| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * A fairly generic DMA-API to IOMMU-API glue layer. | 
 |  * | 
 |  * Copyright (C) 2014-2015 ARM Ltd. | 
 |  * | 
 |  * based in part on arch/arm/mm/dma-mapping.c: | 
 |  * Copyright (C) 2000-2004 Russell King | 
 |  */ | 
 |  | 
 | #include <linux/acpi_iort.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-direct.h> | 
 | #include <linux/dma-map-ops.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/huge_mm.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/iova.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/swiotlb.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include "dma-iommu.h" | 
 |  | 
 | struct iommu_dma_msi_page { | 
 | 	struct list_head	list; | 
 | 	dma_addr_t		iova; | 
 | 	phys_addr_t		phys; | 
 | }; | 
 |  | 
 | enum iommu_dma_cookie_type { | 
 | 	IOMMU_DMA_IOVA_COOKIE, | 
 | 	IOMMU_DMA_MSI_COOKIE, | 
 | }; | 
 |  | 
 | struct iommu_dma_cookie { | 
 | 	enum iommu_dma_cookie_type	type; | 
 | 	union { | 
 | 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */ | 
 | 		struct { | 
 | 			struct iova_domain	iovad; | 
 |  | 
 | 			struct iova_fq __percpu *fq;	/* Flush queue */ | 
 | 			/* Number of TLB flushes that have been started */ | 
 | 			atomic64_t		fq_flush_start_cnt; | 
 | 			/* Number of TLB flushes that have been finished */ | 
 | 			atomic64_t		fq_flush_finish_cnt; | 
 | 			/* Timer to regularily empty the flush queues */ | 
 | 			struct timer_list	fq_timer; | 
 | 			/* 1 when timer is active, 0 when not */ | 
 | 			atomic_t		fq_timer_on; | 
 | 		}; | 
 | 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ | 
 | 		dma_addr_t		msi_iova; | 
 | 	}; | 
 | 	struct list_head		msi_page_list; | 
 |  | 
 | 	/* Domain for flush queue callback; NULL if flush queue not in use */ | 
 | 	struct iommu_domain		*fq_domain; | 
 | 	struct mutex			mutex; | 
 | }; | 
 |  | 
 | static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); | 
 | bool iommu_dma_forcedac __read_mostly; | 
 |  | 
 | static int __init iommu_dma_forcedac_setup(char *str) | 
 | { | 
 | 	int ret = kstrtobool(str, &iommu_dma_forcedac); | 
 |  | 
 | 	if (!ret && iommu_dma_forcedac) | 
 | 		pr_info("Forcing DAC for PCI devices\n"); | 
 | 	return ret; | 
 | } | 
 | early_param("iommu.forcedac", iommu_dma_forcedac_setup); | 
 |  | 
 | /* Number of entries per flush queue */ | 
 | #define IOVA_FQ_SIZE	256 | 
 |  | 
 | /* Timeout (in ms) after which entries are flushed from the queue */ | 
 | #define IOVA_FQ_TIMEOUT	10 | 
 |  | 
 | /* Flush queue entry for deferred flushing */ | 
 | struct iova_fq_entry { | 
 | 	unsigned long iova_pfn; | 
 | 	unsigned long pages; | 
 | 	struct list_head freelist; | 
 | 	u64 counter; /* Flush counter when this entry was added */ | 
 | }; | 
 |  | 
 | /* Per-CPU flush queue structure */ | 
 | struct iova_fq { | 
 | 	struct iova_fq_entry entries[IOVA_FQ_SIZE]; | 
 | 	unsigned int head, tail; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | #define fq_ring_for_each(i, fq) \ | 
 | 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) | 
 |  | 
 | static inline bool fq_full(struct iova_fq *fq) | 
 | { | 
 | 	assert_spin_locked(&fq->lock); | 
 | 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); | 
 | } | 
 |  | 
 | static inline unsigned int fq_ring_add(struct iova_fq *fq) | 
 | { | 
 | 	unsigned int idx = fq->tail; | 
 |  | 
 | 	assert_spin_locked(&fq->lock); | 
 |  | 
 | 	fq->tail = (idx + 1) % IOVA_FQ_SIZE; | 
 |  | 
 | 	return idx; | 
 | } | 
 |  | 
 | static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) | 
 | { | 
 | 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); | 
 | 	unsigned int idx; | 
 |  | 
 | 	assert_spin_locked(&fq->lock); | 
 |  | 
 | 	fq_ring_for_each(idx, fq) { | 
 |  | 
 | 		if (fq->entries[idx].counter >= counter) | 
 | 			break; | 
 |  | 
 | 		put_pages_list(&fq->entries[idx].freelist); | 
 | 		free_iova_fast(&cookie->iovad, | 
 | 			       fq->entries[idx].iova_pfn, | 
 | 			       fq->entries[idx].pages); | 
 |  | 
 | 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE; | 
 | 	} | 
 | } | 
 |  | 
 | static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) | 
 | { | 
 | 	atomic64_inc(&cookie->fq_flush_start_cnt); | 
 | 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); | 
 | 	atomic64_inc(&cookie->fq_flush_finish_cnt); | 
 | } | 
 |  | 
 | static void fq_flush_timeout(struct timer_list *t) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); | 
 | 	int cpu; | 
 |  | 
 | 	atomic_set(&cookie->fq_timer_on, 0); | 
 | 	fq_flush_iotlb(cookie); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		unsigned long flags; | 
 | 		struct iova_fq *fq; | 
 |  | 
 | 		fq = per_cpu_ptr(cookie->fq, cpu); | 
 | 		spin_lock_irqsave(&fq->lock, flags); | 
 | 		fq_ring_free(cookie, fq); | 
 | 		spin_unlock_irqrestore(&fq->lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void queue_iova(struct iommu_dma_cookie *cookie, | 
 | 		unsigned long pfn, unsigned long pages, | 
 | 		struct list_head *freelist) | 
 | { | 
 | 	struct iova_fq *fq; | 
 | 	unsigned long flags; | 
 | 	unsigned int idx; | 
 |  | 
 | 	/* | 
 | 	 * Order against the IOMMU driver's pagetable update from unmapping | 
 | 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called | 
 | 	 * from a different CPU before we release the lock below. Full barrier | 
 | 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially | 
 | 	 * written fq state here. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	fq = raw_cpu_ptr(cookie->fq); | 
 | 	spin_lock_irqsave(&fq->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * First remove all entries from the flush queue that have already been | 
 | 	 * flushed out on another CPU. This makes the fq_full() check below less | 
 | 	 * likely to be true. | 
 | 	 */ | 
 | 	fq_ring_free(cookie, fq); | 
 |  | 
 | 	if (fq_full(fq)) { | 
 | 		fq_flush_iotlb(cookie); | 
 | 		fq_ring_free(cookie, fq); | 
 | 	} | 
 |  | 
 | 	idx = fq_ring_add(fq); | 
 |  | 
 | 	fq->entries[idx].iova_pfn = pfn; | 
 | 	fq->entries[idx].pages    = pages; | 
 | 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt); | 
 | 	list_splice(freelist, &fq->entries[idx].freelist); | 
 |  | 
 | 	spin_unlock_irqrestore(&fq->lock, flags); | 
 |  | 
 | 	/* Avoid false sharing as much as possible. */ | 
 | 	if (!atomic_read(&cookie->fq_timer_on) && | 
 | 	    !atomic_xchg(&cookie->fq_timer_on, 1)) | 
 | 		mod_timer(&cookie->fq_timer, | 
 | 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); | 
