| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * AMD SVM support | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/kvm_types.h> | 
 | #include <linux/hashtable.h> | 
 | #include <linux/amd-iommu.h> | 
 | #include <linux/kvm_host.h> | 
 |  | 
 | #include <asm/irq_remapping.h> | 
 |  | 
 | #include "trace.h" | 
 | #include "lapic.h" | 
 | #include "x86.h" | 
 | #include "irq.h" | 
 | #include "svm.h" | 
 |  | 
 | /* | 
 |  * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID, | 
 |  * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry | 
 |  * if an interrupt can't be delivered, e.g. because the vCPU isn't running. | 
 |  * | 
 |  * For the vCPU ID, use however many bits are currently allowed for the max | 
 |  * guest physical APIC ID (limited by the size of the physical ID table), and | 
 |  * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the | 
 |  * size of the GATag is defined by hardware (32 bits), but is an opaque value | 
 |  * as far as hardware is concerned. | 
 |  */ | 
 | #define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK | 
 |  | 
 | #define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK) | 
 | #define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT) | 
 |  | 
 | #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK) | 
 | #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK) | 
 |  | 
 | #define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \ | 
 | 					 ((vcpu_id) & AVIC_VCPU_ID_MASK)) | 
 | #define AVIC_GATAG(vm_id, vcpu_id)					\ | 
 | ({									\ | 
 | 	u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\ | 
 | 									\ | 
 | 	WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\ | 
 | 	WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\ | 
 | 	ga_tag;								\ | 
 | }) | 
 |  | 
 | static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u); | 
 |  | 
 | static bool force_avic; | 
 | module_param_unsafe(force_avic, bool, 0444); | 
 |  | 
 | /* Note: | 
 |  * This hash table is used to map VM_ID to a struct kvm_svm, | 
 |  * when handling AMD IOMMU GALOG notification to schedule in | 
 |  * a particular vCPU. | 
 |  */ | 
 | #define SVM_VM_DATA_HASH_BITS	8 | 
 | static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); | 
 | static u32 next_vm_id = 0; | 
 | static bool next_vm_id_wrapped = 0; | 
 | static DEFINE_SPINLOCK(svm_vm_data_hash_lock); | 
 | bool x2avic_enabled; | 
 |  | 
 | /* | 
 |  * This is a wrapper of struct amd_iommu_ir_data. | 
 |  */ | 
 | struct amd_svm_iommu_ir { | 
 | 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */ | 
 | 	void *data;		/* Storing pointer to struct amd_ir_data */ | 
 | }; | 
 |  | 
 | static void avic_activate_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *vmcb = svm->vmcb01.ptr; | 
 |  | 
 | 	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK); | 
 | 	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK; | 
 |  | 
 | 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK; | 
 |  | 
 | 	/* | 
 | 	 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR | 
 | 	 * accesses, while interrupt injection to a running vCPU can be | 
 | 	 * achieved using AVIC doorbell.  KVM disables the APIC access page | 
 | 	 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling | 
 | 	 * AVIC in hybrid mode activates only the doorbell mechanism. | 
 | 	 */ | 
 | 	if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) { | 
 | 		vmcb->control.int_ctl |= X2APIC_MODE_MASK; | 
 | 		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID; | 
 | 		/* Disabling MSR intercept for x2APIC registers */ | 
 | 		svm_set_x2apic_msr_interception(svm, false); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Flush the TLB, the guest may have inserted a non-APIC | 
 | 		 * mapping into the TLB while AVIC was disabled. | 
 | 		 */ | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu); | 
 |  | 
 | 		/* For xAVIC and hybrid-xAVIC modes */ | 
 | 		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID; | 
 | 		/* Enabling MSR intercept for x2APIC registers */ | 
 | 		svm_set_x2apic_msr_interception(svm, true); | 
 | 	} | 
 | } | 
 |  | 
 | static void avic_deactivate_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *vmcb = svm->vmcb01.ptr; | 
 |  | 
 | 	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK); | 
 | 	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK; | 
 |  | 
 | 	/* | 
 | 	 * If running nested and the guest uses its own MSR bitmap, there | 
 | 	 * is no need to update L0's msr bitmap | 
 | 	 */ | 
 | 	if (is_guest_mode(&svm->vcpu) && | 
 | 	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)) | 
 | 		return; | 
 |  | 
 | 	/* Enabling MSR intercept for x2APIC registers */ | 
