|  | /* | 
|  | * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/poll.h> | 
|  | #include <net/sock.h> | 
|  |  | 
|  | #include "rds.h" | 
|  |  | 
|  | /* this is just used for stats gathering :/ */ | 
|  | static DEFINE_SPINLOCK(rds_sock_lock); | 
|  | static unsigned long rds_sock_count; | 
|  | static LIST_HEAD(rds_sock_list); | 
|  | DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq); | 
|  |  | 
|  | /* | 
|  | * This is called as the final descriptor referencing this socket is closed. | 
|  | * We have to unbind the socket so that another socket can be bound to the | 
|  | * address it was using. | 
|  | * | 
|  | * We have to be careful about racing with the incoming path.  sock_orphan() | 
|  | * sets SOCK_DEAD and we use that as an indicator to the rx path that new | 
|  | * messages shouldn't be queued. | 
|  | */ | 
|  | static int rds_release(struct socket *sock) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  | struct rds_sock *rs; | 
|  |  | 
|  | if (!sk) | 
|  | goto out; | 
|  |  | 
|  | rs = rds_sk_to_rs(sk); | 
|  |  | 
|  | sock_orphan(sk); | 
|  | /* Note - rds_clear_recv_queue grabs rs_recv_lock, so | 
|  | * that ensures the recv path has completed messing | 
|  | * with the socket. */ | 
|  | rds_clear_recv_queue(rs); | 
|  | rds_cong_remove_socket(rs); | 
|  |  | 
|  | rds_remove_bound(rs); | 
|  |  | 
|  | rds_send_drop_to(rs, NULL); | 
|  | rds_rdma_drop_keys(rs); | 
|  | rds_notify_queue_get(rs, NULL); | 
|  | rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue); | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  | list_del_init(&rs->rs_item); | 
|  | rds_sock_count--; | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  |  | 
|  | rds_trans_put(rs->rs_transport); | 
|  |  | 
|  | sock->sk = NULL; | 
|  | sock_put(sk); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Careful not to race with rds_release -> sock_orphan which clears sk_sleep. | 
|  | * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK | 
|  | * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but | 
|  | * this seems more conservative. | 
|  | * NB - normally, one would use sk_callback_lock for this, but we can | 
|  | * get here from interrupts, whereas the network code grabs sk_callback_lock | 
|  | * with _lock_bh only - so relying on sk_callback_lock introduces livelocks. | 
|  | */ | 
|  | void rds_wake_sk_sleep(struct rds_sock *rs) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | read_lock_irqsave(&rs->rs_recv_lock, flags); | 
|  | __rds_wake_sk_sleep(rds_rs_to_sk(rs)); | 
|  | read_unlock_irqrestore(&rs->rs_recv_lock, flags); | 
|  | } | 
|  |  | 
|  | static int rds_getname(struct socket *sock, struct sockaddr *uaddr, | 
|  | int peer) | 
|  | { | 
|  | struct rds_sock *rs = rds_sk_to_rs(sock->sk); | 
|  | struct sockaddr_in6 *sin6; | 
|  | struct sockaddr_in *sin; | 
|  | int uaddr_len; | 
|  |  | 
|  | /* racey, don't care */ | 
|  | if (peer) { | 
|  | if (ipv6_addr_any(&rs->rs_conn_addr)) | 
|  | return -ENOTCONN; | 
|  |  | 
|  | if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) { | 
|  | sin = (struct sockaddr_in *)uaddr; | 
|  | memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); | 
|  | sin->sin_family = AF_INET; | 
|  | sin->sin_port = rs->rs_conn_port; | 
|  | sin->sin_addr.s_addr = rs->rs_conn_addr_v4; | 
|  | uaddr_len = sizeof(*sin); | 
