|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef _LINUX_MMZONE_H | 
|  | #define _LINUX_MMZONE_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #ifndef __GENERATING_BOUNDS_H | 
|  |  | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pageblock-flags.h> | 
|  | #include <linux/page-flags-layout.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <asm/page.h> | 
|  |  | 
|  | /* Free memory management - zoned buddy allocator.  */ | 
|  | #ifndef CONFIG_FORCE_MAX_ZONEORDER | 
|  | #define MAX_ORDER 11 | 
|  | #else | 
|  | #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER | 
|  | #endif | 
|  | #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) | 
|  |  | 
|  | /* | 
|  | * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed | 
|  | * costly to service.  That is between allocation orders which should | 
|  | * coalesce naturally under reasonable reclaim pressure and those which | 
|  | * will not. | 
|  | */ | 
|  | #define PAGE_ALLOC_COSTLY_ORDER 3 | 
|  |  | 
|  | enum migratetype { | 
|  | MIGRATE_UNMOVABLE, | 
|  | MIGRATE_MOVABLE, | 
|  | MIGRATE_RECLAIMABLE, | 
|  | MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */ | 
|  | MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, | 
|  | #ifdef CONFIG_CMA | 
|  | /* | 
|  | * MIGRATE_CMA migration type is designed to mimic the way | 
|  | * ZONE_MOVABLE works.  Only movable pages can be allocated | 
|  | * from MIGRATE_CMA pageblocks and page allocator never | 
|  | * implicitly change migration type of MIGRATE_CMA pageblock. | 
|  | * | 
|  | * The way to use it is to change migratetype of a range of | 
|  | * pageblocks to MIGRATE_CMA which can be done by | 
|  | * __free_pageblock_cma() function.  What is important though | 
|  | * is that a range of pageblocks must be aligned to | 
|  | * MAX_ORDER_NR_PAGES should biggest page be bigger then | 
|  | * a single pageblock. | 
|  | */ | 
|  | MIGRATE_CMA, | 
|  | #endif | 
|  | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | MIGRATE_ISOLATE,	/* can't allocate from here */ | 
|  | #endif | 
|  | MIGRATE_TYPES | 
|  | }; | 
|  |  | 
|  | /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ | 
|  | extern const char * const migratetype_names[MIGRATE_TYPES]; | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) | 
|  | #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) | 
|  | #else | 
|  | #  define is_migrate_cma(migratetype) false | 
|  | #  define is_migrate_cma_page(_page) false | 
|  | #endif | 
|  |  | 
|  | static inline bool is_migrate_movable(int mt) | 
|  | { | 
|  | return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; | 
|  | } | 
|  |  | 
|  | #define for_each_migratetype_order(order, type) \ | 
|  | for (order = 0; order < MAX_ORDER; order++) \ | 
|  | for (type = 0; type < MIGRATE_TYPES; type++) | 
|  |  | 
|  | extern int page_group_by_mobility_disabled; | 
|  |  | 
|  | #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) | 
|  | #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) | 
|  |  | 
|  | #define get_pageblock_migratetype(page)					\ | 
|  | get_pfnblock_flags_mask(page, page_to_pfn(page),		\ | 
|  | PB_migrate_end, MIGRATETYPE_MASK) | 
|  |  | 
|  | struct free_area { | 
|  | struct list_head	free_list[MIGRATE_TYPES]; | 
|  | unsigned long		nr_free; | 
|  | }; | 
|  |  | 
|  | /* Used for pages not on another list */ | 
|  | static inline void add_to_free_area(struct page *page, struct free_area *area, | 
|  | int migratetype) | 
|  | { | 
|  | list_add(&page->lru, &area->free_list[migratetype]); | 
|  | area->nr_free++; | 
|  | } | 
|  |  | 
|  | /* Used for pages not on another list */ | 
|  | static inline void add_to_free_area_tail(struct page *page, struct free_area *area, | 
|  | int migratetype) | 
|  | { | 
|  | list_add_tail(&page->lru, &area->free_list[migratetype]); | 
|  | area->nr_free++; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR | 
|  | /* Used to preserve page allocation order entropy */ | 
|  | void add_to_free_area_random(struct page *page, struct free_area *area, | 
|  | int migratetype); | 
|  | #else | 
|  | static inline void add_to_free_area_random(struct page *page, | 
|  | struct free_area *area, int migratetype) | 
|  | { | 
|  | add_to_free_area(page, area, migratetype); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Used for pages which are on another list */ | 
|  | static inline void move_to_free_area(struct page *page, struct free_area *area, | 
|  | int migratetype) | 
|  | { | 
|  | list_move(&page->lru, &area->free_list[migratetype]); | 
|  | } | 
|  |  | 
|  | static inline struct page *get_page_from_free_area(struct free_area *area, | 
|  | int migratetype) | 
|  | { | 
|  | return list_first_entry_or_null(&area->free_list[migratetype], | 
|  | struct page, lru); | 
|  | } | 
|  |  | 
|  | static inline void del_page_from_free_area(struct page *page, | 
|  | struct free_area *area) | 
|  | { | 
|  | list_del(&page->lru); | 
|  | __ClearPageBuddy(page); | 
|  | set_page_private(page, 0); | 
|  | area->nr_free--; | 
|  | } | 
|  |  | 
|  | static inline bool free_area_empty(struct free_area *area, int migratetype) | 
|  | { | 
|  | return list_empty(&area->free_list[migratetype]); | 
|  | } | 
|  |  | 
|  | struct pglist_data; | 
|  |  | 
|  | /* | 
|  | * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. | 
|  | * So add a wild amount of padding here to ensure that they fall into separate | 
|  | * cachelines.  There are very few zone structures in the machine, so space | 
|  | * consumption is not a concern here. | 
|  | */ | 
|  | #if defined(CONFIG_SMP) | 
|  | struct zone_padding { | 
|  | char x[0]; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  | #define ZONE_PADDING(name)	struct zone_padding name; | 
|  | #else | 
|  | #define ZONE_PADDING(name) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | enum numa_stat_item { | 
|  | NUMA_HIT,		/* allocated in intended node */ | 
|  | NUMA_MISS,		/* allocated in non intended node */ | 
|  | NUMA_FOREIGN,		/* was intended here, hit elsewhere */ | 
|  | NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */ | 
|  | NUMA_LOCAL,		/* allocation from local node */ | 
|  | NUMA_OTHER,		/* allocation from other node */ | 
|  | NR_VM_NUMA_STAT_ITEMS | 
|  | }; | 
|  | #else | 
