|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2001 Sistina Software (UK) Limited. | 
|  | * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-core.h" | 
|  | #include "dm-rq.h" | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/blk-integrity.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/blk-mq.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/dax.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "table" | 
|  |  | 
|  | #define NODE_SIZE L1_CACHE_BYTES | 
|  | #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) | 
|  | #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) | 
|  |  | 
|  | /* | 
|  | * Similar to ceiling(log_size(n)) | 
|  | */ | 
|  | static unsigned int int_log(unsigned int n, unsigned int base) | 
|  | { | 
|  | int result = 0; | 
|  |  | 
|  | while (n > 1) { | 
|  | n = dm_div_up(n, base); | 
|  | result++; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the index of the child node of the n'th node k'th key. | 
|  | */ | 
|  | static inline unsigned int get_child(unsigned int n, unsigned int k) | 
|  | { | 
|  | return (n * CHILDREN_PER_NODE) + k; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the n'th node of level l from table t. | 
|  | */ | 
|  | static inline sector_t *get_node(struct dm_table *t, | 
|  | unsigned int l, unsigned int n) | 
|  | { | 
|  | return t->index[l] + (n * KEYS_PER_NODE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the highest key that you could lookup from the n'th | 
|  | * node on level l of the btree. | 
|  | */ | 
|  | static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) | 
|  | { | 
|  | for (; l < t->depth - 1; l++) | 
|  | n = get_child(n, CHILDREN_PER_NODE - 1); | 
|  |  | 
|  | if (n >= t->counts[l]) | 
|  | return (sector_t) -1; | 
|  |  | 
|  | return get_node(t, l, n)[KEYS_PER_NODE - 1]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fills in a level of the btree based on the highs of the level | 
|  | * below it. | 
|  | */ | 
|  | static int setup_btree_index(unsigned int l, struct dm_table *t) | 
|  | { | 
|  | unsigned int n, k; | 
|  | sector_t *node; | 
|  |  | 
|  | for (n = 0U; n < t->counts[l]; n++) { | 
|  | node = get_node(t, l, n); | 
|  |  | 
|  | for (k = 0U; k < KEYS_PER_NODE; k++) | 
|  | node[k] = high(t, l + 1, get_child(n, k)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * highs, and targets are managed as dynamic arrays during a | 
|  | * table load. | 
|  | */ | 
|  | static int alloc_targets(struct dm_table *t, unsigned int num) | 
|  | { | 
|  | sector_t *n_highs; | 
|  | struct dm_target *n_targets; | 
|  |  | 
|  | /* | 
|  | * Allocate both the target array and offset array at once. | 
|  | */ | 
|  | n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), | 
|  | GFP_KERNEL); | 
|  | if (!n_highs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | n_targets = (struct dm_target *) (n_highs + num); | 
|  |  | 
|  | memset(n_highs, -1, sizeof(*n_highs) * num); | 
|  | kvfree(t->highs); | 
|  |  | 
|  | t->num_allocated = num; | 
|  | t->highs = n_highs; | 
|  | t->targets = n_targets; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dm_table_create(struct dm_table **result, blk_mode_t mode, | 
|  | unsigned int num_targets, struct mapped_device *md) | 
|  | { | 
|  | struct dm_table *t; | 
|  |  | 
|  | if (num_targets > DM_MAX_TARGETS) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | t = kzalloc(sizeof(*t), GFP_KERNEL); | 
|  |  | 
|  | if (!t) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_LIST_HEAD(&t->devices); | 
|  | init_rwsem(&t->devices_lock); | 
|  |  | 
|  | if (!num_targets) | 
|  | num_targets = KEYS_PER_NODE; | 
|  |  | 
|  | num_targets = dm_round_up(num_targets, KEYS_PER_NODE); | 
|  |  | 
|  | if (!num_targets) { | 
|  | kfree(t); | 
|  | return -EOVERFLOW; | 
|  | } | 
|  |  | 
|  | if (alloc_targets(t, num_targets)) { | 
|  | kfree(t); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | t->type = DM_TYPE_NONE; | 
|  | t->mode = mode; | 
|  | t->md = md; | 
|  | *result = t; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_devices(struct list_head *devices, struct mapped_device *md) | 
|  | { | 
|  | struct list_head *tmp, *next; | 
|  |  | 
|  | list_for_each_safe(tmp, next, devices) { | 
|  | struct dm_dev_internal *dd = | 
|  | list_entry(tmp, struct dm_dev_internal, list); | 
|  | DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", | 
|  | dm_device_name(md), dd->dm_dev->name); | 
|  | dm_put_table_device(md, dd->dm_dev); | 
|  | kfree(dd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dm_table_destroy_crypto_profile(struct dm_table *t); | 
|  |  | 
|  | void dm_table_destroy(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | /* free the indexes */ | 
|  | if (t->depth >= 2) | 
|  | kvfree(t->index[t->depth - 2]); | 
|  |  | 
|  | /* free the targets */ | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (ti->type->dtr) | 
|  | ti->type->dtr(ti); | 
|  |  | 
|  | dm_put_target_type(ti->type); | 
|  | } | 
|  |  | 
|  | kvfree(t->highs); | 
|  |  | 
|  | /* free the device list */ | 
|  | free_devices(&t->devices, t->md); | 
|  |  | 
|  | dm_free_md_mempools(t->mempools); | 
|  |  | 
|  | dm_table_destroy_crypto_profile(t); | 
|  |  | 
|  | kfree(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if we've already got a device in the list. | 
|  | */ | 
|  | static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) | 
|  | { | 
|  | struct dm_dev_internal *dd; | 
|  |  | 
|  | list_for_each_entry(dd, l, list) | 
|  | if (dd->dm_dev->bdev->bd_dev == dev) | 
|  | return dd; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If possible, this checks an area of a destination device is invalid. | 
|  | */ | 
|  | static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct queue_limits *limits = data; | 
|  | struct block_device *bdev = dev->bdev; | 
|  | sector_t dev_size = bdev_nr_sectors(bdev); | 
|  | unsigned short logical_block_size_sectors = | 
|  | limits->logical_block_size >> SECTOR_SHIFT; | 
|  |  | 
|  | if (!dev_size) | 
|  | return 0; | 
|  |  | 
|  | if ((start >= dev_size) || (start + len > dev_size)) { | 
|  | DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", | 
|  | dm_device_name(ti->table->md), bdev, | 
|  | (unsigned long long)start, | 
|  | (unsigned long long)len, | 
|  | (unsigned long long)dev_size); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the target is mapped to zoned block device(s), check | 
|  | * that the zones are not partially mapped. | 
|  | */ | 
|  | if (bdev_is_zoned(bdev)) { | 
|  | unsigned int zone_sectors = bdev_zone_sectors(bdev); | 
|  |  | 
|  | if (start & (zone_sectors - 1)) { | 
|  | DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", | 
|  | dm_device_name(ti->table->md), | 
|  | (unsigned long long)start, | 
|  | zone_sectors, bdev); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: The last zone of a zoned block device may be smaller | 
|  | * than other zones. So for a target mapping the end of a | 
|  | * zoned block device with such a zone, len would not be zone | 
|  | * aligned. We do not allow such last smaller zone to be part | 
|  | * of the mapping here to ensure that mappings with multiple | 
|  | * devices do not end up with a smaller zone in the middle of | 
|  | * the sector range. | 
|  | */ | 
|  | if (len & (zone_sectors - 1)) { | 
|  | DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", | 
|  | dm_device_name(ti->table->md), | 
|  | (unsigned long long)len, | 
|  | zone_sectors, bdev); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (logical_block_size_sectors <= 1) | 
|  | return 0; | 
|  |  | 
|  | if (start & (logical_block_size_sectors - 1)) { | 
|  | DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", | 
