|  | /* | 
|  | * mm/rmap.c - physical to virtual reverse mappings | 
|  | * | 
|  | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | 
|  | * Released under the General Public License (GPL). | 
|  | * | 
|  | * Simple, low overhead reverse mapping scheme. | 
|  | * Please try to keep this thing as modular as possible. | 
|  | * | 
|  | * Provides methods for unmapping each kind of mapped page: | 
|  | * the anon methods track anonymous pages, and | 
|  | * the file methods track pages belonging to an inode. | 
|  | * | 
|  | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | 
|  | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | 
|  | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | 
|  | * Contributions by Hugh Dickins 2003, 2004 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock ordering in mm: | 
|  | * | 
|  | * inode->i_rwsem	(while writing or truncating, not reading or faulting) | 
|  | *   mm->mmap_lock | 
|  | *     mapping->invalidate_lock (in filemap_fault) | 
|  | *       page->flags PG_locked (lock_page) | 
|  | *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) | 
|  | *           mapping->i_mmap_rwsem | 
|  | *             anon_vma->rwsem | 
|  | *               mm->page_table_lock or pte_lock | 
|  | *                 swap_lock (in swap_duplicate, swap_info_get) | 
|  | *                   mmlist_lock (in mmput, drain_mmlist and others) | 
|  | *                   mapping->private_lock (in block_dirty_folio) | 
|  | *                     folio_lock_memcg move_lock (in block_dirty_folio) | 
|  | *                       i_pages lock (widely used) | 
|  | *                         lruvec->lru_lock (in folio_lruvec_lock_irq) | 
|  | *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty) | 
|  | *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | 
|  | *                     sb_lock (within inode_lock in fs/fs-writeback.c) | 
|  | *                     i_pages lock (widely used, in set_page_dirty, | 
|  | *                               in arch-dependent flush_dcache_mmap_lock, | 
|  | *                               within bdi.wb->list_lock in __sync_single_inode) | 
|  | * | 
|  | * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon) | 
|  | *   ->tasklist_lock | 
|  | *     pte map lock | 
|  | * | 
|  | * hugetlbfs PageHuge() take locks in this order: | 
|  | *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | 
|  | *     vma_lock (hugetlb specific lock for pmd_sharing) | 
|  | *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) | 
|  | *         page->flags PG_locked (lock_page) | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/huge_mm.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/mm_inline.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/tlb.h> | 
|  | #include <trace/events/migrate.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static struct kmem_cache *anon_vma_cachep; | 
|  | static struct kmem_cache *anon_vma_chain_cachep; | 
|  |  | 
|  | static inline struct anon_vma *anon_vma_alloc(void) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | 
|  | if (anon_vma) { | 
|  | atomic_set(&anon_vma->refcount, 1); | 
|  | anon_vma->num_children = 0; | 
|  | anon_vma->num_active_vmas = 0; | 
|  | anon_vma->parent = anon_vma; | 
|  | /* | 
|  | * Initialise the anon_vma root to point to itself. If called | 
|  | * from fork, the root will be reset to the parents anon_vma. | 
|  | */ | 
|  | anon_vma->root = anon_vma; | 
|  | } | 
|  |  | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | static inline void anon_vma_free(struct anon_vma *anon_vma) | 
|  | { | 
|  | VM_BUG_ON(atomic_read(&anon_vma->refcount)); | 
|  |  | 
|  | /* | 
|  | * Synchronize against folio_lock_anon_vma_read() such that | 
|  | * we can safely hold the lock without the anon_vma getting | 
|  | * freed. | 
|  | * | 
|  | * Relies on the full mb implied by the atomic_dec_and_test() from | 
|  | * put_anon_vma() against the acquire barrier implied by | 
|  | * down_read_trylock() from folio_lock_anon_vma_read(). This orders: | 
|  | * | 
|  | * folio_lock_anon_vma_read()	VS	put_anon_vma() | 
|  | *   down_read_trylock()		  atomic_dec_and_test() | 
|  | *   LOCK				  MB | 
|  | *   atomic_read()			  rwsem_is_locked() | 
|  | * | 
|  | * LOCK should suffice since the actual taking of the lock must | 
|  | * happen _before_ what follows. | 
|  | */ | 
|  | might_sleep(); | 
|  | if (rwsem_is_locked(&anon_vma->root->rwsem)) { | 
|  | anon_vma_lock_write(anon_vma); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | } | 
|  |  | 
|  | kmem_cache_free(anon_vma_cachep, anon_vma); | 
|  | } | 
|  |  | 
|  | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) | 
|  | { | 
|  | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); | 
|  | } | 
|  |  | 
|  | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 
|  | { | 
|  | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 
|  | } | 
|  |  | 
|  | static void anon_vma_chain_link(struct vm_area_struct *vma, | 
|  | struct anon_vma_chain *avc, | 
|  | struct anon_vma *anon_vma) | 
|  | { | 
|  | avc->vma = vma; | 
|  | avc->anon_vma = anon_vma; | 
|  | list_add(&avc->same_vma, &vma->anon_vma_chain); | 
|  | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __anon_vma_prepare - attach an anon_vma to a memory region | 
|  | * @vma: the memory region in question | 
|  | * | 
|  | * This makes sure the memory mapping described by 'vma' has | 
|  | * an 'anon_vma' attached to it, so that we can associate the | 
|  | * anonymous pages mapped into it with that anon_vma. | 
|  | * | 
|  | * The common case will be that we already have one, which | 
|  | * is handled inline by anon_vma_prepare(). But if | 
|  | * not we either need to find an adjacent mapping that we | 
|  | * can re-use the anon_vma from (very common when the only | 
|  | * reason for splitting a vma has been mprotect()), or we | 
|  | * allocate a new one. | 
|  | * | 
|  | * Anon-vma allocations are very subtle, because we may have | 
|  | * optimistically looked up an anon_vma in folio_lock_anon_vma_read() | 
|  | * and that may actually touch the rwsem even in the newly | 
|  | * allocated vma (it depends on RCU to make sure that the | 
|  | * anon_vma isn't actually destroyed). | 
|  | * | 
|  | * As a result, we need to do proper anon_vma locking even | 
|  | * for the new allocation. At the same time, we do not want | 
|  | * to do any locking for the common case of already having | 
|  | * an anon_vma. | 
|  | * | 
|  | * This must be called with the mmap_lock held for reading. | 
|  | */ | 
|  | int __anon_vma_prepare(struct vm_area_struct *vma) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct anon_vma *anon_vma, *allocated; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | avc = anon_vma_chain_alloc(GFP_KERNEL); | 
|  | if (!avc) | 
|  | goto out_enomem; | 
|  |  | 
|  | anon_vma = find_mergeable_anon_vma(vma); | 
|  | allocated = NULL; | 
|  | if (!anon_vma) { | 
|  | anon_vma = anon_vma_alloc(); | 
|  | if (unlikely(!anon_vma)) | 
|  | goto out_enomem_free_avc; | 
|  | anon_vma->num_children++; /* self-parent link for new root */ | 
|  | allocated = anon_vma; | 
|  | } | 
|  |  | 
|  | anon_vma_lock_write(anon_vma); | 
|  | /* page_table_lock to protect against threads */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (likely(!vma->anon_vma)) { | 
|  | vma->anon_vma = anon_vma; | 
|  | anon_vma_chain_link(vma, avc, anon_vma); | 
|  | anon_vma->num_active_vmas++; | 
|  | allocated = NULL; | 
|  | avc = NULL; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  |  | 
|  | if (unlikely(allocated)) | 
|  | put_anon_vma(allocated); | 
|  | if (unlikely(avc)) | 
|  | anon_vma_chain_free(avc); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_enomem_free_avc: | 
|  | anon_vma_chain_free(avc); | 
|  | out_enomem: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a useful helper function for locking the anon_vma root as | 
|  | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | 
|  | * have the same vma. | 
|  | * | 
|  | * Such anon_vma's should have the same root, so you'd expect to see | 
|  | * just a single mutex_lock for the whole traversal. | 
|  | */ | 
|  | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | 
|  | { | 
|  | struct anon_vma *new_root = anon_vma->root; | 
|  | if (new_root != root) { | 
|  | if (WARN_ON_ONCE(root)) | 
|  | up_write(&root->rwsem); | 
|  | root = new_root; | 
|  | down_write(&root->rwsem); | 
|  | } | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static inline void unlock_anon_vma_root(struct anon_vma *root) | 
|  | { | 
|  | if (root) | 
|  | up_write(&root->rwsem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach the anon_vmas from src to dst. | 
|  | * Returns 0 on success, -ENOMEM on failure. | 
|  | * | 
|  | * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and | 
|  | * anon_vma_fork(). The first three want an exact copy of src, while the last | 
|  | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | 
|  | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | 
|  | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | 
|  | * | 
|  | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | 
|  | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | 
|  | * This prevents degradation of anon_vma hierarchy to endless linear chain in | 
|  | * case of constantly forking task. On the other hand, an anon_vma with more | 
|  | * than one child isn't reused even if there was no alive vma, thus rmap | 
|  | * walker has a good chance of avoiding scanning the whole hierarchy when it | 
|  | * searches where page is mapped. | 
|  | */ | 
|  | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | 
|  | { | 
|  | struct anon_vma_chain *avc, *pavc; | 
|  | struct anon_vma *root = NULL; | 
|  |  | 
|  | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); | 
|  | if (unlikely(!avc)) { | 
|  | unlock_anon_vma_root(root); | 
|  | root = NULL; | 
|  | avc = anon_vma_chain_alloc(GFP_KERNEL); | 
|  | if (!avc) | 
|  | goto enomem_failure; | 
|  | } | 
|  | anon_vma = pavc->anon_vma; | 
|  | root = lock_anon_vma_root(root, anon_vma); | 
|  | anon_vma_chain_link(dst, avc, anon_vma); | 
|  |  | 
|  | /* | 
|  | * Reuse existing anon_vma if it has no vma and only one | 
|  | * anon_vma child. | 
|  | * | 
|  | * Root anon_vma is never reused: | 
|  | * it has self-parent reference and at least one child. | 