|  | } else { | 
|  | sin6 = (struct sockaddr_in6 *)uaddr; | 
|  | sin6->sin6_family = AF_INET6; | 
|  | sin6->sin6_port = rs->rs_conn_port; | 
|  | sin6->sin6_addr = rs->rs_conn_addr; | 
|  | sin6->sin6_flowinfo = 0; | 
|  | /* scope_id is the same as in the bound address. */ | 
|  | sin6->sin6_scope_id = rs->rs_bound_scope_id; | 
|  | uaddr_len = sizeof(*sin6); | 
|  | } | 
|  | } else { | 
|  | /* If socket is not yet bound and the socket is connected, | 
|  | * set the return address family to be the same as the | 
|  | * connected address, but with 0 address value.  If it is not | 
|  | * connected, set the family to be AF_UNSPEC (value 0) and | 
|  | * the address size to be that of an IPv4 address. | 
|  | */ | 
|  | if (ipv6_addr_any(&rs->rs_bound_addr)) { | 
|  | if (ipv6_addr_any(&rs->rs_conn_addr)) { | 
|  | sin = (struct sockaddr_in *)uaddr; | 
|  | memset(sin, 0, sizeof(*sin)); | 
|  | sin->sin_family = AF_UNSPEC; | 
|  | return sizeof(*sin); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (!(ipv6_addr_type(&rs->rs_conn_addr) & | 
|  | IPV6_ADDR_MAPPED)) { | 
|  | sin6 = (struct sockaddr_in6 *)uaddr; | 
|  | memset(sin6, 0, sizeof(*sin6)); | 
|  | sin6->sin6_family = AF_INET6; | 
|  | return sizeof(*sin6); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | sin = (struct sockaddr_in *)uaddr; | 
|  | memset(sin, 0, sizeof(*sin)); | 
|  | sin->sin_family = AF_INET; | 
|  | return sizeof(*sin); | 
|  | } | 
|  | if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) { | 
|  | sin = (struct sockaddr_in *)uaddr; | 
|  | memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); | 
|  | sin->sin_family = AF_INET; | 
|  | sin->sin_port = rs->rs_bound_port; | 
|  | sin->sin_addr.s_addr = rs->rs_bound_addr_v4; | 
|  | uaddr_len = sizeof(*sin); | 
|  | } else { | 
|  | sin6 = (struct sockaddr_in6 *)uaddr; | 
|  | sin6->sin6_family = AF_INET6; | 
|  | sin6->sin6_port = rs->rs_bound_port; | 
|  | sin6->sin6_addr = rs->rs_bound_addr; | 
|  | sin6->sin6_flowinfo = 0; | 
|  | sin6->sin6_scope_id = rs->rs_bound_scope_id; | 
|  | uaddr_len = sizeof(*sin6); | 
|  | } | 
|  | } | 
|  |  | 
|  | return uaddr_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RDS' poll is without a doubt the least intuitive part of the interface, | 
|  | * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from | 
|  | * a network protocol. | 
|  | * | 
|  | * EPOLLIN is asserted if | 
|  | *  -	there is data on the receive queue. | 
|  | *  -	to signal that a previously congested destination may have become | 
|  | *	uncongested | 
|  | *  -	A notification has been queued to the socket (this can be a congestion | 
|  | *	update, or a RDMA completion, or a MSG_ZEROCOPY completion). | 
|  | * | 
|  | * EPOLLOUT is asserted if there is room on the send queue. This does not mean | 
|  | * however, that the next sendmsg() call will succeed. If the application tries | 
|  | * to send to a congested destination, the system call may still fail (and | 
|  | * return ENOBUFS). | 
|  | */ | 
|  | static __poll_t rds_poll(struct file *file, struct socket *sock, | 
|  | poll_table *wait) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  | struct rds_sock *rs = rds_sk_to_rs(sk); | 
|  | __poll_t mask = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | poll_wait(file, sk_sleep(sk), wait); | 
|  |  | 
