|  | /* | 
|  | *  include/linux/ktime.h | 
|  | * | 
|  | *  ktime_t - nanosecond-resolution time format. | 
|  | * | 
|  | *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> | 
|  | *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar | 
|  | * | 
|  | *  data type definitions, declarations, prototypes and macros. | 
|  | * | 
|  | *  Started by: Thomas Gleixner and Ingo Molnar | 
|  | * | 
|  | *  Credits: | 
|  | * | 
|  | *  	Roman Zippel provided the ideas and primary code snippets of | 
|  | *  	the ktime_t union and further simplifications of the original | 
|  | *  	code. | 
|  | * | 
|  | *  For licencing details see kernel-base/COPYING | 
|  | */ | 
|  | #ifndef _LINUX_KTIME_H | 
|  | #define _LINUX_KTIME_H | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/jiffies.h> | 
|  |  | 
|  | /* Nanosecond scalar representation for kernel time values */ | 
|  | typedef s64	ktime_t; | 
|  |  | 
|  | /** | 
|  | * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value | 
|  | * @secs:	seconds to set | 
|  | * @nsecs:	nanoseconds to set | 
|  | * | 
|  | * Return: The ktime_t representation of the value. | 
|  | */ | 
|  | static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) | 
|  | { | 
|  | if (unlikely(secs >= KTIME_SEC_MAX)) | 
|  | return KTIME_MAX; | 
|  |  | 
|  | return secs * NSEC_PER_SEC + (s64)nsecs; | 
|  | } | 
|  |  | 
|  | /* Subtract two ktime_t variables. rem = lhs -rhs: */ | 
|  | #define ktime_sub(lhs, rhs)	((lhs) - (rhs)) | 
|  |  | 
|  | /* Add two ktime_t variables. res = lhs + rhs: */ | 
|  | #define ktime_add(lhs, rhs)	((lhs) + (rhs)) | 
|  |  | 
|  | /* | 
|  | * Same as ktime_add(), but avoids undefined behaviour on overflow; however, | 
|  | * this means that you must check the result for overflow yourself. | 
|  | */ | 
|  | #define ktime_add_unsafe(lhs, rhs)	((u64) (lhs) + (rhs)) | 
|  |  | 
|  | /* | 
|  | * Add a ktime_t variable and a scalar nanosecond value. | 
|  | * res = kt + nsval: | 
|  | */ | 
|  | #define ktime_add_ns(kt, nsval)		((kt) + (nsval)) | 
|  |  | 
|  | /* | 
|  | * Subtract a scalar nanosecod from a ktime_t variable | 
|  | * res = kt - nsval: | 
|  | */ | 
|  | #define ktime_sub_ns(kt, nsval)		((kt) - (nsval)) | 
|  |  | 
|  | /* convert a timespec to ktime_t format: */ | 
|  | static inline ktime_t timespec_to_ktime(struct timespec ts) | 
|  | { | 
|  | return ktime_set(ts.tv_sec, ts.tv_nsec); | 
|  | } | 
|  |  | 
|  | /* convert a timespec64 to ktime_t format: */ | 
|  | static inline ktime_t timespec64_to_ktime(struct timespec64 ts) | 
|  | { | 
|  | return ktime_set(ts.tv_sec, ts.tv_nsec); | 
|  | } | 
|  |  | 
|  | /* convert a timeval to ktime_t format: */ | 
|  | static inline ktime_t timeval_to_ktime(struct timeval tv) | 
|  | { | 
|  | return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | /* Map the ktime_t to timespec conversion to ns_to_timespec function */ | 
|  | #define ktime_to_timespec(kt)		ns_to_timespec((kt)) | 
|  |  | 
|  | /* Map the ktime_t to timespec conversion to ns_to_timespec function */ | 
|  | #define ktime_to_timespec64(kt)		ns_to_timespec64((kt)) | 
|  |  | 
|  | /* Map the ktime_t to timeval conversion to ns_to_timeval function */ | 
|  | #define ktime_to_timeval(kt)		ns_to_timeval((kt)) | 
|  |  | 
|  | /* Convert ktime_t to nanoseconds */ | 
|  | static inline s64 ktime_to_ns(const ktime_t kt) | 
|  | { | 
|  | return kt; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_compare - Compares two ktime_t variables for less, greater or equal | 
|  | * @cmp1:	comparable1 | 
|  | * @cmp2:	comparable2 | 
|  | * | 
|  | * Return: ... | 
|  | *   cmp1  < cmp2: return <0 | 
|  | *   cmp1 == cmp2: return 0 | 
|  | *   cmp1  > cmp2: return >0 | 
|  | */ | 
|  | static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) | 
|  | { | 
|  | if (cmp1 < cmp2) | 
|  | return -1; | 
|  | if (cmp1 > cmp2) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_after - Compare if a ktime_t value is bigger than another one. | 
|  | * @cmp1:	comparable1 | 
|  | * @cmp2:	comparable2 | 
|  | * | 
|  | * Return: true if cmp1 happened after cmp2. | 
|  | */ | 
|  | static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) | 
|  | { | 