|  | */ | 
|  | if (!dst->anon_vma && src->anon_vma && | 
|  | anon_vma->num_children < 2 && | 
|  | anon_vma->num_active_vmas == 0) | 
|  | dst->anon_vma = anon_vma; | 
|  | } | 
|  | if (dst->anon_vma) | 
|  | dst->anon_vma->num_active_vmas++; | 
|  | unlock_anon_vma_root(root); | 
|  | return 0; | 
|  |  | 
|  | enomem_failure: | 
|  | /* | 
|  | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | 
|  | * decremented in unlink_anon_vmas(). | 
|  | * We can safely do this because callers of anon_vma_clone() don't care | 
|  | * about dst->anon_vma if anon_vma_clone() failed. | 
|  | */ | 
|  | dst->anon_vma = NULL; | 
|  | unlink_anon_vmas(dst); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach vma to its own anon_vma, as well as to the anon_vmas that | 
|  | * the corresponding VMA in the parent process is attached to. | 
|  | * Returns 0 on success, non-zero on failure. | 
|  | */ | 
|  | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  | struct anon_vma *anon_vma; | 
|  | int error; | 
|  |  | 
|  | /* Don't bother if the parent process has no anon_vma here. */ | 
|  | if (!pvma->anon_vma) | 
|  | return 0; | 
|  |  | 
|  | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ | 
|  | vma->anon_vma = NULL; | 
|  |  | 
|  | /* | 
|  | * First, attach the new VMA to the parent VMA's anon_vmas, | 
|  | * so rmap can find non-COWed pages in child processes. | 
|  | */ | 
|  | error = anon_vma_clone(vma, pvma); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* An existing anon_vma has been reused, all done then. */ | 
|  | if (vma->anon_vma) | 
|  | return 0; | 
|  |  | 
|  | /* Then add our own anon_vma. */ | 
|  | anon_vma = anon_vma_alloc(); | 
|  | if (!anon_vma) | 
|  | goto out_error; | 
|  | anon_vma->num_active_vmas++; | 
|  | avc = anon_vma_chain_alloc(GFP_KERNEL); | 
|  | if (!avc) | 
|  | goto out_error_free_anon_vma; | 
|  |  | 
|  | /* | 
|  | * The root anon_vma's rwsem is the lock actually used when we | 
|  | * lock any of the anon_vmas in this anon_vma tree. | 
|  | */ | 
|  | anon_vma->root = pvma->anon_vma->root; | 
|  | anon_vma->parent = pvma->anon_vma; | 
|  | /* | 
|  | * With refcounts, an anon_vma can stay around longer than the | 
|  | * process it belongs to. The root anon_vma needs to be pinned until | 
|  | * this anon_vma is freed, because the lock lives in the root. | 
|  | */ | 
|  | get_anon_vma(anon_vma->root); | 
|  | /* Mark this anon_vma as the one where our new (COWed) pages go. */ | 
|  | vma->anon_vma = anon_vma; | 
|  | anon_vma_lock_write(anon_vma); | 
|  | anon_vma_chain_link(vma, avc, anon_vma); | 
|  | anon_vma->parent->num_children++; | 
|  | anon_vma_unlock_write(anon_vma); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_error_free_anon_vma: | 
|  | put_anon_vma(anon_vma); | 
|  | out_error: | 
|  | unlink_anon_vmas(vma); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void unlink_anon_vmas(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc, *next; | 
|  | struct anon_vma *root = NULL; | 
|  |  | 
|  | /* | 
|  | * Unlink each anon_vma chained to the VMA.  This list is ordered | 
|  | * from newest to oldest, ensuring the root anon_vma gets freed last. | 
|  | */ | 
|  | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
|  | struct anon_vma *anon_vma = avc->anon_vma; | 
|  |  | 
|  | root = lock_anon_vma_root(root, anon_vma); | 
|  | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); | 
|  |  | 
|  | /* | 
|  | * Leave empty anon_vmas on the list - we'll need | 
|  | * to free them outside the lock. | 
|  | */ | 
|  | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { | 
|  | anon_vma->parent->num_children--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_del(&avc->same_vma); | 
|  | anon_vma_chain_free(avc); | 
|  | } | 
|  | if (vma->anon_vma) { | 
|  | vma->anon_vma->num_active_vmas--; | 
|  |  | 
|  | /* | 
|  | * vma would still be needed after unlink, and anon_vma will be prepared | 
|  | * when handle fault. | 
|  | */ | 
|  | vma->anon_vma = NULL; | 
|  | } | 
|  | unlock_anon_vma_root(root); | 
|  |  | 
|  | /* | 
|  | * Iterate the list once more, it now only contains empty and unlinked | 
|  | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | 
|  | * needing to write-acquire the anon_vma->root->rwsem. | 
|  | */ | 
|  | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
|  | struct anon_vma *anon_vma = avc->anon_vma; | 
|  |  | 
|  | VM_WARN_ON(anon_vma->num_children); | 
|  | VM_WARN_ON(anon_vma->num_active_vmas); | 
|  | put_anon_vma(anon_vma); | 
|  |  | 
|  | list_del(&avc->same_vma); | 
|  | anon_vma_chain_free(avc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void anon_vma_ctor(void *data) | 
|  | { | 
|  | struct anon_vma *anon_vma = data; | 
|  |  | 
|  | init_rwsem(&anon_vma->rwsem); | 
|  | atomic_set(&anon_vma->refcount, 0); | 
|  | anon_vma->rb_root = RB_ROOT_CACHED; | 
|  | } | 
|  |  | 
|  | void __init anon_vma_init(void) | 
|  | { | 
|  | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 
|  | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | anon_vma_ctor); | 
|  | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | 
|  | SLAB_PANIC|SLAB_ACCOUNT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! | 
|  | * | 
|  | * Since there is no serialization what so ever against page_remove_rmap() | 
|  | * the best this function can do is return a refcount increased anon_vma | 
|  | * that might have been relevant to this page. | 
|  | * | 
|  | * The page might have been remapped to a different anon_vma or the anon_vma | 
|  | * returned may already be freed (and even reused). | 
|  | * | 
|  | * In case it was remapped to a different anon_vma, the new anon_vma will be a | 
|  | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | 
|  | * ensure that any anon_vma obtained from the page will still be valid for as | 
|  | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | 
|  | * | 
|  | * All users of this function must be very careful when walking the anon_vma | 
|  | * chain and verify that the page in question is indeed mapped in it | 
|  | * [ something equivalent to page_mapped_in_vma() ]. | 
|  | * | 
|  | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from | 
|  | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | 
|  | * if there is a mapcount, we can dereference the anon_vma after observing | 
|  | * those. | 
|  | */ | 
|  | struct anon_vma *folio_get_anon_vma(struct folio *folio) | 
|  | { | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | unsigned long anon_mapping; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); | 
|  | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
|  | goto out; | 
|  | if (!folio_mapped(folio)) | 
|  | goto out; | 
|  |  | 
|  | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
|  | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
|  | anon_vma = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this folio is still mapped, then its anon_vma cannot have been | 
|  | * freed.  But if it has been unmapped, we have no security against the | 
|  | * anon_vma structure being freed and reused (for another anon_vma: | 
|  | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() | 
|  | * above cannot corrupt). | 
|  | */ | 
|  | if (!folio_mapped(folio)) { | 
|  | rcu_read_unlock(); | 
|  | put_anon_vma(anon_vma); | 
|  | return NULL; | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to folio_get_anon_vma() except it locks the anon_vma. | 
|  | * | 
|  | * Its a little more complex as it tries to keep the fast path to a single | 
|  | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | 
|  | * reference like with folio_get_anon_vma() and then block on the mutex | 
|  | * on !rwc->try_lock case. | 
|  | */ | 
|  | struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, | 
|  | struct rmap_walk_control *rwc) | 
|  | { | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct anon_vma *root_anon_vma; | 
|  | unsigned long anon_mapping; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); | 
|  | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
|  | goto out; | 
|  | if (!folio_mapped(folio)) | 
|  | goto out; | 
|  |  | 
|  | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
|  | root_anon_vma = READ_ONCE(anon_vma->root); | 
|  | if (down_read_trylock(&root_anon_vma->rwsem)) { | 
|  | /* | 
|  | * If the folio is still mapped, then this anon_vma is still | 
|  | * its anon_vma, and holding the mutex ensures that it will | 
|  | * not go away, see anon_vma_free(). | 
|  | */ | 
|  | if (!folio_mapped(folio)) { | 
|  | up_read(&root_anon_vma->rwsem); | 
|  | anon_vma = NULL; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (rwc && rwc->try_lock) { | 
|  | anon_vma = NULL; | 
|  | rwc->contended = true; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* trylock failed, we got to sleep */ | 
|  | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
|  | anon_vma = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!folio_mapped(folio)) { | 
|  | rcu_read_unlock(); | 
|  | put_anon_vma(anon_vma); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* we pinned the anon_vma, its safe to sleep */ | 
|  | rcu_read_unlock(); | 
|  | anon_vma_lock_read(anon_vma); | 
|  |  | 
|  | if (atomic_dec_and_test(&anon_vma->refcount)) { | 
|  | /* | 
|  | * Oops, we held the last refcount, release the lock | 
|  | * and bail -- can't simply use put_anon_vma() because | 
|  | * we'll deadlock on the anon_vma_lock_write() recursion. | 
|  | */ | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | __put_anon_vma(anon_vma); | 
|  | anon_vma = NULL; | 
|  | } | 
|  |  | 
|  | return anon_vma; | 
|  |  | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | 
|  | /* | 
|  | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | 
|  | * important if a PTE was dirty when it was unmapped that it's flushed | 
|  | * before any IO is initiated on the page to prevent lost writes. Similarly, | 
|  | * it must be flushed before freeing to prevent data leakage. | 
|  | */ | 
|  | void try_to_unmap_flush(void) | 
|  | { | 
|  | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
|  |  | 
|  | if (!tlb_ubc->flush_required) | 
|  | return; | 
|  |  | 
|  | arch_tlbbatch_flush(&tlb_ubc->arch); | 
|  | tlb_ubc->flush_required = false; | 
|  | tlb_ubc->writable = false; | 
|  | } | 
|  |  | 
