|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * | 
|  | * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle | 
|  | * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) | 
|  | * Copyright 1999 Hewlett Packard Co. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/extable.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | #include <asm/traps.h> | 
|  |  | 
|  | /* Various important other fields */ | 
|  | #define bit22set(x)		(x & 0x00000200) | 
|  | #define bits23_25set(x)		(x & 0x000001c0) | 
|  | #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80) | 
|  | /* extended opcode is 0x6a */ | 
|  |  | 
|  | #define BITSSET		0x1c0	/* for identifying LDCW */ | 
|  |  | 
|  |  | 
|  | int show_unhandled_signals = 1; | 
|  |  | 
|  | /* | 
|  | * parisc_acctyp(unsigned int inst) -- | 
|  | *    Given a PA-RISC memory access instruction, determine if the | 
|  | *    the instruction would perform a memory read or memory write | 
|  | *    operation. | 
|  | * | 
|  | *    This function assumes that the given instruction is a memory access | 
|  | *    instruction (i.e. you should really only call it if you know that | 
|  | *    the instruction has generated some sort of a memory access fault). | 
|  | * | 
|  | * Returns: | 
|  | *   VM_READ  if read operation | 
|  | *   VM_WRITE if write operation | 
|  | *   VM_EXEC  if execute operation | 
|  | */ | 
|  | static unsigned long | 
|  | parisc_acctyp(unsigned long code, unsigned int inst) | 
|  | { | 
|  | if (code == 6 || code == 16) | 
|  | return VM_EXEC; | 
|  |  | 
|  | switch (inst & 0xf0000000) { | 
|  | case 0x40000000: /* load */ | 
|  | case 0x50000000: /* new load */ | 
|  | return VM_READ; | 
|  |  | 
|  | case 0x60000000: /* store */ | 
|  | case 0x70000000: /* new store */ | 
|  | return VM_WRITE; | 
|  |  | 
|  | case 0x20000000: /* coproc */ | 
|  | case 0x30000000: /* coproc2 */ | 
|  | if (bit22set(inst)) | 
|  | return VM_WRITE; | 
|  | /* fall through */ | 
|  |  | 
|  | case 0x0: /* indexed/memory management */ | 
|  | if (bit22set(inst)) { | 
|  | /* | 
|  | * Check for the 'Graphics Flush Read' instruction. | 
|  | * It resembles an FDC instruction, except for bits | 
|  | * 20 and 21. Any combination other than zero will | 
|  | * utilize the block mover functionality on some | 
|  | * older PA-RISC platforms.  The case where a block | 
|  | * move is performed from VM to graphics IO space | 
|  | * should be treated as a READ. | 
|  | * | 
|  | * The significance of bits 20,21 in the FDC | 
|  | * instruction is: | 
|  | * | 
|  | *   00  Flush data cache (normal instruction behavior) | 
|  | *   01  Graphics flush write  (IO space -> VM) | 
|  | *   10  Graphics flush read   (VM -> IO space) | 
|  | *   11  Graphics flush read/write (VM <-> IO space) | 
|  | */ | 
|  | if (isGraphicsFlushRead(inst)) | 
|  | return VM_READ; | 
|  | return VM_WRITE; | 
|  | } else { | 
|  | /* | 
|  | * Check for LDCWX and LDCWS (semaphore instructions). | 
|  | * If bits 23 through 25 are all 1's it is one of | 
|  | * the above two instructions and is a write. | 
|  | * | 
|  | * Note: With the limited bits we are looking at, | 
|  | * this will also catch PROBEW and PROBEWI. However, | 
|  | * these should never get in here because they don't | 
|  | * generate exceptions of the type: | 
|  | *   Data TLB miss fault/data page fault | 
|  | *   Data memory protection trap | 
|  | */ | 
|  | if (bits23_25set(inst) == BITSSET) | 
|  | return VM_WRITE; | 
|  | } | 
|  | return VM_READ; /* Default */ | 
|  | } | 
|  | return VM_READ; /* Default */ | 
|  | } | 
|  |  | 
|  | #undef bit22set | 
|  | #undef bits23_25set | 
|  | #undef isGraphicsFlushRead | 
|  | #undef BITSSET | 
|  |  | 
|  |  | 
|  | #if 0 | 
|  | /* This is the treewalk to find a vma which is the highest that has | 
|  | * a start < addr.  We're using find_vma_prev instead right now, but | 
|  | * we might want to use this at some point in the future.  Probably | 
|  | * not, but I want it committed to CVS so I don't lose it :-) | 
|  | */ | 
|  | while (tree != vm_avl_empty) { | 
|  | if (tree->vm_start > addr) { | 
|  | tree = tree->vm_avl_left; | 
|  | } else { | 
|  | prev = tree; | 
|  | if (prev->vm_next == NULL) | 
|  | break; | 
|  | if (prev->vm_next->vm_start > addr) | 
|  | break; | 
|  | tree = tree->vm_avl_right; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int fixup_exception(struct pt_regs *regs) | 