|  | #define NR_VM_NUMA_STAT_ITEMS 0 | 
|  | #endif | 
|  |  | 
|  | enum zone_stat_item { | 
|  | /* First 128 byte cacheline (assuming 64 bit words) */ | 
|  | NR_FREE_PAGES, | 
|  | NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ | 
|  | NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, | 
|  | NR_ZONE_ACTIVE_ANON, | 
|  | NR_ZONE_INACTIVE_FILE, | 
|  | NR_ZONE_ACTIVE_FILE, | 
|  | NR_ZONE_UNEVICTABLE, | 
|  | NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */ | 
|  | NR_MLOCK,		/* mlock()ed pages found and moved off LRU */ | 
|  | NR_PAGETABLE,		/* used for pagetables */ | 
|  | NR_KERNEL_STACK_KB,	/* measured in KiB */ | 
|  | /* Second 128 byte cacheline */ | 
|  | NR_BOUNCE, | 
|  | #if IS_ENABLED(CONFIG_ZSMALLOC) | 
|  | NR_ZSPAGES,		/* allocated in zsmalloc */ | 
|  | #endif | 
|  | NR_FREE_CMA_PAGES, | 
|  | NR_VM_ZONE_STAT_ITEMS }; | 
|  |  | 
|  | enum node_stat_item { | 
|  | NR_LRU_BASE, | 
|  | NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ | 
|  | NR_ACTIVE_ANON,		/*  "     "     "   "       "         */ | 
|  | NR_INACTIVE_FILE,	/*  "     "     "   "       "         */ | 
|  | NR_ACTIVE_FILE,		/*  "     "     "   "       "         */ | 
|  | NR_UNEVICTABLE,		/*  "     "     "   "       "         */ | 
|  | NR_SLAB_RECLAIMABLE, | 
|  | NR_SLAB_UNRECLAIMABLE, | 
|  | NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */ | 
|  | NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */ | 
|  | WORKINGSET_NODES, | 
|  | WORKINGSET_REFAULT, | 
|  | WORKINGSET_ACTIVATE, | 
|  | WORKINGSET_RESTORE, | 
|  | WORKINGSET_NODERECLAIM, | 
|  | NR_ANON_MAPPED,	/* Mapped anonymous pages */ | 
|  | NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables. | 
|  | only modified from process context */ | 
|  | NR_FILE_PAGES, | 
|  | NR_FILE_DIRTY, | 
|  | NR_WRITEBACK, | 
|  | NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */ | 
|  | NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */ | 
|  | NR_SHMEM_THPS, | 
|  | NR_SHMEM_PMDMAPPED, | 
|  | NR_FILE_THPS, | 
|  | NR_FILE_PMDMAPPED, | 
|  | NR_ANON_THPS, | 
|  | NR_UNSTABLE_NFS,	/* NFS unstable pages */ | 
|  | NR_VMSCAN_WRITE, | 
|  | NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */ | 
|  | NR_DIRTIED,		/* page dirtyings since bootup */ | 
|  | NR_WRITTEN,		/* page writings since bootup */ | 
|  | NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */ | 
|  | NR_VM_NODE_STAT_ITEMS | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We do arithmetic on the LRU lists in various places in the code, | 
|  | * so it is important to keep the active lists LRU_ACTIVE higher in | 
|  | * the array than the corresponding inactive lists, and to keep | 
|  | * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. | 
|  | * | 
|  | * This has to be kept in sync with the statistics in zone_stat_item | 
|  | * above and the descriptions in vmstat_text in mm/vmstat.c | 
|  | */ | 
|  | #define LRU_BASE 0 | 
|  | #define LRU_ACTIVE 1 | 
|  | #define LRU_FILE 2 | 
|  |  | 
|  | enum lru_list { | 
|  | LRU_INACTIVE_ANON = LRU_BASE, | 
|  | LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, | 
|  | LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, | 
|  | LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, | 
|  | LRU_UNEVICTABLE, | 
|  | NR_LRU_LISTS | 
|  | }; | 
|  |  | 
|  | #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) | 
|  |  | 
|  | #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) | 
|  |  | 
|  | static inline int is_file_lru(enum lru_list lru) | 
|  | { | 
|  | return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); | 
|  | } | 
|  |  | 
|  | static inline int is_active_lru(enum lru_list lru) | 
|  | { | 
|  | return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); | 
|  | } | 
|  |  | 
|  | struct zone_reclaim_stat { | 
|  | /* | 
|  | * The pageout code in vmscan.c keeps track of how many of the | 
|  | * mem/swap backed and file backed pages are referenced. | 
|  | * The higher the rotated/scanned ratio, the more valuable | 
|  | * that cache is. | 
|  | * | 
|  | * The anon LRU stats live in [0], file LRU stats in [1] | 
|  | */ | 
|  | unsigned long		recent_rotated[2]; | 
|  | unsigned long		recent_scanned[2]; | 
|  | }; | 
|  |  | 
|  | struct lruvec { | 
|  | struct list_head		lists[NR_LRU_LISTS]; | 
|  | struct zone_reclaim_stat	reclaim_stat; | 
|  | /* Evictions & activations on the inactive file list */ | 
|  | atomic_long_t			inactive_age; | 
|  | /* Refaults at the time of last reclaim cycle */ | 
|  | unsigned long			refaults; | 
|  | #ifdef CONFIG_MEMCG | 
|  | struct pglist_data *pgdat; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Isolate unmapped file */ | 
|  | #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2) | 
|  | /* Isolate for asynchronous migration */ | 
|  | #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4) | 
|  | /* Isolate unevictable pages */ | 
|  | #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8) | 
|  |  | 
|  | /* LRU Isolation modes. */ | 
|  | typedef unsigned __bitwise isolate_mode_t; | 
|  |  | 
|  | enum zone_watermarks { | 
|  | WMARK_MIN, | 
|  | WMARK_LOW, | 
|  | WMARK_HIGH, | 
|  | NR_WMARK | 
|  | }; | 
|  |  | 
|  | #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) | 
|  | #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) | 
|  | #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) | 
|  | #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) | 
|  |  | 
|  | struct per_cpu_pages { | 
|  | int count;		/* number of pages in the list */ | 
|  | int high;		/* high watermark, emptying needed */ | 
|  | int batch;		/* chunk size for buddy add/remove */ | 
|  |  | 
|  | /* Lists of pages, one per migrate type stored on the pcp-lists */ | 
|  | struct list_head lists[MIGRATE_PCPTYPES]; | 
|  | }; | 
|  |  | 
|  | struct per_cpu_pageset { | 
|  | struct per_cpu_pages pcp; | 
|  | #ifdef CONFIG_NUMA | 
|  | s8 expire; | 
|  | u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | s8 stat_threshold; | 
|  | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct per_cpu_nodestat { | 
|  | s8 stat_threshold; | 
|  | s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; | 
|  | }; | 
|  |  | 
|  | #endif /* !__GENERATING_BOUNDS.H */ | 
|  |  | 
|  | enum zone_type { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | /* | 