 | } | 
 |  | 
 | static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) | 
 | { | 
 | 	int cpu, idx; | 
 |  | 
 | 	if (!cookie->fq) | 
 | 		return; | 
 |  | 
 | 	del_timer_sync(&cookie->fq_timer); | 
 | 	/* The IOVAs will be torn down separately, so just free our queued pages */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); | 
 |  | 
 | 		fq_ring_for_each(idx, fq) | 
 | 			put_pages_list(&fq->entries[idx].freelist); | 
 | 	} | 
 |  | 
 | 	free_percpu(cookie->fq); | 
 | } | 
 |  | 
 | /* sysfs updates are serialised by the mutex of the group owning @domain */ | 
 | int iommu_dma_init_fq(struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_fq __percpu *queue; | 
 | 	int i, cpu; | 
 |  | 
 | 	if (cookie->fq_domain) | 
 | 		return 0; | 
 |  | 
 | 	atomic64_set(&cookie->fq_flush_start_cnt,  0); | 
 | 	atomic64_set(&cookie->fq_flush_finish_cnt, 0); | 
 |  | 
 | 	queue = alloc_percpu(struct iova_fq); | 
 | 	if (!queue) { | 
 | 		pr_warn("iova flush queue initialization failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct iova_fq *fq = per_cpu_ptr(queue, cpu); | 
 |  | 
 | 		fq->head = 0; | 
 | 		fq->tail = 0; | 
 |  | 
 | 		spin_lock_init(&fq->lock); | 
 |  | 
 | 		for (i = 0; i < IOVA_FQ_SIZE; i++) | 
 | 			INIT_LIST_HEAD(&fq->entries[i].freelist); | 
 | 	} | 
 |  | 
 | 	cookie->fq = queue; | 
 |  | 
 | 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); | 
 | 	atomic_set(&cookie->fq_timer_on, 0); | 
 | 	/* | 
 | 	 * Prevent incomplete fq state being observable. Pairs with path from | 
 | 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	WRITE_ONCE(cookie->fq_domain, domain); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) | 
 | { | 
 | 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) | 
 | 		return cookie->iovad.granule; | 
 | 	return PAGE_SIZE; | 
 | } | 
 |  | 
 | static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie; | 
 |  | 
 | 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); | 
 | 	if (cookie) { | 
 | 		INIT_LIST_HEAD(&cookie->msi_page_list); | 
 | 		cookie->type = type; | 
 | 	} | 
 | 	return cookie; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain | 
 |  * @domain: IOMMU domain to prepare for DMA-API usage | 
 |  */ | 
 | int iommu_get_dma_cookie(struct iommu_domain *domain) | 
 | { | 
 | 	if (domain->iova_cookie) | 
 | 		return -EEXIST; | 
 |  | 
 | 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); | 
 | 	if (!domain->iova_cookie) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mutex_init(&domain->iova_cookie->mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_get_msi_cookie - Acquire just MSI remapping resources | 
 |  * @domain: IOMMU domain to prepare | 
 |  * @base: Start address of IOVA region for MSI mappings | 
 |  * | 
 |  * Users who manage their own IOVA allocation and do not want DMA API support, | 
 |  * but would still like to take advantage of automatic MSI remapping, can use | 
 |  * this to initialise their own domain appropriately. Users should reserve a | 
 |  * contiguous IOVA region, starting at @base, large enough to accommodate the | 
 |  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address | 
 |  * used by the devices attached to @domain. | 
 |  */ | 
 | int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie; | 
 |  | 
 | 	if (domain->type != IOMMU_DOMAIN_UNMANAGED) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (domain->iova_cookie) | 
 | 		return -EEXIST; | 
 |  | 
 | 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); | 
 | 	if (!cookie) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cookie->msi_iova = base; | 
 | 	domain->iova_cookie = cookie; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iommu_get_msi_cookie); | 
 |  | 
 | /** | 
 |  * iommu_put_dma_cookie - Release a domain's DMA mapping resources | 
 |  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or | 
 |  *          iommu_get_msi_cookie() | 
 |  */ | 
 | void iommu_put_dma_cookie(struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iommu_dma_msi_page *msi, *tmp; | 
 |  | 
 | 	if (!cookie) | 
 | 		return; | 
 |  | 
 | 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { | 
 | 		iommu_dma_free_fq(cookie); | 
 | 		put_iova_domain(&cookie->iovad); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { | 
 | 		list_del(&msi->list); | 
 | 		kfree(msi); | 
 | 	} | 
 | 	kfree(cookie); | 
 | 	domain->iova_cookie = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_get_resv_regions - Reserved region driver helper | 
 |  * @dev: Device from iommu_get_resv_regions() | 
 |  * @list: Reserved region list from iommu_get_resv_regions() | 
 |  * | 
 |  * IOMMU drivers can use this to implement their .get_resv_regions callback | 
 |  * for general non-IOMMU-specific reservations. Currently, this covers GICv3 | 
 |  * ITS region reservation on ACPI based ARM platforms that may require HW MSI | 
 |  * reservation. | 
 |  */ | 
 | void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) | 
 | { | 
 |  | 
 | 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) | 
 | 		iort_iommu_get_resv_regions(dev, list); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL(iommu_dma_get_resv_regions); | 
 |  | 
 | static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, | 
 | 		phys_addr_t start, phys_addr_t end) | 
 | { | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct iommu_dma_msi_page *msi_page; | 
 | 	int i, num_pages; | 
 |  | 
 | 	start -= iova_offset(iovad, start); | 
 | 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); | 
 | 		if (!msi_page) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		msi_page->phys = start; | 
 | 		msi_page->iova = start; | 
 | 		INIT_LIST_HEAD(&msi_page->list); | 
 | 		list_add(&msi_page->list, &cookie->msi_page_list); | 
 | 		start += iovad->granule; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, | 
 | 		const struct list_head *b) | 
 | { | 
 | 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); | 
 | 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); | 
 |  | 
 | 	return res_a->res->start > res_b->res->start; | 
 | } | 
 |  | 
 | static int iova_reserve_pci_windows(struct pci_dev *dev, | 
 | 		struct iova_domain *iovad) | 
 | { | 
 | 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); | 
 | 	struct resource_entry *window; | 
 | 	unsigned long lo, hi; | 
 | 	phys_addr_t start = 0, end; | 
 |  | 
 | 	resource_list_for_each_entry(window, &bridge->windows) { | 