 | 	svm_set_x2apic_msr_interception(svm, true); | 
 | } | 
 |  | 
 | /* Note: | 
 |  * This function is called from IOMMU driver to notify | 
 |  * SVM to schedule in a particular vCPU of a particular VM. | 
 |  */ | 
 | int avic_ga_log_notifier(u32 ga_tag) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct kvm_svm *kvm_svm; | 
 | 	struct kvm_vcpu *vcpu = NULL; | 
 | 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); | 
 | 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); | 
 |  | 
 | 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); | 
 | 	trace_kvm_avic_ga_log(vm_id, vcpu_id); | 
 |  | 
 | 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
 | 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { | 
 | 		if (kvm_svm->avic_vm_id != vm_id) | 
 | 			continue; | 
 | 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
 |  | 
 | 	/* Note: | 
 | 	 * At this point, the IOMMU should have already set the pending | 
 | 	 * bit in the vAPIC backing page. So, we just need to schedule | 
 | 	 * in the vcpu. | 
 | 	 */ | 
 | 	if (vcpu) | 
 | 		kvm_vcpu_wake_up(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void avic_vm_destroy(struct kvm *kvm) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
 |  | 
 | 	if (!enable_apicv) | 
 | 		return; | 
 |  | 
 | 	if (kvm_svm->avic_logical_id_table_page) | 
 | 		__free_page(kvm_svm->avic_logical_id_table_page); | 
 | 	if (kvm_svm->avic_physical_id_table_page) | 
 | 		__free_page(kvm_svm->avic_physical_id_table_page); | 
 |  | 
 | 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
 | 	hash_del(&kvm_svm->hnode); | 
 | 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
 | } | 
 |  | 
 | int avic_vm_init(struct kvm *kvm) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int err = -ENOMEM; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
 | 	struct kvm_svm *k2; | 
 | 	struct page *p_page; | 
 | 	struct page *l_page; | 
 | 	u32 vm_id; | 
 |  | 
 | 	if (!enable_apicv) | 
 | 		return 0; | 
 |  | 
 | 	/* Allocating physical APIC ID table (4KB) */ | 
 | 	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
 | 	if (!p_page) | 
 | 		goto free_avic; | 
 |  | 
 | 	kvm_svm->avic_physical_id_table_page = p_page; | 
 |  | 
 | 	/* Allocating logical APIC ID table (4KB) */ | 
 | 	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
 | 	if (!l_page) | 
 | 		goto free_avic; | 
 |  | 
 | 	kvm_svm->avic_logical_id_table_page = l_page; | 
 |  | 
 | 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
 |  again: | 
 | 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; | 
 | 	if (vm_id == 0) { /* id is 1-based, zero is not okay */ | 
 | 		next_vm_id_wrapped = 1; | 
 | 		goto again; | 
 | 	} | 
 | 	/* Is it still in use? Only possible if wrapped at least once */ | 
 | 	if (next_vm_id_wrapped) { | 
 | 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { | 
 | 			if (k2->avic_vm_id == vm_id) | 
 | 				goto again; | 
 | 		} | 
 | 	} | 
 | 	kvm_svm->avic_vm_id = vm_id; | 
 | 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); | 
 | 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_avic: | 
 | 	avic_vm_destroy(kvm); | 
 | 	return err; | 
 | } | 
 |  | 
 | void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb) | 
 | { | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); | 
 | 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); | 
 | 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); | 
 | 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); | 
 |  | 
 | 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; | 
 | 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; | 
 | 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; | 
 | 	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK; | 
 |  | 
 | 	if (kvm_apicv_activated(svm->vcpu.kvm)) | 
 | 		avic_activate_vmcb(svm); | 
 | 	else | 
 | 		avic_deactivate_vmcb(svm); | 
 | } | 
 |  | 
 | static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, | 
 | 				       unsigned int index) | 
 | { | 
 | 	u64 *avic_physical_id_table; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
 |  | 
 | 	if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) || | 
 | 	    (index > X2AVIC_MAX_PHYSICAL_ID)) | 
 | 		return NULL; | 
 |  | 
 | 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); | 
 |  | 
 | 	return &avic_physical_id_table[index]; | 
 | } | 
 |  | 
 | static int avic_init_backing_page(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 *entry, new_entry; | 
 | 	int id = vcpu->vcpu_id; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) || | 
 | 	    (id > X2AVIC_MAX_PHYSICAL_ID)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!vcpu->arch.apic->regs) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (kvm_apicv_activated(vcpu->kvm)) { | 