|  | * ZONE_DMA is used when there are devices that are not able | 
|  | * to do DMA to all of addressable memory (ZONE_NORMAL). Then we | 
|  | * carve out the portion of memory that is needed for these devices. | 
|  | * The range is arch specific. | 
|  | * | 
|  | * Some examples | 
|  | * | 
|  | * Architecture		Limit | 
|  | * --------------------------- | 
|  | * parisc, ia64, sparc	<4G | 
|  | * s390, powerpc	<2G | 
|  | * arm			Various | 
|  | * alpha		Unlimited or 0-16MB. | 
|  | * | 
|  | * i386, x86_64 and multiple other arches | 
|  | * 			<16M. | 
|  | */ | 
|  | ZONE_DMA, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | /* | 
|  | * x86_64 needs two ZONE_DMAs because it supports devices that are | 
|  | * only able to do DMA to the lower 16M but also 32 bit devices that | 
|  | * can only do DMA areas below 4G. | 
|  | */ | 
|  | ZONE_DMA32, | 
|  | #endif | 
|  | /* | 
|  | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | 
|  | * performed on pages in ZONE_NORMAL if the DMA devices support | 
|  | * transfers to all addressable memory. | 
|  | */ | 
|  | ZONE_NORMAL, | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | /* | 
|  | * A memory area that is only addressable by the kernel through | 
|  | * mapping portions into its own address space. This is for example | 
|  | * used by i386 to allow the kernel to address the memory beyond | 
|  | * 900MB. The kernel will set up special mappings (page | 
|  | * table entries on i386) for each page that the kernel needs to | 
|  | * access. | 
|  | */ | 
|  | ZONE_HIGHMEM, | 
|  | #endif | 
|  | ZONE_MOVABLE, | 
|  | #ifdef CONFIG_ZONE_DEVICE | 
|  | ZONE_DEVICE, | 
|  | #endif | 
|  | __MAX_NR_ZONES | 
|  |  | 
|  | }; | 
|  |  | 
|  | #ifndef __GENERATING_BOUNDS_H | 
|  |  | 
|  | struct zone { | 
|  | /* Read-mostly fields */ | 
|  |  | 
|  | /* zone watermarks, access with *_wmark_pages(zone) macros */ | 
|  | unsigned long _watermark[NR_WMARK]; | 
|  | unsigned long watermark_boost; | 
|  |  | 
|  | unsigned long nr_reserved_highatomic; | 
|  |  | 
|  | /* | 
|  | * We don't know if the memory that we're going to allocate will be | 
|  | * freeable or/and it will be released eventually, so to avoid totally | 
|  | * wasting several GB of ram we must reserve some of the lower zone | 
|  | * memory (otherwise we risk to run OOM on the lower zones despite | 
|  | * there being tons of freeable ram on the higher zones).  This array is | 
|  | * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl | 
|  | * changes. | 
|  | */ | 
|  | long lowmem_reserve[MAX_NR_ZONES]; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int node; | 
|  | #endif | 
|  | struct pglist_data	*zone_pgdat; | 
|  | struct per_cpu_pageset __percpu *pageset; | 
|  |  | 
|  | #ifndef CONFIG_SPARSEMEM | 
|  | /* | 
|  | * Flags for a pageblock_nr_pages block. See pageblock-flags.h. | 
|  | * In SPARSEMEM, this map is stored in struct mem_section | 
|  | */ | 
|  | unsigned long		*pageblock_flags; | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ | 
|  | unsigned long		zone_start_pfn; | 
|  |  | 
|  | /* | 
|  | * spanned_pages is the total pages spanned by the zone, including | 
|  | * holes, which is calculated as: | 
|  | * 	spanned_pages = zone_end_pfn - zone_start_pfn; | 
|  | * | 
|  | * present_pages is physical pages existing within the zone, which | 
|  | * is calculated as: | 
|  | *	present_pages = spanned_pages - absent_pages(pages in holes); | 
|  | * | 
|  | * managed_pages is present pages managed by the buddy system, which | 
|  | * is calculated as (reserved_pages includes pages allocated by the | 
|  | * bootmem allocator): | 
|  | *	managed_pages = present_pages - reserved_pages; | 
|  | * | 
|  | * So present_pages may be used by memory hotplug or memory power | 
|  | * management logic to figure out unmanaged pages by checking | 
|  | * (present_pages - managed_pages). And managed_pages should be used | 
|  | * by page allocator and vm scanner to calculate all kinds of watermarks | 
|  | * and thresholds. | 
|  | * | 
|  | * Locking rules: | 
|  | * | 
|  | * zone_start_pfn and spanned_pages are protected by span_seqlock. | 
|  | * It is a seqlock because it has to be read outside of zone->lock, | 
|  | * and it is done in the main allocator path.  But, it is written | 
|  | * quite infrequently. | 
|  | * | 
|  | * The span_seq lock is declared along with zone->lock because it is | 
|  | * frequently read in proximity to zone->lock.  It's good to | 
|  | * give them a chance of being in the same cacheline. | 
|  | * | 
|  | * Write access to present_pages at runtime should be protected by | 
|  | * mem_hotplug_begin/end(). Any reader who can't tolerant drift of | 
|  | * present_pages should get_online_mems() to get a stable value. | 
|  | */ | 
|  | atomic_long_t		managed_pages; | 
|  | unsigned long		spanned_pages; | 
|  | unsigned long		present_pages; | 
|  |  | 
|  | const char		*name; | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | /* | 
|  | * Number of isolated pageblock. It is used to solve incorrect | 
|  | * freepage counting problem due to racy retrieving migratetype | 
|  | * of pageblock. Protected by zone->lock. | 
|  | */ | 
|  | unsigned long		nr_isolate_pageblock; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* see spanned/present_pages for more description */ | 
|  | seqlock_t		span_seqlock; | 
|  | #endif | 
|  |  | 
|  | int initialized; | 
|  |  | 
|  | /* Write-intensive fields used from the page allocator */ | 
|  | ZONE_PADDING(_pad1_) | 
|  |  | 
|  | /* free areas of different sizes */ | 
|  | struct free_area	free_area[MAX_ORDER]; | 
|  |  | 
|  | /* zone flags, see below */ | 
|  | unsigned long		flags; | 
|  |  | 
|  | /* Primarily protects free_area */ | 
|  | spinlock_t		lock; | 
|  |  | 
|  | /* Write-intensive fields used by compaction and vmstats. */ | 
|  | ZONE_PADDING(_pad2_) | 
|  |  | 
|  | /* | 
|  | * When free pages are below this point, additional steps are taken | 
|  | * when reading the number of free pages to avoid per-cpu counter | 
|  | * drift allowing watermarks to be breached | 
|  | */ | 
|  | unsigned long percpu_drift_mark; | 
|  |  | 
|  | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