 | 		if (resource_type(window->res) != IORESOURCE_MEM) | 
 | 			continue; | 
 |  | 
 | 		lo = iova_pfn(iovad, window->res->start - window->offset); | 
 | 		hi = iova_pfn(iovad, window->res->end - window->offset); | 
 | 		reserve_iova(iovad, lo, hi); | 
 | 	} | 
 |  | 
 | 	/* Get reserved DMA windows from host bridge */ | 
 | 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); | 
 | 	resource_list_for_each_entry(window, &bridge->dma_ranges) { | 
 | 		end = window->res->start - window->offset; | 
 | resv_iova: | 
 | 		if (end > start) { | 
 | 			lo = iova_pfn(iovad, start); | 
 | 			hi = iova_pfn(iovad, end); | 
 | 			reserve_iova(iovad, lo, hi); | 
 | 		} else if (end < start) { | 
 | 			/* DMA ranges should be non-overlapping */ | 
 | 			dev_err(&dev->dev, | 
 | 				"Failed to reserve IOVA [%pa-%pa]\n", | 
 | 				&start, &end); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		start = window->res->end - window->offset + 1; | 
 | 		/* If window is last entry */ | 
 | 		if (window->node.next == &bridge->dma_ranges && | 
 | 		    end != ~(phys_addr_t)0) { | 
 | 			end = ~(phys_addr_t)0; | 
 | 			goto resv_iova; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iova_reserve_iommu_regions(struct device *dev, | 
 | 		struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct iommu_resv_region *region; | 
 | 	LIST_HEAD(resv_regions); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dev_is_pci(dev)) { | 
 | 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	iommu_get_resv_regions(dev, &resv_regions); | 
 | 	list_for_each_entry(region, &resv_regions, list) { | 
 | 		unsigned long lo, hi; | 
 |  | 
 | 		/* We ARE the software that manages these! */ | 
 | 		if (region->type == IOMMU_RESV_SW_MSI) | 
 | 			continue; | 
 |  | 
 | 		lo = iova_pfn(iovad, region->start); | 
 | 		hi = iova_pfn(iovad, region->start + region->length - 1); | 
 | 		reserve_iova(iovad, lo, hi); | 
 |  | 
 | 		if (region->type == IOMMU_RESV_MSI) | 
 | 			ret = cookie_init_hw_msi_region(cookie, region->start, | 
 | 					region->start + region->length); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	iommu_put_resv_regions(dev, &resv_regions); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool dev_is_untrusted(struct device *dev) | 
 | { | 
 | 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; | 
 | } | 
 |  | 
 | static bool dev_use_swiotlb(struct device *dev) | 
 | { | 
 | 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_init_domain - Initialise a DMA mapping domain | 
 |  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() | 
 |  * @base: IOVA at which the mappable address space starts | 
 |  * @limit: Last address of the IOVA space | 
 |  * @dev: Device the domain is being initialised for | 
 |  * | 
 |  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to | 
 |  * avoid rounding surprises. If necessary, we reserve the page at address 0 | 
 |  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but | 
 |  * any change which could make prior IOVAs invalid will fail. | 
 |  */ | 
 | static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, | 
 | 				 dma_addr_t limit, struct device *dev) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	unsigned long order, base_pfn; | 
 | 	struct iova_domain *iovad; | 
 | 	int ret; | 
 |  | 
 | 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	iovad = &cookie->iovad; | 
 |  | 
 | 	/* Use the smallest supported page size for IOVA granularity */ | 
 | 	order = __ffs(domain->pgsize_bitmap); | 
 | 	base_pfn = max_t(unsigned long, 1, base >> order); | 
 |  | 
 | 	/* Check the domain allows at least some access to the device... */ | 
 | 	if (domain->geometry.force_aperture) { | 
 | 		if (base > domain->geometry.aperture_end || | 
 | 		    limit < domain->geometry.aperture_start) { | 
 | 			pr_warn("specified DMA range outside IOMMU capability\n"); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		/* ...then finally give it a kicking to make sure it fits */ | 
 | 		base_pfn = max_t(unsigned long, base_pfn, | 
 | 				domain->geometry.aperture_start >> order); | 
 | 	} | 
 |  | 
 | 	/* start_pfn is always nonzero for an already-initialised domain */ | 
 | 	mutex_lock(&cookie->mutex); | 
 | 	if (iovad->start_pfn) { | 
 | 		if (1UL << order != iovad->granule || | 
 | 		    base_pfn != iovad->start_pfn) { | 
 | 			pr_warn("Incompatible range for DMA domain\n"); | 
 | 			ret = -EFAULT; | 
 | 			goto done_unlock; | 
 | 		} | 
 |  | 
 | 		ret = 0; | 
 | 		goto done_unlock; | 
 | 	} | 
 |  | 
 | 	init_iova_domain(iovad, 1UL << order, base_pfn); | 
 | 	ret = iova_domain_init_rcaches(iovad); | 
 | 	if (ret) | 
 | 		goto done_unlock; | 
 |  | 
 | 	/* If the FQ fails we can simply fall back to strict mode */ | 
 | 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) | 
 | 		domain->type = IOMMU_DOMAIN_DMA; | 
 |  | 
 | 	ret = iova_reserve_iommu_regions(dev, domain); | 
 |  | 
 | done_unlock: | 
 | 	mutex_unlock(&cookie->mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API | 
 |  *                    page flags. | 
 |  * @dir: Direction of DMA transfer | 
 |  * @coherent: Is the DMA master cache-coherent? | 
 |  * @attrs: DMA attributes for the mapping | 
 |  * | 
 |  * Return: corresponding IOMMU API page protection flags | 
 |  */ | 
 | static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, | 
 | 		     unsigned long attrs) | 
 | { | 
 | 	int prot = coherent ? IOMMU_CACHE : 0; | 
 |  | 
 | 	if (attrs & DMA_ATTR_PRIVILEGED) | 
 | 		prot |= IOMMU_PRIV; | 
 |  | 
 | 	switch (dir) { | 
 | 	case DMA_BIDIRECTIONAL: | 
 | 		return prot | IOMMU_READ | IOMMU_WRITE; | 
 | 	case DMA_TO_DEVICE: | 
 | 		return prot | IOMMU_READ; | 
 | 	case DMA_FROM_DEVICE: | 
 | 		return prot | IOMMU_WRITE; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, | 
 | 		size_t size, u64 dma_limit, struct device *dev) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	unsigned long shift, iova_len, iova = 0; | 
 |  | 
 | 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) { | 
 | 		cookie->msi_iova += size; | 
 | 		return cookie->msi_iova - size; | 
 | 	} | 
 |  | 
 | 	shift = iova_shift(iovad); | 
 | 	iova_len = size >> shift; | 
 |  | 
 | 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); | 
 |  | 
 | 	if (domain->geometry.force_aperture) | 
 | 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); | 
 |  | 
 | 	/* Try to get PCI devices a SAC address */ | 
 | 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) | 