 | 		int ret; | 
 |  | 
 | 		/* | 
 | 		 * Note, AVIC hardware walks the nested page table to check | 
 | 		 * permissions, but does not use the SPA address specified in | 
 | 		 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE | 
 | 		 * pointer field of the VMCB. | 
 | 		 */ | 
 | 		ret = kvm_alloc_apic_access_page(vcpu->kvm); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs); | 
 |  | 
 | 	/* Setting AVIC backing page address in the phy APIC ID table */ | 
 | 	entry = avic_get_physical_id_entry(vcpu, id); | 
 | 	if (!entry) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & | 
 | 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | | 
 | 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); | 
 | 	WRITE_ONCE(*entry, new_entry); | 
 |  | 
 | 	svm->avic_physical_id_cache = entry; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void avic_ring_doorbell(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Note, the vCPU could get migrated to a different pCPU at any point, | 
 | 	 * which could result in signalling the wrong/previous pCPU.  But if | 
 | 	 * that happens the vCPU is guaranteed to do a VMRUN (after being | 
 | 	 * migrated) and thus will process pending interrupts, i.e. a doorbell | 
 | 	 * is not needed (and the spurious one is harmless). | 
 | 	 */ | 
 | 	int cpu = READ_ONCE(vcpu->cpu); | 
 |  | 
 | 	if (cpu != get_cpu()) { | 
 | 		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu)); | 
 | 		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu)); | 
 | 	} | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 |  | 
 | static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl) | 
 | { | 
 | 	vcpu->arch.apic->irr_pending = true; | 
 | 	svm_complete_interrupt_delivery(vcpu, | 
 | 					icrl & APIC_MODE_MASK, | 
 | 					icrl & APIC_INT_LEVELTRIG, | 
 | 					icrl & APIC_VECTOR_MASK); | 
 | } | 
 |  | 
 | static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id, | 
 | 					  u32 icrl) | 
 | { | 
 | 	/* | 
 | 	 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID, | 
 | 	 * i.e. APIC ID == vCPU ID. | 
 | 	 */ | 
 | 	struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id); | 
 |  | 
 | 	/* Once again, nothing to do if the target vCPU doesn't exist. */ | 
 | 	if (unlikely(!target_vcpu)) | 
 | 		return; | 
 |  | 
 | 	avic_kick_vcpu(target_vcpu, icrl); | 
 | } | 
 |  | 
 | static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table, | 
 | 					 u32 logid_index, u32 icrl) | 
 | { | 
 | 	u32 physical_id; | 
 |  | 
 | 	if (avic_logical_id_table) { | 
 | 		u32 logid_entry = avic_logical_id_table[logid_index]; | 
 |  | 
 | 		/* Nothing to do if the logical destination is invalid. */ | 
 | 		if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK))) | 
 | 			return; | 
 |  | 
 | 		physical_id = logid_entry & | 
 | 			      AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | 
 | 	} else { | 
 | 		/* | 
 | 		 * For x2APIC, the logical APIC ID is a read-only value that is | 
 | 		 * derived from the x2APIC ID, thus the x2APIC ID can be found | 
 | 		 * by reversing the calculation (stored in logid_index).  Note, | 
 | 		 * bits 31:20 of the x2APIC ID aren't propagated to the logical | 
 | 		 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS. | 
 | 		 */ | 
 | 		physical_id = logid_index; | 
 | 	} | 
 |  | 
 | 	avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl); | 
 | } | 
 |  | 
 | /* | 
 |  * A fast-path version of avic_kick_target_vcpus(), which attempts to match | 
 |  * destination APIC ID to vCPU without looping through all vCPUs. | 
 |  */ | 
 | static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source, | 
 | 				       u32 icrl, u32 icrh, u32 index) | 
 | { | 
 | 	int dest_mode = icrl & APIC_DEST_MASK; | 
 | 	int shorthand = icrl & APIC_SHORT_MASK; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
 | 	u32 dest; | 
 |  | 
 | 	if (shorthand != APIC_DEST_NOSHORT) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (apic_x2apic_mode(source)) | 
 | 		dest = icrh; | 
 | 	else | 
 | 		dest = GET_XAPIC_DEST_FIELD(icrh); | 
 |  | 
 | 	if (dest_mode == APIC_DEST_PHYSICAL) { | 
 | 		/* broadcast destination, use slow path */ | 
 | 		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST) | 
 | 			return -EINVAL; | 
 | 		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (WARN_ON_ONCE(dest != index)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		avic_kick_vcpu_by_physical_id(kvm, dest, icrl); | 
 | 	} else { | 
 | 		u32 *avic_logical_id_table; | 
 | 		unsigned long bitmap, i; | 
 | 		u32 cluster; | 
 |  | 
 | 		if (apic_x2apic_mode(source)) { | 
 | 			/* 16 bit dest mask, 16 bit cluster id */ | 
 | 			bitmap = dest & 0xFFFF; | 