|  | /* pfn where compaction free scanner should start */ | 
|  | unsigned long		compact_cached_free_pfn; | 
|  | /* pfn where async and sync compaction migration scanner should start */ | 
|  | unsigned long		compact_cached_migrate_pfn[2]; | 
|  | unsigned long		compact_init_migrate_pfn; | 
|  | unsigned long		compact_init_free_pfn; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | /* | 
|  | * On compaction failure, 1<<compact_defer_shift compactions | 
|  | * are skipped before trying again. The number attempted since | 
|  | * last failure is tracked with compact_considered. | 
|  | */ | 
|  | unsigned int		compact_considered; | 
|  | unsigned int		compact_defer_shift; | 
|  | int			compact_order_failed; | 
|  | #endif | 
|  |  | 
|  | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
|  | /* Set to true when the PG_migrate_skip bits should be cleared */ | 
|  | bool			compact_blockskip_flush; | 
|  | #endif | 
|  |  | 
|  | bool			contiguous; | 
|  |  | 
|  | ZONE_PADDING(_pad3_) | 
|  | /* Zone statistics */ | 
|  | atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS]; | 
|  | atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  |  | 
|  | enum pgdat_flags { | 
|  | PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by | 
|  | * a congested BDI | 
|  | */ | 
|  | PGDAT_DIRTY,			/* reclaim scanning has recently found | 
|  | * many dirty file pages at the tail | 
|  | * of the LRU. | 
|  | */ | 
|  | PGDAT_WRITEBACK,		/* reclaim scanning has recently found | 
|  | * many pages under writeback | 
|  | */ | 
|  | PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */ | 
|  | }; | 
|  |  | 
|  | enum zone_flags { | 
|  | ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks. | 
|  | * Cleared when kswapd is woken. | 
|  | */ | 
|  | }; | 
|  |  | 
|  | static inline unsigned long zone_managed_pages(struct zone *zone) | 
|  | { | 
|  | return (unsigned long)atomic_long_read(&zone->managed_pages); | 
|  | } | 
|  |  | 
|  | static inline unsigned long zone_end_pfn(const struct zone *zone) | 
|  | { | 
|  | return zone->zone_start_pfn + zone->spanned_pages; | 
|  | } | 
|  |  | 
|  | static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) | 
|  | { | 
|  | return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); | 
|  | } | 
|  |  | 
|  | static inline bool zone_is_initialized(struct zone *zone) | 
|  | { | 
|  | return zone->initialized; | 
|  | } | 
|  |  | 
|  | static inline bool zone_is_empty(struct zone *zone) | 
|  | { | 
|  | return zone->spanned_pages == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty | 
|  | * intersection with the given zone | 
|  | */ | 
|  | static inline bool zone_intersects(struct zone *zone, | 
|  | unsigned long start_pfn, unsigned long nr_pages) | 
|  | { | 
|  | if (zone_is_empty(zone)) | 
|  | return false; | 
|  | if (start_pfn >= zone_end_pfn(zone) || | 
|  | start_pfn + nr_pages <= zone->zone_start_pfn) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The "priority" of VM scanning is how much of the queues we will scan in one | 
|  | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | 
|  | * queues ("queue_length >> 12") during an aging round. | 
|  | */ | 
|  | #define DEF_PRIORITY 12 | 
|  |  | 
|  | /* Maximum number of zones on a zonelist */ | 
|  | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | 
|  |  | 
|  | enum { | 
|  | ZONELIST_FALLBACK,	/* zonelist with fallback */ | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * The NUMA zonelists are doubled because we need zonelists that | 
|  | * restrict the allocations to a single node for __GFP_THISNODE. | 
|  | */ | 
|  | ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */ | 
|  | #endif | 
|  | MAX_ZONELISTS | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This struct contains information about a zone in a zonelist. It is stored | 
|  | * here to avoid dereferences into large structures and lookups of tables | 
|  | */ | 
|  | struct zoneref { | 
|  | struct zone *zone;	/* Pointer to actual zone */ | 
|  | int zone_idx;		/* zone_idx(zoneref->zone) */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * One allocation request operates on a zonelist. A zonelist | 
|  | * is a list of zones, the first one is the 'goal' of the | 
|  | * allocation, the other zones are fallback zones, in decreasing | 
|  | * priority. | 
|  | * | 
|  | * To speed the reading of the zonelist, the zonerefs contain the zone index | 
|  | * of the entry being read. Helper functions to access information given | 
|  | * a struct zoneref are | 
|  | * | 
|  | * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs | 
|  | * zonelist_zone_idx()	- Return the index of the zone for an entry | 
|  | * zonelist_node_idx()	- Return the index of the node for an entry | 
|  | */ | 
|  | struct zonelist { | 
|  | struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; | 
|  | }; | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | /* The array of struct pages - for discontigmem use pgdat->lmem_map */ | 
|  | extern struct page *mem_map; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | struct deferred_split { | 
|  | spinlock_t split_queue_lock; | 
|  | struct list_head split_queue; | 
|  | unsigned long split_queue_len; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On NUMA machines, each NUMA node would have a pg_data_t to describe | 
|  | * it's memory layout. On UMA machines there is a single pglist_data which | 
|  | * describes the whole memory. | 
|  | * | 
|  | * Memory statistics and page replacement data structures are maintained on a | 
|  | * per-zone basis. | 
|  | */ | 
|  | struct bootmem_data; | 
|  | typedef struct pglist_data { | 
|  | struct zone node_zones[MAX_NR_ZONES]; | 
|  | struct zonelist node_zonelists[MAX_ZONELISTS]; | 
|  | int nr_zones; | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */ | 
|  | struct page *node_mem_map; | 
|  | #ifdef CONFIG_PAGE_EXTENSION | 
|  | struct page_ext *node_page_ext; | 
|  | #endif | 
|  | #endif | 
|  | #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) | 
|  | /* | 
|  | * Must be held any time you expect node_start_pfn, | 
|  | * node_present_pages, node_spanned_pages or nr_zones to stay constant. | 
|  | * Also synchronizes pgdat->first_deferred_pfn during deferred page | 
|  | * init. | 
|  | * | 