 | 		iova = alloc_iova_fast(iovad, iova_len, | 
 | 				       DMA_BIT_MASK(32) >> shift, false); | 
 |  | 
 | 	if (!iova) | 
 | 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, | 
 | 				       true); | 
 |  | 
 | 	return (dma_addr_t)iova << shift; | 
 | } | 
 |  | 
 | static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, | 
 | 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) | 
 | { | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 |  | 
 | 	/* The MSI case is only ever cleaning up its most recent allocation */ | 
 | 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) | 
 | 		cookie->msi_iova -= size; | 
 | 	else if (gather && gather->queued) | 
 | 		queue_iova(cookie, iova_pfn(iovad, iova), | 
 | 				size >> iova_shift(iovad), | 
 | 				&gather->freelist); | 
 | 	else | 
 | 		free_iova_fast(iovad, iova_pfn(iovad, iova), | 
 | 				size >> iova_shift(iovad)); | 
 | } | 
 |  | 
 | static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, | 
 | 		size_t size) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	size_t iova_off = iova_offset(iovad, dma_addr); | 
 | 	struct iommu_iotlb_gather iotlb_gather; | 
 | 	size_t unmapped; | 
 |  | 
 | 	dma_addr -= iova_off; | 
 | 	size = iova_align(iovad, size + iova_off); | 
 | 	iommu_iotlb_gather_init(&iotlb_gather); | 
 | 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain); | 
 |  | 
 | 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); | 
 | 	WARN_ON(unmapped != size); | 
 |  | 
 | 	if (!iotlb_gather.queued) | 
 | 		iommu_iotlb_sync(domain, &iotlb_gather); | 
 | 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); | 
 | } | 
 |  | 
 | static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, | 
 | 		size_t size, int prot, u64 dma_mask) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	size_t iova_off = iova_offset(iovad, phys); | 
 | 	dma_addr_t iova; | 
 |  | 
 | 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) && | 
 | 	    iommu_deferred_attach(dev, domain)) | 
 | 		return DMA_MAPPING_ERROR; | 
 |  | 
 | 	size = iova_align(iovad, size + iova_off); | 
 |  | 
 | 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); | 
 | 	if (!iova) | 
 | 		return DMA_MAPPING_ERROR; | 
 |  | 
 | 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { | 
 | 		iommu_dma_free_iova(cookie, iova, size, NULL); | 
 | 		return DMA_MAPPING_ERROR; | 
 | 	} | 
 | 	return iova + iova_off; | 
 | } | 
 |  | 
 | static void __iommu_dma_free_pages(struct page **pages, int count) | 
 | { | 
 | 	while (count--) | 
 | 		__free_page(pages[count]); | 
 | 	kvfree(pages); | 
 | } | 
 |  | 
 | static struct page **__iommu_dma_alloc_pages(struct device *dev, | 
 | 		unsigned int count, unsigned long order_mask, gfp_t gfp) | 
 | { | 
 | 	struct page **pages; | 
 | 	unsigned int i = 0, nid = dev_to_node(dev); | 
 |  | 
 | 	order_mask &= (2U << MAX_ORDER) - 1; | 
 | 	if (!order_mask) | 
 | 		return NULL; | 
 |  | 
 | 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	/* IOMMU can map any pages, so himem can also be used here */ | 
 | 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM; | 
 |  | 
 | 	/* It makes no sense to muck about with huge pages */ | 
 | 	gfp &= ~__GFP_COMP; | 
 |  | 
 | 	while (count) { | 
 | 		struct page *page = NULL; | 
 | 		unsigned int order_size; | 
 |  | 
 | 		/* | 
 | 		 * Higher-order allocations are a convenience rather | 
 | 		 * than a necessity, hence using __GFP_NORETRY until | 
 | 		 * falling back to minimum-order allocations. | 
 | 		 */ | 
 | 		for (order_mask &= (2U << __fls(count)) - 1; | 
 | 		     order_mask; order_mask &= ~order_size) { | 
 | 			unsigned int order = __fls(order_mask); | 
 | 			gfp_t alloc_flags = gfp; | 
 |  | 
 | 			order_size = 1U << order; | 
 | 			if (order_mask > order_size) | 
 | 				alloc_flags |= __GFP_NORETRY; | 
 | 			page = alloc_pages_node(nid, alloc_flags, order); | 
 | 			if (!page) | 
 | 				continue; | 
 | 			if (order) | 
 | 				split_page(page, order); | 
 | 			break; | 
 | 		} | 
 | 		if (!page) { | 
 | 			__iommu_dma_free_pages(pages, i); | 
 | 			return NULL; | 
 | 		} | 
 | 		count -= order_size; | 
 | 		while (order_size--) | 
 | 			pages[i++] = page++; | 
 | 	} | 
 | 	return pages; | 
 | } | 
 |  | 
 | /* | 
 |  * If size is less than PAGE_SIZE, then a full CPU page will be allocated, | 
 |  * but an IOMMU which supports smaller pages might not map the whole thing. | 
 |  */ | 
 | static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, | 
 | 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	bool coherent = dev_is_dma_coherent(dev); | 
 | 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); | 
 | 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; | 
 | 	struct page **pages; | 
 | 	dma_addr_t iova; | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) && | 
 | 	    iommu_deferred_attach(dev, domain)) | 
 | 		return NULL; | 
 |  | 
 | 	min_size = alloc_sizes & -alloc_sizes; | 
 | 	if (min_size < PAGE_SIZE) { | 
 | 		min_size = PAGE_SIZE; | 
 | 		alloc_sizes |= PAGE_SIZE; | 
 | 	} else { | 
 | 		size = ALIGN(size, min_size); | 
 | 	} | 
 | 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) | 
 | 		alloc_sizes = min_size; | 
 |  | 
 | 	count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, | 
 | 					gfp); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	size = iova_align(iovad, size); | 
 | 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); | 
 | 	if (!iova) | 
 | 		goto out_free_pages; | 
 |  | 
 | 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) | 
 | 		goto out_free_iova; | 
 |  | 
 | 	if (!(ioprot & IOMMU_CACHE)) { | 
 | 		struct scatterlist *sg; | 
 | 		int i; | 
 |  | 
 | 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) | 
 | 			arch_dma_prep_coherent(sg_page(sg), sg->length); | 
 | 	} | 
 |  | 
 | 	ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot); | 
 | 	if (ret < 0 || ret < size) | 
 | 		goto out_free_sg; | 
 |  | 
 | 	sgt->sgl->dma_address = iova; | 
 | 	sgt->sgl->dma_length = size; | 
 | 	return pages; | 
 |  | 
 | out_free_sg: | 
 | 	sg_free_table(sgt); | 
 | out_free_iova: | 
 | 	iommu_dma_free_iova(cookie, iova, size, NULL); | 
 | out_free_pages: | 
 | 	__iommu_dma_free_pages(pages, count); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *iommu_dma_alloc_remap(struct device *dev, size_t size, | 
 | 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	struct page **pages; | 
 | 	struct sg_table sgt; | 
 | 	void *vaddr; | 
 |  | 
 | 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, | 