|  | dm_device_name(ti->table->md), | 
|  | (unsigned long long)start, | 
|  | limits->logical_block_size, bdev); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (len & (logical_block_size_sectors - 1)) { | 
|  | DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", | 
|  | dm_device_name(ti->table->md), | 
|  | (unsigned long long)len, | 
|  | limits->logical_block_size, bdev); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This upgrades the mode on an already open dm_dev, being | 
|  | * careful to leave things as they were if we fail to reopen the | 
|  | * device and not to touch the existing bdev field in case | 
|  | * it is accessed concurrently. | 
|  | */ | 
|  | static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, | 
|  | struct mapped_device *md) | 
|  | { | 
|  | int r; | 
|  | struct dm_dev *old_dev, *new_dev; | 
|  |  | 
|  | old_dev = dd->dm_dev; | 
|  |  | 
|  | r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, | 
|  | dd->dm_dev->mode | new_mode, &new_dev); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | dd->dm_dev = new_dev; | 
|  | dm_put_table_device(md, old_dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a device to the list, or just increment the usage count if | 
|  | * it's already present. | 
|  | * | 
|  | * Note: the __ref annotation is because this function can call the __init | 
|  | * marked early_lookup_bdev when called during early boot code from dm-init.c. | 
|  | */ | 
|  | int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, | 
|  | struct dm_dev **result) | 
|  | { | 
|  | int r; | 
|  | dev_t dev; | 
|  | unsigned int major, minor; | 
|  | char dummy; | 
|  | struct dm_dev_internal *dd; | 
|  | struct dm_table *t = ti->table; | 
|  |  | 
|  | BUG_ON(!t); | 
|  |  | 
|  | if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { | 
|  | /* Extract the major/minor numbers */ | 
|  | dev = MKDEV(major, minor); | 
|  | if (MAJOR(dev) != major || MINOR(dev) != minor) | 
|  | return -EOVERFLOW; | 
|  | } else { | 
|  | r = lookup_bdev(path, &dev); | 
|  | #ifndef MODULE | 
|  | if (r && system_state < SYSTEM_RUNNING) | 
|  | r = early_lookup_bdev(path, &dev); | 
|  | #endif | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  | if (dev == disk_devt(t->md->disk)) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_write(&t->devices_lock); | 
|  |  | 
|  | dd = find_device(&t->devices, dev); | 
|  | if (!dd) { | 
|  | dd = kmalloc(sizeof(*dd), GFP_KERNEL); | 
|  | if (!dd) { | 
|  | r = -ENOMEM; | 
|  | goto unlock_ret_r; | 
|  | } | 
|  |  | 
|  | r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); | 
|  | if (r) { | 
|  | kfree(dd); | 
|  | goto unlock_ret_r; | 
|  | } | 
|  |  | 
|  | refcount_set(&dd->count, 1); | 
|  | list_add(&dd->list, &t->devices); | 
|  | goto out; | 
|  |  | 
|  | } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { | 
|  | r = upgrade_mode(dd, mode, t->md); | 
|  | if (r) | 
|  | goto unlock_ret_r; | 
|  | } | 
|  | refcount_inc(&dd->count); | 
|  | out: | 
|  | up_write(&t->devices_lock); | 
|  | *result = dd->dm_dev; | 
|  | return 0; | 
|  |  | 
|  | unlock_ret_r: | 
|  | up_write(&t->devices_lock); | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL(dm_get_device); | 
|  |  | 
|  | static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct queue_limits *limits = data; | 
|  | struct block_device *bdev = dev->bdev; | 
|  | struct request_queue *q = bdev_get_queue(bdev); | 
|  |  | 
|  | if (unlikely(!q)) { | 
|  | DMWARN("%s: Cannot set limits for nonexistent device %pg", | 
|  | dm_device_name(ti->table->md), bdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (blk_stack_limits(limits, &q->limits, | 
|  | get_start_sect(bdev) + start) < 0) | 
|  | DMWARN("%s: adding target device %pg caused an alignment inconsistency: " | 
|  | "physical_block_size=%u, logical_block_size=%u, " | 
|  | "alignment_offset=%u, start=%llu", | 
|  | dm_device_name(ti->table->md), bdev, | 
|  | q->limits.physical_block_size, | 
|  | q->limits.logical_block_size, | 
|  | q->limits.alignment_offset, | 
|  | (unsigned long long) start << SECTOR_SHIFT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement a device's use count and remove it if necessary. | 
|  | */ | 
|  | void dm_put_device(struct dm_target *ti, struct dm_dev *d) | 
|  | { | 
|  | int found = 0; | 
|  | struct dm_table *t = ti->table; | 
|  | struct list_head *devices = &t->devices; | 
|  | struct dm_dev_internal *dd; | 
|  |  | 
|  | down_write(&t->devices_lock); | 
|  |  | 
|  | list_for_each_entry(dd, devices, list) { | 
|  | if (dd->dm_dev == d) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | DMERR("%s: device %s not in table devices list", | 
|  | dm_device_name(t->md), d->name); | 
|  | goto unlock_ret; | 
|  | } | 
|  | if (refcount_dec_and_test(&dd->count)) { | 
|  | dm_put_table_device(t->md, d); | 
|  | list_del(&dd->list); | 
|  | kfree(dd); | 
|  | } | 
|  |  | 
|  | unlock_ret: | 
|  | up_write(&t->devices_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(dm_put_device); | 
|  |  | 
|  | /* | 
|  | * Checks to see if the target joins onto the end of the table. | 
|  | */ | 
|  | static int adjoin(struct dm_table *t, struct dm_target *ti) | 
|  | { | 
|  | struct dm_target *prev; | 
|  |  | 
|  | if (!t->num_targets) | 
|  | return !ti->begin; | 
|  |  | 
|  | prev = &t->targets[t->num_targets - 1]; | 
|  | return (ti->begin == (prev->begin + prev->len)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to dynamically allocate the arg array. | 
|  | * | 
|  | * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must | 
|  | * process messages even if some device is suspended. These messages have a | 
|  | * small fixed number of arguments. | 
|  | * | 
|  | * On the other hand, dm-switch needs to process bulk data using messages and | 
|  | * excessive use of GFP_NOIO could cause trouble. | 
|  | */ | 
|  | static char **realloc_argv(unsigned int *size, char **old_argv) | 
|  | { | 
|  | char **argv; | 
|  | unsigned int new_size; | 
|  | gfp_t gfp; | 
|  |  | 
|  | if (*size) { | 
|  | new_size = *size * 2; | 
|  | gfp = GFP_KERNEL; | 
|  | } else { | 
|  | new_size = 8; | 
|  | gfp = GFP_NOIO; | 
|  | } | 
|  | argv = kmalloc_array(new_size, sizeof(*argv), gfp); | 
|  | if (argv) { | 
|  | if (old_argv) | 
|  | memcpy(argv, old_argv, *size * sizeof(*argv)); | 
|  | *size = new_size; | 
|  | } | 
|  |  | 
|  | kfree(old_argv); | 
|  | return argv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Destructively splits up the argument list to pass to ctr. | 
|  | */ | 
|  | int dm_split_args(int *argc, char ***argvp, char *input) | 
|  | { | 
|  | char *start, *end = input, *out, **argv = NULL; | 
|  | unsigned int array_size = 0; | 
|  |  | 
|  | *argc = 0; | 
|  |  | 
|  | if (!input) { | 
|  | *argvp = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | argv = realloc_argv(&array_size, argv); | 
|  | if (!argv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (1) { | 
|  | /* Skip whitespace */ | 
|  | start = skip_spaces(end); | 
|  |  | 
|  | if (!*start) | 
|  | break;	/* success, we hit the end */ | 
|  |  | 
|  | /* 'out' is used to remove any back-quotes */ | 
|  | end = out = start; | 
|  | while (*end) { | 
|  | /* Everything apart from '\0' can be quoted */ | 
|  | if (*end == '\\' && *(end + 1)) { | 
|  | *out++ = *(end + 1); | 
|  | end += 2; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isspace(*end)) | 
|  | break;	/* end of token */ | 
|  |  | 
|  | *out++ = *end++; | 
|  | } | 
|  |  | 
|  | /* have we already filled the array ? */ | 
|  | if ((*argc + 1) > array_size) { | 
|  | argv = realloc_argv(&array_size, argv); | 