|  | return ktime_compare(cmp1, cmp2) > 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_before - Compare if a ktime_t value is smaller than another one. | 
|  | * @cmp1:	comparable1 | 
|  | * @cmp2:	comparable2 | 
|  | * | 
|  | * Return: true if cmp1 happened before cmp2. | 
|  | */ | 
|  | static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) | 
|  | { | 
|  | return ktime_compare(cmp1, cmp2) < 0; | 
|  | } | 
|  |  | 
|  | #if BITS_PER_LONG < 64 | 
|  | extern s64 __ktime_divns(const ktime_t kt, s64 div); | 
|  | static inline s64 ktime_divns(const ktime_t kt, s64 div) | 
|  | { | 
|  | /* | 
|  | * Negative divisors could cause an inf loop, | 
|  | * so bug out here. | 
|  | */ | 
|  | BUG_ON(div < 0); | 
|  | if (__builtin_constant_p(div) && !(div >> 32)) { | 
|  | s64 ns = kt; | 
|  | u64 tmp = ns < 0 ? -ns : ns; | 
|  |  | 
|  | do_div(tmp, div); | 
|  | return ns < 0 ? -tmp : tmp; | 
|  | } else { | 
|  | return __ktime_divns(kt, div); | 
|  | } | 
|  | } | 
|  | #else /* BITS_PER_LONG < 64 */ | 
|  | static inline s64 ktime_divns(const ktime_t kt, s64 div) | 
|  | { | 
|  | /* | 
|  | * 32-bit implementation cannot handle negative divisors, | 
|  | * so catch them on 64bit as well. | 
|  | */ | 
|  | WARN_ON(div < 0); | 
|  | return kt / div; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline s64 ktime_to_us(const ktime_t kt) | 
|  | { | 
|  | return ktime_divns(kt, NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | static inline s64 ktime_to_ms(const ktime_t kt) | 
|  | { | 
|  | return ktime_divns(kt, NSEC_PER_MSEC); | 
|  | } | 
|  |  | 
|  | static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) | 
|  | { | 
|  | return ktime_to_us(ktime_sub(later, earlier)); | 
|  | } | 
|  |  | 
|  | static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) | 
|  | { | 
|  | return ktime_to_ms(ktime_sub(later, earlier)); | 
|  | } | 
|  |  | 
|  | static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) | 
|  | { | 
|  | return ktime_add_ns(kt, usec * NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) | 
|  | { | 
|  | return ktime_add_ns(kt, msec * NSEC_PER_MSEC); | 
|  | } | 
|  |  | 
|  | static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) | 
|  | { | 
|  | return ktime_sub_ns(kt, usec * NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) | 
|  | { | 
|  | return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); | 
|  | } | 
|  |  | 
|  | extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); | 
|  |  | 
|  | /** | 
|  | * ktime_to_timespec_cond - convert a ktime_t variable to timespec | 
|  | *			    format only if the variable contains data | 
|  | * @kt:		the ktime_t variable to convert | 
|  | * @ts:		the timespec variable to store the result in | 
|  | * | 
|  | * Return: %true if there was a successful conversion, %false if kt was 0. | 
|  | */ | 
|  | static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt, | 
|  | struct timespec *ts) | 
|  | { | 
|  | if (kt) { | 
|  | *ts = ktime_to_timespec(kt); | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 | 
|  | *			    format only if the variable contains data | 
|  | * @kt:		the ktime_t variable to convert | 
|  | * @ts:		the timespec variable to store the result in | 
|  | * | 
|  | * Return: %true if there was a successful conversion, %false if kt was 0. | 
|  | */ | 
|  | static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, | 
|  | struct timespec64 *ts) | 
|  | { | 
|  | if (kt) { | 
|  | *ts = ktime_to_timespec64(kt); | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The resolution of the clocks. The resolution value is returned in | 
|  | * the clock_getres() system call to give application programmers an | 
|  | * idea of the (in)accuracy of timers. Timer values are rounded up to | 
|  | * this resolution values. | 
|  | */ | 
|  | #define LOW_RES_NSEC		TICK_NSEC | 
|  | #define KTIME_LOW_RES		(LOW_RES_NSEC) | 
|  |  | 
|  | static inline ktime_t ns_to_ktime(u64 ns) | 
|  | { | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | static inline ktime_t ms_to_ktime(u64 ms) | 
|  | { | 
|  | return ms * NSEC_PER_MSEC; | 
|  | } | 
|  |  | 
|  | # include <linux/timekeeping.h> | 
|  | # include <linux/timekeeping32.h> | 
|  |  | 
|  | #endif |