 | 						attrs); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 | 	*dma_handle = sgt.sgl->dma_address; | 
 | 	sg_free_table(&sgt); | 
 | 	vaddr = dma_common_pages_remap(pages, size, prot, | 
 | 			__builtin_return_address(0)); | 
 | 	if (!vaddr) | 
 | 		goto out_unmap; | 
 | 	return vaddr; | 
 |  | 
 | out_unmap: | 
 | 	__iommu_dma_unmap(dev, *dma_handle, size); | 
 | 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, | 
 | 		size_t size, enum dma_data_direction dir, gfp_t gfp, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	struct dma_sgt_handle *sh; | 
 |  | 
 | 	sh = kmalloc(sizeof(*sh), gfp); | 
 | 	if (!sh) | 
 | 		return NULL; | 
 |  | 
 | 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, | 
 | 						    PAGE_KERNEL, attrs); | 
 | 	if (!sh->pages) { | 
 | 		kfree(sh); | 
 | 		return NULL; | 
 | 	} | 
 | 	return &sh->sgt; | 
 | } | 
 |  | 
 | static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, | 
 | 		struct sg_table *sgt, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_sgt_handle *sh = sgt_handle(sgt); | 
 |  | 
 | 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size); | 
 | 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); | 
 | 	sg_free_table(&sh->sgt); | 
 | 	kfree(sh); | 
 | } | 
 |  | 
 | static void iommu_dma_sync_single_for_cpu(struct device *dev, | 
 | 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	phys_addr_t phys; | 
 |  | 
 | 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) | 
 | 		return; | 
 |  | 
 | 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); | 
 | 	if (!dev_is_dma_coherent(dev)) | 
 | 		arch_sync_dma_for_cpu(phys, size, dir); | 
 |  | 
 | 	if (is_swiotlb_buffer(dev, phys)) | 
 | 		swiotlb_sync_single_for_cpu(dev, phys, size, dir); | 
 | } | 
 |  | 
 | static void iommu_dma_sync_single_for_device(struct device *dev, | 
 | 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	phys_addr_t phys; | 
 |  | 
 | 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) | 
 | 		return; | 
 |  | 
 | 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); | 
 | 	if (is_swiotlb_buffer(dev, phys)) | 
 | 		swiotlb_sync_single_for_device(dev, phys, size, dir); | 
 |  | 
 | 	if (!dev_is_dma_coherent(dev)) | 
 | 		arch_sync_dma_for_device(phys, size, dir); | 
 | } | 
 |  | 
 | static void iommu_dma_sync_sg_for_cpu(struct device *dev, | 
 | 		struct scatterlist *sgl, int nelems, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	if (dev_use_swiotlb(dev)) | 
 | 		for_each_sg(sgl, sg, nelems, i) | 
 | 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), | 
 | 						      sg->length, dir); | 
 | 	else if (!dev_is_dma_coherent(dev)) | 
 | 		for_each_sg(sgl, sg, nelems, i) | 
 | 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); | 
 | } | 
 |  | 
 | static void iommu_dma_sync_sg_for_device(struct device *dev, | 
 | 		struct scatterlist *sgl, int nelems, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	if (dev_use_swiotlb(dev)) | 
 | 		for_each_sg(sgl, sg, nelems, i) | 
 | 			iommu_dma_sync_single_for_device(dev, | 
 | 							 sg_dma_address(sg), | 
 | 							 sg->length, dir); | 
 | 	else if (!dev_is_dma_coherent(dev)) | 
 | 		for_each_sg(sgl, sg, nelems, i) | 
 | 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); | 
 | } | 
 |  | 
 | static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, | 
 | 		unsigned long offset, size_t size, enum dma_data_direction dir, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	phys_addr_t phys = page_to_phys(page) + offset; | 
 | 	bool coherent = dev_is_dma_coherent(dev); | 
 | 	int prot = dma_info_to_prot(dir, coherent, attrs); | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	dma_addr_t iova, dma_mask = dma_get_mask(dev); | 
 |  | 
 | 	/* | 
 | 	 * If both the physical buffer start address and size are | 
 | 	 * page aligned, we don't need to use a bounce page. | 
 | 	 */ | 
 | 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { | 
 | 		void *padding_start; | 
 | 		size_t padding_size, aligned_size; | 
 |  | 
 | 		if (!is_swiotlb_active(dev)) { | 
 | 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); | 
 | 			return DMA_MAPPING_ERROR; | 
 | 		} | 
 |  | 
 | 		aligned_size = iova_align(iovad, size); | 
 | 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, | 
 | 					      iova_mask(iovad), dir, attrs); | 
 |  | 
 | 		if (phys == DMA_MAPPING_ERROR) | 
 | 			return DMA_MAPPING_ERROR; | 
 |  | 
 | 		/* Cleanup the padding area. */ | 
 | 		padding_start = phys_to_virt(phys); | 
 | 		padding_size = aligned_size; | 
 |  | 
 | 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && | 
 | 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { | 
 | 			padding_start += size; | 
 | 			padding_size -= size; | 
 | 		} | 
 |  | 
 | 		memset(padding_start, 0, padding_size); | 
 | 	} | 
 |  | 
 | 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | 
 | 		arch_sync_dma_for_device(phys, size, dir); | 
 |  | 
 | 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); | 
 | 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) | 
 | 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); | 
 | 	return iova; | 
 | } | 
 |  | 
 | static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	phys_addr_t phys; | 
 |  | 
 | 	phys = iommu_iova_to_phys(domain, dma_handle); | 
 | 	if (WARN_ON(!phys)) | 
 | 		return; | 
 |  | 
 | 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) | 
 | 		arch_sync_dma_for_cpu(phys, size, dir); | 
 |  | 
 | 	__iommu_dma_unmap(dev, dma_handle, size); | 
 |  | 
 | 	if (unlikely(is_swiotlb_buffer(dev, phys))) | 
 | 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare a successfully-mapped scatterlist to give back to the caller. | 
 |  * | 
 |  * At this point the segments are already laid out by iommu_dma_map_sg() to | 
 |  * avoid individually crossing any boundaries, so we merely need to check a | 
 |  * segment's start address to avoid concatenating across one. | 
 |  */ | 
 | static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		dma_addr_t dma_addr) | 
 | { | 
 | 	struct scatterlist *s, *cur = sg; | 
 | 	unsigned long seg_mask = dma_get_seg_boundary(dev); | 
 | 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); | 
 | 	int i, count = 0; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		/* Restore this segment's original unaligned fields first */ | 
 | 		dma_addr_t s_dma_addr = sg_dma_address(s); | 
 | 		unsigned int s_iova_off = sg_dma_address(s); | 