 | 			cluster = (dest >> 16) << 4; | 
 | 		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) { | 
 | 			/* 8 bit dest mask*/ | 
 | 			bitmap = dest; | 
 | 			cluster = 0; | 
 | 		} else { | 
 | 			/* 4 bit desk mask, 4 bit cluster id */ | 
 | 			bitmap = dest & 0xF; | 
 | 			cluster = (dest >> 4) << 2; | 
 | 		} | 
 |  | 
 | 		/* Nothing to do if there are no destinations in the cluster. */ | 
 | 		if (unlikely(!bitmap)) | 
 | 			return 0; | 
 |  | 
 | 		if (apic_x2apic_mode(source)) | 
 | 			avic_logical_id_table = NULL; | 
 | 		else | 
 | 			avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page); | 
 |  | 
 | 		/* | 
 | 		 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical | 
 | 		 * IDs, thus each bit in the destination is guaranteed to map | 
 | 		 * to at most one vCPU. | 
 | 		 */ | 
 | 		for_each_set_bit(i, &bitmap, 16) | 
 | 			avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table, | 
 | 						     cluster + i, icrl); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source, | 
 | 				   u32 icrl, u32 icrh, u32 index) | 
 | { | 
 | 	u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh); | 
 | 	unsigned long i; | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index)) | 
 | 		return; | 
 |  | 
 | 	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index); | 
 |  | 
 | 	/* | 
 | 	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake | 
 | 	 * event.  There's no need to signal doorbells, as hardware has handled | 
 | 	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have | 
 | 	 * since entered the guest will have processed pending IRQs at VMRUN. | 
 | 	 */ | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK, | 
 | 					dest, icrl & APIC_DEST_MASK)) | 
 | 			avic_kick_vcpu(vcpu, icrl); | 
 | 	} | 
 | } | 
 |  | 
 | int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32; | 
 | 	u32 icrl = svm->vmcb->control.exit_info_1; | 
 | 	u32 id = svm->vmcb->control.exit_info_2 >> 32; | 
 | 	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF; | 
 | 	struct kvm_lapic *apic = vcpu->arch.apic; | 
 |  | 
 | 	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index); | 
 |  | 
 | 	switch (id) { | 
 | 	case AVIC_IPI_FAILURE_INVALID_TARGET: | 
 | 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE: | 
 | 		/* | 
 | 		 * Emulate IPIs that are not handled by AVIC hardware, which | 
 | 		 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over | 
 | 		 * if _any_ targets are invalid, e.g. if the logical mode mask | 
 | 		 * is a superset of running vCPUs. | 
 | 		 * | 
 | 		 * The exit is a trap, e.g. ICR holds the correct value and RIP | 
 | 		 * has been advanced, KVM is responsible only for emulating the | 
 | 		 * IPI.  Sadly, hardware may sometimes leave the BUSY flag set, | 
 | 		 * in which case KVM needs to emulate the ICR write as well in | 
 | 		 * order to clear the BUSY flag. | 
 | 		 */ | 
 | 		if (icrl & APIC_ICR_BUSY) | 
 | 			kvm_apic_write_nodecode(vcpu, APIC_ICR); | 
 | 		else | 
 | 			kvm_apic_send_ipi(apic, icrl, icrh); | 
 | 		break; | 
 | 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: | 
 | 		/* | 
 | 		 * At this point, we expect that the AVIC HW has already | 
 | 		 * set the appropriate IRR bits on the valid target | 
 | 		 * vcpus. So, we just need to kick the appropriate vcpu. | 
 | 		 */ | 
 | 		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index); | 
 | 		break; | 
 | 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: | 
 | 		WARN_ONCE(1, "Invalid backing page\n"); | 
 | 		break; | 
 | 	case AVIC_IPI_FAILURE_INVALID_IPI_VECTOR: | 
 | 		/* Invalid IPI with vector < 16 */ | 
 | 		break; | 
 | 	default: | 
 | 		vcpu_unimpl(vcpu, "Unknown avic incomplete IPI interception\n"); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		return APICV_INHIBIT_REASON_NESTED; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) | 
 | { | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
 | 	u32 *logical_apic_id_table; | 
 | 	u32 cluster, index; | 
 |  | 
 | 	ldr = GET_APIC_LOGICAL_ID(ldr); | 
 |  | 
 | 	if (flat) { | 
 | 		cluster = 0; | 
 | 	} else { | 
 | 		cluster = (ldr >> 4); | 
 | 		if (cluster >= 0xf) | 
 | 			return NULL; | 
 | 		ldr &= 0xf; | 
 | 	} | 
 | 	if (!ldr || !is_power_of_2(ldr)) | 
 | 		return NULL; | 
 |  | 
 | 	index = __ffs(ldr); | 
 | 	if (WARN_ON_ONCE(index > 7)) | 
 | 		return NULL; | 
 | 	index += (cluster << 2); | 
 |  | 
 | 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); | 
 |  | 
 | 	return &logical_apic_id_table[index]; | 
 | } | 
 |  | 
 | static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) | 
 | { | 
 | 	bool flat; | 
 | 	u32 *entry, new_entry; | 
 |  | 
 | 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; | 