|  | { | 
|  | const struct exception_table_entry *fix; | 
|  |  | 
|  | fix = search_exception_tables(regs->iaoq[0]); | 
|  | if (fix) { | 
|  | /* | 
|  | * Fix up get_user() and put_user(). | 
|  | * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant | 
|  | * bit in the relative address of the fixup routine to indicate | 
|  | * that %r8 should be loaded with -EFAULT to report a userspace | 
|  | * access error. | 
|  | */ | 
|  | if (fix->fixup & 1) { | 
|  | regs->gr[8] = -EFAULT; | 
|  |  | 
|  | /* zero target register for get_user() */ | 
|  | if (parisc_acctyp(0, regs->iir) == VM_READ) { | 
|  | int treg = regs->iir & 0x1f; | 
|  | BUG_ON(treg == 0); | 
|  | regs->gr[treg] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup; | 
|  | regs->iaoq[0] &= ~3; | 
|  | /* | 
|  | * NOTE: In some cases the faulting instruction | 
|  | * may be in the delay slot of a branch. We | 
|  | * don't want to take the branch, so we don't | 
|  | * increment iaoq[1], instead we set it to be | 
|  | * iaoq[0]+4, and clear the B bit in the PSW | 
|  | */ | 
|  | regs->iaoq[1] = regs->iaoq[0] + 4; | 
|  | regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */ | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * parisc hardware trap list | 
|  | * | 
|  | * Documented in section 3 "Addressing and Access Control" of the | 
|  | * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual" | 
|  | * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf | 
|  | * | 
|  | * For implementation see handle_interruption() in traps.c | 
|  | */ | 
|  | static const char * const trap_description[] = { | 
|  | [1] "High-priority machine check (HPMC)", | 
|  | [2] "Power failure interrupt", | 
|  | [3] "Recovery counter trap", | 
|  | [5] "Low-priority machine check", | 
|  | [6] "Instruction TLB miss fault", | 
|  | [7] "Instruction access rights / protection trap", | 
|  | [8] "Illegal instruction trap", | 
|  | [9] "Break instruction trap", | 
|  | [10] "Privileged operation trap", | 
|  | [11] "Privileged register trap", | 
|  | [12] "Overflow trap", | 
|  | [13] "Conditional trap", | 
|  | [14] "FP Assist Exception trap", | 
|  | [15] "Data TLB miss fault", | 
|  | [16] "Non-access ITLB miss fault", | 
|  | [17] "Non-access DTLB miss fault", | 
|  | [18] "Data memory protection/unaligned access trap", | 
|  | [19] "Data memory break trap", | 
|  | [20] "TLB dirty bit trap", | 
|  | [21] "Page reference trap", | 
|  | [22] "Assist emulation trap", | 
|  | [25] "Taken branch trap", | 
|  | [26] "Data memory access rights trap", | 
|  | [27] "Data memory protection ID trap", | 
|  | [28] "Unaligned data reference trap", | 
|  | }; | 
|  |  | 
|  | const char *trap_name(unsigned long code) | 
|  | { | 
|  | const char *t = NULL; | 
|  |  | 
|  | if (code < ARRAY_SIZE(trap_description)) | 
|  | t = trap_description[code]; | 
|  |  | 
|  | return t ? t : "Unknown trap"; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print out info about fatal segfaults, if the show_unhandled_signals | 
|  | * sysctl is set: | 
|  | */ | 
|  | static inline void | 
|  | show_signal_msg(struct pt_regs *regs, unsigned long code, | 
|  | unsigned long address, struct task_struct *tsk, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | if (!unhandled_signal(tsk, SIGSEGV)) | 
|  | return; | 
|  |  | 
|  | if (!printk_ratelimit()) | 
|  | return; | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx", | 
|  | tsk->comm, code, address); | 
|  | print_vma_addr(KERN_CONT " in ", regs->iaoq[0]); | 
|  |  | 
|  | pr_cont("\ntrap #%lu: %s%c", code, trap_name(code), | 
|  | vma ? ',':'\n'); | 
|  |  | 
|  | if (vma) | 
|  | pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n", | 
|  | vma->vm_start, vma->vm_end); | 
|  |  | 
|  | show_regs(regs); | 
|  | } | 
|  |  | 
|  | void do_page_fault(struct pt_regs *regs, unsigned long code, | 
|  | unsigned long address) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev_vma; | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | unsigned long acc_type; | 
|  | vm_fault_t fault = 0; | 
|  | unsigned int flags; | 
|  |  | 
|  | if (faulthandler_disabled()) | 
|  | goto no_context; | 
|  |  | 
|  | tsk = current; | 
|  | mm = tsk->mm; | 
|  | if (!mm) | 
|  | goto no_context; | 
|  |  | 
|  | flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  | if (user_mode(regs)) | 
|  | flags |= FAULT_FLAG_USER; | 