|  | if (!argv) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* we know this is whitespace */ | 
|  | if (*end) | 
|  | end++; | 
|  |  | 
|  | /* terminate the string and put it in the array */ | 
|  | *out = '\0'; | 
|  | argv[*argc] = start; | 
|  | (*argc)++; | 
|  | } | 
|  |  | 
|  | *argvp = argv; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Impose necessary and sufficient conditions on a devices's table such | 
|  | * that any incoming bio which respects its logical_block_size can be | 
|  | * processed successfully.  If it falls across the boundary between | 
|  | * two or more targets, the size of each piece it gets split into must | 
|  | * be compatible with the logical_block_size of the target processing it. | 
|  | */ | 
|  | static int validate_hardware_logical_block_alignment(struct dm_table *t, | 
|  | struct queue_limits *limits) | 
|  | { | 
|  | /* | 
|  | * This function uses arithmetic modulo the logical_block_size | 
|  | * (in units of 512-byte sectors). | 
|  | */ | 
|  | unsigned short device_logical_block_size_sects = | 
|  | limits->logical_block_size >> SECTOR_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Offset of the start of the next table entry, mod logical_block_size. | 
|  | */ | 
|  | unsigned short next_target_start = 0; | 
|  |  | 
|  | /* | 
|  | * Given an aligned bio that extends beyond the end of a | 
|  | * target, how many sectors must the next target handle? | 
|  | */ | 
|  | unsigned short remaining = 0; | 
|  |  | 
|  | struct dm_target *ti; | 
|  | struct queue_limits ti_limits; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Check each entry in the table in turn. | 
|  | */ | 
|  | for (i = 0; i < t->num_targets; i++) { | 
|  | ti = dm_table_get_target(t, i); | 
|  |  | 
|  | blk_set_stacking_limits(&ti_limits); | 
|  |  | 
|  | /* combine all target devices' limits */ | 
|  | if (ti->type->iterate_devices) | 
|  | ti->type->iterate_devices(ti, dm_set_device_limits, | 
|  | &ti_limits); | 
|  |  | 
|  | /* | 
|  | * If the remaining sectors fall entirely within this | 
|  | * table entry are they compatible with its logical_block_size? | 
|  | */ | 
|  | if (remaining < ti->len && | 
|  | remaining & ((ti_limits.logical_block_size >> | 
|  | SECTOR_SHIFT) - 1)) | 
|  | break;	/* Error */ | 
|  |  | 
|  | next_target_start = | 
|  | (unsigned short) ((next_target_start + ti->len) & | 
|  | (device_logical_block_size_sects - 1)); | 
|  | remaining = next_target_start ? | 
|  | device_logical_block_size_sects - next_target_start : 0; | 
|  | } | 
|  |  | 
|  | if (remaining) { | 
|  | DMERR("%s: table line %u (start sect %llu len %llu) " | 
|  | "not aligned to h/w logical block size %u", | 
|  | dm_device_name(t->md), i, | 
|  | (unsigned long long) ti->begin, | 
|  | (unsigned long long) ti->len, | 
|  | limits->logical_block_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dm_table_add_target(struct dm_table *t, const char *type, | 
|  | sector_t start, sector_t len, char *params) | 
|  | { | 
|  | int r = -EINVAL, argc; | 
|  | char **argv; | 
|  | struct dm_target *ti; | 
|  |  | 
|  | if (t->singleton) { | 
|  | DMERR("%s: target type %s must appear alone in table", | 
|  | dm_device_name(t->md), t->targets->type->name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BUG_ON(t->num_targets >= t->num_allocated); | 
|  |  | 
|  | ti = t->targets + t->num_targets; | 
|  | memset(ti, 0, sizeof(*ti)); | 
|  |  | 
|  | if (!len) { | 
|  | DMERR("%s: zero-length target", dm_device_name(t->md)); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) { | 
|  | DMERR("%s: too large device", dm_device_name(t->md)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ti->type = dm_get_target_type(type); | 
|  | if (!ti->type) { | 
|  | DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (dm_target_needs_singleton(ti->type)) { | 
|  | if (t->num_targets) { | 
|  | ti->error = "singleton target type must appear alone in table"; | 
|  | goto bad; | 
|  | } | 
|  | t->singleton = true; | 
|  | } | 
|  |  | 
|  | if (dm_target_always_writeable(ti->type) && | 
|  | !(t->mode & BLK_OPEN_WRITE)) { | 
|  | ti->error = "target type may not be included in a read-only table"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (t->immutable_target_type) { | 
|  | if (t->immutable_target_type != ti->type) { | 
|  | ti->error = "immutable target type cannot be mixed with other target types"; | 
|  | goto bad; | 
|  | } | 
|  | } else if (dm_target_is_immutable(ti->type)) { | 
|  | if (t->num_targets) { | 
|  | ti->error = "immutable target type cannot be mixed with other target types"; | 
|  | goto bad; | 
|  | } | 
|  | t->immutable_target_type = ti->type; | 
|  | } | 
|  |  | 
|  | if (dm_target_has_integrity(ti->type)) | 
|  | t->integrity_added = 1; | 
|  |  | 
|  | ti->table = t; | 
|  | ti->begin = start; | 
|  | ti->len = len; | 
|  | ti->error = "Unknown error"; | 
|  |  | 
|  | /* | 
|  | * Does this target adjoin the previous one ? | 
|  | */ | 
|  | if (!adjoin(t, ti)) { | 
|  | ti->error = "Gap in table"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | r = dm_split_args(&argc, &argv, params); | 
|  | if (r) { | 
|  | ti->error = "couldn't split parameters"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | r = ti->type->ctr(ti, argc, argv); | 
|  | kfree(argv); | 
|  | if (r) | 
|  | goto bad; | 
|  |  | 
|  | t->highs[t->num_targets++] = ti->begin + ti->len - 1; | 
|  |  | 
|  | if (!ti->num_discard_bios && ti->discards_supported) | 
|  | DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", | 
|  | dm_device_name(t->md), type); | 
|  |  | 
|  | if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) | 
|  | static_branch_enable(&swap_bios_enabled); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); | 
|  | dm_put_target_type(ti->type); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Target argument parsing helpers. | 
|  | */ | 
|  | static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, | 
|  | unsigned int *value, char **error, unsigned int grouped) | 
|  | { | 
|  | const char *arg_str = dm_shift_arg(arg_set); | 
|  | char dummy; | 
|  |  | 
|  | if (!arg_str || | 
|  | (sscanf(arg_str, "%u%c", value, &dummy) != 1) || | 
|  | (*value < arg->min) || | 
|  | (*value > arg->max) || | 
|  | (grouped && arg_set->argc < *value)) { | 
|  | *error = arg->error; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, | 
|  | unsigned int *value, char **error) | 
|  | { | 
|  | return validate_next_arg(arg, arg_set, value, error, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(dm_read_arg); | 
|  |  | 
|  | int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, | 
|  | unsigned int *value, char **error) | 
|  | { | 
|  | return validate_next_arg(arg, arg_set, value, error, 1); | 
|  | } | 
|  | EXPORT_SYMBOL(dm_read_arg_group); | 
|  |  | 
|  | const char *dm_shift_arg(struct dm_arg_set *as) | 
|  | { | 
|  | char *r; | 
|  |  | 
|  | if (as->argc) { | 
|  | as->argc--; | 
|  | r = *as->argv; | 
|  | as->argv++; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(dm_shift_arg); | 
|  |  | 
|  | void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) | 
|  | { | 
|  | BUG_ON(as->argc < num_args); | 
|  | as->argc -= num_args; | 
|  | as->argv += num_args; | 
|  | } | 
|  | EXPORT_SYMBOL(dm_consume_args); | 
|  |  | 
|  | static bool __table_type_bio_based(enum dm_queue_mode table_type) | 
|  | { | 
|  | return (table_type == DM_TYPE_BIO_BASED || | 
|  | table_type == DM_TYPE_DAX_BIO_BASED); | 
|  | } | 
|  |  | 
|  | static bool __table_type_request_based(enum dm_queue_mode table_type) | 
|  | { | 
|  | return table_type == DM_TYPE_REQUEST_BASED; | 
|  | } | 
|  |  | 
|  | void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) | 