 | 	entry = avic_get_logical_id_entry(vcpu, ldr, flat); | 
 | 	if (!entry) | 
 | 		return; | 
 |  | 
 | 	new_entry = READ_ONCE(*entry); | 
 | 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | 
 | 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); | 
 | 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; | 
 | 	WRITE_ONCE(*entry, new_entry); | 
 | } | 
 |  | 
 | static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	bool flat = svm->dfr_reg == APIC_DFR_FLAT; | 
 | 	u32 *entry; | 
 |  | 
 | 	/* Note: x2AVIC does not use logical APIC ID table */ | 
 | 	if (apic_x2apic_mode(vcpu->arch.apic)) | 
 | 		return; | 
 |  | 
 | 	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); | 
 | 	if (entry) | 
 | 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); | 
 | } | 
 |  | 
 | static void avic_handle_ldr_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); | 
 | 	u32 id = kvm_xapic_id(vcpu->arch.apic); | 
 |  | 
 | 	/* AVIC does not support LDR update for x2APIC */ | 
 | 	if (apic_x2apic_mode(vcpu->arch.apic)) | 
 | 		return; | 
 |  | 
 | 	if (ldr == svm->ldr_reg) | 
 | 		return; | 
 |  | 
 | 	avic_invalidate_logical_id_entry(vcpu); | 
 |  | 
 | 	svm->ldr_reg = ldr; | 
 | 	avic_ldr_write(vcpu, id, ldr); | 
 | } | 
 |  | 
 | static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); | 
 |  | 
 | 	if (svm->dfr_reg == dfr) | 
 | 		return; | 
 |  | 
 | 	avic_invalidate_logical_id_entry(vcpu); | 
 | 	svm->dfr_reg = dfr; | 
 | } | 
 |  | 
 | static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 & | 
 | 				AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
 |  | 
 | 	switch (offset) { | 
 | 	case APIC_LDR: | 
 | 		avic_handle_ldr_update(vcpu); | 
 | 		break; | 
 | 	case APIC_DFR: | 
 | 		avic_handle_dfr_update(vcpu); | 
 | 		break; | 
 | 	case APIC_RRR: | 
 | 		/* Ignore writes to Read Remote Data, it's read-only. */ | 
 | 		return 1; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	kvm_apic_write_nodecode(vcpu, offset); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool is_avic_unaccelerated_access_trap(u32 offset) | 
 | { | 
 | 	bool ret = false; | 
 |  | 
 | 	switch (offset) { | 
 | 	case APIC_ID: | 
 | 	case APIC_EOI: | 
 | 	case APIC_RRR: | 
 | 	case APIC_LDR: | 
 | 	case APIC_DFR: | 
 | 	case APIC_SPIV: | 
 | 	case APIC_ESR: | 
 | 	case APIC_ICR: | 
 | 	case APIC_LVTT: | 
 | 	case APIC_LVTTHMR: | 
 | 	case APIC_LVTPC: | 
 | 	case APIC_LVT0: | 
 | 	case APIC_LVT1: | 
 | 	case APIC_LVTERR: | 
 | 	case APIC_TMICT: | 
 | 	case APIC_TDCR: | 
 | 		ret = true; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int ret = 0; | 
 | 	u32 offset = svm->vmcb->control.exit_info_1 & | 
 | 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
 | 	u32 vector = svm->vmcb->control.exit_info_2 & | 
 | 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK; | 
 | 	bool write = (svm->vmcb->control.exit_info_1 >> 32) & | 
 | 		     AVIC_UNACCEL_ACCESS_WRITE_MASK; | 
 | 	bool trap = is_avic_unaccelerated_access_trap(offset); | 
 |  | 
 | 	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset, | 
 | 					    trap, write, vector); | 
 | 	if (trap) { | 
 | 		/* Handling Trap */ | 
 | 		WARN_ONCE(!write, "svm: Handling trap read.\n"); | 
 | 		ret = avic_unaccel_trap_write(vcpu); | 
 | 	} else { | 
 | 		/* Handling Fault */ | 
 | 		ret = kvm_emulate_instruction(vcpu, 0); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int avic_init_vcpu(struct vcpu_svm *svm) | 
 | { | 
 | 	int ret; | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 |  | 
 | 	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm)) | 
 | 		return 0; | 
 |  | 
 | 	ret = avic_init_backing_page(vcpu); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	INIT_LIST_HEAD(&svm->ir_list); | 
 | 	spin_lock_init(&svm->ir_list_lock); | 
 | 	svm->dfr_reg = APIC_DFR_FLAT; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	avic_handle_dfr_update(vcpu); | 
 | 	avic_handle_ldr_update(vcpu); | 
 | } | 
 |  | 
 | static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long flags; | 
 | 	struct amd_svm_iommu_ir *ir; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (!kvm_arch_has_assigned_device(vcpu->kvm)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Here, we go through the per-vcpu ir_list to update all existing | 
 | 	 * interrupt remapping table entry targeting this vcpu. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 |  | 
 | 	if (list_empty(&svm->ir_list)) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(ir, &svm->ir_list, node) { | 
 | 		if (activate) | 
 | 			ret = amd_iommu_activate_guest_mode(ir->data); | 
 | 		else | 
 | 			ret = amd_iommu_deactivate_guest_mode(ir->data); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct amd_svm_iommu_ir *cur; | 