|  | if (rs->rs_seen_congestion) | 
|  | poll_wait(file, &rds_poll_waitq, wait); | 
|  |  | 
|  | read_lock_irqsave(&rs->rs_recv_lock, flags); | 
|  | if (!rs->rs_cong_monitor) { | 
|  | /* When a congestion map was updated, we signal EPOLLIN for | 
|  | * "historical" reasons. Applications can also poll for | 
|  | * WRBAND instead. */ | 
|  | if (rds_cong_updated_since(&rs->rs_cong_track)) | 
|  | mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND); | 
|  | } else { | 
|  | spin_lock(&rs->rs_lock); | 
|  | if (rs->rs_cong_notify) | 
|  | mask |= (EPOLLIN | EPOLLRDNORM); | 
|  | spin_unlock(&rs->rs_lock); | 
|  | } | 
|  | if (!list_empty(&rs->rs_recv_queue) || | 
|  | !list_empty(&rs->rs_notify_queue) || | 
|  | !list_empty(&rs->rs_zcookie_queue.zcookie_head)) | 
|  | mask |= (EPOLLIN | EPOLLRDNORM); | 
|  | if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) | 
|  | mask |= (EPOLLOUT | EPOLLWRNORM); | 
|  | if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) | 
|  | mask |= POLLERR; | 
|  | read_unlock_irqrestore(&rs->rs_recv_lock, flags); | 
|  |  | 
|  | /* clear state any time we wake a seen-congested socket */ | 
|  | if (mask) | 
|  | rs->rs_seen_congestion = 0; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct rds_sock *rs = rds_sk_to_rs(sock->sk); | 
|  | rds_tos_t utos, tos = 0; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCRDSSETTOS: | 
|  | if (get_user(utos, (rds_tos_t __user *)arg)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (rs->rs_transport && | 
|  | rs->rs_transport->get_tos_map) | 
|  | tos = rs->rs_transport->get_tos_map(utos); | 
|  | else | 
|  | return -ENOIOCTLCMD; | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  | if (rs->rs_tos || rs->rs_conn) { | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->rs_tos = tos; | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  | break; | 
|  | case SIOCRDSGETTOS: | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  | tos = rs->rs_tos; | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  | if (put_user(tos, (rds_tos_t __user *)arg)) | 
|  | return -EFAULT; | 
|  | break; | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len) | 
|  | { | 
|  | struct sockaddr_in6 sin6; | 
|  | struct sockaddr_in sin; | 
|  | int ret = 0; | 
|  |  | 
|  | /* racing with another thread binding seems ok here */ | 
|  | if (ipv6_addr_any(&rs->rs_bound_addr)) { | 
|  | ret = -ENOTCONN; /* XXX not a great errno */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (len < sizeof(struct sockaddr_in)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } else if (len < sizeof(struct sockaddr_in6)) { | 
|  | /* Assume IPv4 */ | 
|  | if (copy_from_sockptr(&sin, optval, | 
|  | sizeof(struct sockaddr_in))) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr); | 
|  | sin6.sin6_port = sin.sin_port; | 
|  | } else { | 
|  | if (copy_from_sockptr(&sin6, optval, | 
|  | sizeof(struct sockaddr_in6))) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | rds_send_drop_to(rs, &sin6); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval, | 
|  | int optlen) | 
|  | { | 
|  | int value; | 
|  |  | 
|  | if (optlen < sizeof(int)) | 
|  | return -EINVAL; | 
|  | if (copy_from_sockptr(&value, optval, sizeof(int))) | 
|  | return -EFAULT; | 
|  | *optvar = !!value; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen); | 