|  | { | 
|  | t->type = type; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_table_set_type); | 
|  |  | 
|  | /* validate the dax capability of the target device span */ | 
|  | static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | if (dev->dax_dev) | 
|  | return false; | 
|  |  | 
|  | DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Check devices support synchronous DAX */ | 
|  | static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | return !dev->dax_dev || !dax_synchronous(dev->dax_dev); | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_dax(struct dm_table *t, | 
|  | iterate_devices_callout_fn iterate_fn) | 
|  | { | 
|  | /* Ensure that all targets support DAX. */ | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->type->direct_access) | 
|  | return false; | 
|  |  | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, iterate_fn, NULL)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_is_not_rq_stackable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct block_device *bdev = dev->bdev; | 
|  | struct request_queue *q = bdev_get_queue(bdev); | 
|  |  | 
|  | /* request-based cannot stack on partitions! */ | 
|  | if (bdev_is_partition(bdev)) | 
|  | return true; | 
|  |  | 
|  | return !queue_is_mq(q); | 
|  | } | 
|  |  | 
|  | static int dm_table_determine_type(struct dm_table *t) | 
|  | { | 
|  | unsigned int bio_based = 0, request_based = 0, hybrid = 0; | 
|  | struct dm_target *ti; | 
|  | struct list_head *devices = dm_table_get_devices(t); | 
|  | enum dm_queue_mode live_md_type = dm_get_md_type(t->md); | 
|  |  | 
|  | if (t->type != DM_TYPE_NONE) { | 
|  | /* target already set the table's type */ | 
|  | if (t->type == DM_TYPE_BIO_BASED) { | 
|  | /* possibly upgrade to a variant of bio-based */ | 
|  | goto verify_bio_based; | 
|  | } | 
|  | BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); | 
|  | goto verify_rq_based; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | ti = dm_table_get_target(t, i); | 
|  | if (dm_target_hybrid(ti)) | 
|  | hybrid = 1; | 
|  | else if (dm_target_request_based(ti)) | 
|  | request_based = 1; | 
|  | else | 
|  | bio_based = 1; | 
|  |  | 
|  | if (bio_based && request_based) { | 
|  | DMERR("Inconsistent table: different target types can't be mixed up"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hybrid && !bio_based && !request_based) { | 
|  | /* | 
|  | * The targets can work either way. | 
|  | * Determine the type from the live device. | 
|  | * Default to bio-based if device is new. | 
|  | */ | 
|  | if (__table_type_request_based(live_md_type)) | 
|  | request_based = 1; | 
|  | else | 
|  | bio_based = 1; | 
|  | } | 
|  |  | 
|  | if (bio_based) { | 
|  | verify_bio_based: | 
|  | /* We must use this table as bio-based */ | 
|  | t->type = DM_TYPE_BIO_BASED; | 
|  | if (dm_table_supports_dax(t, device_not_dax_capable) || | 
|  | (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { | 
|  | t->type = DM_TYPE_DAX_BIO_BASED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BUG_ON(!request_based); /* No targets in this table */ | 
|  |  | 
|  | t->type = DM_TYPE_REQUEST_BASED; | 
|  |  | 
|  | verify_rq_based: | 
|  | /* | 
|  | * Request-based dm supports only tables that have a single target now. | 
|  | * To support multiple targets, request splitting support is needed, | 
|  | * and that needs lots of changes in the block-layer. | 
|  | * (e.g. request completion process for partial completion.) | 
|  | */ | 
|  | if (t->num_targets > 1) { | 
|  | DMERR("request-based DM doesn't support multiple targets"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (list_empty(devices)) { | 
|  | int srcu_idx; | 
|  | struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); | 
|  |  | 
|  | /* inherit live table's type */ | 
|  | if (live_table) | 
|  | t->type = live_table->type; | 
|  | dm_put_live_table(t->md, srcu_idx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ti = dm_table_get_immutable_target(t); | 
|  | if (!ti) { | 
|  | DMERR("table load rejected: immutable target is required"); | 
|  | return -EINVAL; | 
|  | } else if (ti->max_io_len) { | 
|  | DMERR("table load rejected: immutable target that splits IO is not supported"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Non-request-stackable devices can't be used for request-based dm */ | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_is_not_rq_stackable, NULL)) { | 
|  | DMERR("table load rejected: including non-request-stackable devices"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum dm_queue_mode dm_table_get_type(struct dm_table *t) | 
|  | { | 
|  | return t->type; | 
|  | } | 
|  |  | 
|  | struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) | 
|  | { | 
|  | return t->immutable_target_type; | 
|  | } | 
|  |  | 
|  | struct dm_target *dm_table_get_immutable_target(struct dm_table *t) | 
|  | { | 
|  | /* Immutable target is implicitly a singleton */ | 
|  | if (t->num_targets > 1 || | 
|  | !dm_target_is_immutable(t->targets[0].type)) | 
|  | return NULL; | 
|  |  | 
|  | return t->targets; | 
|  | } | 
|  |  | 
|  | struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (dm_target_is_wildcard(ti->type)) | 
|  | return ti; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool dm_table_bio_based(struct dm_table *t) | 
|  | { | 
|  | return __table_type_bio_based(dm_table_get_type(t)); | 
|  | } | 
|  |  | 
|  | bool dm_table_request_based(struct dm_table *t) | 
|  | { | 
|  | return __table_type_request_based(dm_table_get_type(t)); | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_poll(struct dm_table *t); | 
|  |  | 
|  | static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) | 
|  | { | 
|  | enum dm_queue_mode type = dm_table_get_type(t); | 
|  | unsigned int per_io_data_size = 0, front_pad, io_front_pad; | 
|  | unsigned int min_pool_size = 0, pool_size; | 
|  | struct dm_md_mempools *pools; | 
|  |  | 
|  | if (unlikely(type == DM_TYPE_NONE)) { | 
|  | DMERR("no table type is set, can't allocate mempools"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); | 
|  | if (!pools) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (type == DM_TYPE_REQUEST_BASED) { | 
|  | pool_size = dm_get_reserved_rq_based_ios(); | 
|  | front_pad = offsetof(struct dm_rq_clone_bio_info, clone); | 
|  | goto init_bs; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | per_io_data_size = max(per_io_data_size, ti->per_io_data_size); | 
|  | min_pool_size = max(min_pool_size, ti->num_flush_bios); | 
|  | } | 
|  | pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); | 
|  | front_pad = roundup(per_io_data_size, | 
|  | __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; | 
|  |  | 
|  | io_front_pad = roundup(per_io_data_size, | 
|  | __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; | 
|  | if (bioset_init(&pools->io_bs, pool_size, io_front_pad, | 
|  | dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0)) | 
|  | goto out_free_pools; | 
|  | if (t->integrity_supported && | 
|  | bioset_integrity_create(&pools->io_bs, pool_size)) | 
|  | goto out_free_pools; | 
|  | init_bs: | 
|  | if (bioset_init(&pools->bs, pool_size, front_pad, 0)) | 
|  | goto out_free_pools; | 
|  | if (t->integrity_supported && | 
|  | bioset_integrity_create(&pools->bs, pool_size)) | 
|  | goto out_free_pools; | 
|  |  | 
|  | t->mempools = pools; | 
|  | return 0; | 
|  |  | 
|  | out_free_pools: | 
|  | dm_free_md_mempools(pools); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int setup_indexes(struct dm_table *t) | 
|  | { | 
|  | int i; | 
|  | unsigned int total = 0; | 
|  | sector_t *indexes; | 
|  |  | 
|  | /* allocate the space for *all* the indexes */ | 