|  | * pgdat_resize_lock() and pgdat_resize_unlock() are provided to | 
|  | * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG | 
|  | * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. | 
|  | * | 
|  | * Nests above zone->lock and zone->span_seqlock | 
|  | */ | 
|  | spinlock_t node_size_lock; | 
|  | #endif | 
|  | unsigned long node_start_pfn; | 
|  | unsigned long node_present_pages; /* total number of physical pages */ | 
|  | unsigned long node_spanned_pages; /* total size of physical page | 
|  | range, including holes */ | 
|  | int node_id; | 
|  | wait_queue_head_t kswapd_wait; | 
|  | wait_queue_head_t pfmemalloc_wait; | 
|  | struct task_struct *kswapd;	/* Protected by | 
|  | mem_hotplug_begin/end() */ | 
|  | int kswapd_order; | 
|  | enum zone_type kswapd_classzone_idx; | 
|  |  | 
|  | int kswapd_failures;		/* Number of 'reclaimed == 0' runs */ | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | int kcompactd_max_order; | 
|  | enum zone_type kcompactd_classzone_idx; | 
|  | wait_queue_head_t kcompactd_wait; | 
|  | struct task_struct *kcompactd; | 
|  | #endif | 
|  | /* | 
|  | * This is a per-node reserve of pages that are not available | 
|  | * to userspace allocations. | 
|  | */ | 
|  | unsigned long		totalreserve_pages; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * zone reclaim becomes active if more unmapped pages exist. | 
|  | */ | 
|  | unsigned long		min_unmapped_pages; | 
|  | unsigned long		min_slab_pages; | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* Write-intensive fields used by page reclaim */ | 
|  | ZONE_PADDING(_pad1_) | 
|  | spinlock_t		lru_lock; | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | /* | 
|  | * If memory initialisation on large machines is deferred then this | 
|  | * is the first PFN that needs to be initialised. | 
|  | */ | 
|  | unsigned long first_deferred_pfn; | 
|  | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | struct deferred_split deferred_split_queue; | 
|  | #endif | 
|  |  | 
|  | /* Fields commonly accessed by the page reclaim scanner */ | 
|  | struct lruvec		lruvec; | 
|  |  | 
|  | unsigned long		flags; | 
|  |  | 
|  | ZONE_PADDING(_pad2_) | 
|  |  | 
|  | /* Per-node vmstats */ | 
|  | struct per_cpu_nodestat __percpu *per_cpu_nodestats; | 
|  | atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS]; | 
|  | } pg_data_t; | 
|  |  | 
|  | #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages) | 
|  | #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages) | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr)) | 
|  | #else | 
|  | #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr)) | 
|  | #endif | 
|  | #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr)) | 
|  |  | 
|  | #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn) | 
|  | #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) | 
|  |  | 
|  | static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) | 
|  | { | 
|  | return &pgdat->lruvec; | 
|  | } | 
|  |  | 
|  | static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) | 
|  | { | 
|  | return pgdat->node_start_pfn + pgdat->node_spanned_pages; | 
|  | } | 
|  |  | 
|  | static inline bool pgdat_is_empty(pg_data_t *pgdat) | 
|  | { | 
|  | return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; | 
|  | } | 
|  |  | 
|  | #include <linux/memory_hotplug.h> | 
|  |  | 
|  | void build_all_zonelists(pg_data_t *pgdat); | 
|  | void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, | 
|  | enum zone_type classzone_idx); | 
|  | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
|  | int classzone_idx, unsigned int alloc_flags, | 
|  | long free_pages); | 
|  | bool zone_watermark_ok(struct zone *z, unsigned int order, | 
|  | unsigned long mark, int classzone_idx, | 
|  | unsigned int alloc_flags); | 
|  | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, | 
|  | unsigned long mark, int classzone_idx); | 
|  | /* | 
|  | * Memory initialization context, use to differentiate memory added by | 
|  | * the platform statically or via memory hotplug interface. | 
|  | */ | 
|  | enum meminit_context { | 
|  | MEMINIT_EARLY, | 
|  | MEMINIT_HOTPLUG, | 
|  | }; | 
|  |  | 
|  | extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, | 
|  | unsigned long size); | 
|  |  | 
|  | extern void lruvec_init(struct lruvec *lruvec); | 
|  |  | 
|  | static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) | 
|  | { | 
|  | #ifdef CONFIG_MEMCG | 
|  | return lruvec->pgdat; | 
|  | #else | 
|  | return container_of(lruvec, struct pglist_data, lruvec); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORY_PRESENT | 
|  | void memory_present(int nid, unsigned long start, unsigned long end); | 
|  | #else | 
|  | static inline void memory_present(int nid, unsigned long start, unsigned long end) {} | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_SPARSEMEM) | 
|  | void memblocks_present(void); | 
|  | #else | 
|  | static inline void memblocks_present(void) {} | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | int local_memory_node(int node_id); | 
|  | #else | 
|  | static inline int local_memory_node(int node_id) { return node_id; }; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | 
|  | */ | 
|  | #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones) | 
|  |  | 
|  | /* | 
|  | * Returns true if a zone has pages managed by the buddy allocator. | 
|  | * All the reclaim decisions have to use this function rather than | 
|  | * populated_zone(). If the whole zone is reserved then we can easily | 
|  | * end up with populated_zone() && !managed_zone(). | 
|  | */ | 
|  | static inline bool managed_zone(struct zone *zone) | 
|  | { | 
|  | return zone_managed_pages(zone); | 
|  | } | 
|  |  | 
|  | /* Returns true if a zone has memory */ | 
|  | static inline bool populated_zone(struct zone *zone) | 
|  | { | 
|  | return zone->present_pages; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static inline int zone_to_nid(struct zone *zone) | 
|  | { | 
|  | return zone->node; | 
|  | } | 
|  |  | 
|  | static inline void zone_set_nid(struct zone *zone, int nid) | 
|  | { | 
|  | zone->node = nid; | 
|  | } | 
|  | #else | 
|  | static inline int zone_to_nid(struct zone *zone) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void zone_set_nid(struct zone *zone, int nid) {} | 