|  | /* Flush iff there are potentially writable TLB entries that can race with IO */ | 
|  | void try_to_unmap_flush_dirty(void) | 
|  | { | 
|  | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
|  |  | 
|  | if (tlb_ubc->writable) | 
|  | try_to_unmap_flush(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | 
|  | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | 
|  | */ | 
|  | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16 | 
|  | #define TLB_FLUSH_BATCH_PENDING_MASK			\ | 
|  | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | 
|  | #define TLB_FLUSH_BATCH_PENDING_LARGE			\ | 
|  | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | 
|  |  | 
|  | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) | 
|  | { | 
|  | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
|  | int batch, nbatch; | 
|  |  | 
|  | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); | 
|  | tlb_ubc->flush_required = true; | 
|  |  | 
|  | /* | 
|  | * Ensure compiler does not re-order the setting of tlb_flush_batched | 
|  | * before the PTE is cleared. | 
|  | */ | 
|  | barrier(); | 
|  | batch = atomic_read(&mm->tlb_flush_batched); | 
|  | retry: | 
|  | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | 
|  | /* | 
|  | * Prevent `pending' from catching up with `flushed' because of | 
|  | * overflow.  Reset `pending' and `flushed' to be 1 and 0 if | 
|  | * `pending' becomes large. | 
|  | */ | 
|  | nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); | 
|  | if (nbatch != batch) { | 
|  | batch = nbatch; | 
|  | goto retry; | 
|  | } | 
|  | } else { | 
|  | atomic_inc(&mm->tlb_flush_batched); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the PTE was dirty then it's best to assume it's writable. The | 
|  | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | 
|  | * before the page is queued for IO. | 
|  | */ | 
|  | if (writable) | 
|  | tlb_ubc->writable = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the TLB flush should be deferred to the end of a batch of | 
|  | * unmap operations to reduce IPIs. | 
|  | */ | 
|  | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
|  | { | 
|  | bool should_defer = false; | 
|  |  | 
|  | if (!(flags & TTU_BATCH_FLUSH)) | 
|  | return false; | 
|  |  | 
|  | /* If remote CPUs need to be flushed then defer batch the flush */ | 
|  | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | 
|  | should_defer = true; | 
|  | put_cpu(); | 
|  |  | 
|  | return should_defer; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | 
|  | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | 
|  | * operation such as mprotect or munmap to race between reclaim unmapping | 
|  | * the page and flushing the page. If this race occurs, it potentially allows | 
|  | * access to data via a stale TLB entry. Tracking all mm's that have TLB | 
|  | * batching in flight would be expensive during reclaim so instead track | 
|  | * whether TLB batching occurred in the past and if so then do a flush here | 
|  | * if required. This will cost one additional flush per reclaim cycle paid | 
|  | * by the first operation at risk such as mprotect and mumap. | 
|  | * | 
|  | * This must be called under the PTL so that an access to tlb_flush_batched | 
|  | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | 
|  | * via the PTL. | 
|  | */ | 
|  | void flush_tlb_batched_pending(struct mm_struct *mm) | 
|  | { | 
|  | int batch = atomic_read(&mm->tlb_flush_batched); | 
|  | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | 
|  | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | 
|  |  | 
|  | if (pending != flushed) { | 
|  | flush_tlb_mm(mm); | 
|  | /* | 
|  | * If the new TLB flushing is pending during flushing, leave | 
|  | * mm->tlb_flush_batched as is, to avoid losing flushing. | 
|  | */ | 
|  | atomic_cmpxchg(&mm->tlb_flush_batched, batch, | 
|  | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) | 
|  | { | 
|  | } | 
|  |  | 
|  | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | 
|  |  | 
|  | /* | 
|  | * At what user virtual address is page expected in vma? | 
|  | * Caller should check the page is actually part of the vma. | 
|  | */ | 
|  | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | if (folio_test_anon(folio)) { | 
|  | struct anon_vma *page__anon_vma = folio_anon_vma(folio); | 
|  | /* | 
|  | * Note: swapoff's unuse_vma() is more efficient with this | 
|  | * check, and needs it to match anon_vma when KSM is active. | 
|  | */ | 
|  | if (!vma->anon_vma || !page__anon_vma || | 
|  | vma->anon_vma->root != page__anon_vma->root) | 
|  | return -EFAULT; | 
|  | } else if (!vma->vm_file) { | 
|  | return -EFAULT; | 
|  | } else if (vma->vm_file->f_mapping != folio->mapping) { | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return vma_address(page, vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the actual pmd_t* where we expect 'address' to be mapped from, or | 
|  | * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t* | 
|  | * represents. | 
|  | */ | 
|  | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd = NULL; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (!p4d_present(*p4d)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | out: | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | struct folio_referenced_arg { | 
|  | int mapcount; | 
|  | int referenced; | 
|  | unsigned long vm_flags; | 
|  | struct mem_cgroup *memcg; | 
|  | }; | 
|  | /* | 
|  | * arg: folio_referenced_arg will be passed | 
|  | */ | 
|  | static bool folio_referenced_one(struct folio *folio, | 
|  | struct vm_area_struct *vma, unsigned long address, void *arg) | 
|  | { | 
|  | struct folio_referenced_arg *pra = arg; | 
|  | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
|  | int referenced = 0; | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | address = pvmw.address; | 
|  |  | 
|  | if ((vma->vm_flags & VM_LOCKED) && | 
|  | (!folio_test_large(folio) || !pvmw.pte)) { | 
|  | /* Restore the mlock which got missed */ | 
|  | mlock_vma_folio(folio, vma, !pvmw.pte); | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | pra->vm_flags |= VM_LOCKED; | 
|  | return false; /* To break the loop */ | 
|  | } | 
|  |  | 
|  | if (pvmw.pte) { | 
|  | if (lru_gen_enabled() && pte_young(*pvmw.pte) && | 
|  | !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) { | 
|  | lru_gen_look_around(&pvmw); | 
|  | referenced++; | 
|  | } | 
|  |  | 
|  | if (ptep_clear_flush_young_notify(vma, address, | 
|  | pvmw.pte)) { | 
|  | /* | 
|  | * Don't treat a reference through | 
|  | * a sequentially read mapping as such. | 
|  | * If the folio has been used in another mapping, | 
|  | * we will catch it; if this other mapping is | 
|  | * already gone, the unmap path will have set | 
|  | * the referenced flag or activated the folio. | 
|  | */ | 
|  | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | 
|  | referenced++; | 
|  | } | 
|  | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
|  | if (pmdp_clear_flush_young_notify(vma, address, | 
|  | pvmw.pmd)) | 
|  | referenced++; | 
|  | } else { | 
|  | /* unexpected pmd-mapped folio? */ | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | pra->mapcount--; | 
|  | } | 
|  |  | 
|  | if (referenced) | 
|  | folio_clear_idle(folio); | 
|  | if (folio_test_clear_young(folio)) | 
|  | referenced++; | 
|  |  | 
|  | if (referenced) { | 
|  | pra->referenced++; | 
|  | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; | 
|  | } | 
|  |  | 
|  | if (!pra->mapcount) | 
|  | return false; /* To break the loop */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) | 
|  | { | 
|  | struct folio_referenced_arg *pra = arg; | 
|  | struct mem_cgroup *memcg = pra->memcg; | 
|  |  | 
|  | if (!mm_match_cgroup(vma->vm_mm, memcg)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_referenced() - Test if the folio was referenced. | 
|  | * @folio: The folio to test. | 
|  | * @is_locked: Caller holds lock on the folio. | 
|  | * @memcg: target memory cgroup | 
|  | * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. | 
|  | * | 
|  | * Quick test_and_clear_referenced for all mappings of a folio, | 
|  | * | 
|  | * Return: The number of mappings which referenced the folio. Return -1 if | 
|  | * the function bailed out due to rmap lock contention. | 
|  | */ | 
|  | int folio_referenced(struct folio *folio, int is_locked, | 
|  | struct mem_cgroup *memcg, unsigned long *vm_flags) | 
|  | { | 
|  | int we_locked = 0; | 
|  | struct folio_referenced_arg pra = { | 
|  | .mapcount = folio_mapcount(folio), | 
|  | .memcg = memcg, | 
|  | }; | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = folio_referenced_one, | 
|  | .arg = (void *)&pra, | 
|  | .anon_lock = folio_lock_anon_vma_read, | 
|  | .try_lock = true, | 
|  | }; | 
|  |  | 
|  | *vm_flags = 0; | 
|  | if (!pra.mapcount) | 
|  | return 0; | 
|  |  | 
|  | if (!folio_raw_mapping(folio)) | 
|  | return 0; | 
|  |  | 
|  | if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { | 
|  | we_locked = folio_trylock(folio); | 
|  | if (!we_locked) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are reclaiming on behalf of a cgroup, skip | 
|  | * counting on behalf of references from different | 
|  | * cgroups | 
|  | */ | 
|  | if (memcg) { | 
|  | rwc.invalid_vma = invalid_folio_referenced_vma; | 
|  | } | 
|  |  | 
|  | rmap_walk(folio, &rwc); | 
|  | *vm_flags = pra.vm_flags; | 
|  |  | 
|  | if (we_locked) | 
|  | folio_unlock(folio); | 
|  |  | 
|  | return rwc.contended ? -1 : pra.referenced; | 
|  | } | 
|  |  | 
|  | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) | 
|  | { | 
|  | int cleaned = 0; | 
|  | struct vm_area_struct *vma = pvmw->vma; | 
|  | struct mmu_notifier_range range; | 
|  | unsigned long address = pvmw->address; | 
|  |  | 
|  | /* | 
|  | * We have to assume the worse case ie pmd for invalidation. Note that | 
|  | * the folio can not be freed from this function. | 
|  | */ | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, | 
|  | 0, vma, vma->vm_mm, address, | 
|  | vma_address_end(pvmw)); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | while (page_vma_mapped_walk(pvmw)) { | 
|  | int ret = 0; | 
|  |  | 
|  | address = pvmw->address; | 
|  | if (pvmw->pte) { | 
|  | pte_t entry; | 
|  | pte_t *pte = pvmw->pte; | 
|  |  | 
|  | if (!pte_dirty(*pte) && !pte_write(*pte)) | 
|  | continue; | 
|  |  | 