|  | for (i = t->depth - 2; i >= 0; i--) { | 
|  | t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); | 
|  | total += t->counts[i]; | 
|  | } | 
|  |  | 
|  | indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); | 
|  | if (!indexes) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* set up internal nodes, bottom-up */ | 
|  | for (i = t->depth - 2; i >= 0; i--) { | 
|  | t->index[i] = indexes; | 
|  | indexes += (KEYS_PER_NODE * t->counts[i]); | 
|  | setup_btree_index(i, t); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Builds the btree to index the map. | 
|  | */ | 
|  | static int dm_table_build_index(struct dm_table *t) | 
|  | { | 
|  | int r = 0; | 
|  | unsigned int leaf_nodes; | 
|  |  | 
|  | /* how many indexes will the btree have ? */ | 
|  | leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); | 
|  | t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); | 
|  |  | 
|  | /* leaf layer has already been set up */ | 
|  | t->counts[t->depth - 1] = leaf_nodes; | 
|  | t->index[t->depth - 1] = t->highs; | 
|  |  | 
|  | if (t->depth >= 2) | 
|  | r = setup_indexes(t); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static bool integrity_profile_exists(struct gendisk *disk) | 
|  | { | 
|  | return !!blk_get_integrity(disk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a disk whose integrity profile reflects the table's profile. | 
|  | * Returns NULL if integrity support was inconsistent or unavailable. | 
|  | */ | 
|  | static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t) | 
|  | { | 
|  | struct list_head *devices = dm_table_get_devices(t); | 
|  | struct dm_dev_internal *dd = NULL; | 
|  | struct gendisk *prev_disk = NULL, *template_disk = NULL; | 
|  |  | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!dm_target_passes_integrity(ti->type)) | 
|  | goto no_integrity; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(dd, devices, list) { | 
|  | template_disk = dd->dm_dev->bdev->bd_disk; | 
|  | if (!integrity_profile_exists(template_disk)) | 
|  | goto no_integrity; | 
|  | else if (prev_disk && | 
|  | blk_integrity_compare(prev_disk, template_disk) < 0) | 
|  | goto no_integrity; | 
|  | prev_disk = template_disk; | 
|  | } | 
|  |  | 
|  | return template_disk; | 
|  |  | 
|  | no_integrity: | 
|  | if (prev_disk) | 
|  | DMWARN("%s: integrity not set: %s and %s profile mismatch", | 
|  | dm_device_name(t->md), | 
|  | prev_disk->disk_name, | 
|  | template_disk->disk_name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register the mapped device for blk_integrity support if the | 
|  | * underlying devices have an integrity profile.  But all devices may | 
|  | * not have matching profiles (checking all devices isn't reliable | 
|  | * during table load because this table may use other DM device(s) which | 
|  | * must be resumed before they will have an initialized integity | 
|  | * profile).  Consequently, stacked DM devices force a 2 stage integrity | 
|  | * profile validation: First pass during table load, final pass during | 
|  | * resume. | 
|  | */ | 
|  | static int dm_table_register_integrity(struct dm_table *t) | 
|  | { | 
|  | struct mapped_device *md = t->md; | 
|  | struct gendisk *template_disk = NULL; | 
|  |  | 
|  | /* If target handles integrity itself do not register it here. */ | 
|  | if (t->integrity_added) | 
|  | return 0; | 
|  |  | 
|  | template_disk = dm_table_get_integrity_disk(t); | 
|  | if (!template_disk) | 
|  | return 0; | 
|  |  | 
|  | if (!integrity_profile_exists(dm_disk(md))) { | 
|  | t->integrity_supported = true; | 
|  | /* | 
|  | * Register integrity profile during table load; we can do | 
|  | * this because the final profile must match during resume. | 
|  | */ | 
|  | blk_integrity_register(dm_disk(md), | 
|  | blk_get_integrity(template_disk)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If DM device already has an initialized integrity | 
|  | * profile the new profile should not conflict. | 
|  | */ | 
|  | if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { | 
|  | DMERR("%s: conflict with existing integrity profile: %s profile mismatch", | 
|  | dm_device_name(t->md), | 
|  | template_disk->disk_name); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Preserve existing integrity profile */ | 
|  | t->integrity_supported = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_INLINE_ENCRYPTION | 
|  |  | 
|  | struct dm_crypto_profile { | 
|  | struct blk_crypto_profile profile; | 
|  | struct mapped_device *md; | 
|  | }; | 
|  |  | 
|  | static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | const struct blk_crypto_key *key = data; | 
|  |  | 
|  | blk_crypto_evict_key(dev->bdev, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When an inline encryption key is evicted from a device-mapper device, evict | 
|  | * it from all the underlying devices. | 
|  | */ | 
|  | static int dm_keyslot_evict(struct blk_crypto_profile *profile, | 
|  | const struct blk_crypto_key *key, unsigned int slot) | 
|  | { | 
|  | struct mapped_device *md = | 
|  | container_of(profile, struct dm_crypto_profile, profile)->md; | 
|  | struct dm_table *t; | 
|  | int srcu_idx; | 
|  |  | 
|  | t = dm_get_live_table(md, &srcu_idx); | 
|  | if (!t) | 
|  | goto put_live_table; | 
|  |  | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->type->iterate_devices) | 
|  | continue; | 
|  | ti->type->iterate_devices(ti, dm_keyslot_evict_callback, | 
|  | (void *)key); | 
|  | } | 
|  |  | 
|  | put_live_table: | 
|  | dm_put_live_table(md, srcu_idx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct blk_crypto_profile *parent = data; | 
|  | struct blk_crypto_profile *child = | 
|  | bdev_get_queue(dev->bdev)->crypto_profile; | 
|  |  | 
|  | blk_crypto_intersect_capabilities(parent, child); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) | 
|  | { | 
|  | struct dm_crypto_profile *dmcp = container_of(profile, | 
|  | struct dm_crypto_profile, | 
|  | profile); | 
|  |  | 
|  | if (!profile) | 
|  | return; | 
|  |  | 
|  | blk_crypto_profile_destroy(profile); | 
|  | kfree(dmcp); | 
|  | } | 
|  |  | 
|  | static void dm_table_destroy_crypto_profile(struct dm_table *t) | 
|  | { | 
|  | dm_destroy_crypto_profile(t->crypto_profile); | 
|  | t->crypto_profile = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Constructs and initializes t->crypto_profile with a crypto profile that | 
|  | * represents the common set of crypto capabilities of the devices described by | 
|  | * the dm_table.  However, if the constructed crypto profile doesn't support all | 
|  | * crypto capabilities that are supported by the current mapped_device, it | 
|  | * returns an error instead, since we don't support removing crypto capabilities | 
|  | * on table changes.  Finally, if the constructed crypto profile is "empty" (has | 
|  | * no crypto capabilities at all), it just sets t->crypto_profile to NULL. | 
|  | */ | 
|  | static int dm_table_construct_crypto_profile(struct dm_table *t) | 
|  | { | 
|  | struct dm_crypto_profile *dmcp; | 
|  | struct blk_crypto_profile *profile; | 
|  | unsigned int i; | 
|  | bool empty_profile = true; | 
|  |  | 
|  | dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); | 
|  | if (!dmcp) | 
|  | return -ENOMEM; | 
|  | dmcp->md = t->md; | 
|  |  | 
|  | profile = &dmcp->profile; | 
|  | blk_crypto_profile_init(profile, 0); | 
|  | profile->ll_ops.keyslot_evict = dm_keyslot_evict; | 
|  | profile->max_dun_bytes_supported = UINT_MAX; | 
|  | memset(profile->modes_supported, 0xFF, | 
|  | sizeof(profile->modes_supported)); | 
|  |  | 
|  | for (i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!dm_target_passes_crypto(ti->type)) { | 