|  | if (ret == 0) { | 
|  | if (rs->rs_cong_monitor) { | 
|  | rds_cong_add_socket(rs); | 
|  | } else { | 
|  | rds_cong_remove_socket(rs); | 
|  | rs->rs_cong_mask = 0; | 
|  | rs->rs_cong_notify = 0; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen) | 
|  | { | 
|  | int t_type; | 
|  |  | 
|  | if (rs->rs_transport) | 
|  | return -EOPNOTSUPP; /* previously attached to transport */ | 
|  |  | 
|  | if (optlen != sizeof(int)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&t_type, optval, sizeof(t_type))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (t_type < 0 || t_type >= RDS_TRANS_COUNT) | 
|  | return -EINVAL; | 
|  |  | 
|  | rs->rs_transport = rds_trans_get(t_type); | 
|  |  | 
|  | return rs->rs_transport ? 0 : -ENOPROTOOPT; | 
|  | } | 
|  |  | 
|  | static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval, | 
|  | int optlen, int optname) | 
|  | { | 
|  | int val, valbool; | 
|  |  | 
|  | if (optlen != sizeof(int)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (copy_from_sockptr(&val, optval, sizeof(int))) | 
|  | return -EFAULT; | 
|  |  | 
|  | valbool = val ? 1 : 0; | 
|  |  | 
|  | if (optname == SO_TIMESTAMP_NEW) | 
|  | sock_set_flag(sk, SOCK_TSTAMP_NEW); | 
|  |  | 
|  | if (valbool) | 
|  | sock_set_flag(sk, SOCK_RCVTSTAMP); | 
|  | else | 
|  | sock_reset_flag(sk, SOCK_RCVTSTAMP); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval, | 
|  | int optlen) | 
|  | { | 
|  | struct rds_rx_trace_so trace; | 
|  | int i; | 
|  |  | 
|  | if (optlen != sizeof(struct rds_rx_trace_so)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (copy_from_sockptr(&trace, optval, sizeof(trace))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX) | 
|  | return -EFAULT; | 
|  |  | 
|  | rs->rs_rx_traces = trace.rx_traces; | 
|  | for (i = 0; i < rs->rs_rx_traces; i++) { | 
|  | if (trace.rx_trace_pos[i] >= RDS_MSG_RX_DGRAM_TRACE_MAX) { | 
|  | rs->rs_rx_traces = 0; | 
|  | return -EFAULT; | 
|  | } | 
|  | rs->rs_rx_trace[i] = trace.rx_trace_pos[i]; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rds_setsockopt(struct socket *sock, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen) | 
|  | { | 
|  | struct rds_sock *rs = rds_sk_to_rs(sock->sk); | 
|  | int ret; | 
|  |  | 
|  | if (level != SOL_RDS) { | 
|  | ret = -ENOPROTOOPT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (optname) { | 
|  | case RDS_CANCEL_SENT_TO: | 
|  | ret = rds_cancel_sent_to(rs, optval, optlen); | 
|  | break; | 
|  | case RDS_GET_MR: | 
|  | ret = rds_get_mr(rs, optval, optlen); | 
|  | break; | 
|  | case RDS_GET_MR_FOR_DEST: | 
|  | ret = rds_get_mr_for_dest(rs, optval, optlen); | 
|  | break; | 
|  | case RDS_FREE_MR: | 
|  | ret = rds_free_mr(rs, optval, optlen); | 
|  | break; | 
|  | case RDS_RECVERR: | 
|  | ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen); | 
|  | break; | 
|  | case RDS_CONG_MONITOR: | 
|  | ret = rds_cong_monitor(rs, optval, optlen); | 
|  | break; | 
|  | case SO_RDS_TRANSPORT: | 
|  | lock_sock(sock->sk); | 
|  | ret = rds_set_transport(rs, optval, optlen); | 
|  | release_sock(sock->sk); | 
|  | break; | 
|  | case SO_TIMESTAMP_OLD: | 
|  | case SO_TIMESTAMP_NEW: | 
|  | lock_sock(sock->sk); | 
|  | ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname); | 
|  | release_sock(sock->sk); | 
|  | break; | 
|  | case SO_RDS_MSG_RXPATH_LATENCY: | 