|  | flush_cache_page(vma, address, pte_pfn(*pte)); | 
|  | entry = ptep_clear_flush(vma, address, pte); | 
|  | entry = pte_wrprotect(entry); | 
|  | entry = pte_mkclean(entry); | 
|  | set_pte_at(vma->vm_mm, address, pte, entry); | 
|  | ret = 1; | 
|  | } else { | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | pmd_t *pmd = pvmw->pmd; | 
|  | pmd_t entry; | 
|  |  | 
|  | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | 
|  | continue; | 
|  |  | 
|  | flush_cache_range(vma, address, | 
|  | address + HPAGE_PMD_SIZE); | 
|  | entry = pmdp_invalidate(vma, address, pmd); | 
|  | entry = pmd_wrprotect(entry); | 
|  | entry = pmd_mkclean(entry); | 
|  | set_pmd_at(vma->vm_mm, address, pmd, entry); | 
|  | ret = 1; | 
|  | #else | 
|  | /* unexpected pmd-mapped folio? */ | 
|  | WARN_ON_ONCE(1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to call mmu_notifier_invalidate_range() as we are | 
|  | * downgrading page table protection not changing it to point | 
|  | * to a new page. | 
|  | * | 
|  | * See Documentation/mm/mmu_notifier.rst | 
|  | */ | 
|  | if (ret) | 
|  | cleaned++; | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | 
|  | unsigned long address, void *arg) | 
|  | { | 
|  | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | 
|  | int *cleaned = arg; | 
|  |  | 
|  | *cleaned += page_vma_mkclean_one(&pvmw); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) | 
|  | { | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int folio_mkclean(struct folio *folio) | 
|  | { | 
|  | int cleaned = 0; | 
|  | struct address_space *mapping; | 
|  | struct rmap_walk_control rwc = { | 
|  | .arg = (void *)&cleaned, | 
|  | .rmap_one = page_mkclean_one, | 
|  | .invalid_vma = invalid_mkclean_vma, | 
|  | }; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | if (!folio_mapped(folio)) | 
|  | return 0; | 
|  |  | 
|  | mapping = folio_mapping(folio); | 
|  | if (!mapping) | 
|  | return 0; | 
|  |  | 
|  | rmap_walk(folio, &rwc); | 
|  |  | 
|  | return cleaned; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_mkclean); | 
|  |  | 
|  | /** | 
|  | * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | 
|  | *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | 
|  | *                     within the @vma of shared mappings. And since clean PTEs | 
|  | *                     should also be readonly, write protects them too. | 
|  | * @pfn: start pfn. | 
|  | * @nr_pages: number of physically contiguous pages srarting with @pfn. | 
|  | * @pgoff: page offset that the @pfn mapped with. | 
|  | * @vma: vma that @pfn mapped within. | 
|  | * | 
|  | * Returns the number of cleaned PTEs (including PMDs). | 
|  | */ | 
|  | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | struct page_vma_mapped_walk pvmw = { | 
|  | .pfn		= pfn, | 
|  | .nr_pages	= nr_pages, | 
|  | .pgoff		= pgoff, | 
|  | .vma		= vma, | 
|  | .flags		= PVMW_SYNC, | 
|  | }; | 
|  |  | 
|  | if (invalid_mkclean_vma(vma, NULL)) | 
|  | return 0; | 
|  |  | 
|  | pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); | 
|  | VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | 
|  |  | 
|  | return page_vma_mkclean_one(&pvmw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_move_anon_rmap - move a page to our anon_vma | 
|  | * @page:	the page to move to our anon_vma | 
|  | * @vma:	the vma the page belongs to | 
|  | * | 
|  | * When a page belongs exclusively to one process after a COW event, | 
|  | * that page can be moved into the anon_vma that belongs to just that | 
|  | * process, so the rmap code will not search the parent or sibling | 
|  | * processes. | 
|  | */ | 
|  | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | void *anon_vma = vma->anon_vma; | 
|  | struct folio *folio = page_folio(page); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | VM_BUG_ON_VMA(!anon_vma, vma); | 
|  |  | 
|  | anon_vma += PAGE_MAPPING_ANON; | 
|  | /* | 
|  | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | 
|  | * simultaneously, so a concurrent reader (eg folio_referenced()'s | 
|  | * folio_test_anon()) will not see one without the other. | 
|  | */ | 
|  | WRITE_ONCE(folio->mapping, anon_vma); | 
|  | SetPageAnonExclusive(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __page_set_anon_rmap - set up new anonymous rmap | 
|  | * @page:	Page or Hugepage to add to rmap | 
|  | * @vma:	VM area to add page to. | 
|  | * @address:	User virtual address of the mapping | 
|  | * @exclusive:	the page is exclusively owned by the current process | 
|  | */ | 
|  | static void __page_set_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, int exclusive) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  |  | 
|  | BUG_ON(!anon_vma); | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the page isn't exclusively mapped into this vma, | 
|  | * we must use the _oldest_ possible anon_vma for the | 
|  | * page mapping! | 
|  | */ | 
|  | if (!exclusive) | 
|  | anon_vma = anon_vma->root; | 
|  |  | 
|  | /* | 
|  | * page_idle does a lockless/optimistic rmap scan on page->mapping. | 
|  | * Make sure the compiler doesn't split the stores of anon_vma and | 
|  | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | 
|  | * could mistake the mapping for a struct address_space and crash. | 
|  | */ | 
|  | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
|  | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | 
|  | page->index = linear_page_index(vma, address); | 
|  | out: | 
|  | if (exclusive) | 
|  | SetPageAnonExclusive(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __page_check_anon_rmap - sanity check anonymous rmap addition | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | */ | 
|  | static void __page_check_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | /* | 
|  | * The page's anon-rmap details (mapping and index) are guaranteed to | 
|  | * be set up correctly at this point. | 
|  | * | 
|  | * We have exclusion against page_add_anon_rmap because the caller | 
|  | * always holds the page locked. | 
|  | * | 
|  | * We have exclusion against page_add_new_anon_rmap because those pages | 
|  | * are initially only visible via the pagetables, and the pte is locked | 
|  | * over the call to page_add_new_anon_rmap. | 
|  | */ | 
|  | VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, | 
|  | folio); | 
|  | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), | 
|  | page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_anon_rmap - add pte mapping to an anonymous page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * @flags:	the rmap flags | 
|  | * | 
|  | * The caller needs to hold the pte lock, and the page must be locked in | 
|  | * the anon_vma case: to serialize mapping,index checking after setting, | 
|  | * and to ensure that PageAnon is not being upgraded racily to PageKsm | 
|  | * (but PageKsm is never downgraded to PageAnon). | 
|  | */ | 
|  | void page_add_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, rmap_t flags) | 
|  | { | 
|  | bool compound = flags & RMAP_COMPOUND; | 
|  | bool first; | 
|  |  | 
|  | if (unlikely(PageKsm(page))) | 
|  | lock_page_memcg(page); | 
|  | else | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | if (compound) { | 
|  | atomic_t *mapcount; | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | mapcount = compound_mapcount_ptr(page); | 
|  | first = atomic_inc_and_test(mapcount); | 
|  | } else { | 
|  | first = atomic_inc_and_test(&page->_mapcount); | 
|  | } | 
|  | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); | 
|  | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | 
|  |  | 
|  | if (first) { | 
|  | int nr = compound ? thp_nr_pages(page) : 1; | 
|  | /* | 
|  | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | 
|  | * these counters are not modified in interrupt context, and | 
|  | * pte lock(a spinlock) is held, which implies preemption | 
|  | * disabled. | 
|  | */ | 
|  | if (compound) | 
|  | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); | 
|  | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); | 
|  | } | 
|  |  | 
|  | if (unlikely(PageKsm(page))) | 
|  | unlock_page_memcg(page); | 
|  |  | 
|  | /* address might be in next vma when migration races vma_adjust */ | 
|  | else if (first) | 
|  | __page_set_anon_rmap(page, vma, address, | 
|  | !!(flags & RMAP_EXCLUSIVE)); | 
|  | else | 
|  | __page_check_anon_rmap(page, vma, address); | 
|  |  | 
|  | mlock_vma_page(page, vma, compound); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_new_anon_rmap - add mapping to a new anonymous page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * | 
|  | * If it's a compound page, it is accounted as a compound page. As the page | 
|  | * is new, it's assume to get mapped exclusively by a single process. | 
|  | * | 
|  | * Same as page_add_anon_rmap but must only be called on *new* pages. | 
|  | * This means the inc-and-test can be bypassed. | 
|  | * Page does not have to be locked. | 
|  | */ | 
|  | void page_add_new_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | const bool compound = PageCompound(page); | 
|  | int nr = compound ? thp_nr_pages(page) : 1; | 
|  |  | 
|  | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | 
|  | __SetPageSwapBacked(page); | 
|  | if (compound) { | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | /* increment count (starts at -1) */ | 
|  | atomic_set(compound_mapcount_ptr(page), 0); | 
|  | atomic_set(compound_pincount_ptr(page), 0); | 
|  |  | 
|  | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); | 
|  | } else { | 
|  | /* increment count (starts at -1) */ | 
|  | atomic_set(&page->_mapcount, 0); | 
|  | } | 
|  | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); | 
|  | __page_set_anon_rmap(page, vma, address, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_file_rmap - add pte mapping to a file page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @compound:	charge the page as compound or small page | 
|  | * | 
|  | * The caller needs to hold the pte lock. | 
|  | */ | 
|  | void page_add_file_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, bool compound) | 
|  | { | 
|  | int i, nr = 0; | 
|  |  | 
|  | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | 
|  | lock_page_memcg(page); | 
|  | if (compound && PageTransHuge(page)) { | 