 |  | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 | 	list_for_each_entry(cur, &svm->ir_list, node) { | 
 | 		if (cur->data != pi->ir_data) | 
 | 			continue; | 
 | 		list_del(&cur->node); | 
 | 		kfree(cur); | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | } | 
 |  | 
 | static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long flags; | 
 | 	struct amd_svm_iommu_ir *ir; | 
 | 	u64 entry; | 
 |  | 
 | 	/** | 
 | 	 * In some cases, the existing irte is updated and re-set, | 
 | 	 * so we need to check here if it's already been * added | 
 | 	 * to the ir_list. | 
 | 	 */ | 
 | 	if (pi->ir_data && (pi->prev_ga_tag != 0)) { | 
 | 		struct kvm *kvm = svm->vcpu.kvm; | 
 | 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); | 
 | 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | 
 | 		struct vcpu_svm *prev_svm; | 
 |  | 
 | 		if (!prev_vcpu) { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		prev_svm = to_svm(prev_vcpu); | 
 | 		svm_ir_list_del(prev_svm, pi); | 
 | 	} | 
 |  | 
 | 	/** | 
 | 	 * Allocating new amd_iommu_pi_data, which will get | 
 | 	 * add to the per-vcpu ir_list. | 
 | 	 */ | 
 | 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_ATOMIC | __GFP_ACCOUNT); | 
 | 	if (!ir) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	ir->data = pi->ir_data; | 
 |  | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Update the target pCPU for IOMMU doorbells if the vCPU is running. | 
 | 	 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM | 
 | 	 * will update the pCPU info when the vCPU awkened and/or scheduled in. | 
 | 	 * See also avic_vcpu_load(). | 
 | 	 */ | 
 | 	entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
 | 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) | 
 | 		amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK, | 
 | 				    true, pi->ir_data); | 
 |  | 
 | 	list_add(&ir->node, &svm->ir_list); | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: | 
 |  * The HW cannot support posting multicast/broadcast | 
 |  * interrupts to a vCPU. So, we still use legacy interrupt | 
 |  * remapping for these kind of interrupts. | 
 |  * | 
 |  * For lowest-priority interrupts, we only support | 
 |  * those with single CPU as the destination, e.g. user | 
 |  * configures the interrupts via /proc/irq or uses | 
 |  * irqbalance to make the interrupts single-CPU. | 
 |  */ | 
 | static int | 
 | get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, | 
 | 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm) | 
 | { | 
 | 	struct kvm_lapic_irq irq; | 
 | 	struct kvm_vcpu *vcpu = NULL; | 
 |  | 
 | 	kvm_set_msi_irq(kvm, e, &irq); | 
 |  | 
 | 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || | 
 | 	    !kvm_irq_is_postable(&irq)) { | 
 | 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", | 
 | 			 __func__, irq.vector); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, | 
 | 		 irq.vector); | 
 | 	*svm = to_svm(vcpu); | 
 | 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); | 
 | 	vcpu_info->vector = irq.vector; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * avic_pi_update_irte - set IRTE for Posted-Interrupts | 
 |  * | 
 |  * @kvm: kvm | 
 |  * @host_irq: host irq of the interrupt | 
 |  * @guest_irq: gsi of the interrupt | 
 |  * @set: set or unset PI | 
 |  * returns 0 on success, < 0 on failure | 
 |  */ | 
 | int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, | 
 | 			uint32_t guest_irq, bool set) | 
 | { | 
 | 	struct kvm_kernel_irq_routing_entry *e; | 
 | 	struct kvm_irq_routing_table *irq_rt; | 
 | 	bool enable_remapped_mode = true; | 
 | 	int idx, ret = 0; | 
 |  | 
 | 	if (!kvm_arch_has_assigned_device(kvm) || | 
 | 	    !irq_remapping_cap(IRQ_POSTING_CAP)) | 
 | 		return 0; | 
 |  | 
 | 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", | 
 | 		 __func__, host_irq, guest_irq, set); | 
 |  | 
 | 	idx = srcu_read_lock(&kvm->irq_srcu); | 
 | 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); | 
 |  | 
 | 	if (guest_irq >= irq_rt->nr_rt_entries || | 
 | 		hlist_empty(&irq_rt->map[guest_irq])) { | 
 | 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", | 
 | 			     guest_irq, irq_rt->nr_rt_entries); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { | 
 | 		struct vcpu_data vcpu_info; | 
 | 		struct vcpu_svm *svm = NULL; | 
 |  | 
 | 		if (e->type != KVM_IRQ_ROUTING_MSI) | 
 | 			continue; | 
 |  | 
 | 		/** | 
 | 		 * Here, we setup with legacy mode in the following cases: | 
 | 		 * 1. When cannot target interrupt to a specific vcpu. | 
 | 		 * 2. Unsetting posted interrupt. | 
 | 		 * 3. APIC virtualization is disabled for the vcpu. | 
