|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * mm/mmap.c | 
|  | * | 
|  | * Written by obz. | 
|  | * | 
|  | * Address space accounting code	<alan@lxorguk.ukuu.org.uk> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/mmdebug.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/uprobes.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/pkeys.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/ksm.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/mmap.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #ifndef arch_mmap_check | 
|  | #define arch_mmap_check(addr, len, flags)	(0) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS | 
|  | const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; | 
|  | const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; | 
|  | int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | 
|  | const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; | 
|  | const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; | 
|  | int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; | 
|  | #endif | 
|  |  | 
|  | static bool ignore_rlimit_data; | 
|  | core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); | 
|  |  | 
|  | static void unmap_region(struct mm_struct *mm, struct ma_state *mas, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *prev, | 
|  | struct vm_area_struct *next, unsigned long start, | 
|  | unsigned long end, unsigned long tree_end, bool mm_wr_locked); | 
|  |  | 
|  | static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) | 
|  | { | 
|  | return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); | 
|  | } | 
|  |  | 
|  | /* Update vma->vm_page_prot to reflect vma->vm_flags. */ | 
|  | void vma_set_page_prot(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  | pgprot_t vm_page_prot; | 
|  |  | 
|  | vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); | 
|  | if (vma_wants_writenotify(vma, vm_page_prot)) { | 
|  | vm_flags &= ~VM_SHARED; | 
|  | vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); | 
|  | } | 
|  | /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ | 
|  | WRITE_ONCE(vma->vm_page_prot, vm_page_prot); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Requires inode->i_mapping->i_mmap_rwsem | 
|  | */ | 
|  | static void __remove_shared_vm_struct(struct vm_area_struct *vma, | 
|  | struct file *file, struct address_space *mapping) | 
|  | { | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | mapping_unmap_writable(mapping); | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_remove(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink a file-based vm structure from its interval tree, to hide | 
|  | * vma from rmap and vmtruncate before freeing its page tables. | 
|  | */ | 
|  | void unlink_file_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  |  | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | i_mmap_lock_write(mapping); | 
|  | __remove_shared_vm_struct(vma, file, mapping); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a vm structure and free it. | 
|  | */ | 
|  | static void remove_vma(struct vm_area_struct *vma, bool unreachable) | 
|  | { | 
|  | might_sleep(); | 
|  | vma_close(vma); | 
|  | if (vma->vm_file) | 
|  | fput(vma->vm_file); | 
|  | mpol_put(vma_policy(vma)); | 
|  | if (unreachable) | 
|  | __vm_area_free(vma); | 
|  | else | 
|  | vm_area_free(vma); | 
|  | } | 
|  |  | 
|  | static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, | 
|  | unsigned long min) | 
|  | { | 
|  | return mas_prev(&vmi->mas, min); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check_brk_limits() - Use platform specific check of range & verify mlock | 
|  | * limits. | 
|  | * @addr: The address to check | 
|  | * @len: The size of increase. | 
|  | * | 
|  | * Return: 0 on success. | 
|  | */ | 
|  | static int check_brk_limits(unsigned long addr, unsigned long len) | 
|  | { | 
|  | unsigned long mapped_addr; | 
|  |  | 
|  | mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); | 
|  | if (IS_ERR_VALUE(mapped_addr)) | 
|  | return mapped_addr; | 
|  |  | 
|  | return mlock_future_ok(current->mm, current->mm->def_flags, len) | 
|  | ? 0 : -EAGAIN; | 
|  | } | 
|  | static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, | 
|  | unsigned long addr, unsigned long request, unsigned long flags); | 
|  | SYSCALL_DEFINE1(brk, unsigned long, brk) | 
|  | { | 
|  | unsigned long newbrk, oldbrk, origbrk; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *brkvma, *next = NULL; | 
|  | unsigned long min_brk; | 
|  | bool populate = false; | 
|  | LIST_HEAD(uf); | 
|  | struct vma_iterator vmi; | 
|  |  | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  |  | 
|  | origbrk = mm->brk; | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | /* | 
|  | * CONFIG_COMPAT_BRK can still be overridden by setting | 
|  | * randomize_va_space to 2, which will still cause mm->start_brk | 
|  | * to be arbitrarily shifted | 
|  | */ | 
|  | if (current->brk_randomized) | 
|  | min_brk = mm->start_brk; | 
|  | else | 
|  | min_brk = mm->end_data; | 
|  | #else | 
|  | min_brk = mm->start_brk; | 
|  | #endif | 
|  | if (brk < min_brk) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check against rlimit here. If this check is done later after the test | 
|  | * of oldbrk with newbrk then it can escape the test and let the data | 
|  | * segment grow beyond its set limit the in case where the limit is | 
|  | * not page aligned -Ram Gupta | 
|  | */ | 
|  | if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, | 
|  | mm->end_data, mm->start_data)) | 
|  | goto out; | 
|  |  | 
|  | newbrk = PAGE_ALIGN(brk); | 
|  | oldbrk = PAGE_ALIGN(mm->brk); | 
|  | if (oldbrk == newbrk) { | 
|  | mm->brk = brk; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* Always allow shrinking brk. */ | 
|  | if (brk <= mm->brk) { | 
|  | /* Search one past newbrk */ | 
|  | vma_iter_init(&vmi, mm, newbrk); | 
|  | brkvma = vma_find(&vmi, oldbrk); | 
|  | if (!brkvma || brkvma->vm_start >= oldbrk) | 
|  | goto out; /* mapping intersects with an existing non-brk vma. */ | 
|  | /* | 