|  | ret = rds_recv_track_latency(rs, optval, optlen); | 
|  | break; | 
|  | default: | 
|  | ret = -ENOPROTOOPT; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rds_getsockopt(struct socket *sock, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | struct rds_sock *rs = rds_sk_to_rs(sock->sk); | 
|  | int ret = -ENOPROTOOPT, len; | 
|  | int trans; | 
|  |  | 
|  | if (level != SOL_RDS) | 
|  | goto out; | 
|  |  | 
|  | if (get_user(len, optlen)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (optname) { | 
|  | case RDS_INFO_FIRST ... RDS_INFO_LAST: | 
|  | ret = rds_info_getsockopt(sock, optname, optval, | 
|  | optlen); | 
|  | break; | 
|  |  | 
|  | case RDS_RECVERR: | 
|  | if (len < sizeof(int)) | 
|  | ret = -EINVAL; | 
|  | else | 
|  | if (put_user(rs->rs_recverr, (int __user *) optval) || | 
|  | put_user(sizeof(int), optlen)) | 
|  | ret = -EFAULT; | 
|  | else | 
|  | ret = 0; | 
|  | break; | 
|  | case SO_RDS_TRANSPORT: | 
|  | if (len < sizeof(int)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | trans = (rs->rs_transport ? rs->rs_transport->t_type : | 
|  | RDS_TRANS_NONE); /* unbound */ | 
|  | if (put_user(trans, (int __user *)optval) || | 
|  | put_user(sizeof(int), optlen)) | 
|  | ret = -EFAULT; | 
|  | else | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int rds_connect(struct socket *sock, struct sockaddr *uaddr, | 
|  | int addr_len, int flags) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  | struct sockaddr_in *sin; | 
|  | struct rds_sock *rs = rds_sk_to_rs(sk); | 
|  | int ret = 0; | 
|  |  | 
|  | if (addr_len < offsetofend(struct sockaddr, sa_family)) | 
|  | return -EINVAL; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | switch (uaddr->sa_family) { | 
|  | case AF_INET: | 
|  | sin = (struct sockaddr_in *)uaddr; | 
|  | if (addr_len < sizeof(struct sockaddr_in)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) { | 
|  | ret = -EDESTADDRREQ; | 
|  | break; | 
|  | } | 
|  | if (ipv4_is_multicast(sin->sin_addr.s_addr) || | 
|  | sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr); | 
|  | rs->rs_conn_port = sin->sin_port; | 
|  | break; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | case AF_INET6: { | 
|  | struct sockaddr_in6 *sin6; | 
|  | int addr_type; | 
|  |  | 
|  | sin6 = (struct sockaddr_in6 *)uaddr; | 
|  | if (addr_len < sizeof(struct sockaddr_in6)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | addr_type = ipv6_addr_type(&sin6->sin6_addr); | 
|  | if (!(addr_type & IPV6_ADDR_UNICAST)) { | 
|  | __be32 addr4; | 
|  |  | 
|  | if (!(addr_type & IPV6_ADDR_MAPPED)) { | 
|  | ret = -EPROTOTYPE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* It is a mapped address.  Need to do some sanity | 
|  | * checks. | 
|  | */ | 
|  | addr4 = sin6->sin6_addr.s6_addr32[3]; | 
|  | if (addr4 == htonl(INADDR_ANY) || | 
|  | addr4 == htonl(INADDR_BROADCAST) || | 
|  | ipv4_is_multicast(addr4)) { | 
|  | ret = -EPROTOTYPE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addr_type & IPV6_ADDR_LINKLOCAL) { | 
|  | /* If socket is arleady bound to a link local address, | 
|  | * the peer address must be on the same link. | 
|  | */ | 
|  | if (sin6->sin6_scope_id == 0 || | 
|  | (!ipv6_addr_any(&rs->rs_bound_addr) && | 
|  | rs->rs_bound_scope_id && | 