 | 		unsigned int s_length = sg_dma_len(s); | 
 | 		unsigned int s_iova_len = s->length; | 
 |  | 
 | 		sg_dma_address(s) = DMA_MAPPING_ERROR; | 
 | 		sg_dma_len(s) = 0; | 
 |  | 
 | 		if (sg_is_dma_bus_address(s)) { | 
 | 			if (i > 0) | 
 | 				cur = sg_next(cur); | 
 |  | 
 | 			sg_dma_unmark_bus_address(s); | 
 | 			sg_dma_address(cur) = s_dma_addr; | 
 | 			sg_dma_len(cur) = s_length; | 
 | 			sg_dma_mark_bus_address(cur); | 
 | 			count++; | 
 | 			cur_len = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		s->offset += s_iova_off; | 
 | 		s->length = s_length; | 
 |  | 
 | 		/* | 
 | 		 * Now fill in the real DMA data. If... | 
 | 		 * - there is a valid output segment to append to | 
 | 		 * - and this segment starts on an IOVA page boundary | 
 | 		 * - but doesn't fall at a segment boundary | 
 | 		 * - and wouldn't make the resulting output segment too long | 
 | 		 */ | 
 | 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) && | 
 | 		    (max_len - cur_len >= s_length)) { | 
 | 			/* ...then concatenate it with the previous one */ | 
 | 			cur_len += s_length; | 
 | 		} else { | 
 | 			/* Otherwise start the next output segment */ | 
 | 			if (i > 0) | 
 | 				cur = sg_next(cur); | 
 | 			cur_len = s_length; | 
 | 			count++; | 
 |  | 
 | 			sg_dma_address(cur) = dma_addr + s_iova_off; | 
 | 		} | 
 |  | 
 | 		sg_dma_len(cur) = cur_len; | 
 | 		dma_addr += s_iova_len; | 
 |  | 
 | 		if (s_length + s_iova_off < s_iova_len) | 
 | 			cur_len = 0; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * If mapping failed, then just restore the original list, | 
 |  * but making sure the DMA fields are invalidated. | 
 |  */ | 
 | static void __invalidate_sg(struct scatterlist *sg, int nents) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		if (sg_is_dma_bus_address(s)) { | 
 | 			sg_dma_unmark_bus_address(s); | 
 | 		} else { | 
 | 			if (sg_dma_address(s) != DMA_MAPPING_ERROR) | 
 | 				s->offset += sg_dma_address(s); | 
 | 			if (sg_dma_len(s)) | 
 | 				s->length = sg_dma_len(s); | 
 | 		} | 
 | 		sg_dma_address(s) = DMA_MAPPING_ERROR; | 
 | 		sg_dma_len(s) = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, | 
 | 		int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		iommu_dma_unmap_page(dev, sg_dma_address(s), | 
 | 				sg_dma_len(s), dir, attrs); | 
 | } | 
 |  | 
 | static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, | 
 | 		int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), | 
 | 				s->offset, s->length, dir, attrs); | 
 | 		if (sg_dma_address(s) == DMA_MAPPING_ERROR) | 
 | 			goto out_unmap; | 
 | 		sg_dma_len(s) = s->length; | 
 | 	} | 
 |  | 
 | 	return nents; | 
 |  | 
 | out_unmap: | 
 | 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * The DMA API client is passing in a scatterlist which could describe | 
 |  * any old buffer layout, but the IOMMU API requires everything to be | 
 |  * aligned to IOMMU pages. Hence the need for this complicated bit of | 
 |  * impedance-matching, to be able to hand off a suitably-aligned list, | 
 |  * but still preserve the original offsets and sizes for the caller. | 
 |  */ | 
 | static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, | 
 | 		int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct scatterlist *s, *prev = NULL; | 
 | 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); | 
 | 	struct pci_p2pdma_map_state p2pdma_state = {}; | 
 | 	enum pci_p2pdma_map_type map; | 
 | 	dma_addr_t iova; | 
 | 	size_t iova_len = 0; | 
 | 	unsigned long mask = dma_get_seg_boundary(dev); | 
 | 	ssize_t ret; | 
 | 	int i; | 
 |  | 
 | 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { | 
 | 		ret = iommu_deferred_attach(dev, domain); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (dev_use_swiotlb(dev)) | 
 | 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); | 
 |  | 
 | 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | 
 | 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir); | 
 |  | 
 | 	/* | 
 | 	 * Work out how much IOVA space we need, and align the segments to | 
 | 	 * IOVA granules for the IOMMU driver to handle. With some clever | 
 | 	 * trickery we can modify the list in-place, but reversibly, by | 
 | 	 * stashing the unaligned parts in the as-yet-unused DMA fields. | 
 | 	 */ | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		size_t s_iova_off = iova_offset(iovad, s->offset); | 
 | 		size_t s_length = s->length; | 
 | 		size_t pad_len = (mask - iova_len + 1) & mask; | 
 |  | 
 | 		if (is_pci_p2pdma_page(sg_page(s))) { | 
 | 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); | 
 | 			switch (map) { | 
 | 			case PCI_P2PDMA_MAP_BUS_ADDR: | 
 | 				/* | 
 | 				 * iommu_map_sg() will skip this segment as | 
 | 				 * it is marked as a bus address, | 
 | 				 * __finalise_sg() will copy the dma address | 
 | 				 * into the output segment. | 
 | 				 */ | 
 | 				continue; | 
 | 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: | 
 | 				/* | 
 | 				 * Mapping through host bridge should be | 
 | 				 * mapped with regular IOVAs, thus we | 
 | 				 * do nothing here and continue below. | 
 | 				 */ | 
 | 				break; | 
 | 			default: | 
 | 				ret = -EREMOTEIO; | 
 | 				goto out_restore_sg; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		sg_dma_address(s) = s_iova_off; | 
 | 		sg_dma_len(s) = s_length; | 
 | 		s->offset -= s_iova_off; | 
 | 		s_length = iova_align(iovad, s_length + s_iova_off); | 
 | 		s->length = s_length; | 
 |  | 
 | 		/* | 
 | 		 * Due to the alignment of our single IOVA allocation, we can | 
 | 		 * depend on these assumptions about the segment boundary mask: | 
 | 		 * - If mask size >= IOVA size, then the IOVA range cannot | 
 | 		 *   possibly fall across a boundary, so we don't care. | 
 | 		 * - If mask size < IOVA size, then the IOVA range must start | 
 | 		 *   exactly on a boundary, therefore we can lay things out | 
 | 		 *   based purely on segment lengths without needing to know | 
 | 		 *   the actual addresses beforehand. | 
 | 		 * - The mask must be a power of 2, so pad_len == 0 if | 
 | 		 *   iova_len == 0, thus we cannot dereference prev the first | 
 | 		 *   time through here (i.e. before it has a meaningful value). | 
 | 		 */ | 
 | 		if (pad_len && pad_len < s_length - 1) { | 
 | 			prev->length += pad_len; | 
 | 			iova_len += pad_len; | 
 | 		} | 
 |  | 
 | 		iova_len += s_length; | 
 | 		prev = s; | 
 | 	} | 
 |  | 
 | 	if (!iova_len) | 