|  | * mm->brk must be protected by write mmap_lock. | 
|  | * do_vma_munmap() will drop the lock on success,  so update it | 
|  | * before calling do_vma_munmap(). | 
|  | */ | 
|  | mm->brk = brk; | 
|  | if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) | 
|  | goto out; | 
|  |  | 
|  | goto success_unlocked; | 
|  | } | 
|  |  | 
|  | if (check_brk_limits(oldbrk, newbrk - oldbrk)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Only check if the next VMA is within the stack_guard_gap of the | 
|  | * expansion area | 
|  | */ | 
|  | vma_iter_init(&vmi, mm, oldbrk); | 
|  | next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); | 
|  | if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) | 
|  | goto out; | 
|  |  | 
|  | brkvma = vma_prev_limit(&vmi, mm->start_brk); | 
|  | /* Ok, looks good - let it rip. */ | 
|  | if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) | 
|  | goto out; | 
|  |  | 
|  | mm->brk = brk; | 
|  | if (mm->def_flags & VM_LOCKED) | 
|  | populate = true; | 
|  |  | 
|  | success: | 
|  | mmap_write_unlock(mm); | 
|  | success_unlocked: | 
|  | userfaultfd_unmap_complete(mm, &uf); | 
|  | if (populate) | 
|  | mm_populate(oldbrk, newbrk - oldbrk); | 
|  | return brk; | 
|  |  | 
|  | out: | 
|  | mm->brk = origbrk; | 
|  | mmap_write_unlock(mm); | 
|  | return origbrk; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) | 
|  | static void validate_mm(struct mm_struct *mm) | 
|  | { | 
|  | int bug = 0; | 
|  | int i = 0; | 
|  | struct vm_area_struct *vma; | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | mt_validate(&mm->mm_mt); | 
|  | for_each_vma(vmi, vma) { | 
|  | #ifdef CONFIG_DEBUG_VM_RB | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  | #endif | 
|  | unsigned long vmi_start, vmi_end; | 
|  | bool warn = 0; | 
|  |  | 
|  | vmi_start = vma_iter_addr(&vmi); | 
|  | vmi_end = vma_iter_end(&vmi); | 
|  | if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) | 
|  | warn = 1; | 
|  |  | 
|  | if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) | 
|  | warn = 1; | 
|  |  | 
|  | if (warn) { | 
|  | pr_emerg("issue in %s\n", current->comm); | 
|  | dump_stack(); | 
|  | dump_vma(vma); | 
|  | pr_emerg("tree range: %px start %lx end %lx\n", vma, | 
|  | vmi_start, vmi_end - 1); | 
|  | vma_iter_dump_tree(&vmi); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM_RB | 
|  | if (anon_vma) { | 
|  | anon_vma_lock_read(anon_vma); | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_verify(avc); | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | } | 
|  | #endif | 
|  | i++; | 
|  | } | 
|  | if (i != mm->map_count) { | 
|  | pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); | 
|  | bug = 1; | 
|  | } | 
|  | VM_BUG_ON_MM(bug, mm); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ | 
|  | #define validate_mm(mm) do { } while (0) | 
|  | #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ | 
|  |  | 
|  | /* | 
|  | * vma has some anon_vma assigned, and is already inserted on that | 
|  | * anon_vma's interval trees. | 
|  | * | 
|  | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the | 
|  | * vma must be removed from the anon_vma's interval trees using | 
|  | * anon_vma_interval_tree_pre_update_vma(). | 
|  | * | 
|  | * After the update, the vma will be reinserted using | 
|  | * anon_vma_interval_tree_post_update_vma(). | 
|  | * | 
|  | * The entire update must be protected by exclusive mmap_lock and by | 
|  | * the root anon_vma's mutex. | 
|  | */ | 
|  | static inline void | 
|  | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | static unsigned long count_vma_pages_range(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | VMA_ITERATOR(vmi, mm, addr); | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long nr_pages = 0; | 
|  |  | 
|  | for_each_vma_range(vmi, vma, end) { | 
|  | unsigned long vm_start = max(addr, vma->vm_start); | 
|  | unsigned long vm_end = min(end, vma->vm_end); | 
|  |  | 
|  | nr_pages += PHYS_PFN(vm_end - vm_start); | 
|  | } | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | static void __vma_link_file(struct vm_area_struct *vma, | 
|  | struct address_space *mapping) | 
|  | { | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | mapping_allow_writable(mapping); | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_insert(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  | struct address_space *mapping = NULL; | 
|  |  | 
|  | vma_iter_config(&vmi, vma->vm_start, vma->vm_end); | 
|  | if (vma_iter_prealloc(&vmi, vma)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma_start_write(vma); | 
|  |  | 
|  | vma_iter_store(&vmi, vma); | 
|  |  | 
|  | if (vma->vm_file) { | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | i_mmap_lock_write(mapping); | 
|  | __vma_link_file(vma, mapping); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | mm->map_count++; | 
|  | validate_mm(mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_multi_vma_prep() - Initializer for struct vma_prepare | 
|  | * @vp: The vma_prepare struct | 
|  | * @vma: The vma that will be altered once locked | 
|  | * @next: The next vma if it is to be adjusted | 
|  | * @remove: The first vma to be removed | 
|  | * @remove2: The second vma to be removed | 
|  | */ | 
|  | static inline void init_multi_vma_prep(struct vma_prepare *vp, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *next, | 
|  | struct vm_area_struct *remove, struct vm_area_struct *remove2) | 
|  | { | 
|  | memset(vp, 0, sizeof(struct vma_prepare)); | 
|  | vp->vma = vma; | 
|  | vp->anon_vma = vma->anon_vma; | 
|  | vp->remove = remove; | 
|  | vp->remove2 = remove2; | 
|  | vp->adj_next = next; | 
|  | if (!vp->anon_vma && next) | 
|  | vp->anon_vma = next->anon_vma; | 
|  |  | 
|  | vp->file = vma->vm_file; | 
|  | if (vp->file) | 
|  | vp->mapping = vma->vm_file->f_mapping; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_vma_prep() - Initializer wrapper for vma_prepare struct | 
|  | * @vp: The vma_prepare struct | 
|  | * @vma: The vma that will be altered once locked | 
|  | */ | 