|  | sin6->sin6_scope_id != rs->rs_bound_scope_id)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | /* Remember the connected address scope ID.  It will | 
|  | * be checked against the binding local address when | 
|  | * the socket is bound. | 
|  | */ | 
|  | rs->rs_bound_scope_id = sin6->sin6_scope_id; | 
|  | } | 
|  | rs->rs_conn_addr = sin6->sin6_addr; | 
|  | rs->rs_conn_port = sin6->sin6_port; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | ret = -EAFNOSUPPORT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct proto rds_proto = { | 
|  | .name	  = "RDS", | 
|  | .owner	  = THIS_MODULE, | 
|  | .obj_size = sizeof(struct rds_sock), | 
|  | }; | 
|  |  | 
|  | static const struct proto_ops rds_proto_ops = { | 
|  | .family =	AF_RDS, | 
|  | .owner =	THIS_MODULE, | 
|  | .release =	rds_release, | 
|  | .bind =		rds_bind, | 
|  | .connect =	rds_connect, | 
|  | .socketpair =	sock_no_socketpair, | 
|  | .accept =	sock_no_accept, | 
|  | .getname =	rds_getname, | 
|  | .poll =		rds_poll, | 
|  | .ioctl =	rds_ioctl, | 
|  | .listen =	sock_no_listen, | 
|  | .shutdown =	sock_no_shutdown, | 
|  | .setsockopt =	rds_setsockopt, | 
|  | .getsockopt =	rds_getsockopt, | 
|  | .sendmsg =	rds_sendmsg, | 
|  | .recvmsg =	rds_recvmsg, | 
|  | .mmap =		sock_no_mmap, | 
|  | .sendpage =	sock_no_sendpage, | 
|  | }; | 
|  |  | 
|  | static void rds_sock_destruct(struct sock *sk) | 
|  | { | 
|  | struct rds_sock *rs = rds_sk_to_rs(sk); | 
|  |  | 
|  | WARN_ON((&rs->rs_item != rs->rs_item.next || | 
|  | &rs->rs_item != rs->rs_item.prev)); | 
|  | } | 
|  |  | 
|  | static int __rds_create(struct socket *sock, struct sock *sk, int protocol) | 
|  | { | 
|  | struct rds_sock *rs; | 
|  |  | 
|  | sock_init_data(sock, sk); | 
|  | sock->ops		= &rds_proto_ops; | 
|  | sk->sk_protocol		= protocol; | 
|  | sk->sk_destruct		= rds_sock_destruct; | 
|  |  | 
|  | rs = rds_sk_to_rs(sk); | 
|  | spin_lock_init(&rs->rs_lock); | 
|  | rwlock_init(&rs->rs_recv_lock); | 
|  | INIT_LIST_HEAD(&rs->rs_send_queue); | 
|  | INIT_LIST_HEAD(&rs->rs_recv_queue); | 
|  | INIT_LIST_HEAD(&rs->rs_notify_queue); | 
|  | INIT_LIST_HEAD(&rs->rs_cong_list); | 
|  | rds_message_zcopy_queue_init(&rs->rs_zcookie_queue); | 
|  | spin_lock_init(&rs->rs_rdma_lock); | 
|  | rs->rs_rdma_keys = RB_ROOT; | 
|  | rs->rs_rx_traces = 0; | 
|  | rs->rs_tos = 0; | 
|  | rs->rs_conn = NULL; | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  | list_add_tail(&rs->rs_item, &rds_sock_list); | 
|  | rds_sock_count++; | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rds_create(struct net *net, struct socket *sock, int protocol, | 
|  | int kern) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | if (sock->type != SOCK_SEQPACKET || protocol) | 
|  | return -ESOCKTNOSUPPORT; | 
|  |  | 
|  | sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern); | 
|  | if (!sk) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return __rds_create(sock, sk, protocol); | 
|  | } | 
|  |  | 
|  | void rds_sock_addref(struct rds_sock *rs) | 
|  | { | 
|  | sock_hold(rds_rs_to_sk(rs)); | 
|  | } | 
|  |  | 
|  | void rds_sock_put(struct rds_sock *rs) | 
|  | { | 
|  | sock_put(rds_rs_to_sk(rs)); | 
|  | } | 
|  |  | 
|  | static const struct net_proto_family rds_family_ops = { | 
|  | .family =	AF_RDS, | 
|  | .create =	rds_create, | 