 | 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) | 
 | 		 */ | 
 | 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && | 
 | 		    kvm_vcpu_apicv_active(&svm->vcpu)) { | 
 | 			struct amd_iommu_pi_data pi; | 
 |  | 
 | 			enable_remapped_mode = false; | 
 |  | 
 | 			/* Try to enable guest_mode in IRTE */ | 
 | 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & | 
 | 					    AVIC_HPA_MASK); | 
 | 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, | 
 | 						     svm->vcpu.vcpu_id); | 
 | 			pi.is_guest_mode = true; | 
 | 			pi.vcpu_data = &vcpu_info; | 
 | 			ret = irq_set_vcpu_affinity(host_irq, &pi); | 
 |  | 
 | 			/** | 
 | 			 * Here, we successfully setting up vcpu affinity in | 
 | 			 * IOMMU guest mode. Now, we need to store the posted | 
 | 			 * interrupt information in a per-vcpu ir_list so that | 
 | 			 * we can reference to them directly when we update vcpu | 
 | 			 * scheduling information in IOMMU irte. | 
 | 			 */ | 
 | 			if (!ret && pi.is_guest_mode) | 
 | 				svm_ir_list_add(svm, &pi); | 
 | 		} | 
 |  | 
 | 		if (!ret && svm) { | 
 | 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, | 
 | 						 e->gsi, vcpu_info.vector, | 
 | 						 vcpu_info.pi_desc_addr, set); | 
 | 		} | 
 |  | 
 | 		if (ret < 0) { | 
 | 			pr_err("%s: failed to update PI IRTE\n", __func__); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (enable_remapped_mode) { | 
 | 		/* Use legacy mode in IRTE */ | 
 | 		struct amd_iommu_pi_data pi; | 
 |  | 
 | 		/** | 
 | 		 * Here, pi is used to: | 
 | 		 * - Tell IOMMU to use legacy mode for this interrupt. | 
 | 		 * - Retrieve ga_tag of prior interrupt remapping data. | 
 | 		 */ | 
 | 		pi.prev_ga_tag = 0; | 
 | 		pi.is_guest_mode = false; | 
 | 		ret = irq_set_vcpu_affinity(host_irq, &pi); | 
 |  | 
 | 		/** | 
 | 		 * Check if the posted interrupt was previously | 
 | 		 * setup with the guest_mode by checking if the ga_tag | 
 | 		 * was cached. If so, we need to clean up the per-vcpu | 
 | 		 * ir_list. | 
 | 		 */ | 
 | 		if (!ret && pi.prev_ga_tag) { | 
 | 			int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); | 
 | 			struct kvm_vcpu *vcpu; | 
 |  | 
 | 			vcpu = kvm_get_vcpu_by_id(kvm, id); | 
 | 			if (vcpu) | 
 | 				svm_ir_list_del(to_svm(vcpu), &pi); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	srcu_read_unlock(&kvm->irq_srcu, idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int | 
 | avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct amd_svm_iommu_ir *ir; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	lockdep_assert_held(&svm->ir_list_lock); | 
 |  | 
 | 	if (!kvm_arch_has_assigned_device(vcpu->kvm)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Here, we go through the per-vcpu ir_list to update all existing | 
 | 	 * interrupt remapping table entry targeting this vcpu. | 
 | 	 */ | 
 | 	if (list_empty(&svm->ir_list)) | 
 | 		return 0; | 
 |  | 
 | 	list_for_each_entry(ir, &svm->ir_list, node) { | 
 | 		ret = amd_iommu_update_ga(cpu, r, ir->data); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	u64 entry; | 
 | 	int h_physical_id = kvm_cpu_get_apicid(cpu); | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	lockdep_assert_preemption_disabled(); | 
 |  | 
 | 	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU | 
 | 	 * is being scheduled in after being preempted.  The CPU entries in the | 
 | 	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'. | 
 | 	 * If the vCPU was migrated, its new CPU value will be stuffed when the | 
 | 	 * vCPU unblocks. | 
 | 	 */ | 
 | 	if (kvm_vcpu_is_blocking(vcpu)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't | 
 | 	 * _currently_ have assigned devices, as that can change.  Holding | 
 | 	 * ir_list_lock ensures that either svm_ir_list_add() will consume | 
 | 	 * up-to-date entry information, or that this task will wait until | 
 | 	 * svm_ir_list_add() completes to set the new target pCPU. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 |  | 
 | 	entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
 | 	WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | 
 |  | 
 | 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; | 
 | 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); | 
 | 	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
 |  | 
 | 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
 | 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true); | 
 |  | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | } | 
 |  | 
 | void avic_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 entry; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	lockdep_assert_preemption_disabled(); | 
 |  | 
 | 	/* | 
 | 	 * Note, reading the Physical ID entry outside of ir_list_lock is safe | 
 | 	 * as only the pCPU that has loaded (or is loading) the vCPU is allowed | 
 | 	 * to modify the entry, and preemption is disabled.  I.e. the vCPU | 
 | 	 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run | 
 | 	 * recursively. | 
 | 	 */ | 
 | 	entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
 |  | 
 | 	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */ | 
 | 	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Take and hold the per-vCPU interrupt remapping lock while updating | 
 | 	 * the Physical ID entry even though the lock doesn't protect against | 
 | 	 * multiple writers (see above).  Holding ir_list_lock ensures that | 
 | 	 * either svm_ir_list_add() will consume up-to-date entry information, | 
 | 	 * or that this task will wait until svm_ir_list_add() completes to | 
 | 	 * mark the vCPU as not running. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 |  | 
 | 	avic_update_iommu_vcpu_affinity(vcpu, -1, 0); | 
 |  | 
 | 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
 | 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
 |  | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 |  | 
 | } | 
 |  | 
 | void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *vmcb = svm->vmcb01.ptr; | 
 |  | 
 | 	if (!lapic_in_kernel(vcpu) || !enable_apicv) | 
 | 		return; | 
 |  | 
 | 	if (kvm_vcpu_apicv_active(vcpu)) { | 
 | 		/** | 
 | 		 * During AVIC temporary deactivation, guest could update | 
 | 		 * APIC ID, DFR and LDR registers, which would not be trapped | 
 | 		 * by avic_unaccelerated_access_interception(). In this case, | 
 | 		 * we need to check and update the AVIC logical APIC ID table | 
 | 		 * accordingly before re-activating. | 
 | 		 */ | 
 | 		avic_apicv_post_state_restore(vcpu); | 
 | 		avic_activate_vmcb(svm); | 
 | 	} else { | 
 | 		avic_deactivate_vmcb(svm); | 
 | 	} | 
 | 	vmcb_mark_dirty(vmcb, VMCB_AVIC); | 
 | } | 
 |  | 
 | void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	bool activated = kvm_vcpu_apicv_active(vcpu); | 
 |  | 
 | 	if (!enable_apicv) | 
 | 		return; | 
 |  | 
 | 	avic_refresh_virtual_apic_mode(vcpu); | 
 |  | 
 | 	if (activated) | 
 | 		avic_vcpu_load(vcpu, vcpu->cpu); | 
 | 	else | 
 | 		avic_vcpu_put(vcpu); | 
 |  | 
 | 	avic_set_pi_irte_mode(vcpu, activated); | 
 | } | 
 |  | 
 | void avic_vcpu_blocking(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 |        /* | 
 |         * Unload the AVIC when the vCPU is about to block, _before_ | 
 |         * the vCPU actually blocks. | 
 |         * | 
 |         * Any IRQs that arrive before IsRunning=0 will not cause an | 
 |         * incomplete IPI vmexit on the source, therefore vIRR will also | 
 |         * be checked by kvm_vcpu_check_block() before blocking.  The | 
 |         * memory barrier implicit in set_current_state orders writing | 
 |         * IsRunning=0 before reading the vIRR.  The processor needs a | 
 |         * matching memory barrier on interrupt delivery between writing | 
 |         * IRR and reading IsRunning; the lack of this barrier might be | 
 |         * the cause of errata #1235). | 
 |         */ | 
 | 	avic_vcpu_put(vcpu); | 
 | } | 
 |  | 
 | void avic_vcpu_unblocking(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	avic_vcpu_load(vcpu, vcpu->cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Note: | 
 |  * - The module param avic enable both xAPIC and x2APIC mode. | 
 |  * - Hypervisor can support both xAVIC and x2AVIC in the same guest. | 
 |  * - The mode can be switched at run-time. | 
 |  */ | 
 | bool avic_hardware_setup(void) | 
 | { | 
 | 	if (!npt_enabled) | 
 | 		return false; | 
 |  | 
 | 	/* AVIC is a prerequisite for x2AVIC. */ | 
 | 	if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) { | 
 | 		if (boot_cpu_has(X86_FEATURE_X2AVIC)) { | 
 | 			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled"); | 
 | 			pr_warn(FW_BUG "Try enable AVIC using force_avic option"); | 
 | 		} | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_AVIC)) { | 
 | 		pr_info("AVIC enabled\n"); | 
 | 	} else if (force_avic) { | 
 | 		/* | 
 | 		 * Some older systems does not advertise AVIC support. | 
 | 		 * See Revision Guide for specific AMD processor for more detail. | 
 | 		 */ | 
 | 		pr_warn("AVIC is not supported in CPUID but force enabled"); | 
 | 		pr_warn("Your system might crash and burn"); | 
 | 	} | 
 |  | 
 | 	/* AVIC is a prerequisite for x2AVIC. */ | 
 | 	x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC); | 
 | 	if (x2avic_enabled) | 
 | 		pr_info("x2AVIC enabled\n"); | 
 |  | 
 | 	amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); | 
 |  | 
 | 	return true; | 
 | } |