|  | #endif | 
|  |  | 
|  | extern int movable_zone; | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | static inline int zone_movable_is_highmem(void) | 
|  | { | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | return movable_zone == ZONE_HIGHMEM; | 
|  | #else | 
|  | return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int is_highmem_idx(enum zone_type idx) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | return (idx == ZONE_HIGHMEM || | 
|  | (idx == ZONE_MOVABLE && zone_movable_is_highmem())); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_highmem - helper function to quickly check if a struct zone is a | 
|  | *              highmem zone or not.  This is an attempt to keep references | 
|  | *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | 
|  | * @zone - pointer to struct zone variable | 
|  | */ | 
|  | static inline int is_highmem(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | return is_highmem_idx(zone_idx(zone)); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* These two functions are used to setup the per zone pages min values */ | 
|  | struct ctl_table; | 
|  | int min_free_kbytes_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; | 
|  | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  |  | 
|  | extern int numa_zonelist_order_handler(struct ctl_table *, int, | 
|  | void __user *, size_t *, loff_t *); | 
|  | extern char numa_zonelist_order[]; | 
|  | #define NUMA_ZONELIST_ORDER_LEN	16 | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  |  | 
|  | extern struct pglist_data contig_page_data; | 
|  | #define NODE_DATA(nid)		(&contig_page_data) | 
|  | #define NODE_MEM_MAP(nid)	mem_map | 
|  |  | 
|  | #else /* CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | #include <asm/mmzone.h> | 
|  |  | 
|  | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | extern struct pglist_data *first_online_pgdat(void); | 
|  | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | 
|  | extern struct zone *next_zone(struct zone *zone); | 
|  |  | 
|  | /** | 
|  | * for_each_online_pgdat - helper macro to iterate over all online nodes | 
|  | * @pgdat - pointer to a pg_data_t variable | 
|  | */ | 
|  | #define for_each_online_pgdat(pgdat)			\ | 
|  | for (pgdat = first_online_pgdat();		\ | 
|  | pgdat;					\ | 
|  | pgdat = next_online_pgdat(pgdat)) | 
|  | /** | 
|  | * for_each_zone - helper macro to iterate over all memory zones | 
|  | * @zone - pointer to struct zone variable | 
|  | * | 
|  | * The user only needs to declare the zone variable, for_each_zone | 
|  | * fills it in. | 
|  | */ | 
|  | #define for_each_zone(zone)			        \ | 
|  | for (zone = (first_online_pgdat())->node_zones; \ | 
|  | zone;					\ | 
|  | zone = next_zone(zone)) | 
|  |  | 
|  | #define for_each_populated_zone(zone)		        \ | 
|  | for (zone = (first_online_pgdat())->node_zones; \ | 
|  | zone;					\ | 
|  | zone = next_zone(zone))			\ | 
|  | if (!populated_zone(zone))		\ | 
|  | ; /* do nothing */		\ | 
|  | else | 
|  |  | 
|  | static inline struct zone *zonelist_zone(struct zoneref *zoneref) | 
|  | { | 
|  | return zoneref->zone; | 
|  | } | 
|  |  | 
|  | static inline int zonelist_zone_idx(struct zoneref *zoneref) | 
|  | { | 
|  | return zoneref->zone_idx; | 
|  | } | 
|  |  | 
|  | static inline int zonelist_node_idx(struct zoneref *zoneref) | 
|  | { | 
|  | return zone_to_nid(zoneref->zone); | 
|  | } | 
|  |  | 
|  | struct zoneref *__next_zones_zonelist(struct zoneref *z, | 
|  | enum zone_type highest_zoneidx, | 
|  | nodemask_t *nodes); | 
|  |  | 
|  | /** | 
|  | * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point | 
|  | * @z - The cursor used as a starting point for the search | 
|  | * @highest_zoneidx - The zone index of the highest zone to return | 
|  | * @nodes - An optional nodemask to filter the zonelist with | 
|  | * | 
|  | * This function returns the next zone at or below a given zone index that is | 
|  | * within the allowed nodemask using a cursor as the starting point for the | 
|  | * search. The zoneref returned is a cursor that represents the current zone | 
|  | * being examined. It should be advanced by one before calling | 
|  | * next_zones_zonelist again. | 
|  | */ | 
|  | static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, | 
|  | enum zone_type highest_zoneidx, | 
|  | nodemask_t *nodes) | 
|  | { | 
|  | if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) | 
|  | return z; | 
|  | return __next_zones_zonelist(z, highest_zoneidx, nodes); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist | 
|  | * @zonelist - The zonelist to search for a suitable zone | 
|  | * @highest_zoneidx - The zone index of the highest zone to return | 
|  | * @nodes - An optional nodemask to filter the zonelist with | 
|  | * @return - Zoneref pointer for the first suitable zone found (see below) | 
|  | * | 
|  | * This function returns the first zone at or below a given zone index that is | 
|  | * within the allowed nodemask. The zoneref returned is a cursor that can be | 
|  | * used to iterate the zonelist with next_zones_zonelist by advancing it by | 
|  | * one before calling. | 
|  | * | 
|  | * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is | 
|  | * never NULL). This may happen either genuinely, or due to concurrent nodemask | 
|  | * update due to cpuset modification. | 
|  | */ | 
|  | static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, | 
|  | enum zone_type highest_zoneidx, | 
|  | nodemask_t *nodes) | 
|  | { | 
|  | return next_zones_zonelist(zonelist->_zonerefs, | 
|  | highest_zoneidx, nodes); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask | 
|  | * @zone - The current zone in the iterator | 
|  | * @z - The current pointer within zonelist->zones being iterated | 
|  | * @zlist - The zonelist being iterated | 
|  | * @highidx - The zone index of the highest zone to return | 
|  | * @nodemask - Nodemask allowed by the allocator | 
|  | * | 
|  | * This iterator iterates though all zones at or below a given zone index and | 
|  | * within a given nodemask | 
|  | */ | 
|  | #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ | 
|  | for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\ | 