|  | .owner	=	THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static void rds_sock_inc_info(struct socket *sock, unsigned int len, | 
|  | struct rds_info_iterator *iter, | 
|  | struct rds_info_lengths *lens) | 
|  | { | 
|  | struct rds_sock *rs; | 
|  | struct rds_incoming *inc; | 
|  | unsigned int total = 0; | 
|  |  | 
|  | len /= sizeof(struct rds_info_message); | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  |  | 
|  | list_for_each_entry(rs, &rds_sock_list, rs_item) { | 
|  | /* This option only supports IPv4 sockets. */ | 
|  | if (!ipv6_addr_v4mapped(&rs->rs_bound_addr)) | 
|  | continue; | 
|  |  | 
|  | read_lock(&rs->rs_recv_lock); | 
|  |  | 
|  | /* XXX too lazy to maintain counts.. */ | 
|  | list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { | 
|  | total++; | 
|  | if (total <= len) | 
|  | rds_inc_info_copy(inc, iter, | 
|  | inc->i_saddr.s6_addr32[3], | 
|  | rs->rs_bound_addr_v4, | 
|  | 1); | 
|  | } | 
|  |  | 
|  | read_unlock(&rs->rs_recv_lock); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  |  | 
|  | lens->nr = total; | 
|  | lens->each = sizeof(struct rds_info_message); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | static void rds6_sock_inc_info(struct socket *sock, unsigned int len, | 
|  | struct rds_info_iterator *iter, | 
|  | struct rds_info_lengths *lens) | 
|  | { | 
|  | struct rds_incoming *inc; | 
|  | unsigned int total = 0; | 
|  | struct rds_sock *rs; | 
|  |  | 
|  | len /= sizeof(struct rds6_info_message); | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  |  | 
|  | list_for_each_entry(rs, &rds_sock_list, rs_item) { | 
|  | read_lock(&rs->rs_recv_lock); | 
|  |  | 
|  | list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { | 
|  | total++; | 
|  | if (total <= len) | 
|  | rds6_inc_info_copy(inc, iter, &inc->i_saddr, | 
|  | &rs->rs_bound_addr, 1); | 
|  | } | 
|  |  | 
|  | read_unlock(&rs->rs_recv_lock); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  |  | 
|  | lens->nr = total; | 
|  | lens->each = sizeof(struct rds6_info_message); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void rds_sock_info(struct socket *sock, unsigned int len, | 
|  | struct rds_info_iterator *iter, | 
|  | struct rds_info_lengths *lens) | 
|  | { | 
|  | struct rds_info_socket sinfo; | 
|  | unsigned int cnt = 0; | 
|  | struct rds_sock *rs; | 
|  |  | 
|  | len /= sizeof(struct rds_info_socket); | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  |  | 
|  | if (len < rds_sock_count) { | 
|  | cnt = rds_sock_count; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(rs, &rds_sock_list, rs_item) { | 
|  | /* This option only supports IPv4 sockets. */ | 
|  | if (!ipv6_addr_v4mapped(&rs->rs_bound_addr)) | 
|  | continue; | 
|  | sinfo.sndbuf = rds_sk_sndbuf(rs); | 
|  | sinfo.rcvbuf = rds_sk_rcvbuf(rs); | 
|  | sinfo.bound_addr = rs->rs_bound_addr_v4; | 
|  | sinfo.connected_addr = rs->rs_conn_addr_v4; | 
|  | sinfo.bound_port = rs->rs_bound_port; | 
|  | sinfo.connected_port = rs->rs_conn_port; | 
|  | sinfo.inum = sock_i_ino(rds_rs_to_sk(rs)); | 
|  |  | 
|  | rds_info_copy(iter, &sinfo, sizeof(sinfo)); | 
|  | cnt++; | 
|  | } | 
|  |  | 
|  | out: | 
|  | lens->nr = cnt; | 
|  | lens->each = sizeof(struct rds_info_socket); | 
|  |  | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | static void rds6_sock_info(struct socket *sock, unsigned int len, | 