|  | blk_crypto_intersect_capabilities(profile, NULL); | 
|  | break; | 
|  | } | 
|  | if (!ti->type->iterate_devices) | 
|  | continue; | 
|  | ti->type->iterate_devices(ti, | 
|  | device_intersect_crypto_capabilities, | 
|  | profile); | 
|  | } | 
|  |  | 
|  | if (t->md->queue && | 
|  | !blk_crypto_has_capabilities(profile, | 
|  | t->md->queue->crypto_profile)) { | 
|  | DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); | 
|  | dm_destroy_crypto_profile(profile); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the new profile doesn't actually support any crypto capabilities, | 
|  | * we may as well represent it with a NULL profile. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { | 
|  | if (profile->modes_supported[i]) { | 
|  | empty_profile = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (empty_profile) { | 
|  | dm_destroy_crypto_profile(profile); | 
|  | profile = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * t->crypto_profile is only set temporarily while the table is being | 
|  | * set up, and it gets set to NULL after the profile has been | 
|  | * transferred to the request_queue. | 
|  | */ | 
|  | t->crypto_profile = profile; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dm_update_crypto_profile(struct request_queue *q, | 
|  | struct dm_table *t) | 
|  | { | 
|  | if (!t->crypto_profile) | 
|  | return; | 
|  |  | 
|  | /* Make the crypto profile less restrictive. */ | 
|  | if (!q->crypto_profile) { | 
|  | blk_crypto_register(t->crypto_profile, q); | 
|  | } else { | 
|  | blk_crypto_update_capabilities(q->crypto_profile, | 
|  | t->crypto_profile); | 
|  | dm_destroy_crypto_profile(t->crypto_profile); | 
|  | } | 
|  | t->crypto_profile = NULL; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_BLK_INLINE_ENCRYPTION */ | 
|  |  | 
|  | static int dm_table_construct_crypto_profile(struct dm_table *t) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dm_table_destroy_crypto_profile(struct dm_table *t) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void dm_update_crypto_profile(struct request_queue *q, | 
|  | struct dm_table *t) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ | 
|  |  | 
|  | /* | 
|  | * Prepares the table for use by building the indices, | 
|  | * setting the type, and allocating mempools. | 
|  | */ | 
|  | int dm_table_complete(struct dm_table *t) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = dm_table_determine_type(t); | 
|  | if (r) { | 
|  | DMERR("unable to determine table type"); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_table_build_index(t); | 
|  | if (r) { | 
|  | DMERR("unable to build btrees"); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_table_register_integrity(t); | 
|  | if (r) { | 
|  | DMERR("could not register integrity profile."); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_table_construct_crypto_profile(t); | 
|  | if (r) { | 
|  | DMERR("could not construct crypto profile."); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_table_alloc_md_mempools(t, t->md); | 
|  | if (r) | 
|  | DMERR("unable to allocate mempools"); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(_event_lock); | 
|  | void dm_table_event_callback(struct dm_table *t, | 
|  | void (*fn)(void *), void *context) | 
|  | { | 
|  | mutex_lock(&_event_lock); | 
|  | t->event_fn = fn; | 
|  | t->event_context = context; | 
|  | mutex_unlock(&_event_lock); | 
|  | } | 
|  |  | 
|  | void dm_table_event(struct dm_table *t) | 
|  | { | 
|  | mutex_lock(&_event_lock); | 
|  | if (t->event_fn) | 
|  | t->event_fn(t->event_context); | 
|  | mutex_unlock(&_event_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(dm_table_event); | 
|  |  | 
|  | inline sector_t dm_table_get_size(struct dm_table *t) | 
|  | { | 
|  | return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; | 
|  | } | 
|  | EXPORT_SYMBOL(dm_table_get_size); | 
|  |  | 
|  | /* | 
|  | * Search the btree for the correct target. | 
|  | * | 
|  | * Caller should check returned pointer for NULL | 
|  | * to trap I/O beyond end of device. | 
|  | */ | 
|  | struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) | 
|  | { | 
|  | unsigned int l, n = 0, k = 0; | 
|  | sector_t *node; | 
|  |  | 
|  | if (unlikely(sector >= dm_table_get_size(t))) | 
|  | return NULL; | 
|  |  | 
|  | for (l = 0; l < t->depth; l++) { | 
|  | n = get_child(n, k); | 
|  | node = get_node(t, l, n); | 
|  |  | 
|  | for (k = 0; k < KEYS_PER_NODE; k++) | 
|  | if (node[k] >= sector) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return &t->targets[(KEYS_PER_NODE * n) + k]; | 
|  | } | 
|  |  | 
|  | static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(dev->bdev); | 
|  |  | 
|  | return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * type->iterate_devices() should be called when the sanity check needs to | 
|  | * iterate and check all underlying data devices. iterate_devices() will | 
|  | * iterate all underlying data devices until it encounters a non-zero return | 
|  | * code, returned by whether the input iterate_devices_callout_fn, or | 
|  | * iterate_devices() itself internally. | 
|  | * | 
|  | * For some target type (e.g. dm-stripe), one call of iterate_devices() may | 
|  | * iterate multiple underlying devices internally, in which case a non-zero | 
|  | * return code returned by iterate_devices_callout_fn will stop the iteration | 
|  | * in advance. | 
|  | * | 
|  | * Cases requiring _any_ underlying device supporting some kind of attribute, | 
|  | * should use the iteration structure like dm_table_any_dev_attr(), or call | 
|  | * it directly. @func should handle semantics of positive examples, e.g. | 
|  | * capable of something. | 
|  | * | 
|  | * Cases requiring _all_ underlying devices supporting some kind of attribute, | 
|  | * should use the iteration structure like dm_table_supports_nowait() or | 
|  | * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that | 
|  | * uses an @anti_func that handle semantics of counter examples, e.g. not | 
|  | * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); | 
|  | */ | 
|  | static bool dm_table_any_dev_attr(struct dm_table *t, | 
|  | iterate_devices_callout_fn func, void *data) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (ti->type->iterate_devices && | 
|  | ti->type->iterate_devices(ti, func, data)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int count_device(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | unsigned int *num_devices = data; | 
|  |  | 
|  | (*num_devices)++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_poll(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether a table has no data devices attached using each | 
|  | * target's iterate_devices method. | 
|  | * Returns false if the result is unknown because a target doesn't | 
|  | * support iterate_devices. | 
|  | */ | 
|  | bool dm_table_has_no_data_devices(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  | unsigned int num_devices = 0; | 
|  |  | 
|  | if (!ti->type->iterate_devices) | 
|  | return false; | 
|  |  | 
|  | ti->type->iterate_devices(ti, count_device, &num_devices); | 
|  | if (num_devices) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(dev->bdev); | 
|  | enum blk_zoned_model *zoned_model = data; | 
|  |  | 
|  | return blk_queue_zoned_model(q) != *zoned_model; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the device zoned model based on the target feature flag. If the target | 
|  | * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are | 
|  | * also accepted but all devices must have the same zoned model. If the target | 
|  | * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any | 
|  | * zoned model with all zoned devices having the same zone size. | 