|  | int nr_pages = thp_nr_pages(page); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | if (atomic_inc_and_test(&page[i]._mapcount)) | 
|  | nr++; | 
|  | } | 
|  | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); | 
|  | * but page lock is held by all page_add_file_rmap() compound | 
|  | * callers, and SetPageDoubleMap below warns if !PageLocked: | 
|  | * so here is a place that DoubleMap can be safely cleared. | 
|  | */ | 
|  | VM_WARN_ON_ONCE(!PageLocked(page)); | 
|  | if (nr == nr_pages && PageDoubleMap(page)) | 
|  | ClearPageDoubleMap(page); | 
|  |  | 
|  | if (PageSwapBacked(page)) | 
|  | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, | 
|  | nr_pages); | 
|  | else | 
|  | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, | 
|  | nr_pages); | 
|  | } else { | 
|  | if (PageTransCompound(page) && page_mapping(page)) { | 
|  | VM_WARN_ON_ONCE(!PageLocked(page)); | 
|  | SetPageDoubleMap(compound_head(page)); | 
|  | } | 
|  | if (atomic_inc_and_test(&page->_mapcount)) | 
|  | nr++; | 
|  | } | 
|  | out: | 
|  | if (nr) | 
|  | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | 
|  | unlock_page_memcg(page); | 
|  |  | 
|  | mlock_vma_page(page, vma, compound); | 
|  | } | 
|  |  | 
|  | static void page_remove_file_rmap(struct page *page, bool compound) | 
|  | { | 
|  | int i, nr = 0; | 
|  |  | 
|  | VM_BUG_ON_PAGE(compound && !PageHead(page), page); | 
|  |  | 
|  | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ | 
|  | if (unlikely(PageHuge(page))) { | 
|  | /* hugetlb pages are always mapped with pmds */ | 
|  | atomic_dec(compound_mapcount_ptr(page)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* page still mapped by someone else? */ | 
|  | if (compound && PageTransHuge(page)) { | 
|  | int nr_pages = thp_nr_pages(page); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | if (atomic_add_negative(-1, &page[i]._mapcount)) | 
|  | nr++; | 
|  | } | 
|  | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | 
|  | goto out; | 
|  | if (PageSwapBacked(page)) | 
|  | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, | 
|  | -nr_pages); | 
|  | else | 
|  | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, | 
|  | -nr_pages); | 
|  | } else { | 
|  | if (atomic_add_negative(-1, &page->_mapcount)) | 
|  | nr++; | 
|  | } | 
|  | out: | 
|  | if (nr) | 
|  | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | 
|  | } | 
|  |  | 
|  | static void page_remove_anon_compound_rmap(struct page *page) | 
|  | { | 
|  | int i, nr; | 
|  |  | 
|  | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | 
|  | return; | 
|  |  | 
|  | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | 
|  | if (unlikely(PageHuge(page))) | 
|  | return; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
|  | return; | 
|  |  | 
|  | __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); | 
|  |  | 
|  | if (TestClearPageDoubleMap(page)) { | 
|  | /* | 
|  | * Subpages can be mapped with PTEs too. Check how many of | 
|  | * them are still mapped. | 
|  | */ | 
|  | for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { | 
|  | if (atomic_add_negative(-1, &page[i]._mapcount)) | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue the page for deferred split if at least one small | 
|  | * page of the compound page is unmapped, but at least one | 
|  | * small page is still mapped. | 
|  | */ | 
|  | if (nr && nr < thp_nr_pages(page)) | 
|  | deferred_split_huge_page(page); | 
|  | } else { | 
|  | nr = thp_nr_pages(page); | 
|  | } | 
|  |  | 
|  | if (nr) | 
|  | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_remove_rmap - take down pte mapping from a page | 
|  | * @page:	page to remove mapping from | 
|  | * @vma:	the vm area from which the mapping is removed | 
|  | * @compound:	uncharge the page as compound or small page | 
|  | * | 
|  | * The caller needs to hold the pte lock. | 
|  | */ | 
|  | void page_remove_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, bool compound) | 
|  | { | 
|  | lock_page_memcg(page); | 
|  |  | 
|  | if (!PageAnon(page)) { | 
|  | page_remove_file_rmap(page, compound); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (compound) { | 
|  | page_remove_anon_compound_rmap(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* page still mapped by someone else? */ | 
|  | if (!atomic_add_negative(-1, &page->_mapcount)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | 
|  | * these counters are not modified in interrupt context, and | 
|  | * pte lock(a spinlock) is held, which implies preemption disabled. | 
|  | */ | 
|  | __dec_lruvec_page_state(page, NR_ANON_MAPPED); | 
|  |  | 
|  | if (PageTransCompound(page)) | 
|  | deferred_split_huge_page(compound_head(page)); | 
|  |  | 
|  | /* | 
|  | * It would be tidy to reset the PageAnon mapping here, | 
|  | * but that might overwrite a racing page_add_anon_rmap | 
|  | * which increments mapcount after us but sets mapping | 
|  | * before us: so leave the reset to free_unref_page, | 
|  | * and remember that it's only reliable while mapped. | 
|  | * Leaving it set also helps swapoff to reinstate ptes | 
|  | * faster for those pages still in swapcache. | 
|  | */ | 
|  | out: | 
|  | unlock_page_memcg(page); | 
|  |  | 
|  | munlock_vma_page(page, vma, compound); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @arg: enum ttu_flags will be passed to this argument | 
|  | */ | 
|  | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, | 
|  | unsigned long address, void *arg) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
|  | pte_t pteval; | 
|  | struct page *subpage; | 
|  | bool anon_exclusive, ret = true; | 
|  | struct mmu_notifier_range range; | 
|  | enum ttu_flags flags = (enum ttu_flags)(long)arg; | 
|  |  | 
|  | /* | 
|  | * When racing against e.g. zap_pte_range() on another cpu, | 
|  | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | 
|  | * try_to_unmap() may return before page_mapped() has become false, | 
|  | * if page table locking is skipped: use TTU_SYNC to wait for that. | 
|  | */ | 
|  | if (flags & TTU_SYNC) | 
|  | pvmw.flags = PVMW_SYNC; | 
|  |  | 
|  | if (flags & TTU_SPLIT_HUGE_PMD) | 
|  | split_huge_pmd_address(vma, address, false, folio); | 
|  |  | 
|  | /* | 
|  | * For THP, we have to assume the worse case ie pmd for invalidation. | 
|  | * For hugetlb, it could be much worse if we need to do pud | 
|  | * invalidation in the case of pmd sharing. | 
|  | * | 
|  | * Note that the folio can not be freed in this function as call of | 
|  | * try_to_unmap() must hold a reference on the folio. | 
|  | */ | 
|  | range.end = vma_address_end(&pvmw); | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | 
|  | address, range.end); | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | /* | 
|  | * If sharing is possible, start and end will be adjusted | 
|  | * accordingly. | 
|  | */ | 
|  | adjust_range_if_pmd_sharing_possible(vma, &range.start, | 
|  | &range.end); | 
|  | } | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | /* Unexpected PMD-mapped THP? */ | 
|  | VM_BUG_ON_FOLIO(!pvmw.pte, folio); | 
|  |  | 
|  | /* | 
|  | * If the folio is in an mlock()d vma, we must not swap it out. | 
|  | */ | 
|  | if (!(flags & TTU_IGNORE_MLOCK) && | 
|  | (vma->vm_flags & VM_LOCKED)) { | 
|  | /* Restore the mlock which got missed */ | 
|  | mlock_vma_folio(folio, vma, false); | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | subpage = folio_page(folio, | 
|  | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | 
|  | address = pvmw.address; | 
|  | anon_exclusive = folio_test_anon(folio) && | 
|  | PageAnonExclusive(subpage); | 
|  |  | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | bool anon = folio_test_anon(folio); | 
|  |  | 
|  | /* | 
|  | * The try_to_unmap() is only passed a hugetlb page | 
|  | * in the case where the hugetlb page is poisoned. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); | 
|  | /* | 
|  | * huge_pmd_unshare may unmap an entire PMD page. | 
|  | * There is no way of knowing exactly which PMDs may | 
|  | * be cached for this mm, so we must flush them all. | 
|  | * start/end were already adjusted above to cover this | 
|  | * range. | 
|  | */ | 
|  | flush_cache_range(vma, range.start, range.end); | 
|  |  | 
|  | /* | 
|  | * To call huge_pmd_unshare, i_mmap_rwsem must be | 
|  | * held in write mode.  Caller needs to explicitly | 
|  | * do this outside rmap routines. | 
|  | * | 
|  | * We also must hold hugetlb vma_lock in write mode. | 
|  | * Lock order dictates acquiring vma_lock BEFORE | 
|  | * i_mmap_rwsem.  We can only try lock here and fail | 
|  | * if unsuccessful. | 
|  | */ | 
|  | if (!anon) { | 
|  | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | 
|  | if (!hugetlb_vma_trylock_write(vma)) { | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  | if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | flush_tlb_range(vma, | 
|  | range.start, range.end); | 
|  | mmu_notifier_invalidate_range(mm, | 
|  | range.start, range.end); | 
|  | /* | 
|  | * The ref count of the PMD page was | 
|  | * dropped which is part of the way map | 
|  | * counting is done for shared PMDs. | 
|  | * Return 'true' here.  When there is | 
|  | * no other sharing, huge_pmd_unshare | 
|  | * returns false and we will unmap the | 
|  | * actual page and drop map count | 
|  | * to zero. | 
|  | */ | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | } | 
|  | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | 
|  | } else { | 
|  | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | 
|  | /* Nuke the page table entry. */ | 
|  | if (should_defer_flush(mm, flags)) { | 
|  | /* | 
|  | * We clear the PTE but do not flush so potentially | 
|  | * a remote CPU could still be writing to the folio. | 
|  | * If the entry was previously clean then the | 
|  | * architecture must guarantee that a clear->dirty | 
|  | * transition on a cached TLB entry is written through | 
|  | * and traps if the PTE is unmapped. | 
|  | */ | 
|  | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | 
|  |  | 
|  | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | 
|  | } else { | 
|  | pteval = ptep_clear_flush(vma, address, pvmw.pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now the pte is cleared. If this pte was uffd-wp armed, | 
|  | * we may want to replace a none pte with a marker pte if | 
|  | * it's file-backed, so we don't lose the tracking info. | 