|  | static inline void init_vma_prep(struct vma_prepare *vp, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | init_multi_vma_prep(vp, vma, NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vma_prepare() - Helper function for handling locking VMAs prior to altering | 
|  | * @vp: The initialized vma_prepare struct | 
|  | */ | 
|  | static inline void vma_prepare(struct vma_prepare *vp) | 
|  | { | 
|  | if (vp->file) { | 
|  | uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); | 
|  |  | 
|  | if (vp->adj_next) | 
|  | uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, | 
|  | vp->adj_next->vm_end); | 
|  |  | 
|  | i_mmap_lock_write(vp->mapping); | 
|  | if (vp->insert && vp->insert->vm_file) { | 
|  | /* | 
|  | * Put into interval tree now, so instantiated pages | 
|  | * are visible to arm/parisc __flush_dcache_page | 
|  | * throughout; but we cannot insert into address | 
|  | * space until vma start or end is updated. | 
|  | */ | 
|  | __vma_link_file(vp->insert, | 
|  | vp->insert->vm_file->f_mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vp->anon_vma) { | 
|  | anon_vma_lock_write(vp->anon_vma); | 
|  | anon_vma_interval_tree_pre_update_vma(vp->vma); | 
|  | if (vp->adj_next) | 
|  | anon_vma_interval_tree_pre_update_vma(vp->adj_next); | 
|  | } | 
|  |  | 
|  | if (vp->file) { | 
|  | flush_dcache_mmap_lock(vp->mapping); | 
|  | vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); | 
|  | if (vp->adj_next) | 
|  | vma_interval_tree_remove(vp->adj_next, | 
|  | &vp->mapping->i_mmap); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_complete- Helper function for handling the unlocking after altering VMAs, | 
|  | * or for inserting a VMA. | 
|  | * | 
|  | * @vp: The vma_prepare struct | 
|  | * @vmi: The vma iterator | 
|  | * @mm: The mm_struct | 
|  | */ | 
|  | static inline void vma_complete(struct vma_prepare *vp, | 
|  | struct vma_iterator *vmi, struct mm_struct *mm) | 
|  | { | 
|  | if (vp->file) { | 
|  | if (vp->adj_next) | 
|  | vma_interval_tree_insert(vp->adj_next, | 
|  | &vp->mapping->i_mmap); | 
|  | vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(vp->mapping); | 
|  | } | 
|  |  | 
|  | if (vp->remove && vp->file) { | 
|  | __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); | 
|  | if (vp->remove2) | 
|  | __remove_shared_vm_struct(vp->remove2, vp->file, | 
|  | vp->mapping); | 
|  | } else if (vp->insert) { | 
|  | /* | 
|  | * split_vma has split insert from vma, and needs | 
|  | * us to insert it before dropping the locks | 
|  | * (it may either follow vma or precede it). | 
|  | */ | 
|  | vma_iter_store(vmi, vp->insert); | 
|  | mm->map_count++; | 
|  | } | 
|  |  | 
|  | if (vp->anon_vma) { | 
|  | anon_vma_interval_tree_post_update_vma(vp->vma); | 
|  | if (vp->adj_next) | 
|  | anon_vma_interval_tree_post_update_vma(vp->adj_next); | 
|  | anon_vma_unlock_write(vp->anon_vma); | 
|  | } | 
|  |  | 
|  | if (vp->file) { | 
|  | i_mmap_unlock_write(vp->mapping); | 
|  | uprobe_mmap(vp->vma); | 
|  |  | 
|  | if (vp->adj_next) | 
|  | uprobe_mmap(vp->adj_next); | 
|  | } | 
|  |  | 
|  | if (vp->remove) { | 
|  | again: | 
|  | vma_mark_detached(vp->remove, true); | 
|  | if (vp->file) { | 
|  | uprobe_munmap(vp->remove, vp->remove->vm_start, | 
|  | vp->remove->vm_end); | 
|  | fput(vp->file); | 
|  | } | 
|  | if (vp->remove->anon_vma) | 
|  | anon_vma_merge(vp->vma, vp->remove); | 
|  | mm->map_count--; | 
|  | mpol_put(vma_policy(vp->remove)); | 
|  | if (!vp->remove2) | 
|  | WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); | 
|  | vm_area_free(vp->remove); | 
|  |  | 
|  | /* | 
|  | * In mprotect's case 6 (see comments on vma_merge), | 
|  | * we are removing both mid and next vmas | 
|  | */ | 
|  | if (vp->remove2) { | 
|  | vp->remove = vp->remove2; | 
|  | vp->remove2 = NULL; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | if (vp->insert && vp->file) | 
|  | uprobe_mmap(vp->insert); | 
|  | validate_mm(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dup_anon_vma() - Helper function to duplicate anon_vma | 
|  | * @dst: The destination VMA | 
|  | * @src: The source VMA | 
|  | * @dup: Pointer to the destination VMA when successful. | 
|  | * | 
|  | * Returns: 0 on success. | 
|  | */ | 
|  | static inline int dup_anon_vma(struct vm_area_struct *dst, | 
|  | struct vm_area_struct *src, struct vm_area_struct **dup) | 
|  | { | 
|  | /* | 
|  | * Easily overlooked: when mprotect shifts the boundary, make sure the | 
|  | * expanding vma has anon_vma set if the shrinking vma had, to cover any | 
|  | * anon pages imported. | 
|  | */ | 
|  | if (src->anon_vma && !dst->anon_vma) { | 
|  | int ret; | 
|  |  | 
|  | vma_assert_write_locked(dst); | 
|  | dst->anon_vma = src->anon_vma; | 
|  | ret = anon_vma_clone(dst, src); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *dup = dst; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_expand - Expand an existing VMA | 
|  | * | 
|  | * @vmi: The vma iterator | 
|  | * @vma: The vma to expand | 
|  | * @start: The start of the vma | 
|  | * @end: The exclusive end of the vma | 
|  | * @pgoff: The page offset of vma | 
|  | * @next: The current of next vma. | 
|  | * | 
|  | * Expand @vma to @start and @end.  Can expand off the start and end.  Will | 
|  | * expand over @next if it's different from @vma and @end == @next->vm_end. | 
|  | * Checking if the @vma can expand and merge with @next needs to be handled by | 
|  | * the caller. | 
|  | * | 
|  | * Returns: 0 on success | 
|  | */ | 
|  | int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, pgoff_t pgoff, | 
|  | struct vm_area_struct *next) | 
|  | { | 
|  | struct vm_area_struct *anon_dup = NULL; | 
|  | bool remove_next = false; | 
|  | struct vma_prepare vp; | 
|  |  | 
|  | vma_start_write(vma); | 
|  | if (next && (vma != next) && (end == next->vm_end)) { | 
|  | int ret; | 
|  |  | 
|  | remove_next = true; | 
|  | vma_start_write(next); | 
|  | ret = dup_anon_vma(vma, next, &anon_dup); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); | 
|  | /* Not merging but overwriting any part of next is not handled. */ | 
|  | VM_WARN_ON(next && !vp.remove && | 
|  | next != vma && end > next->vm_start); | 
|  | /* Only handles expanding */ | 