|  | zone;							\ | 
|  | z = next_zones_zonelist(++z, highidx, nodemask),	\ | 
|  | zone = zonelist_zone(z)) | 
|  |  | 
|  | #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ | 
|  | for (zone = z->zone;	\ | 
|  | zone;							\ | 
|  | z = next_zones_zonelist(++z, highidx, nodemask),	\ | 
|  | zone = zonelist_zone(z)) | 
|  |  | 
|  |  | 
|  | /** | 
|  | * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index | 
|  | * @zone - The current zone in the iterator | 
|  | * @z - The current pointer within zonelist->zones being iterated | 
|  | * @zlist - The zonelist being iterated | 
|  | * @highidx - The zone index of the highest zone to return | 
|  | * | 
|  | * This iterator iterates though all zones at or below a given zone index. | 
|  | */ | 
|  | #define for_each_zone_zonelist(zone, z, zlist, highidx) \ | 
|  | for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | #include <asm/sparsemem.h> | 
|  | #endif | 
|  |  | 
|  | #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ | 
|  | !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | 
|  | static inline unsigned long early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FLATMEM | 
|  | #define pfn_to_nid(pfn)		(0) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  |  | 
|  | /* | 
|  | * SECTION_SHIFT    		#bits space required to store a section # | 
|  | * | 
|  | * PA_SECTION_SHIFT		physical address to/from section number | 
|  | * PFN_SECTION_SHIFT		pfn to/from section number | 
|  | */ | 
|  | #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS) | 
|  | #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT) | 
|  |  | 
|  | #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT) | 
|  |  | 
|  | #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT) | 
|  | #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1)) | 
|  |  | 
|  | #define SECTION_BLOCKFLAGS_BITS \ | 
|  | ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) | 
|  |  | 
|  | #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS | 
|  | #error Allocator MAX_ORDER exceeds SECTION_SIZE | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long pfn_to_section_nr(unsigned long pfn) | 
|  | { | 
|  | return pfn >> PFN_SECTION_SHIFT; | 
|  | } | 
|  | static inline unsigned long section_nr_to_pfn(unsigned long sec) | 
|  | { | 
|  | return sec << PFN_SECTION_SHIFT; | 
|  | } | 
|  |  | 
|  | #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) | 
|  | #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK) | 
|  |  | 
|  | #define SUBSECTION_SHIFT 21 | 
|  |  | 
|  | #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) | 
|  | #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) | 
|  | #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) | 
|  |  | 
|  | #if SUBSECTION_SHIFT > SECTION_SIZE_BITS | 
|  | #error Subsection size exceeds section size | 
|  | #else | 
|  | #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) | 
|  | #endif | 
|  |  | 
|  | #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) | 
|  | #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) | 
|  |  | 
|  | struct mem_section_usage { | 
|  | DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); | 
|  | /* See declaration of similar field in struct zone */ | 
|  | unsigned long pageblock_flags[0]; | 
|  | }; | 
|  |  | 
|  | void subsection_map_init(unsigned long pfn, unsigned long nr_pages); | 
|  |  | 
|  | struct page; | 
|  | struct page_ext; | 
|  | struct mem_section { | 
|  | /* | 
|  | * This is, logically, a pointer to an array of struct | 
|  | * pages.  However, it is stored with some other magic. | 
|  | * (see sparse.c::sparse_init_one_section()) | 
|  | * | 
|  | * Additionally during early boot we encode node id of | 
|  | * the location of the section here to guide allocation. | 
|  | * (see sparse.c::memory_present()) | 
|  | * | 
|  | * Making it a UL at least makes someone do a cast | 
|  | * before using it wrong. | 
|  | */ | 
|  | unsigned long section_mem_map; | 
|  |  | 
|  | struct mem_section_usage *usage; | 
|  | #ifdef CONFIG_PAGE_EXTENSION | 
|  | /* | 
|  | * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use | 
|  | * section. (see page_ext.h about this.) | 
|  | */ | 
|  | struct page_ext *page_ext; | 
|  | unsigned long pad; | 
|  | #endif | 
|  | /* | 
|  | * WARNING: mem_section must be a power-of-2 in size for the | 
|  | * calculation and use of SECTION_ROOT_MASK to make sense. | 
|  | */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section)) | 
|  | #else | 
|  | #define SECTIONS_PER_ROOT	1 | 
|  | #endif | 
|  |  | 
|  | #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT) | 
|  | #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) | 
|  | #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | extern struct mem_section **mem_section; | 
|  | #else | 
|  | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long *section_to_usemap(struct mem_section *ms) | 
|  | { | 
|  | return ms->usage->pageblock_flags; | 
|  | } | 
|  |  | 
|  | static inline struct mem_section *__nr_to_section(unsigned long nr) | 
|  | { | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | if (!mem_section) | 
|  | return NULL; | 
|  | #endif | 
|  | if (!mem_section[SECTION_NR_TO_ROOT(nr)]) | 
|  | return NULL; | 
|  | return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; | 
|  | } | 
|  | extern unsigned long __section_nr(struct mem_section *ms); | 
|  | extern size_t mem_section_usage_size(void); | 
|  |  | 
|  | /* | 
|  | * We use the lower bits of the mem_map pointer to store | 
|  | * a little bit of information.  The pointer is calculated | 
|  | * as mem_map - section_nr_to_pfn(pnum).  The result is | 
|  | * aligned to the minimum alignment of the two values: | 
|  | *   1. All mem_map arrays are page-aligned. | 
|  | *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT | 
|  | *      lowest bits.  PFN_SECTION_SHIFT is arch-specific | 
|  | *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the | 
|  | *      worst combination is powerpc with 256k pages, | 
|  | *      which results in PFN_SECTION_SHIFT equal 6. | 
|  | * To sum it up, at least 6 bits are available. | 
|  | */ | 
|  | #define	SECTION_MARKED_PRESENT	(1UL<<0) | 
|  | #define SECTION_HAS_MEM_MAP	(1UL<<1) | 