|  | */ | 
|  | pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); | 
|  |  | 
|  | /* Set the dirty flag on the folio now the pte is gone. */ | 
|  | if (pte_dirty(pteval)) | 
|  | folio_mark_dirty(folio); | 
|  |  | 
|  | /* Update high watermark before we lower rss */ | 
|  | update_hiwater_rss(mm); | 
|  |  | 
|  | if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { | 
|  | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | hugetlb_count_sub(folio_nr_pages(folio), mm); | 
|  | set_huge_pte_at(mm, address, pvmw.pte, pteval); | 
|  | } else { | 
|  | dec_mm_counter(mm, mm_counter(&folio->page)); | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | } | 
|  |  | 
|  | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | 
|  | /* | 
|  | * The guest indicated that the page content is of no | 
|  | * interest anymore. Simply discard the pte, vmscan | 
|  | * will take care of the rest. | 
|  | * A future reference will then fault in a new zero | 
|  | * page. When userfaultfd is active, we must not drop | 
|  | * this page though, as its main user (postcopy | 
|  | * migration) will not expect userfaults on already | 
|  | * copied pages. | 
|  | */ | 
|  | dec_mm_counter(mm, mm_counter(&folio->page)); | 
|  | /* We have to invalidate as we cleared the pte */ | 
|  | mmu_notifier_invalidate_range(mm, address, | 
|  | address + PAGE_SIZE); | 
|  | } else if (folio_test_anon(folio)) { | 
|  | swp_entry_t entry = { .val = page_private(subpage) }; | 
|  | pte_t swp_pte; | 
|  | /* | 
|  | * Store the swap location in the pte. | 
|  | * See handle_pte_fault() ... | 
|  | */ | 
|  | if (unlikely(folio_test_swapbacked(folio) != | 
|  | folio_test_swapcache(folio))) { | 
|  | WARN_ON_ONCE(1); | 
|  | ret = false; | 
|  | /* We have to invalidate as we cleared the pte */ | 
|  | mmu_notifier_invalidate_range(mm, address, | 
|  | address + PAGE_SIZE); | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* MADV_FREE page check */ | 
|  | if (!folio_test_swapbacked(folio)) { | 
|  | int ref_count, map_count; | 
|  |  | 
|  | /* | 
|  | * Synchronize with gup_pte_range(): | 
|  | * - clear PTE; barrier; read refcount | 
|  | * - inc refcount; barrier; read PTE | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | ref_count = folio_ref_count(folio); | 
|  | map_count = folio_mapcount(folio); | 
|  |  | 
|  | /* | 
|  | * Order reads for page refcount and dirty flag | 
|  | * (see comments in __remove_mapping()). | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | /* | 
|  | * The only page refs must be one from isolation | 
|  | * plus the rmap(s) (dropped by discard:). | 
|  | */ | 
|  | if (ref_count == 1 + map_count && | 
|  | !folio_test_dirty(folio)) { | 
|  | /* Invalidate as we cleared the pte */ | 
|  | mmu_notifier_invalidate_range(mm, | 
|  | address, address + PAGE_SIZE); | 
|  | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the folio was redirtied, it cannot be | 
|  | * discarded. Remap the page to page table. | 
|  | */ | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | folio_set_swapbacked(folio); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (swap_duplicate(entry) < 0) { | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | 
|  | swap_free(entry); | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* See page_try_share_anon_rmap(): clear PTE first. */ | 
|  | if (anon_exclusive && | 
|  | page_try_share_anon_rmap(subpage)) { | 
|  | swap_free(entry); | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Note: We *don't* remember if the page was mapped | 
|  | * exclusively in the swap pte if the architecture | 
|  | * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In | 
|  | * that case, swapin code has to re-determine that | 
|  | * manually and might detect the page as possibly | 
|  | * shared, for example, if there are other references on | 
|  | * the page or if the page is under writeback. We made | 
|  | * sure that there are no GUP pins on the page that | 
|  | * would rely on it, so for GUP pins this is fine. | 
|  | */ | 
|  | if (list_empty(&mm->mmlist)) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&mm->mmlist)) | 
|  | list_add(&mm->mmlist, &init_mm.mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | inc_mm_counter(mm, MM_SWAPENTS); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (anon_exclusive) | 
|  | swp_pte = pte_swp_mkexclusive(swp_pte); | 
|  | if (pte_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_uffd_wp(pteval)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | set_pte_at(mm, address, pvmw.pte, swp_pte); | 
|  | /* Invalidate as we cleared the pte */ | 
|  | mmu_notifier_invalidate_range(mm, address, | 
|  | address + PAGE_SIZE); | 
|  | } else { | 
|  | /* | 
|  | * This is a locked file-backed folio, | 
|  | * so it cannot be removed from the page | 
|  | * cache and replaced by a new folio before | 
|  | * mmu_notifier_invalidate_range_end, so no | 
|  | * concurrent thread might update its page table | 
|  | * to point at a new folio while a device is | 
|  | * still using this folio. | 
|  | * | 
|  | * See Documentation/mm/mmu_notifier.rst | 
|  | */ | 
|  | dec_mm_counter(mm, mm_counter_file(&folio->page)); | 
|  | } | 
|  | discard: | 
|  | /* | 
|  | * No need to call mmu_notifier_invalidate_range() it has be | 
|  | * done above for all cases requiring it to happen under page | 
|  | * table lock before mmu_notifier_invalidate_range_end() | 
|  | * | 
|  | * See Documentation/mm/mmu_notifier.rst | 
|  | */ | 
|  | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mlock_page_drain_local(); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) | 
|  | { | 
|  | return vma_is_temporary_stack(vma); | 
|  | } | 
|  |  | 
|  | static int page_not_mapped(struct folio *folio) | 
|  | { | 
|  | return !folio_mapped(folio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_unmap - Try to remove all page table mappings to a folio. | 
|  | * @folio: The folio to unmap. | 
|  | * @flags: action and flags | 
|  | * | 
|  | * Tries to remove all the page table entries which are mapping this | 
|  | * folio.  It is the caller's responsibility to check if the folio is | 
|  | * still mapped if needed (use TTU_SYNC to prevent accounting races). | 
|  | * | 
|  | * Context: Caller must hold the folio lock. | 
|  | */ | 
|  | void try_to_unmap(struct folio *folio, enum ttu_flags flags) | 
|  | { | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = try_to_unmap_one, | 
|  | .arg = (void *)flags, | 
|  | .done = page_not_mapped, | 
|  | .anon_lock = folio_lock_anon_vma_read, | 
|  | }; | 
|  |  | 
|  | if (flags & TTU_RMAP_LOCKED) | 
|  | rmap_walk_locked(folio, &rwc); | 
|  | else | 
|  | rmap_walk(folio, &rwc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @arg: enum ttu_flags will be passed to this argument. | 
|  | * | 
|  | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | 
|  | * containing migration entries. | 
|  | */ | 
|  | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, | 
|  | unsigned long address, void *arg) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
|  | pte_t pteval; | 
|  | struct page *subpage; | 
|  | bool anon_exclusive, ret = true; | 
|  | struct mmu_notifier_range range; | 
|  | enum ttu_flags flags = (enum ttu_flags)(long)arg; | 
|  |  | 
|  | /* | 
|  | * When racing against e.g. zap_pte_range() on another cpu, | 
|  | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | 
|  | * try_to_migrate() may return before page_mapped() has become false, | 
|  | * if page table locking is skipped: use TTU_SYNC to wait for that. | 
|  | */ | 
|  | if (flags & TTU_SYNC) | 
|  | pvmw.flags = PVMW_SYNC; | 
|  |  | 
|  | /* | 
|  | * unmap_page() in mm/huge_memory.c is the only user of migration with | 
|  | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | 
|  | */ | 
|  | if (flags & TTU_SPLIT_HUGE_PMD) | 
|  | split_huge_pmd_address(vma, address, true, folio); | 
|  |  | 
|  | /* | 
|  | * For THP, we have to assume the worse case ie pmd for invalidation. | 
|  | * For hugetlb, it could be much worse if we need to do pud | 
|  | * invalidation in the case of pmd sharing. | 
|  | * | 
|  | * Note that the page can not be free in this function as call of | 
|  | * try_to_unmap() must hold a reference on the page. | 
|  | */ | 
|  | range.end = vma_address_end(&pvmw); | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | 
|  | address, range.end); | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | /* | 
|  | * If sharing is possible, start and end will be adjusted | 
|  | * accordingly. | 
|  | */ | 
|  | adjust_range_if_pmd_sharing_possible(vma, &range.start, | 
|  | &range.end); | 
|  | } | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | /* PMD-mapped THP migration entry */ | 
|  | if (!pvmw.pte) { | 
|  | subpage = folio_page(folio, | 
|  | pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | 
|  | VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | 
|  | !folio_test_pmd_mappable(folio), folio); | 
|  |  | 
|  | if (set_pmd_migration_entry(&pvmw, subpage)) { | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Unexpected PMD-mapped THP? */ | 
|  | VM_BUG_ON_FOLIO(!pvmw.pte, folio); | 
|  |  | 
|  | if (folio_is_zone_device(folio)) { | 
|  | /* | 
|  | * Our PTE is a non-present device exclusive entry and | 
|  | * calculating the subpage as for the common case would | 
|  | * result in an invalid pointer. | 
|  | * | 
|  | * Since only PAGE_SIZE pages can currently be | 
|  | * migrated, just set it to page. This will need to be | 
|  | * changed when hugepage migrations to device private | 
|  | * memory are supported. | 
|  | */ | 
|  | VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); | 
|  | subpage = &folio->page; | 
|  | } else { | 
|  | subpage = folio_page(folio, | 
|  | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | 
|  | } | 
|  | address = pvmw.address; | 
|  | anon_exclusive = folio_test_anon(folio) && | 
|  | PageAnonExclusive(subpage); | 
|  |  | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | bool anon = folio_test_anon(folio); | 
|  |  | 
|  | /* | 
|  | * huge_pmd_unshare may unmap an entire PMD page. | 
|  | * There is no way of knowing exactly which PMDs may | 
|  | * be cached for this mm, so we must flush them all. | 
|  | * start/end were already adjusted above to cover this | 
|  | * range. | 
|  | */ | 