|  | VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); | 
|  |  | 
|  | /* Note: vma iterator must be pointing to 'start' */ | 
|  | vma_iter_config(vmi, start, end); | 
|  | if (vma_iter_prealloc(vmi, vma)) | 
|  | goto nomem; | 
|  |  | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, start, end, 0); | 
|  | vma->vm_start = start; | 
|  | vma->vm_end = end; | 
|  | vma->vm_pgoff = pgoff; | 
|  | vma_iter_store(vmi, vma); | 
|  |  | 
|  | vma_complete(&vp, vmi, vma->vm_mm); | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | if (anon_dup) | 
|  | unlink_anon_vmas(anon_dup); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_shrink() - Reduce an existing VMAs memory area | 
|  | * @vmi: The vma iterator | 
|  | * @vma: The VMA to modify | 
|  | * @start: The new start | 
|  | * @end: The new end | 
|  | * | 
|  | * Returns: 0 on success, -ENOMEM otherwise | 
|  | */ | 
|  | int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, pgoff_t pgoff) | 
|  | { | 
|  | struct vma_prepare vp; | 
|  |  | 
|  | WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); | 
|  |  | 
|  | if (vma->vm_start < start) | 
|  | vma_iter_config(vmi, vma->vm_start, start); | 
|  | else | 
|  | vma_iter_config(vmi, end, vma->vm_end); | 
|  |  | 
|  | if (vma_iter_prealloc(vmi, NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma_start_write(vma); | 
|  |  | 
|  | init_vma_prep(&vp, vma); | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, start, end, 0); | 
|  |  | 
|  | vma_iter_clear(vmi); | 
|  | vma->vm_start = start; | 
|  | vma->vm_end = end; | 
|  | vma->vm_pgoff = pgoff; | 
|  | vma_complete(&vp, vmi, vma->vm_mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the vma has a ->close operation then the driver probably needs to release | 
|  | * per-vma resources, so we don't attempt to merge those if the caller indicates | 
|  | * the current vma may be removed as part of the merge. | 
|  | */ | 
|  | static inline bool is_mergeable_vma(struct vm_area_struct *vma, | 
|  | struct file *file, unsigned long vm_flags, | 
|  | struct vm_userfaultfd_ctx vm_userfaultfd_ctx, | 
|  | struct anon_vma_name *anon_name, bool may_remove_vma) | 
|  | { | 
|  | /* | 
|  | * VM_SOFTDIRTY should not prevent from VMA merging, if we | 
|  | * match the flags but dirty bit -- the caller should mark | 
|  | * merged VMA as dirty. If dirty bit won't be excluded from | 
|  | * comparison, we increase pressure on the memory system forcing | 
|  | * the kernel to generate new VMAs when old one could be | 
|  | * extended instead. | 
|  | */ | 
|  | if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) | 
|  | return false; | 
|  | if (vma->vm_file != file) | 
|  | return false; | 
|  | if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) | 
|  | return false; | 
|  | if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) | 
|  | return false; | 
|  | if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, | 
|  | struct anon_vma *anon_vma2, struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * The list_is_singular() test is to avoid merging VMA cloned from | 
|  | * parents. This can improve scalability caused by anon_vma lock. | 
|  | */ | 
|  | if ((!anon_vma1 || !anon_vma2) && (!vma || | 
|  | list_is_singular(&vma->anon_vma_chain))) | 
|  | return true; | 
|  | return anon_vma1 == anon_vma2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * in front of (at a lower virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | * | 
|  | * We don't check here for the merged mmap wrapping around the end of pagecache | 
|  | * indices (16TB on ia32) because do_mmap() does not permit mmap's which | 
|  | * wrap, nor mmaps which cover the final page at index -1UL. | 
|  | * | 
|  | * We assume the vma may be removed as part of the merge. | 
|  | */ | 
|  | static bool | 
|  | can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, | 
|  | struct anon_vma_name *anon_name) | 
|  | { | 
|  | if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && | 
|  | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { | 
|  | if (vma->vm_pgoff == vm_pgoff) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * beyond (at a higher virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | * | 
|  | * We assume that vma is not removed as part of the merge. | 
|  | */ | 
|  | static bool | 
|  | can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, | 
|  | struct anon_vma_name *anon_name) | 
|  | { | 
|  | if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && | 
|  | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { | 
|  | pgoff_t vm_pglen; | 
|  | vm_pglen = vma_pages(vma); | 
|  | if (vma->vm_pgoff + vm_pglen == vm_pgoff) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), | 
|  | * figure out whether that can be merged with its predecessor or its | 
|  | * successor.  Or both (it neatly fills a hole). | 
|  | * | 
|  | * In most cases - when called for mmap, brk or mremap - [addr,end) is | 
|  | * certain not to be mapped by the time vma_merge is called; but when | 
|  | * called for mprotect, it is certain to be already mapped (either at | 
|  | * an offset within prev, or at the start of next), and the flags of | 
|  | * this area are about to be changed to vm_flags - and the no-change | 
|  | * case has already been eliminated. | 
|  | * | 
|  | * The following mprotect cases have to be considered, where **** is | 
|  | * the area passed down from mprotect_fixup, never extending beyond one | 
|  | * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts | 
|  | * at the same address as **** and is of the same or larger span, and | 
|  | * NNNN the next vma after ****: | 
|  | * | 
|  | *     ****             ****                   **** | 
|  | *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC | 
|  | *    cannot merge    might become       might become | 
|  | *                    PPNNNNNNNNNN       PPPPPPPPPPCC | 
|  | *    mmap, brk or    case 4 below       case 5 below | 
|  | *    mremap move: | 
|  | *                        ****               **** | 
|  | *                    PPPP    NNNN       PPPPCCCCNNNN | 