|  |  | 
|  | acc_type = parisc_acctyp(code, regs->iir); | 
|  | if (acc_type & VM_WRITE) | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | retry: | 
|  | down_read(&mm->mmap_sem); | 
|  | vma = find_vma_prev(mm, address, &prev_vma); | 
|  | if (!vma || address < vma->vm_start) | 
|  | goto check_expansion; | 
|  | /* | 
|  | * Ok, we have a good vm_area for this memory access. We still need to | 
|  | * check the access permissions. | 
|  | */ | 
|  |  | 
|  | good_area: | 
|  |  | 
|  | if ((vma->vm_flags & acc_type) != acc_type) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, make | 
|  | * sure we exit gracefully rather than endlessly redo the | 
|  | * fault. | 
|  | */ | 
|  |  | 
|  | fault = handle_mm_fault(vma, address, flags); | 
|  |  | 
|  | if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(fault & VM_FAULT_ERROR)) { | 
|  | /* | 
|  | * We hit a shared mapping outside of the file, or some | 
|  | * other thing happened to us that made us unable to | 
|  | * handle the page fault gracefully. | 
|  | */ | 
|  | if (fault & VM_FAULT_OOM) | 
|  | goto out_of_memory; | 
|  | else if (fault & VM_FAULT_SIGSEGV) | 
|  | goto bad_area; | 
|  | else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| | 
|  | VM_FAULT_HWPOISON_LARGE)) | 
|  | goto bad_area; | 
|  | BUG(); | 
|  | } | 
|  | if (flags & FAULT_FLAG_ALLOW_RETRY) { | 
|  | if (fault & VM_FAULT_MAJOR) | 
|  | current->maj_flt++; | 
|  | else | 
|  | current->min_flt++; | 
|  | if (fault & VM_FAULT_RETRY) { | 
|  | flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
|  |  | 
|  | /* | 
|  | * No need to up_read(&mm->mmap_sem) as we would | 
|  | * have already released it in __lock_page_or_retry | 
|  | * in mm/filemap.c. | 
|  | */ | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | return; | 
|  |  | 
|  | check_expansion: | 
|  | vma = prev_vma; | 
|  | if (vma && (expand_stack(vma, address) == 0)) | 
|  | goto good_area; | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | */ | 
|  | bad_area: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | int signo, si_code; | 
|  |  | 
|  | switch (code) { | 
|  | case 15:	/* Data TLB miss fault/Data page fault */ | 
|  | /* send SIGSEGV when outside of vma */ | 
|  | if (!vma || | 
|  | address < vma->vm_start || address >= vma->vm_end) { | 
|  | signo = SIGSEGV; | 
|  | si_code = SEGV_MAPERR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* send SIGSEGV for wrong permissions */ | 
|  | if ((vma->vm_flags & acc_type) != acc_type) { | 
|  | signo = SIGSEGV; | 
|  | si_code = SEGV_ACCERR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* probably address is outside of mapped file */ | 
|  | /* fall through */ | 
|  | case 17:	/* NA data TLB miss / page fault */ | 
|  | case 18:	/* Unaligned access - PCXS only */ | 
|  | signo = SIGBUS; | 
|  | si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR; | 
|  | break; | 
|  | case 16:	/* Non-access instruction TLB miss fault */ | 
|  | case 26:	/* PCXL: Data memory access rights trap */ | 
|  | default: | 
|  | signo = SIGSEGV; | 
|  | si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR; | 
|  | break; | 
|  | } | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { | 
|  | unsigned int lsb = 0; | 
|  | printk(KERN_ERR | 
|  | "MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n", | 
|  | tsk->comm, tsk->pid, address); | 
|  | /* | 
|  | * Either small page or large page may be poisoned. | 
|  | * In other words, VM_FAULT_HWPOISON_LARGE and | 
|  | * VM_FAULT_HWPOISON are mutually exclusive. | 
|  | */ | 
|  | if (fault & VM_FAULT_HWPOISON_LARGE) | 
|  | lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); | 
|  | else if (fault & VM_FAULT_HWPOISON) | 
|  | lsb = PAGE_SHIFT; | 
|  |  | 
|  | force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address, | 
|  | lsb); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | show_signal_msg(regs, code, address, tsk, vma); | 
|  |  | 
|  | force_sig_fault(signo, si_code, (void __user *) address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | no_context: | 
|  |  | 
|  | if (!user_mode(regs) && fixup_exception(regs)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | parisc_terminate("Bad Address (null pointer deref?)", regs, code, address); | 
|  |  | 
|  | out_of_memory: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  | pagefault_out_of_memory(); | 
|  | } |