|  | */ | 
|  | static bool dm_table_supports_zoned_model(struct dm_table *t, | 
|  | enum blk_zoned_model zoned_model) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (dm_target_supports_zoned_hm(ti->type)) { | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_not_zoned_model, | 
|  | &zoned_model)) | 
|  | return false; | 
|  | } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { | 
|  | if (zoned_model == BLK_ZONED_HM) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | unsigned int *zone_sectors = data; | 
|  |  | 
|  | if (!bdev_is_zoned(dev->bdev)) | 
|  | return 0; | 
|  | return bdev_zone_sectors(dev->bdev) != *zone_sectors; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check consistency of zoned model and zone sectors across all targets. For | 
|  | * zone sectors, if the destination device is a zoned block device, it shall | 
|  | * have the specified zone_sectors. | 
|  | */ | 
|  | static int validate_hardware_zoned_model(struct dm_table *t, | 
|  | enum blk_zoned_model zoned_model, | 
|  | unsigned int zone_sectors) | 
|  | { | 
|  | if (zoned_model == BLK_ZONED_NONE) | 
|  | return 0; | 
|  |  | 
|  | if (!dm_table_supports_zoned_model(t, zoned_model)) { | 
|  | DMERR("%s: zoned model is not consistent across all devices", | 
|  | dm_device_name(t->md)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check zone size validity and compatibility */ | 
|  | if (!zone_sectors || !is_power_of_2(zone_sectors)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { | 
|  | DMERR("%s: zone sectors is not consistent across all zoned devices", | 
|  | dm_device_name(t->md)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Establish the new table's queue_limits and validate them. | 
|  | */ | 
|  | int dm_calculate_queue_limits(struct dm_table *t, | 
|  | struct queue_limits *limits) | 
|  | { | 
|  | struct queue_limits ti_limits; | 
|  | enum blk_zoned_model zoned_model = BLK_ZONED_NONE; | 
|  | unsigned int zone_sectors = 0; | 
|  |  | 
|  | blk_set_stacking_limits(limits); | 
|  |  | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | blk_set_stacking_limits(&ti_limits); | 
|  |  | 
|  | if (!ti->type->iterate_devices) { | 
|  | /* Set I/O hints portion of queue limits */ | 
|  | if (ti->type->io_hints) | 
|  | ti->type->io_hints(ti, &ti_limits); | 
|  | goto combine_limits; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Combine queue limits of all the devices this target uses. | 
|  | */ | 
|  | ti->type->iterate_devices(ti, dm_set_device_limits, | 
|  | &ti_limits); | 
|  |  | 
|  | if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { | 
|  | /* | 
|  | * After stacking all limits, validate all devices | 
|  | * in table support this zoned model and zone sectors. | 
|  | */ | 
|  | zoned_model = ti_limits.zoned; | 
|  | zone_sectors = ti_limits.chunk_sectors; | 
|  | } | 
|  |  | 
|  | /* Set I/O hints portion of queue limits */ | 
|  | if (ti->type->io_hints) | 
|  | ti->type->io_hints(ti, &ti_limits); | 
|  |  | 
|  | /* | 
|  | * Check each device area is consistent with the target's | 
|  | * overall queue limits. | 
|  | */ | 
|  | if (ti->type->iterate_devices(ti, device_area_is_invalid, | 
|  | &ti_limits)) | 
|  | return -EINVAL; | 
|  |  | 
|  | combine_limits: | 
|  | /* | 
|  | * Merge this target's queue limits into the overall limits | 
|  | * for the table. | 
|  | */ | 
|  | if (blk_stack_limits(limits, &ti_limits, 0) < 0) | 
|  | DMWARN("%s: adding target device (start sect %llu len %llu) " | 
|  | "caused an alignment inconsistency", | 
|  | dm_device_name(t->md), | 
|  | (unsigned long long) ti->begin, | 
|  | (unsigned long long) ti->len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the zoned model and zone sectors, as determined before | 
|  | * any .io_hints override, are the same across all devices in the table. | 
|  | * - this is especially relevant if .io_hints is emulating a disk-managed | 
|  | *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. | 
|  | * BUT... | 
|  | */ | 
|  | if (limits->zoned != BLK_ZONED_NONE) { | 
|  | /* | 
|  | * ...IF the above limits stacking determined a zoned model | 
|  | * validate that all of the table's devices conform to it. | 
|  | */ | 
|  | zoned_model = limits->zoned; | 
|  | zone_sectors = limits->chunk_sectors; | 
|  | } | 
|  | if (validate_hardware_zoned_model(t, zoned_model, zone_sectors)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return validate_hardware_logical_block_alignment(t, limits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that all devices have an integrity profile that matches the | 
|  | * DM device's registered integrity profile.  If the profiles don't | 
|  | * match then unregister the DM device's integrity profile. | 
|  | */ | 
|  | static void dm_table_verify_integrity(struct dm_table *t) | 
|  | { | 
|  | struct gendisk *template_disk = NULL; | 
|  |  | 
|  | if (t->integrity_added) | 
|  | return; | 
|  |  | 
|  | if (t->integrity_supported) { | 
|  | /* | 
|  | * Verify that the original integrity profile | 
|  | * matches all the devices in this table. | 
|  | */ | 
|  | template_disk = dm_table_get_integrity_disk(t); | 
|  | if (template_disk && | 
|  | blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (integrity_profile_exists(dm_disk(t->md))) { | 
|  | DMWARN("%s: unable to establish an integrity profile", | 
|  | dm_device_name(t->md)); | 
|  | blk_integrity_unregister(dm_disk(t->md)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | unsigned long flush = (unsigned long) data; | 
|  | struct request_queue *q = bdev_get_queue(dev->bdev); | 
|  |  | 
|  | return (q->queue_flags & flush); | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) | 
|  | { | 
|  | /* | 
|  | * Require at least one underlying device to support flushes. | 
|  | * t->devices includes internal dm devices such as mirror logs | 
|  | * so we need to use iterate_devices here, which targets | 
|  | * supporting flushes must provide. | 
|  | */ | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->num_flush_bios) | 
|  | continue; | 
|  |  | 
|  | if (ti->flush_supported) | 
|  | return true; | 
|  |  | 
|  | if (ti->type->iterate_devices && | 
|  | ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int device_dax_write_cache_enabled(struct dm_target *ti, | 
|  | struct dm_dev *dev, sector_t start, | 
|  | sector_t len, void *data) | 
|  | { | 
|  | struct dax_device *dax_dev = dev->dax_dev; | 
|  |  | 
|  | if (!dax_dev) | 
|  | return false; | 
|  |  | 
|  | if (dax_write_cache_enabled(dax_dev)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | return !bdev_nonrot(dev->bdev); | 
|  | } | 
|  |  | 
|  | static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(dev->bdev); | 
|  |  | 
|  | return !blk_queue_add_random(q); | 
|  | } | 
|  |  | 
|  | static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(dev->bdev); | 
|  |  | 
|  | return !q->limits.max_write_zeroes_sectors; | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_write_zeroes(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->num_write_zeroes_bios) | 
|  | return false; | 
|  |  | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | return !bdev_nowait(dev->bdev); | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_nowait(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!dm_target_supports_nowait(ti->type)) | 
|  | return false; | 
|  |  | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, | 
|  | sector_t start, sector_t len, void *data) | 
|  | { | 
|  | return !bdev_max_discard_sectors(dev->bdev); | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_discards(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->num_discard_bios) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Either the target provides discard support (as implied by setting | 