|  | *                    might become       might become | 
|  | *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or | 
|  | *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or | 
|  | *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8 | 
|  | * | 
|  | * It is important for case 8 that the vma CCCC overlapping the | 
|  | * region **** is never going to extended over NNNN. Instead NNNN must | 
|  | * be extended in region **** and CCCC must be removed. This way in | 
|  | * all cases where vma_merge succeeds, the moment vma_merge drops the | 
|  | * rmap_locks, the properties of the merged vma will be already | 
|  | * correct for the whole merged range. Some of those properties like | 
|  | * vm_page_prot/vm_flags may be accessed by rmap_walks and they must | 
|  | * be correct for the whole merged range immediately after the | 
|  | * rmap_locks are released. Otherwise if NNNN would be removed and | 
|  | * CCCC would be extended over the NNNN range, remove_migration_ptes | 
|  | * or other rmap walkers (if working on addresses beyond the "end" | 
|  | * parameter) may establish ptes with the wrong permissions of CCCC | 
|  | * instead of the right permissions of NNNN. | 
|  | * | 
|  | * In the code below: | 
|  | * PPPP is represented by *prev | 
|  | * CCCC is represented by *curr or not represented at all (NULL) | 
|  | * NNNN is represented by *next or not represented at all (NULL) | 
|  | * **** is not represented - it will be merged and the vma containing the | 
|  | *      area is returned, or the function will return NULL | 
|  | */ | 
|  | struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, | 
|  | struct vm_area_struct *prev, unsigned long addr, | 
|  | unsigned long end, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t pgoff, struct mempolicy *policy, | 
|  | struct vm_userfaultfd_ctx vm_userfaultfd_ctx, | 
|  | struct anon_vma_name *anon_name) | 
|  | { | 
|  | struct vm_area_struct *curr, *next, *res; | 
|  | struct vm_area_struct *vma, *adjust, *remove, *remove2; | 
|  | struct vm_area_struct *anon_dup = NULL; | 
|  | struct vma_prepare vp; | 
|  | pgoff_t vma_pgoff; | 
|  | int err = 0; | 
|  | bool merge_prev = false; | 
|  | bool merge_next = false; | 
|  | bool vma_expanded = false; | 
|  | unsigned long vma_start = addr; | 
|  | unsigned long vma_end = end; | 
|  | pgoff_t pglen = (end - addr) >> PAGE_SHIFT; | 
|  | long adj_start = 0; | 
|  |  | 
|  | /* | 
|  | * We later require that vma->vm_flags == vm_flags, | 
|  | * so this tests vma->vm_flags & VM_SPECIAL, too. | 
|  | */ | 
|  | if (vm_flags & VM_SPECIAL) | 
|  | return NULL; | 
|  |  | 
|  | /* Does the input range span an existing VMA? (cases 5 - 8) */ | 
|  | curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); | 
|  |  | 
|  | if (!curr ||			/* cases 1 - 4 */ | 
|  | end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */ | 
|  | next = vma_lookup(mm, end); | 
|  | else | 
|  | next = NULL;		/* case 5 */ | 
|  |  | 
|  | if (prev) { | 
|  | vma_start = prev->vm_start; | 
|  | vma_pgoff = prev->vm_pgoff; | 
|  |  | 
|  | /* Can we merge the predecessor? */ | 
|  | if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) | 
|  | && can_vma_merge_after(prev, vm_flags, anon_vma, file, | 
|  | pgoff, vm_userfaultfd_ctx, anon_name)) { | 
|  | merge_prev = true; | 
|  | vma_prev(vmi); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Can we merge the successor? */ | 
|  | if (next && mpol_equal(policy, vma_policy(next)) && | 
|  | can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, | 
|  | vm_userfaultfd_ctx, anon_name)) { | 
|  | merge_next = true; | 
|  | } | 
|  |  | 
|  | /* Verify some invariant that must be enforced by the caller. */ | 
|  | VM_WARN_ON(prev && addr <= prev->vm_start); | 
|  | VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); | 
|  | VM_WARN_ON(addr >= end); | 
|  |  | 
|  | if (!merge_prev && !merge_next) | 
|  | return NULL; /* Not mergeable. */ | 
|  |  | 
|  | if (merge_prev) | 
|  | vma_start_write(prev); | 
|  |  | 
|  | res = vma = prev; | 
|  | remove = remove2 = adjust = NULL; | 
|  |  | 
|  | /* Can we merge both the predecessor and the successor? */ | 
|  | if (merge_prev && merge_next && | 
|  | is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { | 
|  | vma_start_write(next); | 
|  | remove = next;				/* case 1 */ | 
|  | vma_end = next->vm_end; | 
|  | err = dup_anon_vma(prev, next, &anon_dup); | 
|  | if (curr) {				/* case 6 */ | 
|  | vma_start_write(curr); | 
|  | remove = curr; | 
|  | remove2 = next; | 
|  | if (!next->anon_vma) | 
|  | err = dup_anon_vma(prev, curr, &anon_dup); | 
|  | } | 
|  | } else if (merge_prev) {			/* case 2 */ | 
|  | if (curr) { | 
|  | vma_start_write(curr); | 
|  | if (end == curr->vm_end) {	/* case 7 */ | 
|  | /* | 
|  | * can_vma_merge_after() assumed we would not be | 
|  | * removing prev vma, so it skipped the check | 
|  | * for vm_ops->close, but we are removing curr | 
|  | */ | 
|  | if (curr->vm_ops && curr->vm_ops->close) | 
|  | err = -EINVAL; | 
|  | remove = curr; | 
|  | } else {			/* case 5 */ | 
|  | adjust = curr; | 
|  | adj_start = (end - curr->vm_start); | 
|  | } | 
|  | if (!err) | 
|  | err = dup_anon_vma(prev, curr, &anon_dup); | 
|  | } | 
|  | } else { /* merge_next */ | 
|  | vma_start_write(next); | 
|  | res = next; | 
|  | if (prev && addr < prev->vm_end) {	/* case 4 */ | 
|  | vma_start_write(prev); | 
|  | vma_end = addr; | 
|  | adjust = next; | 
|  | adj_start = -(prev->vm_end - addr); | 
|  | err = dup_anon_vma(next, prev, &anon_dup); | 
|  | } else { | 
|  | /* | 
|  | * Note that cases 3 and 8 are the ONLY ones where prev | 
|  | * is permitted to be (but is not necessarily) NULL. | 
|  | */ | 
|  | vma = next;			/* case 3 */ | 
|  | vma_start = addr; | 
|  | vma_end = next->vm_end; | 
|  | vma_pgoff = next->vm_pgoff - pglen; | 
|  | if (curr) {			/* case 8 */ | 
|  | vma_pgoff = curr->vm_pgoff; | 
|  | vma_start_write(curr); | 
|  | remove = curr; | 
|  | err = dup_anon_vma(next, curr, &anon_dup); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Error in anon_vma clone. */ | 
|  | if (err) | 
|  | goto anon_vma_fail; | 
|  |  | 