|  | flush_cache_range(vma, range.start, range.end); | 
|  |  | 
|  | /* | 
|  | * To call huge_pmd_unshare, i_mmap_rwsem must be | 
|  | * held in write mode.  Caller needs to explicitly | 
|  | * do this outside rmap routines. | 
|  | * | 
|  | * We also must hold hugetlb vma_lock in write mode. | 
|  | * Lock order dictates acquiring vma_lock BEFORE | 
|  | * i_mmap_rwsem.  We can only try lock here and | 
|  | * fail if unsuccessful. | 
|  | */ | 
|  | if (!anon) { | 
|  | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | 
|  | if (!hugetlb_vma_trylock_write(vma)) { | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  | if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | flush_tlb_range(vma, | 
|  | range.start, range.end); | 
|  | mmu_notifier_invalidate_range(mm, | 
|  | range.start, range.end); | 
|  |  | 
|  | /* | 
|  | * The ref count of the PMD page was | 
|  | * dropped which is part of the way map | 
|  | * counting is done for shared PMDs. | 
|  | * Return 'true' here.  When there is | 
|  | * no other sharing, huge_pmd_unshare | 
|  | * returns false and we will unmap the | 
|  | * actual page and drop map count | 
|  | * to zero. | 
|  | */ | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | } | 
|  | /* Nuke the hugetlb page table entry */ | 
|  | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | 
|  | } else { | 
|  | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | 
|  | /* Nuke the page table entry. */ | 
|  | pteval = ptep_clear_flush(vma, address, pvmw.pte); | 
|  | } | 
|  |  | 
|  | /* Set the dirty flag on the folio now the pte is gone. */ | 
|  | if (pte_dirty(pteval)) | 
|  | folio_mark_dirty(folio); | 
|  |  | 
|  | /* Update high watermark before we lower rss */ | 
|  | update_hiwater_rss(mm); | 
|  |  | 
|  | if (folio_is_device_private(folio)) { | 
|  | unsigned long pfn = folio_pfn(folio); | 
|  | swp_entry_t entry; | 
|  | pte_t swp_pte; | 
|  |  | 
|  | if (anon_exclusive) | 
|  | BUG_ON(page_try_share_anon_rmap(subpage)); | 
|  |  | 
|  | /* | 
|  | * Store the pfn of the page in a special migration | 
|  | * pte. do_swap_page() will wait until the migration | 
|  | * pte is removed and then restart fault handling. | 
|  | */ | 
|  | entry = pte_to_swp_entry(pteval); | 
|  | if (is_writable_device_private_entry(entry)) | 
|  | entry = make_writable_migration_entry(pfn); | 
|  | else if (anon_exclusive) | 
|  | entry = make_readable_exclusive_migration_entry(pfn); | 
|  | else | 
|  | entry = make_readable_migration_entry(pfn); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  |  | 
|  | /* | 
|  | * pteval maps a zone device page and is therefore | 
|  | * a swap pte. | 
|  | */ | 
|  | if (pte_swp_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_swp_uffd_wp(pteval)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | 
|  | trace_set_migration_pte(pvmw.address, pte_val(swp_pte), | 
|  | compound_order(&folio->page)); | 
|  | /* | 
|  | * No need to invalidate here it will synchronize on | 
|  | * against the special swap migration pte. | 
|  | */ | 
|  | } else if (PageHWPoison(subpage)) { | 
|  | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | hugetlb_count_sub(folio_nr_pages(folio), mm); | 
|  | set_huge_pte_at(mm, address, pvmw.pte, pteval); | 
|  | } else { | 
|  | dec_mm_counter(mm, mm_counter(&folio->page)); | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | } | 
|  |  | 
|  | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | 
|  | /* | 
|  | * The guest indicated that the page content is of no | 
|  | * interest anymore. Simply discard the pte, vmscan | 
|  | * will take care of the rest. | 
|  | * A future reference will then fault in a new zero | 
|  | * page. When userfaultfd is active, we must not drop | 
|  | * this page though, as its main user (postcopy | 
|  | * migration) will not expect userfaults on already | 
|  | * copied pages. | 
|  | */ | 
|  | dec_mm_counter(mm, mm_counter(&folio->page)); | 
|  | /* We have to invalidate as we cleared the pte */ | 
|  | mmu_notifier_invalidate_range(mm, address, | 
|  | address + PAGE_SIZE); | 
|  | } else { | 
|  | swp_entry_t entry; | 
|  | pte_t swp_pte; | 
|  |  | 
|  | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | 
|  | if (folio_test_hugetlb(folio)) | 
|  | set_huge_pte_at(mm, address, pvmw.pte, pteval); | 
|  | else | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && | 
|  | !anon_exclusive, subpage); | 
|  |  | 
|  | /* See page_try_share_anon_rmap(): clear PTE first. */ | 
|  | if (anon_exclusive && | 
|  | page_try_share_anon_rmap(subpage)) { | 
|  | if (folio_test_hugetlb(folio)) | 
|  | set_huge_pte_at(mm, address, pvmw.pte, pteval); | 
|  | else | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the pfn of the page in a special migration | 
|  | * pte. do_swap_page() will wait until the migration | 
|  | * pte is removed and then restart fault handling. | 
|  | */ | 
|  | if (pte_write(pteval)) | 
|  | entry = make_writable_migration_entry( | 
|  | page_to_pfn(subpage)); | 
|  | else if (anon_exclusive) | 
|  | entry = make_readable_exclusive_migration_entry( | 
|  | page_to_pfn(subpage)); | 
|  | else | 
|  | entry = make_readable_migration_entry( | 
|  | page_to_pfn(subpage)); | 
|  | if (pte_young(pteval)) | 
|  | entry = make_migration_entry_young(entry); | 
|  | if (pte_dirty(pteval)) | 
|  | entry = make_migration_entry_dirty(entry); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_uffd_wp(pteval)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | if (folio_test_hugetlb(folio)) | 
|  | set_huge_pte_at(mm, address, pvmw.pte, swp_pte); | 
|  | else | 
|  | set_pte_at(mm, address, pvmw.pte, swp_pte); | 
|  | trace_set_migration_pte(address, pte_val(swp_pte), | 
|  | compound_order(&folio->page)); | 
|  | /* | 
|  | * No need to invalidate here it will synchronize on | 
|  | * against the special swap migration pte. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to call mmu_notifier_invalidate_range() it has be | 
|  | * done above for all cases requiring it to happen under page | 
|  | * table lock before mmu_notifier_invalidate_range_end() | 
|  | * | 
|  | * See Documentation/mm/mmu_notifier.rst | 
|  | */ | 
|  | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mlock_page_drain_local(); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_migrate - try to replace all page table mappings with swap entries | 
|  | * @folio: the folio to replace page table entries for | 
|  | * @flags: action and flags | 
|  | * | 
|  | * Tries to remove all the page table entries which are mapping this folio and | 
|  | * replace them with special swap entries. Caller must hold the folio lock. | 
|  | */ | 
|  | void try_to_migrate(struct folio *folio, enum ttu_flags flags) | 
|  | { | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = try_to_migrate_one, | 
|  | .arg = (void *)flags, | 
|  | .done = page_not_mapped, | 
|  | .anon_lock = folio_lock_anon_vma_read, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | 
|  | * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. | 
|  | */ | 
|  | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | 
|  | TTU_SYNC))) | 
|  | return; | 
|  |  | 
|  | if (folio_is_zone_device(folio) && | 
|  | (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * During exec, a temporary VMA is setup and later moved. | 
|  | * The VMA is moved under the anon_vma lock but not the | 
|  | * page tables leading to a race where migration cannot | 
|  | * find the migration ptes. Rather than increasing the | 
|  | * locking requirements of exec(), migration skips | 
|  | * temporary VMAs until after exec() completes. | 
|  | */ | 
|  | if (!folio_test_ksm(folio) && folio_test_anon(folio)) | 
|  | rwc.invalid_vma = invalid_migration_vma; | 
|  |  | 
|  | if (flags & TTU_RMAP_LOCKED) | 
|  | rmap_walk_locked(folio, &rwc); | 
|  | else | 
|  | rmap_walk(folio, &rwc); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEVICE_PRIVATE | 
|  | struct make_exclusive_args { | 
|  | struct mm_struct *mm; | 
|  | unsigned long address; | 
|  | void *owner; | 
|  | bool valid; | 
|  | }; | 
|  |  | 
|  | static bool page_make_device_exclusive_one(struct folio *folio, | 
|  | struct vm_area_struct *vma, unsigned long address, void *priv) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
|  | struct make_exclusive_args *args = priv; | 
|  | pte_t pteval; | 
|  | struct page *subpage; | 
|  | bool ret = true; | 
|  | struct mmu_notifier_range range; | 
|  | swp_entry_t entry; | 
|  | pte_t swp_pte; | 
|  |  | 
|  | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | 
|  | vma->vm_mm, address, min(vma->vm_end, | 
|  | address + folio_size(folio)), | 
|  | args->owner); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | /* Unexpected PMD-mapped THP? */ | 
|  | VM_BUG_ON_FOLIO(!pvmw.pte, folio); | 
|  |  | 
|  | if (!pte_present(*pvmw.pte)) { | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | subpage = folio_page(folio, | 
|  | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | 
|  | address = pvmw.address; | 
|  |  | 
|  | /* Nuke the page table entry. */ | 
|  | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | 
|  | pteval = ptep_clear_flush(vma, address, pvmw.pte); | 
|  |  | 
|  | /* Set the dirty flag on the folio now the pte is gone. */ | 
|  | if (pte_dirty(pteval)) | 
|  | folio_mark_dirty(folio); | 
|  |  | 
|  | /* | 
|  | * Check that our target page is still mapped at the expected | 
|  | * address. | 
|  | */ | 
|  | if (args->mm == mm && args->address == address && | 
|  | pte_write(pteval)) | 
|  | args->valid = true; | 
|  |  | 
|  | /* | 
|  | * Store the pfn of the page in a special migration | 
|  | * pte. do_swap_page() will wait until the migration | 
|  | * pte is removed and then restart fault handling. | 
|  | */ | 
|  | if (pte_write(pteval)) | 
|  | entry = make_writable_device_exclusive_entry( | 
|  | page_to_pfn(subpage)); | 
|  | else | 
|  | entry = make_readable_device_exclusive_entry( | 
|  | page_to_pfn(subpage)); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_uffd_wp(pteval)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  |  | 
|  | set_pte_at(mm, address, pvmw.pte, swp_pte); | 
|  |  | 
|  | /* | 
|  | * There is a reference on the page for the swap entry which has | 
|  | * been removed, so shouldn't take another. | 
|  | */ | 
