of the fault.  Handle the fault as an access | 
|  | * error even in cases where no actual access violation | 
|  | * occurred.  This allows userspace to rebuild the enclave in | 
|  | * response to the signal. | 
|  | */ | 
|  | if (unlikely(error_code & X86_PF_SGX)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Make sure to check the VMA so that we do not perform | 
|  | * faults just to hit a X86_PF_PK as soon as we fill in a | 
|  | * page. | 
|  | */ | 
|  | if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), | 
|  | (error_code & X86_PF_INSTR), foreign)) | 
|  | return 1; | 
|  |  | 
|  | if (error_code & X86_PF_WRITE) { | 
|  | /* write, present and write, not present: */ | 
|  | if (unlikely(!(vma->vm_flags & VM_WRITE))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* read, present: */ | 
|  | if (unlikely(error_code & X86_PF_PROT)) | 
|  | return 1; | 
|  |  | 
|  | /* read, not present: */ | 
|  | if (unlikely(!vma_is_accessible(vma))) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool fault_in_kernel_space(unsigned long address) | 
|  | { | 
|  | /* | 
|  | * On 64-bit systems, the vsyscall page is at an address above | 
|  | * TASK_SIZE_MAX, but is not considered part of the kernel | 
|  | * address space. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) | 
|  | return false; | 
|  |  | 
|  | return address >= TASK_SIZE_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called for all faults where 'address' is part of the kernel address | 
|  | * space.  Might get called for faults that originate from *code* that | 
|  | * ran in userspace or the kernel. | 
|  | */ | 
|  | static void | 
|  | do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | /* | 
|  | * Protection keys exceptions only happen on user pages.  We | 
|  | * have no user pages in the kernel portion of the address | 
|  | * space, so do not expect them here. | 
|  | */ | 
|  | WARN_ON_ONCE(hw_error_code & X86_PF_PK); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * We can fault-in kernel-space virtual memory on-demand. The | 
|  | * 'reference' page table is init_mm.pgd. | 
|  | * | 
|  | * NOTE! We MUST NOT take any locks for this case. We may | 
|  | * be in an interrupt or a critical region, and should | 
|  | * only copy the information from the master page table, | 
|  | * nothing more. | 
|  | * | 
|  | * Before doing this on-demand faulting, ensure that the | 
|  | * fault is not any of the following: | 
|  | * 1. A fault on a PTE with a reserved bit set. | 
|  | * 2. A fault caused by a user-mode access.  (Do not demand- | 
|  | *    fault kernel memory due to user-mode accesses). | 
|  | * 3. A fault caused by a page-level protection violation. | 
|  | *    (A demand fault would be on a non-present page which | 
|  | *     would have X86_PF_PROT==0). | 
|  | * | 
|  | * This is only needed to close a race condition on x86-32 in | 
|  | * the vmalloc mapping/unmapping code. See the comment above | 
|  | * vmalloc_fault() for details. On x86-64 the race does not | 
|  | * exist as the vmalloc mappings don't need to be synchronized | 
|  | * there. | 
|  | */ | 
|  | if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { | 
|  | if (vmalloc_fault(address) >= 0) | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (is_f00f_bug(regs, hw_error_code, address)) | 
|  | return; | 
|  |  | 
|  | /* Was the fault spurious, caused by lazy TLB invalidation? */ | 
|  | if (spurious_kernel_fault(hw_error_code, address)) | 
|  | return; | 
|  |  | 
|  | /* kprobes don't want to hook the spurious faults: */ | 
|  | if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Note, despite being a "bad area", there are quite a few | 
|  | * acceptable reasons to get here, such as erratum fixups | 
|  | * and handling kernel code that can fault, like get_user(). | 
|  | * | 
|  | * Don't take the mm semaphore here. If we fixup a prefetch | 
|  | * fault we could otherwise deadlock: | 
|  | */ | 
|  | bad_area_nosemaphore(regs, hw_error_code, address); | 
|  | } | 
|  | NOKPROBE_SYMBOL(do_kern_addr_fault); | 
|  |  | 
|  | /* | 
|  | * Handle faults in the user portion of the address space.  Nothing in here | 
|  | * should check X86_PF_USER without a specific justification: for almost | 
|  | * all purposes, we should treat a normal kernel access to user memory | 
|  | * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. | 
|  | * The one exception is AC flag handling, which is, per the x86 | 
|  | * architecture, special for WRUSS. | 
|  | */ | 
|  | static inline | 
|  | void do_user_addr_fault(struct pt_regs *regs, | 
|  | unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | vm_fault_t fault; | 
|  | unsigned int flags = FAULT_FLAG_DEFAULT; | 
|  |  | 
|  | tsk = current; | 
|  | mm = tsk->mm; | 
|  |  | 
|  | if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { | 
|  | /* | 
|  | * Whoops, this is kernel mode code trying to execute from | 
|  | * user memory.  Unless this is AMD erratum #93, which | 
|  | * corrupts RIP such that it looks like a user address, | 
|  | * this is unrecoverable.  Don't even try to look up the | 
|  | * VMA or look for extable entries. | 
|  | */ | 
|  | if (is_errata93(regs, address)) | 
|  | return; | 
|  |  | 
|  | page_fault_oops(regs, error_code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* kprobes don't want to hook the spurious faults: */ | 
|  | if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reserved bits are never expected to be set on | 
|  | * entries in the user portion of the page tables. | 
|  | */ | 
|  | if (unlikely(error_code & X86_PF_RSVD)) | 
|  | pgtable_bad(regs, error_code, address); | 
|  |  | 
|  | /* | 
|  | * If SMAP is on, check for invalid kernel (supervisor) access to user | 
|  | * pages in the user address space.  The odd case here is WRUSS, | 
|  | * which, according to the preliminary documentation, does not respect | 
|  | * SMAP and will have the USER bit set so, in all cases, SMAP | 
|  | * enforcement appears to be consistent with the USER bit. | 
|  | */ | 
|  | if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && | 
|  | !(error_code & X86_PF_USER) && | 
|  | !(regs->flags & X86_EFLAGS_AC))) { | 
|  | /* | 
|  | * No extable entry here.  This was a kernel access to an | 
|  | * invalid pointer.  get_kernel_nofault() will not get here. | 
|  | */ | 
|  | page_fault_oops(regs, error_code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt, have no user context or are running | 
|  | * in a region with pagefaults disabled then we must not take the fault | 
|  | */ | 
|  | if (unlikely(faulthandler_disabled() || !mm)) { | 
|  | bad_area_nosemaphore(regs, error_code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's safe to allow irq's after cr2 has been saved and the | 
|  | * vmalloc fault has been handled. | 
|  | * | 
|  | * User-mode registers count as a user access even for any | 
|  | * potential system fault or CPU buglet: | 
|  | */ | 
|  | if (user_mode(regs)) { | 
|  | local_irq_enable(); | 
|  | flags |= FAULT_FLAG_USER; | 
|  | } else { | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); | 
|  |  | 
|  | if (error_code & X86_PF_WRITE) | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | if (error_code & X86_PF_INSTR) | 
|  | flags |= FAULT_FLAG_INSTRUCTION; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Faults in the vsyscall page might need emulation.  The | 
|  | * vsyscall page is at a high address (>PAGE_OFFSET), but is | 
|  | * considered to be part of the user address space. | 
|  | * | 
|  | * The vsyscall page does not have a "real" VMA, so do this | 
|  | * emulation before we go searching for VMAs. | 
|  | * | 
|  | * PKRU never rejects instruction fetches, so we don't need | 
|  | * to consider the PF_PK bit. | 
|  | */ | 
|  | if (is_vsyscall_vaddr(address)) { | 
|  | if (emulate_vsyscall(error_code, regs, address)) | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | retry: | 
|  | vma = lock_mm_and_find_vma(mm, address, regs); | 
|  | if (unlikely(!vma)) { | 
|  | bad_area_nosemaphore(regs, error_code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we have a good vm_area for this memory access, so | 
|  | * we can handle it.. | 
|  | */ | 
|  | if (unlikely(access_error(error_code, vma))) { | 
|  | bad_area_access_error(regs, error_code, address, vma); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if | 
|  | * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. | 
|  | * | 
|  | * Note that handle_userfault() may also release and reacquire mmap_lock | 
|  | * (and not return with VM_FAULT_RETRY), when returning to userland to | 
|  | * repeat the page fault later with a VM_FAULT_NOPAGE retval | 
|  | * (potentially after handling any pending signal during the return to | 
|  | * userland). The return to userland is identified whenever | 
|  | * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. | 
|  | */ | 
|  | fault = handle_mm_fault(vma, address, flags, regs); | 
|  |  | 
|  | if (fault_signal_pending(fault, regs)) { | 
|  | /* | 
|  | * Quick path to respond to signals.  The core mm code | 
|  | * has unlocked the mm for us if we get here. | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | kernelmode_fixup_or_oops(regs, error_code, address, | 
|  | SIGBUS, BUS_ADRERR, | 
|  | ARCH_DEFAULT_PKEY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The fault is fully completed (including releasing mmap lock) */ | 
|  | if (fault & VM_FAULT_COMPLETED) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we need to retry the mmap_lock has already been released, | 
|  | * and if there is a fatal signal pending there is no guarantee | 
|  | * that we made any progress. Handle this case first. | 
|  | */ | 
|  | if (unlikely(fault & VM_FAULT_RETRY)) { | 
|  | flags |= FAULT_FLAG_TRIED; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | if (likely(!(fault & VM_FAULT_ERROR))) | 
|  | return; | 
|  |  | 
|  | if (fatal_signal_pending(current) && !user_mode(regs)) { | 
|  | kernelmode_fixup_or_oops(regs, error_code, address, | 
|  | 0, 0, ARCH_DEFAULT_PKEY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (fault & VM_FAULT_OOM) { | 
|  | /* Kernel mode? Handle exceptions or die: */ | 
|  | if (!user_mode(regs)) { | 
|  | kernelmode_fixup_or_oops(regs, error_code, address, | 
|  | SIGSEGV, SEGV_MAPERR, | 
|  | ARCH_DEFAULT_PKEY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, call the OOM killer, and return the | 
|  | * userspace (which will retry the fault, or kill us if we got | 
|  | * oom-killed): | 
|  | */ | 
|  | pagefault_out_of_memory(); | 
|  | } else { | 
|  | if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| | 
|  | VM_FAULT_HWPOISON_LARGE)) | 
|  | do_sigbus(regs, error_code, address, fault); | 
|  | else if (fault & VM_FAULT_SIGSEGV) | 
|  | bad_area_nosemaphore(regs, error_code, address); | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | NOKPROBE_SYMBOL(do_user_addr_fault); | 
|  |  | 
|  | static __always_inline void | 
|  | trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | if (!trace_pagefault_enabled()) | 
|  | return; | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | trace_page_fault_user(address, regs, error_code); | 
|  | else | 
|  | trace_page_fault_kernel(address, regs, error_code); | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | handle_page_fault(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address) | 
|  | { | 
|  | trace_page_fault_entries(regs, error_code, address); | 
|  |  | 
|  | if (unlikely(kmmio_fault(regs, address))) | 
|  | return; | 
|  |  | 
|  | /* Was the fault on kernel-controlled part of the address space? */ | 
|  | if (unlikely(fault_in_kernel_space(address))) { | 
|  | do_kern_addr_fault(regs, error_code, address); | 
|  | } else { | 
|  | do_user_addr_fault(regs, error_code, address); | 
|  | /* | 
|  | * User address page fault handling might have reenabled | 
|  | * interrupts. Fixing up all potential exit points of | 
|  | * do_user_addr_fault() and its leaf functions is just not | 
|  | * doable w/o creating an unholy mess or turning the code | 
|  | * upside down. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) | 
|  | { | 
|  | unsigned long address = read_cr2(); | 
|  | irqentry_state_t state; | 
|  |  | 
|  | prefetchw(¤t->mm->mmap_lock); | 
|  |  | 
|  | /* | 
|  | * KVM uses #PF vector to deliver 'page not present' events to guests | 
|  | * (asynchronous page fault mechanism). The event happens when a | 
|  | * userspace task is trying to access some valid (from guest's point of | 
|  | * view) memory which is not currently mapped by the host (e.g. the | 
|  | * memory is swapped out). Note, the corresponding "page ready" event | 
|  | * which is injected when the memory becomes available, is delivered via | 
|  | * an interrupt mechanism and not a #PF exception | 
|  | * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). | 
|  | * | 
|  | * We are relying on the interrupted context being sane (valid RSP, | 
|  | * relevant locks not held, etc.), which is fine as long as the | 
|  | * interrupted context had IF=1.  We are also relying on the KVM | 
|  | * async pf type field and CR2 being read consistently instead of | 
|  | * getting values from real and async page faults mixed up. | 
|  | * | 
|  | * Fingers crossed. | 
|  | * | 
|  | * The async #PF handling code takes care of idtentry handling | 
|  | * itself. | 
|  | */ | 
|  | if (kvm_handle_async_pf(regs, (u32)address)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Entry handling for valid #PF from kernel mode is slightly | 
|  | * different: RCU is already watching and ct_irq_enter() must not | 
|  | * be invoked because a kernel fault on a user space address might | 
|  | * sleep. | 
|  | * | 
|  | * In case the fault hit a RCU idle region the conditional entry | 
|  | * code reenabled RCU to avoid subsequent wreckage which helps | 
|  | * debuggability. | 
|  | */ | 
|  | state = irqentry_enter(regs); | 
|  |  | 
|  | instrumentation_begin(); | 
|  | handle_page_fault(regs, error_code, address); | 
|  | instrumentation_end(); | 
|  |  | 
|  | irqentry_exit(regs, state); | 
|  | } |