|  | if (vma_start < vma->vm_start || vma_end > vma->vm_end) | 
|  | vma_expanded = true; | 
|  |  | 
|  | if (vma_expanded) { | 
|  | vma_iter_config(vmi, vma_start, vma_end); | 
|  | } else { | 
|  | vma_iter_config(vmi, adjust->vm_start + adj_start, | 
|  | adjust->vm_end); | 
|  | } | 
|  |  | 
|  | if (vma_iter_prealloc(vmi, vma)) | 
|  | goto prealloc_fail; | 
|  |  | 
|  | init_multi_vma_prep(&vp, vma, adjust, remove, remove2); | 
|  | VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && | 
|  | vp.anon_vma != adjust->anon_vma); | 
|  |  | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); | 
|  |  | 
|  | vma->vm_start = vma_start; | 
|  | vma->vm_end = vma_end; | 
|  | vma->vm_pgoff = vma_pgoff; | 
|  |  | 
|  | if (vma_expanded) | 
|  | vma_iter_store(vmi, vma); | 
|  |  | 
|  | if (adj_start) { | 
|  | adjust->vm_start += adj_start; | 
|  | adjust->vm_pgoff += adj_start >> PAGE_SHIFT; | 
|  | if (adj_start < 0) { | 
|  | WARN_ON(vma_expanded); | 
|  | vma_iter_store(vmi, next); | 
|  | } | 
|  | } | 
|  |  | 
|  | vma_complete(&vp, vmi, mm); | 
|  | khugepaged_enter_vma(res, vm_flags); | 
|  | return res; | 
|  |  | 
|  | prealloc_fail: | 
|  | if (anon_dup) | 
|  | unlink_anon_vmas(anon_dup); | 
|  |  | 
|  | anon_vma_fail: | 
|  | vma_iter_set(vmi, addr); | 
|  | vma_iter_load(vmi); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rough compatibility check to quickly see if it's even worth looking | 
|  | * at sharing an anon_vma. | 
|  | * | 
|  | * They need to have the same vm_file, and the flags can only differ | 
|  | * in things that mprotect may change. | 
|  | * | 
|  | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that | 
|  | * we can merge the two vma's. For example, we refuse to merge a vma if | 
|  | * there is a vm_ops->close() function, because that indicates that the | 
|  | * driver is doing some kind of reference counting. But that doesn't | 
|  | * really matter for the anon_vma sharing case. | 
|  | */ | 
|  | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) | 
|  | { | 
|  | return a->vm_end == b->vm_start && | 
|  | mpol_equal(vma_policy(a), vma_policy(b)) && | 
|  | a->vm_file == b->vm_file && | 
|  | !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && | 
|  | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do some basic sanity checking to see if we can re-use the anon_vma | 
|  | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be | 
|  | * the same as 'old', the other will be the new one that is trying | 
|  | * to share the anon_vma. | 
|  | * | 
|  | * NOTE! This runs with mmap_lock held for reading, so it is possible that | 
|  | * the anon_vma of 'old' is concurrently in the process of being set up | 
|  | * by another page fault trying to merge _that_. But that's ok: if it | 
|  | * is being set up, that automatically means that it will be a singleton | 
|  | * acceptable for merging, so we can do all of this optimistically. But | 
|  | * we do that READ_ONCE() to make sure that we never re-load the pointer. | 
|  | * | 
|  | * IOW: that the "list_is_singular()" test on the anon_vma_chain only | 
|  | * matters for the 'stable anon_vma' case (ie the thing we want to avoid | 
|  | * is to return an anon_vma that is "complex" due to having gone through | 
|  | * a fork). | 
|  | * | 
|  | * We also make sure that the two vma's are compatible (adjacent, | 
|  | * and with the same memory policies). That's all stable, even with just | 
|  | * a read lock on the mmap_lock. | 
|  | */ | 
|  | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) | 
|  | { | 
|  | if (anon_vma_compatible(a, b)) { | 
|  | struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); | 
|  |  | 
|  | if (anon_vma && list_is_singular(&old->anon_vma_chain)) | 
|  | return anon_vma; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_mergeable_anon_vma is used by anon_vma_prepare, to check | 
|  | * neighbouring vmas for a suitable anon_vma, before it goes off | 
|  | * to allocate a new anon_vma.  It checks because a repetitive | 
|  | * sequence of mprotects and faults may otherwise lead to distinct | 
|  | * anon_vmas being allocated, preventing vma merge in subsequent | 
|  | * mprotect. | 
|  | */ | 
|  | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct vm_area_struct *prev, *next; | 
|  |  | 
|  | /* Try next first. */ | 
|  | next = mas_walk(&mas); | 
|  | if (next) { | 
|  | anon_vma = reusable_anon_vma(next, vma, next); | 
|  | if (anon_vma) | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | prev = mas_prev(&mas, 0); | 
|  | VM_BUG_ON_VMA(prev != vma, vma); | 
|  | prev = mas_prev(&mas, 0); | 
|  | /* Try prev next. */ | 
|  | if (prev) | 
|  | anon_vma = reusable_anon_vma(prev, prev, vma); | 
|  |  | 
|  | /* | 
|  | * We might reach here with anon_vma == NULL if we can't find | 
|  | * any reusable anon_vma. | 
|  | * There's no absolute need to look only at touching neighbours: | 
|  | * we could search further afield for "compatible" anon_vmas. | 
|  | * But it would probably just be a waste of time searching, | 
|  | * or lead to too many vmas hanging off the same anon_vma. | 
|  | * We're trying to allow mprotect remerging later on, | 
|  | * not trying to minimize memory used for anon_vmas. | 
|  | */ | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a hint addr is less than mmap_min_addr change hint to be as | 
|  | * low as possible but still greater than mmap_min_addr | 
|  | */ | 
|  | static inline unsigned long round_hint_to_min(unsigned long hint) | 
|  | { | 
|  | hint &= PAGE_MASK; | 
|  | if (((void *)hint != NULL) && | 
|  | (hint < mmap_min_addr)) | 
|  | return PAGE_ALIGN(mmap_min_addr); | 
|  | return hint; | 
|  | } | 
|  |  | 
|  | bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, | 
|  | unsigned long bytes) | 
|  | { | 
|  | unsigned long locked_pages, limit_pages; | 
|  |  | 
|  | if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) | 
|  | return true; | 
|  |  | 
|  | locked_pages = bytes >> PAGE_SHIFT; | 
|  | locked_pages += mm->locked_vm; | 
|  |  | 
|  | limit_pages = rlimit(RLIMIT_MEMLOCK); | 
|  | limit_pages >>= PAGE_SHIFT; | 
|  |  | 