|  | struct rds_info_iterator *iter, | 
|  | struct rds_info_lengths *lens) | 
|  | { | 
|  | struct rds6_info_socket sinfo6; | 
|  | struct rds_sock *rs; | 
|  |  | 
|  | len /= sizeof(struct rds6_info_socket); | 
|  |  | 
|  | spin_lock_bh(&rds_sock_lock); | 
|  |  | 
|  | if (len < rds_sock_count) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(rs, &rds_sock_list, rs_item) { | 
|  | sinfo6.sndbuf = rds_sk_sndbuf(rs); | 
|  | sinfo6.rcvbuf = rds_sk_rcvbuf(rs); | 
|  | sinfo6.bound_addr = rs->rs_bound_addr; | 
|  | sinfo6.connected_addr = rs->rs_conn_addr; | 
|  | sinfo6.bound_port = rs->rs_bound_port; | 
|  | sinfo6.connected_port = rs->rs_conn_port; | 
|  | sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs)); | 
|  |  | 
|  | rds_info_copy(iter, &sinfo6, sizeof(sinfo6)); | 
|  | } | 
|  |  | 
|  | out: | 
|  | lens->nr = rds_sock_count; | 
|  | lens->each = sizeof(struct rds6_info_socket); | 
|  |  | 
|  | spin_unlock_bh(&rds_sock_lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void rds_exit(void) | 
|  | { | 
|  | sock_unregister(rds_family_ops.family); | 
|  | proto_unregister(&rds_proto); | 
|  | rds_conn_exit(); | 
|  | rds_cong_exit(); | 
|  | rds_sysctl_exit(); | 
|  | rds_threads_exit(); | 
|  | rds_stats_exit(); | 
|  | rds_page_exit(); | 
|  | rds_bind_lock_destroy(); | 
|  | rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info); | 
|  | rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info); | 
|  | rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info); | 
|  | #endif | 
|  | } | 
|  | module_exit(rds_exit); | 
|  |  | 
|  | u32 rds_gen_num; | 
|  |  | 
|  | static int rds_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | net_get_random_once(&rds_gen_num, sizeof(rds_gen_num)); | 
|  |  | 
|  | ret = rds_bind_lock_init(); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = rds_conn_init(); | 
|  | if (ret) | 
|  | goto out_bind; | 
|  |  | 
|  | ret = rds_threads_init(); | 
|  | if (ret) | 
|  | goto out_conn; | 
|  | ret = rds_sysctl_init(); | 
|  | if (ret) | 
|  | goto out_threads; | 
|  | ret = rds_stats_init(); | 
|  | if (ret) | 
|  | goto out_sysctl; | 
|  | ret = proto_register(&rds_proto, 1); | 
|  | if (ret) | 
|  | goto out_stats; | 
|  | ret = sock_register(&rds_family_ops); | 
|  | if (ret) | 
|  | goto out_proto; | 
|  |  | 
|  | rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info); | 
|  | rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info); | 
|  | rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info); | 
|  | #endif | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | out_proto: | 
|  | proto_unregister(&rds_proto); | 
|  | out_stats: | 
|  | rds_stats_exit(); | 
|  | out_sysctl: | 
|  | rds_sysctl_exit(); | 
|  | out_threads: | 
|  | rds_threads_exit(); | 
|  | out_conn: | 
|  | rds_conn_exit(); | 
|  | rds_cong_exit(); | 
|  | rds_page_exit(); | 
|  | out_bind: | 
|  | rds_bind_lock_destroy(); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | module_init(rds_init); | 
|  |  | 
|  | #define DRV_VERSION     "4.0" | 
|  | #define DRV_RELDATE     "Feb 12, 2009" | 
|  |  | 
|  | MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); | 
|  | MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets" | 
|  | " v" DRV_VERSION " (" DRV_RELDATE ")"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_ALIAS_NETPROTO(PF_RDS); |