|  | page_remove_rmap(subpage, vma, false); | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_make_device_exclusive - Mark the folio exclusively owned by a device. | 
|  | * @folio: The folio to replace page table entries for. | 
|  | * @mm: The mm_struct where the folio is expected to be mapped. | 
|  | * @address: Address where the folio is expected to be mapped. | 
|  | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks | 
|  | * | 
|  | * Tries to remove all the page table entries which are mapping this | 
|  | * folio and replace them with special device exclusive swap entries to | 
|  | * grant a device exclusive access to the folio. | 
|  | * | 
|  | * Context: Caller must hold the folio lock. | 
|  | * Return: false if the page is still mapped, or if it could not be unmapped | 
|  | * from the expected address. Otherwise returns true (success). | 
|  | */ | 
|  | static bool folio_make_device_exclusive(struct folio *folio, | 
|  | struct mm_struct *mm, unsigned long address, void *owner) | 
|  | { | 
|  | struct make_exclusive_args args = { | 
|  | .mm = mm, | 
|  | .address = address, | 
|  | .owner = owner, | 
|  | .valid = false, | 
|  | }; | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = page_make_device_exclusive_one, | 
|  | .done = page_not_mapped, | 
|  | .anon_lock = folio_lock_anon_vma_read, | 
|  | .arg = &args, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Restrict to anonymous folios for now to avoid potential writeback | 
|  | * issues. | 
|  | */ | 
|  | if (!folio_test_anon(folio)) | 
|  | return false; | 
|  |  | 
|  | rmap_walk(folio, &rwc); | 
|  |  | 
|  | return args.valid && !folio_mapcount(folio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_device_exclusive_range() - Mark a range for exclusive use by a device | 
|  | * @mm: mm_struct of associated target process | 
|  | * @start: start of the region to mark for exclusive device access | 
|  | * @end: end address of region | 
|  | * @pages: returns the pages which were successfully marked for exclusive access | 
|  | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | 
|  | * | 
|  | * Returns: number of pages found in the range by GUP. A page is marked for | 
|  | * exclusive access only if the page pointer is non-NULL. | 
|  | * | 
|  | * This function finds ptes mapping page(s) to the given address range, locks | 
|  | * them and replaces mappings with special swap entries preventing userspace CPU | 
|  | * access. On fault these entries are replaced with the original mapping after | 
|  | * calling MMU notifiers. | 
|  | * | 
|  | * A driver using this to program access from a device must use a mmu notifier | 
|  | * critical section to hold a device specific lock during programming. Once | 
|  | * programming is complete it should drop the page lock and reference after | 
|  | * which point CPU access to the page will revoke the exclusive access. | 
|  | */ | 
|  | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, struct page **pages, | 
|  | void *owner) | 
|  | { | 
|  | long npages = (end - start) >> PAGE_SHIFT; | 
|  | long i; | 
|  |  | 
|  | npages = get_user_pages_remote(mm, start, npages, | 
|  | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | 
|  | pages, NULL, NULL); | 
|  | if (npages < 0) | 
|  | return npages; | 
|  |  | 
|  | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | 
|  | struct folio *folio = page_folio(pages[i]); | 
|  | if (PageTail(pages[i]) || !folio_trylock(folio)) { | 
|  | folio_put(folio); | 
|  | pages[i] = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!folio_make_device_exclusive(folio, mm, start, owner)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | pages[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return npages; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | 
|  | #endif | 
|  |  | 
|  | void __put_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | struct anon_vma *root = anon_vma->root; | 
|  |  | 
|  | anon_vma_free(anon_vma); | 
|  | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) | 
|  | anon_vma_free(root); | 
|  | } | 
|  |  | 
|  | static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, | 
|  | struct rmap_walk_control *rwc) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | if (rwc->anon_lock) | 
|  | return rwc->anon_lock(folio, rwc); | 
|  |  | 
|  | /* | 
|  | * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() | 
|  | * because that depends on page_mapped(); but not all its usages | 
|  | * are holding mmap_lock. Users without mmap_lock are required to | 
|  | * take a reference count to prevent the anon_vma disappearing | 
|  | */ | 
|  | anon_vma = folio_anon_vma(folio); | 
|  | if (!anon_vma) | 
|  | return NULL; | 
|  |  | 
|  | if (anon_vma_trylock_read(anon_vma)) | 
|  | goto out; | 
|  |  | 
|  | if (rwc->try_lock) { | 
|  | anon_vma = NULL; | 
|  | rwc->contended = true; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | anon_vma_lock_read(anon_vma); | 
|  | out: | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rmap_walk_anon - do something to anonymous page using the object-based | 
|  | * rmap method | 
|  | * @page: the page to be handled | 
|  | * @rwc: control variable according to each walk type | 
|  | * | 
|  | * Find all the mappings of a page using the mapping pointer and the vma chains | 
|  | * contained in the anon_vma struct it points to. | 
|  | */ | 
|  | static void rmap_walk_anon(struct folio *folio, | 
|  | struct rmap_walk_control *rwc, bool locked) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | pgoff_t pgoff_start, pgoff_end; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | if (locked) { | 
|  | anon_vma = folio_anon_vma(folio); | 
|  | /* anon_vma disappear under us? */ | 
|  | VM_BUG_ON_FOLIO(!anon_vma, folio); | 
|  | } else { | 
|  | anon_vma = rmap_walk_anon_lock(folio, rwc); | 
|  | } | 
|  | if (!anon_vma) | 
|  | return; | 
|  |  | 
|  | pgoff_start = folio_pgoff(folio); | 
|  | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | 
|  | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | 
|  | pgoff_start, pgoff_end) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long address = vma_address(&folio->page, vma); | 
|  |  | 
|  | VM_BUG_ON_VMA(address == -EFAULT, vma); | 
|  | cond_resched(); | 
|  |  | 
|  | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
|  | continue; | 
|  |  | 
|  | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) | 
|  | break; | 
|  | if (rwc->done && rwc->done(folio)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!locked) | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rmap_walk_file - do something to file page using the object-based rmap method | 
|  | * @page: the page to be handled | 
|  | * @rwc: control variable according to each walk type | 
|  | * | 
|  | * Find all the mappings of a page using the mapping pointer and the vma chains | 
|  | * contained in the address_space struct it points to. | 
|  | */ | 
|  | static void rmap_walk_file(struct folio *folio, | 
|  | struct rmap_walk_control *rwc, bool locked) | 
|  | { | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  | pgoff_t pgoff_start, pgoff_end; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * The page lock not only makes sure that page->mapping cannot | 
|  | * suddenly be NULLified by truncation, it makes sure that the | 
|  | * structure at mapping cannot be freed and reused yet, | 
|  | * so we can safely take mapping->i_mmap_rwsem. | 
|  | */ | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  |  | 
|  | if (!mapping) | 
|  | return; | 
|  |  | 
|  | pgoff_start = folio_pgoff(folio); | 
|  | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | 
|  | if (!locked) { | 
|  | if (i_mmap_trylock_read(mapping)) | 
|  | goto lookup; | 
|  |  | 
|  | if (rwc->try_lock) { | 
|  | rwc->contended = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | } | 
|  | lookup: | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, | 
|  | pgoff_start, pgoff_end) { | 
|  | unsigned long address = vma_address(&folio->page, vma); | 
|  |  | 
|  | VM_BUG_ON_VMA(address == -EFAULT, vma); | 
|  | cond_resched(); | 
|  |  | 
|  | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
|  | continue; | 
|  |  | 
|  | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) | 
|  | goto done; | 
|  | if (rwc->done && rwc->done(folio)) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (!locked) | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  |  | 
|  | void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) | 
|  | { | 
|  | if (unlikely(folio_test_ksm(folio))) | 
|  | rmap_walk_ksm(folio, rwc); | 
|  | else if (folio_test_anon(folio)) | 
|  | rmap_walk_anon(folio, rwc, false); | 
|  | else | 
|  | rmap_walk_file(folio, rwc, false); | 
|  | } | 
|  |  | 
|  | /* Like rmap_walk, but caller holds relevant rmap lock */ | 
|  | void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) | 
|  | { | 
|  | /* no ksm support for now */ | 
|  | VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); | 
|  | if (folio_test_anon(folio)) | 
|  | rmap_walk_anon(folio, rwc, true); | 
|  | else | 
|  | rmap_walk_file(folio, rwc, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* | 
|  | * The following two functions are for anonymous (private mapped) hugepages. | 
|  | * Unlike common anonymous pages, anonymous hugepages have no accounting code | 
|  | * and no lru code, because we handle hugepages differently from common pages. | 
|  | * | 
|  | * RMAP_COMPOUND is ignored. | 
|  | */ | 
|  | void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address, rmap_t flags) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  | int first; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(!anon_vma); | 
|  | /* address might be in next vma when migration races vma_adjust */ | 
|  | first = atomic_inc_and_test(compound_mapcount_ptr(page)); | 
|  | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); | 
|  | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | 
|  | if (first) | 
|  | __page_set_anon_rmap(page, vma, address, | 
|  | !!(flags & RMAP_EXCLUSIVE)); | 
|  | } | 
|  |  | 
|  | void hugepage_add_new_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 
|  | atomic_set(compound_mapcount_ptr(page), 0); | 
|  | atomic_set(compound_pincount_ptr(page), 0); | 
|  |  | 
|  | __page_set_anon_rmap(page, vma, address, 1); | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ |