| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * drivers/base/power/domain_governor.c - Governors for device PM domains. | 
 |  * | 
 |  * Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/pm_domain.h> | 
 | #include <linux/pm_qos.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuidle.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/ktime.h> | 
 |  | 
 | static int dev_update_qos_constraint(struct device *dev, void *data) | 
 | { | 
 | 	s64 *constraint_ns_p = data; | 
 | 	s64 constraint_ns; | 
 |  | 
 | 	if (dev->power.subsys_data && dev->power.subsys_data->domain_data) { | 
 | 		struct gpd_timing_data *td = dev_gpd_data(dev)->td; | 
 |  | 
 | 		/* | 
 | 		 * Only take suspend-time QoS constraints of devices into | 
 | 		 * account, because constraints updated after the device has | 
 | 		 * been suspended are not guaranteed to be taken into account | 
 | 		 * anyway.  In order for them to take effect, the device has to | 
 | 		 * be resumed and suspended again. | 
 | 		 */ | 
 | 		constraint_ns = td ? td->effective_constraint_ns : | 
 | 				PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; | 
 | 	} else { | 
 | 		/* | 
 | 		 * The child is not in a domain and there's no info on its | 
 | 		 * suspend/resume latencies, so assume them to be negligible and | 
 | 		 * take its current PM QoS constraint (that's the only thing | 
 | 		 * known at this point anyway). | 
 | 		 */ | 
 | 		constraint_ns = dev_pm_qos_read_value(dev, DEV_PM_QOS_RESUME_LATENCY); | 
 | 		constraint_ns *= NSEC_PER_USEC; | 
 | 	} | 
 |  | 
 | 	if (constraint_ns < *constraint_ns_p) | 
 | 		*constraint_ns_p = constraint_ns; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * default_suspend_ok - Default PM domain governor routine to suspend devices. | 
 |  * @dev: Device to check. | 
 |  */ | 
 | static bool default_suspend_ok(struct device *dev) | 
 | { | 
 | 	struct gpd_timing_data *td = dev_gpd_data(dev)->td; | 
 | 	unsigned long flags; | 
 | 	s64 constraint_ns; | 
 |  | 
 | 	dev_dbg(dev, "%s()\n", __func__); | 
 |  | 
 | 	spin_lock_irqsave(&dev->power.lock, flags); | 
 |  | 
 | 	if (!td->constraint_changed) { | 
 | 		bool ret = td->cached_suspend_ok; | 
 |  | 
 | 		spin_unlock_irqrestore(&dev->power.lock, flags); | 
 | 		return ret; | 
 | 	} | 
 | 	td->constraint_changed = false; | 
 | 	td->cached_suspend_ok = false; | 
 | 	td->effective_constraint_ns = 0; | 
 | 	constraint_ns = __dev_pm_qos_resume_latency(dev); | 
 |  | 
 | 	spin_unlock_irqrestore(&dev->power.lock, flags); | 
 |  | 
 | 	if (constraint_ns == 0) | 
 | 		return false; | 
 |  | 
 | 	constraint_ns *= NSEC_PER_USEC; | 
 | 	/* | 
 | 	 * We can walk the children without any additional locking, because | 
 | 	 * they all have been suspended at this point and their | 
 | 	 * effective_constraint_ns fields won't be modified in parallel with us. | 
 | 	 */ | 
 | 	if (!dev->power.ignore_children) | 
 | 		device_for_each_child(dev, &constraint_ns, | 
 | 				      dev_update_qos_constraint); | 
 |  | 
 | 	if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) { | 
 | 		/* "No restriction", so the device is allowed to suspend. */ | 
 | 		td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; | 
 | 		td->cached_suspend_ok = true; | 
 | 	} else if (constraint_ns == 0) { | 
 | 		/* | 
 | 		 * This triggers if one of the children that don't belong to a | 
 | 		 * domain has a zero PM QoS constraint and it's better not to | 
 | 		 * suspend then.  effective_constraint_ns is zero already and | 
 | 		 * cached_suspend_ok is false, so bail out. | 
 | 		 */ | 
 | 		return false; | 
 | 	} else { | 
 | 		constraint_ns -= td->suspend_latency_ns + | 
 | 				td->resume_latency_ns; | 
 | 		/* | 
 | 		 * effective_constraint_ns is zero already and cached_suspend_ok | 
 | 		 * is false, so if the computed value is not positive, return | 
 | 		 * right away. | 
 | 		 */ | 
 | 		if (constraint_ns <= 0) | 
 | 			return false; | 
 |  | 
 | 		td->effective_constraint_ns = constraint_ns; | 
 | 		td->cached_suspend_ok = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The children have been suspended already, so we don't need to take | 
 | 	 * their suspend latencies into account here. | 
 | 	 */ | 
 | 	return td->cached_suspend_ok; | 
 | } | 
 |  | 
 | static void update_domain_next_wakeup(struct generic_pm_domain *genpd, ktime_t now) | 
 | { | 
 | 	ktime_t domain_wakeup = KTIME_MAX; | 
 | 	ktime_t next_wakeup; | 
 | 	struct pm_domain_data *pdd; | 
 | 	struct gpd_link *link; | 
 |  | 
 | 	if (!(genpd->flags & GENPD_FLAG_MIN_RESIDENCY)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Devices that have a predictable wakeup pattern, may specify | 
 | 	 * their next wakeup. Let's find the next wakeup from all the | 
 | 	 * devices attached to this domain and from all the sub-domains. | 
 | 	 * It is possible that component's a next wakeup may have become | 
 | 	 * stale when we read that here. We will ignore to ensure the domain | 
 | 	 * is able to enter its optimal idle state. | 
 | 	 */ | 
 | 	list_for_each_entry(pdd, &genpd->dev_list, list_node) { | 
 | 		next_wakeup = to_gpd_data(pdd)->td->next_wakeup; | 
 | 		if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now)) | 
 | 			if (ktime_before(next_wakeup, domain_wakeup)) | 
 | 				domain_wakeup = next_wakeup; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(link, &genpd->parent_links, parent_node) { | 
 | 		struct genpd_governor_data *cgd = link->child->gd; | 
 |  | 
 | 		next_wakeup = cgd ? cgd->next_wakeup : KTIME_MAX; | 
 | 		if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now)) | 
 | 			if (ktime_before(next_wakeup, domain_wakeup)) | 
 | 				domain_wakeup = next_wakeup; | 
 | 	} | 
 |  | 
 | 	genpd->gd->next_wakeup = domain_wakeup; | 
 | } | 
 |  | 
 | static bool next_wakeup_allows_state(struct generic_pm_domain *genpd, | 
 | 				     unsigned int state, ktime_t now) | 
 | { | 
 | 	ktime_t domain_wakeup = genpd->gd->next_wakeup; | 
 | 	s64 idle_time_ns, min_sleep_ns; | 
 |  | 
 | 	min_sleep_ns = genpd->states[state].power_off_latency_ns + | 
 | 		       genpd->states[state].residency_ns; | 
 |  | 
 | 	idle_time_ns = ktime_to_ns(ktime_sub(domain_wakeup, now)); | 
 |  | 
 | 	return idle_time_ns >= min_sleep_ns; | 
 | } | 
 |  | 
 | static bool __default_power_down_ok(struct dev_pm_domain *pd, | 
 | 				     unsigned int state) | 
 | { | 
 | 	struct generic_pm_domain *genpd = pd_to_genpd(pd); | 
 | 	struct gpd_link *link; | 
 | 	struct pm_domain_data *pdd; | 
 | 	s64 min_off_time_ns; | 
 | 	s64 off_on_time_ns; | 
 |  | 
 | 	off_on_time_ns = genpd->states[state].power_off_latency_ns + | 
 | 		genpd->states[state].power_on_latency_ns; | 
 |  | 
 | 	min_off_time_ns = -1; | 
 | 	/* | 
 | 	 * Check if subdomains can be off for enough time. | 
 | 	 * | 
 | 	 * All subdomains have been powered off already at this point. | 
 | 	 */ | 
 | 	list_for_each_entry(link, &genpd->parent_links, parent_node) { | 
 | 		struct genpd_governor_data *cgd = link->child->gd; | 
 |  | 
 | 		s64 sd_max_off_ns = cgd ? cgd->max_off_time_ns : -1; | 
 |  | 
 | 		if (sd_max_off_ns < 0) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Check if the subdomain is allowed to be off long enough for | 
 | 		 * the current domain to turn off and on (that's how much time | 
 | 		 * it will have to wait worst case). | 
 | 		 */ | 
 | 		if (sd_max_off_ns <= off_on_time_ns) | 
 | 			return false; | 
 |  | 
 | 		if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0) | 
 | 			min_off_time_ns = sd_max_off_ns; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if the devices in the domain can be off enough time. | 
 | 	 */ | 
 | 	list_for_each_entry(pdd, &genpd->dev_list, list_node) { | 
 | 		struct gpd_timing_data *td; | 
 | 		s64 constraint_ns; | 
 |  | 
 | 		/* | 
 | 		 * Check if the device is allowed to be off long enough for the | 
 | 		 * domain to turn off and on (that's how much time it will | 
 | 		 * have to wait worst case). | 
 | 		 */ | 
 | 		td = to_gpd_data(pdd)->td; | 
 | 		constraint_ns = td->effective_constraint_ns; | 
 | 		/* | 
 | 		 * Zero means "no suspend at all" and this runs only when all | 
 | 		 * devices in the domain are suspended, so it must be positive. | 
 | 		 */ | 
 | 		if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) | 
 | 			continue; | 
 |  | 
 | 		if (constraint_ns <= off_on_time_ns) | 
 | 			return false; | 
 |  | 
 | 		if (min_off_time_ns > constraint_ns || min_off_time_ns < 0) | 
 | 			min_off_time_ns = constraint_ns; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the computed minimum device off time is negative, there are no | 
 | 	 * latency constraints, so the domain can spend arbitrary time in the | 
 | 	 * "off" state. | 
 | 	 */ | 
 | 	if (min_off_time_ns < 0) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * The difference between the computed minimum subdomain or device off | 
 | 	 * time and the time needed to turn the domain on is the maximum | 
 | 	 * theoretical time this domain can spend in the "off" state. | 
 | 	 */ | 
 | 	genpd->gd->max_off_time_ns = min_off_time_ns - | 
 | 		genpd->states[state].power_on_latency_ns; | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * _default_power_down_ok - Default generic PM domain power off governor routine. | 
 |  * @pd: PM domain to check. | 
 |  * @now: current ktime. | 
 |  * | 
 |  * This routine must be executed under the PM domain's lock. | 
 |  */ | 
 | static bool _default_power_down_ok(struct dev_pm_domain *pd, ktime_t now) | 
 | { | 
 | 	struct generic_pm_domain *genpd = pd_to_genpd(pd); | 
 | 	struct genpd_governor_data *gd = genpd->gd; | 
 | 	int state_idx = genpd->state_count - 1; | 
 | 	struct gpd_link *link; | 
 |  | 
 | 	/* | 
 | 	 * Find the next wakeup from devices that can determine their own wakeup | 
 | 	 * to find when the domain would wakeup and do it for every device down | 
 | 	 * the hierarchy. It is not worth while to sleep if the state's residency | 
 | 	 * cannot be met. | 
 | 	 */ | 
 | 	update_domain_next_wakeup(genpd, now); | 
 | 	if ((genpd->flags & GENPD_FLAG_MIN_RESIDENCY) && (gd->next_wakeup != KTIME_MAX)) { | 
 | 		/* Let's find out the deepest domain idle state, the devices prefer */ | 
 | 		while (state_idx >= 0) { | 
 | 			if (next_wakeup_allows_state(genpd, state_idx, now)) { | 
 | 				gd->max_off_time_changed = true; | 
 | 				break; | 
 | 			} | 
 | 			state_idx--; | 
 | 		} | 
 |  | 
 | 		if (state_idx < 0) { | 
 | 			state_idx = 0; | 
 | 			gd->cached_power_down_ok = false; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!gd->max_off_time_changed) { | 
 | 		genpd->state_idx = gd->cached_power_down_state_idx; | 
 | 		return gd->cached_power_down_ok; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have to invalidate the cached results for the parents, so | 
 | 	 * use the observation that default_power_down_ok() is not | 
 | 	 * going to be called for any parent until this instance | 
 | 	 * returns. | 
 | 	 */ | 
 | 	list_for_each_entry(link, &genpd->child_links, child_node) { | 
 | 		struct genpd_governor_data *pgd = link->parent->gd; | 
 |  | 
 | 		if (pgd) | 
 | 			pgd->max_off_time_changed = true; | 
 | 	} | 
 |  | 
 | 	gd->max_off_time_ns = -1; | 
 | 	gd->max_off_time_changed = false; | 
 | 	gd->cached_power_down_ok = true; | 
 |  | 
 | 	/* | 
 | 	 * Find a state to power down to, starting from the state | 
 | 	 * determined by the next wakeup. | 
 | 	 */ | 
 | 	while (!__default_power_down_ok(pd, state_idx)) { | 
 | 		if (state_idx == 0) { | 
 | 			gd->cached_power_down_ok = false; | 
 | 			break; | 
 | 		} | 
 | 		state_idx--; | 
 | 	} | 
 |  | 
 | done: | 
 | 	genpd->state_idx = state_idx; | 
 | 	gd->cached_power_down_state_idx = genpd->state_idx; | 
 | 	return gd->cached_power_down_ok; | 
 | } | 
 |  | 
 | static bool default_power_down_ok(struct dev_pm_domain *pd) | 
 | { | 
 | 	return _default_power_down_ok(pd, ktime_get()); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_IDLE | 
 | static bool cpu_power_down_ok(struct dev_pm_domain *pd) | 
 | { | 
 | 	struct generic_pm_domain *genpd = pd_to_genpd(pd); | 
 | 	struct cpuidle_device *dev; | 
 | 	ktime_t domain_wakeup, next_hrtimer; | 
 | 	ktime_t now = ktime_get(); | 
 | 	struct device *cpu_dev; | 
 | 	s64 cpu_constraint, global_constraint; | 
 | 	s64 idle_duration_ns; | 
 | 	int cpu, i; | 
 |  | 
 | 	/* Validate dev PM QoS constraints. */ | 
 | 	if (!_default_power_down_ok(pd, now)) | 
 | 		return false; | 
 |  | 
 | 	if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN)) | 
 | 		return true; | 
 |  | 
 | 	global_constraint = cpu_latency_qos_limit(); | 
 | 	/* | 
 | 	 * Find the next wakeup for any of the online CPUs within the PM domain | 
 | 	 * and its subdomains. Note, we only need the genpd->cpus, as it already | 
 | 	 * contains a mask of all CPUs from subdomains. | 
 | 	 */ | 
 | 	domain_wakeup = ktime_set(KTIME_SEC_MAX, 0); | 
 | 	for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) { | 
 | 		dev = per_cpu(cpuidle_devices, cpu); | 
 | 		if (dev) { | 
 | 			next_hrtimer = READ_ONCE(dev->next_hrtimer); | 
 | 			if (ktime_before(next_hrtimer, domain_wakeup)) | 
 | 				domain_wakeup = next_hrtimer; | 
 | 		} | 
 |  | 
 | 		cpu_dev = get_cpu_device(cpu); | 
 | 		if (cpu_dev) { | 
 | 			cpu_constraint = dev_pm_qos_raw_resume_latency(cpu_dev); | 
 | 			if (cpu_constraint < global_constraint) | 
 | 				global_constraint = cpu_constraint; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	global_constraint *= NSEC_PER_USEC; | 
 | 	/* The minimum idle duration is from now - until the next wakeup. */ | 
 | 	idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, now)); | 
 | 	if (idle_duration_ns <= 0) | 
 | 		return false; | 
 |  | 
 | 	/* Store the next domain_wakeup to allow consumers to use it. */ | 
 | 	genpd->gd->next_hrtimer = domain_wakeup; | 
 |  | 
 | 	/* | 
 | 	 * Find the deepest idle state that has its residency value satisfied | 
 | 	 * and by also taking into account the power off latency for the state. | 
 | 	 * Start at the state picked by the dev PM QoS constraint validation. | 
 | 	 */ | 
 | 	i = genpd->state_idx; | 
 | 	do { | 
 | 		if ((idle_duration_ns >= (genpd->states[i].residency_ns + | 
 | 		    genpd->states[i].power_off_latency_ns)) && | 
 | 		    (global_constraint >= (genpd->states[i].power_on_latency_ns + | 
 | 		    genpd->states[i].power_off_latency_ns))) { | 
 | 			genpd->state_idx = i; | 
 | 			return true; | 
 | 		} | 
 | 	} while (--i >= 0); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | struct dev_power_governor pm_domain_cpu_gov = { | 
 | 	.suspend_ok = default_suspend_ok, | 
 | 	.power_down_ok = cpu_power_down_ok, | 
 | }; | 
 | #endif | 
 |  | 
 | struct dev_power_governor simple_qos_governor = { | 
 | 	.suspend_ok = default_suspend_ok, | 
 | 	.power_down_ok = default_power_down_ok, | 
 | }; | 
 |  | 
 | /** | 
 |  * pm_genpd_gov_always_on - A governor implementing an always-on policy | 
 |  */ | 
 | struct dev_power_governor pm_domain_always_on_gov = { | 
 | 	.suspend_ok = default_suspend_ok, | 
 | }; |