|  | return locked_pages <= limit_pages; | 
|  | } | 
|  |  | 
|  | static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) | 
|  | { | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | return MAX_LFS_FILESIZE; | 
|  |  | 
|  | if (S_ISBLK(inode->i_mode)) | 
|  | return MAX_LFS_FILESIZE; | 
|  |  | 
|  | if (S_ISSOCK(inode->i_mode)) | 
|  | return MAX_LFS_FILESIZE; | 
|  |  | 
|  | /* Special "we do even unsigned file positions" case */ | 
|  | if (file->f_mode & FMODE_UNSIGNED_OFFSET) | 
|  | return 0; | 
|  |  | 
|  | /* Yes, random drivers might want more. But I'm tired of buggy drivers */ | 
|  | return ULONG_MAX; | 
|  | } | 
|  |  | 
|  | static inline bool file_mmap_ok(struct file *file, struct inode *inode, | 
|  | unsigned long pgoff, unsigned long len) | 
|  | { | 
|  | u64 maxsize = file_mmap_size_max(file, inode); | 
|  |  | 
|  | if (maxsize && len > maxsize) | 
|  | return false; | 
|  | maxsize -= len; | 
|  | if (pgoff > maxsize >> PAGE_SHIFT) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller must write-lock current->mm->mmap_lock. | 
|  | */ | 
|  | unsigned long do_mmap(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flags, vm_flags_t vm_flags, | 
|  | unsigned long pgoff, unsigned long *populate, | 
|  | struct list_head *uf) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | int pkey = 0; | 
|  |  | 
|  | *populate = 0; | 
|  |  | 
|  | if (!len) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Does the application expect PROT_READ to imply PROT_EXEC? | 
|  | * | 
|  | * (the exception is when the underlying filesystem is noexec | 
|  | *  mounted, in which case we dont add PROT_EXEC.) | 
|  | */ | 
|  | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) | 
|  | if (!(file && path_noexec(&file->f_path))) | 
|  | prot |= PROT_EXEC; | 
|  |  | 
|  | /* force arch specific MAP_FIXED handling in get_unmapped_area */ | 
|  | if (flags & MAP_FIXED_NOREPLACE) | 
|  | flags |= MAP_FIXED; | 
|  |  | 
|  | if (!(flags & MAP_FIXED)) | 
|  | addr = round_hint_to_min(addr); | 
|  |  | 
|  | /* Careful about overflows.. */ | 
|  | len = PAGE_ALIGN(len); | 
|  | if (!len) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* offset overflow? */ | 
|  | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | /* Too many mappings? */ | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Obtain the address to map to. we verify (or select) it and ensure | 
|  | * that it represents a valid section of the address space. | 
|  | */ | 
|  | addr = get_unmapped_area(file, addr, len, pgoff, flags); | 
|  | if (IS_ERR_VALUE(addr)) | 
|  | return addr; | 
|  |  | 
|  | if (flags & MAP_FIXED_NOREPLACE) { | 
|  | if (find_vma_intersection(mm, addr, addr + len)) | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | if (prot == PROT_EXEC) { | 
|  | pkey = execute_only_pkey(mm); | 
|  | if (pkey < 0) | 
|  | pkey = 0; | 
|  | } | 
|  |  | 
|  | /* Do simple checking here so the lower-level routines won't have | 
|  | * to. we assume access permissions have been handled by the open | 
|  | * of the memory object, so we don't do any here. | 
|  | */ | 
|  | vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) | | 
|  | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; | 
|  |  | 
|  | if (flags & MAP_LOCKED) | 
|  | if (!can_do_mlock()) | 
|  | return -EPERM; | 
|  |  | 
|  | if (!mlock_future_ok(mm, vm_flags, len)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (file) { | 
|  | struct inode *inode = file_inode(file); | 
|  | unsigned long flags_mask; | 
|  |  | 
|  | if (!file_mmap_ok(file, inode, pgoff, len)) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; | 
|  |  | 
|  | switch (flags & MAP_TYPE) { | 
|  | case MAP_SHARED: | 
|  | /* | 
|  | * Force use of MAP_SHARED_VALIDATE with non-legacy | 
|  | * flags. E.g. MAP_SYNC is dangerous to use with | 
|  | * MAP_SHARED as you don't know which consistency model | 
|  | * you will get. We silently ignore unsupported flags | 
|  | * with MAP_SHARED to preserve backward compatibility. | 
|  | */ | 
|  | flags &= LEGACY_MAP_MASK; | 
|  | fallthrough; | 
|  | case MAP_SHARED_VALIDATE: | 
|  | if (flags & ~flags_mask) | 
|  | return -EOPNOTSUPP; | 
|  | if (prot & PROT_WRITE) { | 
|  | if (!(file->f_mode & FMODE_WRITE)) | 
|  | return -EACCES; | 
|  | if (IS_SWAPFILE(file->f_mapping->host)) | 
|  | return -ETXTBSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure we don't allow writing to an append-only | 
|  | * file.. | 
|  | */ | 
|  | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) | 
|  | return -EACCES; | 
|  |  | 
|  | vm_flags |= VM_SHARED | VM_MAYSHARE; | 
|  | if (!(file->f_mode & FMODE_WRITE)) | 
|  | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); | 
|  | fallthrough; | 
|  | case MAP_PRIVATE: | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return -EACCES; | 
|  | if (path_noexec(&file->f_path)) { | 
|  | if (vm_flags & VM_EXEC) | 
|  | return -EPERM; | 
|  | vm_flags &= ~VM_MAYEXEC; | 
|  | } | 
|  |  | 
|  | if (!file->f_op->mmap) | 
|  | return -ENODEV; | 
|  | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) | 
|  | return -EINVAL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | switch (flags & MAP_TYPE) { | 
|  | case MAP_SHARED: | 
|  | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Ignore pgoff. | 
|  | */ | 
|  | pgoff = 0; | 
|  | vm_flags |= VM_SHARED | VM_MAYSHARE; | 
|  | break; | 
|  | case MAP_PRIVATE: | 
|  | /* | 
|  | * Set pgoff according to addr for anon_vma. | 
|  | */ | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set 'VM_NORESERVE' if we should not account for the | 
|  | * memory use of this mapping. | 
|  | */ | 
|  | if (flags & MAP_NORESERVE) { | 
|  | /* We honor MAP_NORESERVE if allowed to overcommit */ | 
|  | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) | 
|  | vm_flags |= VM_NORESERVE; | 
|  |  | 
|  | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | vm_flags |= VM_NORESERVE; | 
|  | } | 
|  |  | 
|  | addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); | 
|  | if (!IS_ERR_VALUE(addr) && | 
|  | ((vm_flags & VM_LOCKED) || | 
|  | (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) | 