 | 		return __finalise_sg(dev, sg, nents, 0); | 
 |  | 
 | 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); | 
 | 	if (!iova) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_restore_sg; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We'll leave any physical concatenation to the IOMMU driver's | 
 | 	 * implementation - it knows better than we do. | 
 | 	 */ | 
 | 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); | 
 | 	if (ret < 0 || ret < iova_len) | 
 | 		goto out_free_iova; | 
 |  | 
 | 	return __finalise_sg(dev, sg, nents, iova); | 
 |  | 
 | out_free_iova: | 
 | 	iommu_dma_free_iova(cookie, iova, iova_len, NULL); | 
 | out_restore_sg: | 
 | 	__invalidate_sg(sg, nents); | 
 | out: | 
 | 	if (ret != -ENOMEM && ret != -EREMOTEIO) | 
 | 		return -EINVAL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, | 
 | 		int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	dma_addr_t end = 0, start; | 
 | 	struct scatterlist *tmp; | 
 | 	int i; | 
 |  | 
 | 	if (dev_use_swiotlb(dev)) { | 
 | 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | 
 | 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); | 
 |  | 
 | 	/* | 
 | 	 * The scatterlist segments are mapped into a single | 
 | 	 * contiguous IOVA allocation, the start and end points | 
 | 	 * just have to be determined. | 
 | 	 */ | 
 | 	for_each_sg(sg, tmp, nents, i) { | 
 | 		if (sg_is_dma_bus_address(tmp)) { | 
 | 			sg_dma_unmark_bus_address(tmp); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (sg_dma_len(tmp) == 0) | 
 | 			break; | 
 |  | 
 | 		start = sg_dma_address(tmp); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	nents -= i; | 
 | 	for_each_sg(tmp, tmp, nents, i) { | 
 | 		if (sg_is_dma_bus_address(tmp)) { | 
 | 			sg_dma_unmark_bus_address(tmp); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (sg_dma_len(tmp) == 0) | 
 | 			break; | 
 |  | 
 | 		end = sg_dma_address(tmp) + sg_dma_len(tmp); | 
 | 	} | 
 |  | 
 | 	if (end) | 
 | 		__iommu_dma_unmap(dev, start, end - start); | 
 | } | 
 |  | 
 | static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	return __iommu_dma_map(dev, phys, size, | 
 | 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, | 
 | 			dma_get_mask(dev)); | 
 | } | 
 |  | 
 | static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	__iommu_dma_unmap(dev, handle, size); | 
 | } | 
 |  | 
 | static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) | 
 | { | 
 | 	size_t alloc_size = PAGE_ALIGN(size); | 
 | 	int count = alloc_size >> PAGE_SHIFT; | 
 | 	struct page *page = NULL, **pages = NULL; | 
 |  | 
 | 	/* Non-coherent atomic allocation? Easy */ | 
 | 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && | 
 | 	    dma_free_from_pool(dev, cpu_addr, alloc_size)) | 
 | 		return; | 
 |  | 
 | 	if (is_vmalloc_addr(cpu_addr)) { | 
 | 		/* | 
 | 		 * If it the address is remapped, then it's either non-coherent | 
 | 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction. | 
 | 		 */ | 
 | 		pages = dma_common_find_pages(cpu_addr); | 
 | 		if (!pages) | 
 | 			page = vmalloc_to_page(cpu_addr); | 
 | 		dma_common_free_remap(cpu_addr, alloc_size); | 
 | 	} else { | 
 | 		/* Lowmem means a coherent atomic or CMA allocation */ | 
 | 		page = virt_to_page(cpu_addr); | 
 | 	} | 
 |  | 
 | 	if (pages) | 
 | 		__iommu_dma_free_pages(pages, count); | 
 | 	if (page) | 
 | 		dma_free_contiguous(dev, page, alloc_size); | 
 | } | 
 |  | 
 | static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
 | 		dma_addr_t handle, unsigned long attrs) | 
 | { | 
 | 	__iommu_dma_unmap(dev, handle, size); | 
 | 	__iommu_dma_free(dev, size, cpu_addr); | 
 | } | 
 |  | 
 | static void *iommu_dma_alloc_pages(struct device *dev, size_t size, | 
 | 		struct page **pagep, gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	bool coherent = dev_is_dma_coherent(dev); | 
 | 	size_t alloc_size = PAGE_ALIGN(size); | 
 | 	int node = dev_to_node(dev); | 
 | 	struct page *page = NULL; | 
 | 	void *cpu_addr; | 
 |  | 
 | 	page = dma_alloc_contiguous(dev, alloc_size, gfp); | 
 | 	if (!page) | 
 | 		page = alloc_pages_node(node, gfp, get_order(alloc_size)); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	if (!coherent || PageHighMem(page)) { | 
 | 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); | 
 |  | 
 | 		cpu_addr = dma_common_contiguous_remap(page, alloc_size, | 
 | 				prot, __builtin_return_address(0)); | 
 | 		if (!cpu_addr) | 
 | 			goto out_free_pages; | 
 |  | 
 | 		if (!coherent) | 
 | 			arch_dma_prep_coherent(page, size); | 
 | 	} else { | 
 | 		cpu_addr = page_address(page); | 
 | 	} | 
 |  | 
 | 	*pagep = page; | 
 | 	memset(cpu_addr, 0, alloc_size); | 
 | 	return cpu_addr; | 
 | out_free_pages: | 
 | 	dma_free_contiguous(dev, page, alloc_size); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *iommu_dma_alloc(struct device *dev, size_t size, | 
 | 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	bool coherent = dev_is_dma_coherent(dev); | 
 | 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); | 
 | 	struct page *page = NULL; | 
 | 	void *cpu_addr; | 
 |  | 
 | 	gfp |= __GFP_ZERO; | 
 |  | 
 | 	if (gfpflags_allow_blocking(gfp) && | 
 | 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { | 
 | 		return iommu_dma_alloc_remap(dev, size, handle, gfp, | 
 | 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && | 
 | 	    !gfpflags_allow_blocking(gfp) && !coherent) | 
 | 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, | 
 | 					       gfp, NULL); | 
 | 	else | 
 | 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); | 
 | 	if (!cpu_addr) | 
 | 		return NULL; | 
 |  | 
 | 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, | 
 | 			dev->coherent_dma_mask); | 
 | 	if (*handle == DMA_MAPPING_ERROR) { | 
 | 		__iommu_dma_free(dev, size, cpu_addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return cpu_addr; | 
 | } | 
 |  | 
 | static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
 | 		void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	unsigned long pfn, off = vma->vm_pgoff; | 
 | 	int ret; | 
 |  | 
 | 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); | 
 |  | 
 | 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) | 
 | 		return ret; | 
 |  | 
 | 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (is_vmalloc_addr(cpu_addr)) { | 
 | 		struct page **pages = dma_common_find_pages(cpu_addr); | 
 |  | 
 | 		if (pages) | 
 | 			return vm_map_pages(vma, pages, nr_pages); | 
 | 		pfn = vmalloc_to_pfn(cpu_addr); | 