|  | * 'discards_supported') or it relies on _all_ data devices having | 
|  | * discard support. | 
|  | */ | 
|  | if (!ti->discards_supported && | 
|  | (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_not_secure_erase_capable(struct dm_target *ti, | 
|  | struct dm_dev *dev, sector_t start, | 
|  | sector_t len, void *data) | 
|  | { | 
|  | return !bdev_max_secure_erase_sectors(dev->bdev); | 
|  | } | 
|  |  | 
|  | static bool dm_table_supports_secure_erase(struct dm_table *t) | 
|  | { | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->num_secure_erase_bios) | 
|  | return false; | 
|  |  | 
|  | if (!ti->type->iterate_devices || | 
|  | ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int device_requires_stable_pages(struct dm_target *ti, | 
|  | struct dm_dev *dev, sector_t start, | 
|  | sector_t len, void *data) | 
|  | { | 
|  | return bdev_stable_writes(dev->bdev); | 
|  | } | 
|  |  | 
|  | int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, | 
|  | struct queue_limits *limits) | 
|  | { | 
|  | bool wc = false, fua = false; | 
|  | int r; | 
|  |  | 
|  | /* | 
|  | * Copy table's limits to the DM device's request_queue | 
|  | */ | 
|  | q->limits = *limits; | 
|  |  | 
|  | if (dm_table_supports_nowait(t)) | 
|  | blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); | 
|  | else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); | 
|  |  | 
|  | if (!dm_table_supports_discards(t)) { | 
|  | q->limits.max_discard_sectors = 0; | 
|  | q->limits.max_hw_discard_sectors = 0; | 
|  | q->limits.discard_granularity = 0; | 
|  | q->limits.discard_alignment = 0; | 
|  | q->limits.discard_misaligned = 0; | 
|  | } | 
|  |  | 
|  | if (!dm_table_supports_secure_erase(t)) | 
|  | q->limits.max_secure_erase_sectors = 0; | 
|  |  | 
|  | if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { | 
|  | wc = true; | 
|  | if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) | 
|  | fua = true; | 
|  | } | 
|  | blk_queue_write_cache(q, wc, fua); | 
|  |  | 
|  | if (dm_table_supports_dax(t, device_not_dax_capable)) { | 
|  | blk_queue_flag_set(QUEUE_FLAG_DAX, q); | 
|  | if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) | 
|  | set_dax_synchronous(t->md->dax_dev); | 
|  | } else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_DAX, q); | 
|  |  | 
|  | if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) | 
|  | dax_write_cache(t->md->dax_dev, true); | 
|  |  | 
|  | /* Ensure that all underlying devices are non-rotational. */ | 
|  | if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) | 
|  | blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); | 
|  | else | 
|  | blk_queue_flag_set(QUEUE_FLAG_NONROT, q); | 
|  |  | 
|  | if (!dm_table_supports_write_zeroes(t)) | 
|  | q->limits.max_write_zeroes_sectors = 0; | 
|  |  | 
|  | dm_table_verify_integrity(t); | 
|  |  | 
|  | /* | 
|  | * Some devices don't use blk_integrity but still want stable pages | 
|  | * because they do their own checksumming. | 
|  | * If any underlying device requires stable pages, a table must require | 
|  | * them as well.  Only targets that support iterate_devices are considered: | 
|  | * don't want error, zero, etc to require stable pages. | 
|  | */ | 
|  | if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) | 
|  | blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); | 
|  | else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); | 
|  |  | 
|  | /* | 
|  | * Determine whether or not this queue's I/O timings contribute | 
|  | * to the entropy pool, Only request-based targets use this. | 
|  | * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not | 
|  | * have it set. | 
|  | */ | 
|  | if (blk_queue_add_random(q) && | 
|  | dm_table_any_dev_attr(t, device_is_not_random, NULL)) | 
|  | blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); | 
|  |  | 
|  | /* | 
|  | * For a zoned target, setup the zones related queue attributes | 
|  | * and resources necessary for zone append emulation if necessary. | 
|  | */ | 
|  | if (blk_queue_is_zoned(q)) { | 
|  | r = dm_set_zones_restrictions(t, q); | 
|  | if (r) | 
|  | return r; | 
|  | if (!static_key_enabled(&zoned_enabled.key)) | 
|  | static_branch_enable(&zoned_enabled); | 
|  | } | 
|  |  | 
|  | dm_update_crypto_profile(q, t); | 
|  | disk_update_readahead(t->md->disk); | 
|  |  | 
|  | /* | 
|  | * Check for request-based device is left to | 
|  | * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). | 
|  | * | 
|  | * For bio-based device, only set QUEUE_FLAG_POLL when all | 
|  | * underlying devices supporting polling. | 
|  | */ | 
|  | if (__table_type_bio_based(t->type)) { | 
|  | if (dm_table_supports_poll(t)) | 
|  | blk_queue_flag_set(QUEUE_FLAG_POLL, q); | 
|  | else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_POLL, q); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct list_head *dm_table_get_devices(struct dm_table *t) | 
|  | { | 
|  | return &t->devices; | 
|  | } | 
|  |  | 
|  | blk_mode_t dm_table_get_mode(struct dm_table *t) | 
|  | { | 
|  | return t->mode; | 
|  | } | 
|  | EXPORT_SYMBOL(dm_table_get_mode); | 
|  |  | 
|  | enum suspend_mode { | 
|  | PRESUSPEND, | 
|  | PRESUSPEND_UNDO, | 
|  | POSTSUSPEND, | 
|  | }; | 
|  |  | 
|  | static void suspend_targets(struct dm_table *t, enum suspend_mode mode) | 
|  | { | 
|  | lockdep_assert_held(&t->md->suspend_lock); | 
|  |  | 
|  | for (unsigned int i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | switch (mode) { | 
|  | case PRESUSPEND: | 
|  | if (ti->type->presuspend) | 
|  | ti->type->presuspend(ti); | 
|  | break; | 
|  | case PRESUSPEND_UNDO: | 
|  | if (ti->type->presuspend_undo) | 
|  | ti->type->presuspend_undo(ti); | 
|  | break; | 
|  | case POSTSUSPEND: | 
|  | if (ti->type->postsuspend) | 
|  | ti->type->postsuspend(ti); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void dm_table_presuspend_targets(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | suspend_targets(t, PRESUSPEND); | 
|  | } | 
|  |  | 
|  | void dm_table_presuspend_undo_targets(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | suspend_targets(t, PRESUSPEND_UNDO); | 
|  | } | 
|  |  | 
|  | void dm_table_postsuspend_targets(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | suspend_targets(t, POSTSUSPEND); | 
|  | } | 
|  |  | 
|  | int dm_table_resume_targets(struct dm_table *t) | 
|  | { | 
|  | unsigned int i; | 
|  | int r = 0; | 
|  |  | 
|  | lockdep_assert_held(&t->md->suspend_lock); | 
|  |  | 
|  | for (i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (!ti->type->preresume) | 
|  | continue; | 
|  |  | 
|  | r = ti->type->preresume(ti); | 
|  | if (r) { | 
|  | DMERR("%s: %s: preresume failed, error = %d", | 
|  | dm_device_name(t->md), ti->type->name, r); | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = dm_table_get_target(t, i); | 
|  |  | 
|  | if (ti->type->resume) | 
|  | ti->type->resume(ti); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct mapped_device *dm_table_get_md(struct dm_table *t) | 
|  | { | 
|  | return t->md; | 
|  | } | 
|  | EXPORT_SYMBOL(dm_table_get_md); | 
|  |  | 
|  | const char *dm_table_device_name(struct dm_table *t) | 
|  | { | 
|  | return dm_device_name(t->md); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_table_device_name); | 
|  |  | 
|  | void dm_table_run_md_queue_async(struct dm_table *t) | 
|  | { | 
|  | if (!dm_table_request_based(t)) | 
|  | return; | 
|  |  | 
|  | if (t->md->queue) | 
|  | blk_mq_run_hw_queues(t->md->queue, true); | 
|  | } | 
|  | EXPORT_SYMBOL(dm_table_run_md_queue_async); | 
|  |  |