|  | #define SECTION_IS_ONLINE	(1UL<<2) | 
|  | #define SECTION_IS_EARLY	(1UL<<3) | 
|  | #define SECTION_MAP_LAST_BIT	(1UL<<4) | 
|  | #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1)) | 
|  | #define SECTION_NID_SHIFT	3 | 
|  |  | 
|  | static inline struct page *__section_mem_map_addr(struct mem_section *section) | 
|  | { | 
|  | unsigned long map = section->section_mem_map; | 
|  | map &= SECTION_MAP_MASK; | 
|  | return (struct page *)map; | 
|  | } | 
|  |  | 
|  | static inline int present_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); | 
|  | } | 
|  |  | 
|  | static inline int present_section_nr(unsigned long nr) | 
|  | { | 
|  | return present_section(__nr_to_section(nr)); | 
|  | } | 
|  |  | 
|  | static inline int valid_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); | 
|  | } | 
|  |  | 
|  | static inline int early_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_IS_EARLY)); | 
|  | } | 
|  |  | 
|  | static inline int valid_section_nr(unsigned long nr) | 
|  | { | 
|  | return valid_section(__nr_to_section(nr)); | 
|  | } | 
|  |  | 
|  | static inline int online_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_IS_ONLINE)); | 
|  | } | 
|  |  | 
|  | static inline int online_section_nr(unsigned long nr) | 
|  | { | 
|  | return online_section(__nr_to_section(nr)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static inline struct mem_section *__pfn_to_section(unsigned long pfn) | 
|  | { | 
|  | return __nr_to_section(pfn_to_section_nr(pfn)); | 
|  | } | 
|  |  | 
|  | extern unsigned long __highest_present_section_nr; | 
|  |  | 
|  | static inline int subsection_map_index(unsigned long pfn) | 
|  | { | 
|  | return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) | 
|  | { | 
|  | int idx = subsection_map_index(pfn); | 
|  |  | 
|  | return test_bit(idx, ms->usage->subsection_map); | 
|  | } | 
|  | #else | 
|  | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_HAVE_ARCH_PFN_VALID | 
|  | static inline int pfn_valid(unsigned long pfn) | 
|  | { | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|  | return 0; | 
|  | ms = __nr_to_section(pfn_to_section_nr(pfn)); | 
|  | if (!valid_section(ms)) | 
|  | return 0; | 
|  | /* | 
|  | * Traditionally early sections always returned pfn_valid() for | 
|  | * the entire section-sized span. | 
|  | */ | 
|  | return early_section(ms) || pfn_section_valid(ms, pfn); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int pfn_present(unsigned long pfn) | 
|  | { | 
|  | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|  | return 0; | 
|  | return present_section(__nr_to_section(pfn_to_section_nr(pfn))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are _only_ used during initialisation, therefore they | 
|  | * can use __initdata ...  They could have names to indicate | 
|  | * this restriction. | 
|  | */ | 
|  | #ifdef CONFIG_NUMA | 
|  | #define pfn_to_nid(pfn)							\ | 
|  | ({									\ | 
|  | unsigned long __pfn_to_nid_pfn = (pfn);				\ | 
|  | page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\ | 
|  | }) | 
|  | #else | 
|  | #define pfn_to_nid(pfn)		(0) | 
|  | #endif | 
|  |  | 
|  | #define early_pfn_valid(pfn)	pfn_valid(pfn) | 
|  | void sparse_init(void); | 
|  | #else | 
|  | #define sparse_init()	do {} while (0) | 
|  | #define sparse_index_init(_sec, _nid)  do {} while (0) | 
|  | #define pfn_present pfn_valid | 
|  | #define subsection_map_init(_pfn, _nr_pages) do {} while (0) | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  | /* | 
|  | * During memory init memblocks map pfns to nids. The search is expensive and | 
|  | * this caches recent lookups. The implementation of __early_pfn_to_nid | 
|  | * may treat start/end as pfns or sections. | 
|  | */ | 
|  | struct mminit_pfnnid_cache { | 
|  | unsigned long last_start; | 
|  | unsigned long last_end; | 
|  | int last_nid; | 
|  | }; | 
|  |  | 
|  | #ifndef early_pfn_valid | 
|  | #define early_pfn_valid(pfn)	(1) | 
|  | #endif | 
|  |  | 
|  | void memory_present(int nid, unsigned long start, unsigned long end); | 
|  |  | 
|  | /* | 
|  | * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we | 
|  | * need to check pfn validity within that MAX_ORDER_NR_PAGES block. | 
|  | * pfn_valid_within() should be used in this case; we optimise this away | 
|  | * when we have no holes within a MAX_ORDER_NR_PAGES block. | 
|  | */ | 
|  | #ifdef CONFIG_HOLES_IN_ZONE | 
|  | #define pfn_valid_within(pfn) pfn_valid(pfn) | 
|  | #else | 
|  | #define pfn_valid_within(pfn) (1) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL | 
|  | /* | 
|  | * pfn_valid() is meant to be able to tell if a given PFN has valid memmap | 
|  | * associated with it or not. This means that a struct page exists for this | 
|  | * pfn. The caller cannot assume the page is fully initialized in general. | 
|  | * Hotplugable pages might not have been onlined yet. pfn_to_online_page() | 
|  | * will ensure the struct page is fully online and initialized. Special pages | 
|  | * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. | 
|  | * | 
|  | * In FLATMEM, it is expected that holes always have valid memmap as long as | 
|  | * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed | 
|  | * that a valid section has a memmap for the entire section. | 
|  | * | 
|  | * However, an ARM, and maybe other embedded architectures in the future | 
|  | * free memmap backing holes to save memory on the assumption the memmap is | 
|  | * never used. The page_zone linkages are then broken even though pfn_valid() | 
|  | * returns true. A walker of the full memmap must then do this additional | 
|  | * check to ensure the memmap they are looking at is sane by making sure | 
|  | * the zone and PFN linkages are still valid. This is expensive, but walkers | 
|  | * of the full memmap are extremely rare. | 
|  | */ | 
|  | bool memmap_valid_within(unsigned long pfn, | 
|  | struct page *page, struct zone *zone); | 
|  | #else | 
|  | static inline bool memmap_valid_within(unsigned long pfn, | 
|  | struct page *page, struct zone *zone) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ | 
|  |  | 
|  | #endif /* !__GENERATING_BOUNDS.H */ | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  | #endif /* _LINUX_MMZONE_H */ |