 | 	} else { | 
 | 		pfn = page_to_pfn(virt_to_page(cpu_addr)); | 
 | 	} | 
 |  | 
 | 	return remap_pfn_range(vma, vma->vm_start, pfn + off, | 
 | 			       vma->vm_end - vma->vm_start, | 
 | 			       vma->vm_page_prot); | 
 | } | 
 |  | 
 | static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, | 
 | 		void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	struct page *page; | 
 | 	int ret; | 
 |  | 
 | 	if (is_vmalloc_addr(cpu_addr)) { | 
 | 		struct page **pages = dma_common_find_pages(cpu_addr); | 
 |  | 
 | 		if (pages) { | 
 | 			return sg_alloc_table_from_pages(sgt, pages, | 
 | 					PAGE_ALIGN(size) >> PAGE_SHIFT, | 
 | 					0, size, GFP_KERNEL); | 
 | 		} | 
 |  | 
 | 		page = vmalloc_to_page(cpu_addr); | 
 | 	} else { | 
 | 		page = virt_to_page(cpu_addr); | 
 | 	} | 
 |  | 
 | 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL); | 
 | 	if (!ret) | 
 | 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned long iommu_dma_get_merge_boundary(struct device *dev) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 |  | 
 | 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1; | 
 | } | 
 |  | 
 | static size_t iommu_dma_opt_mapping_size(void) | 
 | { | 
 | 	return iova_rcache_range(); | 
 | } | 
 |  | 
 | static const struct dma_map_ops iommu_dma_ops = { | 
 | 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED, | 
 | 	.alloc			= iommu_dma_alloc, | 
 | 	.free			= iommu_dma_free, | 
 | 	.alloc_pages		= dma_common_alloc_pages, | 
 | 	.free_pages		= dma_common_free_pages, | 
 | 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous, | 
 | 	.free_noncontiguous	= iommu_dma_free_noncontiguous, | 
 | 	.mmap			= iommu_dma_mmap, | 
 | 	.get_sgtable		= iommu_dma_get_sgtable, | 
 | 	.map_page		= iommu_dma_map_page, | 
 | 	.unmap_page		= iommu_dma_unmap_page, | 
 | 	.map_sg			= iommu_dma_map_sg, | 
 | 	.unmap_sg		= iommu_dma_unmap_sg, | 
 | 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu, | 
 | 	.sync_single_for_device	= iommu_dma_sync_single_for_device, | 
 | 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu, | 
 | 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device, | 
 | 	.map_resource		= iommu_dma_map_resource, | 
 | 	.unmap_resource		= iommu_dma_unmap_resource, | 
 | 	.get_merge_boundary	= iommu_dma_get_merge_boundary, | 
 | 	.opt_mapping_size	= iommu_dma_opt_mapping_size, | 
 | }; | 
 |  | 
 | /* | 
 |  * The IOMMU core code allocates the default DMA domain, which the underlying | 
 |  * IOMMU driver needs to support via the dma-iommu layer. | 
 |  */ | 
 | void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | 
 |  | 
 | 	if (!domain) | 
 | 		goto out_err; | 
 |  | 
 | 	/* | 
 | 	 * The IOMMU core code allocates the default DMA domain, which the | 
 | 	 * underlying IOMMU driver needs to support via the dma-iommu layer. | 
 | 	 */ | 
 | 	if (iommu_is_dma_domain(domain)) { | 
 | 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) | 
 | 			goto out_err; | 
 | 		dev->dma_ops = &iommu_dma_ops; | 
 | 	} | 
 |  | 
 | 	return; | 
 | out_err: | 
 | 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", | 
 | 		 dev_name(dev)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); | 
 |  | 
 | static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, | 
 | 		phys_addr_t msi_addr, struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iommu_dma_msi_page *msi_page; | 
 | 	dma_addr_t iova; | 
 | 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; | 
 | 	size_t size = cookie_msi_granule(cookie); | 
 |  | 
 | 	msi_addr &= ~(phys_addr_t)(size - 1); | 
 | 	list_for_each_entry(msi_page, &cookie->msi_page_list, list) | 
 | 		if (msi_page->phys == msi_addr) | 
 | 			return msi_page; | 
 |  | 
 | 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); | 
 | 	if (!msi_page) | 
 | 		return NULL; | 
 |  | 
 | 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); | 
 | 	if (!iova) | 
 | 		goto out_free_page; | 
 |  | 
 | 	if (iommu_map(domain, iova, msi_addr, size, prot)) | 
 | 		goto out_free_iova; | 
 |  | 
 | 	INIT_LIST_HEAD(&msi_page->list); | 
 | 	msi_page->phys = msi_addr; | 
 | 	msi_page->iova = iova; | 
 | 	list_add(&msi_page->list, &cookie->msi_page_list); | 
 | 	return msi_page; | 
 |  | 
 | out_free_iova: | 
 | 	iommu_dma_free_iova(cookie, iova, size, NULL); | 
 | out_free_page: | 
 | 	kfree(msi_page); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain | 
 |  * @desc: MSI descriptor, will store the MSI page | 
 |  * @msi_addr: MSI target address to be mapped | 
 |  * | 
 |  * Return: 0 on success or negative error code if the mapping failed. | 
 |  */ | 
 | int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) | 
 | { | 
 | 	struct device *dev = msi_desc_to_dev(desc); | 
 | 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | 
 | 	struct iommu_dma_msi_page *msi_page; | 
 | 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */ | 
 |  | 
 | 	if (!domain || !domain->iova_cookie) { | 
 | 		desc->iommu_cookie = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In fact the whole prepare operation should already be serialised by | 
 | 	 * irq_domain_mutex further up the callchain, but that's pretty subtle | 
 | 	 * on its own, so consider this locking as failsafe documentation... | 
 | 	 */ | 
 | 	mutex_lock(&msi_prepare_lock); | 
 | 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); | 
 | 	mutex_unlock(&msi_prepare_lock); | 
 |  | 
 | 	msi_desc_set_iommu_cookie(desc, msi_page); | 
 |  | 
 | 	if (!msi_page) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message | 
 |  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() | 
 |  * @msg: MSI message containing target physical address | 
 |  */ | 
 | void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) | 
 | { | 
 | 	struct device *dev = msi_desc_to_dev(desc); | 
 | 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | 
 | 	const struct iommu_dma_msi_page *msi_page; | 
 |  | 
 | 	msi_page = msi_desc_get_iommu_cookie(desc); | 
 |  | 
 | 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) | 
 | 		return; | 
 |  | 
 | 	msg->address_hi = upper_32_bits(msi_page->iova); | 
 | 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; | 
 | 	msg->address_lo += lower_32_bits(msi_page->iova); | 
 | } | 
 |  | 
 | static int iommu_dma_init(void) | 
 | { | 
 | 	if (is_kdump_kernel()) | 
 | 		static_branch_enable(&iommu_deferred_attach_enabled); | 
 |  | 
 | 	return iova_cache_get(); | 
 | } | 
 | arch_initcall(iommu_dma_init); |