|  | *populate = len; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, | 
|  | unsigned long prot, unsigned long flags, | 
|  | unsigned long fd, unsigned long pgoff) | 
|  | { | 
|  | struct file *file = NULL; | 
|  | unsigned long retval; | 
|  |  | 
|  | if (!(flags & MAP_ANONYMOUS)) { | 
|  | audit_mmap_fd(fd, flags); | 
|  | file = fget(fd); | 
|  | if (!file) | 
|  | return -EBADF; | 
|  | if (is_file_hugepages(file)) { | 
|  | len = ALIGN(len, huge_page_size(hstate_file(file))); | 
|  | } else if (unlikely(flags & MAP_HUGETLB)) { | 
|  | retval = -EINVAL; | 
|  | goto out_fput; | 
|  | } | 
|  | } else if (flags & MAP_HUGETLB) { | 
|  | struct hstate *hs; | 
|  |  | 
|  | hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); | 
|  | if (!hs) | 
|  | return -EINVAL; | 
|  |  | 
|  | len = ALIGN(len, huge_page_size(hs)); | 
|  | /* | 
|  | * VM_NORESERVE is used because the reservations will be | 
|  | * taken when vm_ops->mmap() is called | 
|  | */ | 
|  | file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, | 
|  | VM_NORESERVE, | 
|  | HUGETLB_ANONHUGE_INODE, | 
|  | (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); | 
|  | if (IS_ERR(file)) | 
|  | return PTR_ERR(file); | 
|  | } | 
|  |  | 
|  | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); | 
|  | out_fput: | 
|  | if (file) | 
|  | fput(file); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, | 
|  | unsigned long, prot, unsigned long, flags, | 
|  | unsigned long, fd, unsigned long, pgoff) | 
|  | { | 
|  | return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLD_MMAP | 
|  | struct mmap_arg_struct { | 
|  | unsigned long addr; | 
|  | unsigned long len; | 
|  | unsigned long prot; | 
|  | unsigned long flags; | 
|  | unsigned long fd; | 
|  | unsigned long offset; | 
|  | }; | 
|  |  | 
|  | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) | 
|  | { | 
|  | struct mmap_arg_struct a; | 
|  |  | 
|  | if (copy_from_user(&a, arg, sizeof(a))) | 
|  | return -EFAULT; | 
|  | if (offset_in_page(a.offset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, | 
|  | a.offset >> PAGE_SHIFT); | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ | 
|  |  | 
|  | static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) | 
|  | { | 
|  | return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); | 
|  | } | 
|  |  | 
|  | static bool vma_is_shared_writable(struct vm_area_struct *vma) | 
|  | { | 
|  | return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == | 
|  | (VM_WRITE | VM_SHARED); | 
|  | } | 
|  |  | 
|  | static bool vma_fs_can_writeback(struct vm_area_struct *vma) | 
|  | { | 
|  | /* No managed pages to writeback. */ | 
|  | if (vma->vm_flags & VM_PFNMAP) | 
|  | return false; | 
|  |  | 
|  | return vma->vm_file && vma->vm_file->f_mapping && | 
|  | mapping_can_writeback(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does this VMA require the underlying folios to have their dirty state | 
|  | * tracked? | 
|  | */ | 
|  | bool vma_needs_dirty_tracking(struct vm_area_struct *vma) | 
|  | { | 
|  | /* Only shared, writable VMAs require dirty tracking. */ | 
|  | if (!vma_is_shared_writable(vma)) | 
|  | return false; | 
|  |  | 
|  | /* Does the filesystem need to be notified? */ | 
|  | if (vm_ops_needs_writenotify(vma->vm_ops)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Even if the filesystem doesn't indicate a need for writenotify, if it | 
|  | * can writeback, dirty tracking is still required. | 
|  | */ | 
|  | return vma_fs_can_writeback(vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some shared mappings will want the pages marked read-only | 
|  | * to track write events. If so, we'll downgrade vm_page_prot | 
|  | * to the private version (using protection_map[] without the | 
|  | * VM_SHARED bit). | 
|  | */ | 
|  | int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) | 
|  | { | 
|  | /* If it was private or non-writable, the write bit is already clear */ | 
|  | if (!vma_is_shared_writable(vma)) | 
|  | return 0; | 
|  |  | 
|  | /* The backer wishes to know when pages are first written to? */ | 
|  | if (vm_ops_needs_writenotify(vma->vm_ops)) | 
|  | return 1; | 
|  |  | 
|  | /* The open routine did something to the protections that pgprot_modify | 
|  | * won't preserve? */ | 
|  | if (pgprot_val(vm_page_prot) != | 
|  | pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Do we need to track softdirty? hugetlb does not support softdirty | 
|  | * tracking yet. | 
|  | */ | 
|  | if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) | 
|  | return 1; | 
|  |  | 
|  | /* Do we need write faults for uffd-wp tracking? */ | 
|  | if (userfaultfd_wp(vma)) | 
|  | return 1; | 
|  |  | 
|  | /* Can the mapping track the dirty pages? */ | 
|  | return vma_fs_can_writeback(vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We account for memory if it's a private writeable mapping, | 
|  | * not hugepages and VM_NORESERVE wasn't set. | 
|  | */ | 
|  | static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) | 
|  | { | 
|  | /* | 
|  | * hugetlb has its own accounting separate from the core VM | 
|  | * VM_HUGETLB may not be set yet so we cannot check for that flag. | 
|  | */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | return 0; | 
|  |  | 
|  | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmapped_area() - Find an area between the low_limit and the high_limit with | 
|  | * the correct alignment and offset, all from @info. Note: current->mm is used | 
|  | * for the search. | 
|  | * | 
|  | * @info: The unmapped area information including the range [low_limit - | 
|  | * high_limit), the alignment offset and mask. | 
|  | * | 
|  | * Return: A memory address or -ENOMEM. | 
|  | */ | 
|  | static unsigned long unmapped_area(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | unsigned long length, gap; | 
|  | unsigned long low_limit, high_limit; | 
|  | struct vm_area_struct *tmp; | 
|  |  | 
|  | MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); | 
|  |  | 
|  | /* Adjust search length to account for worst case alignment overhead */ | 
|  | length = info->length + info->align_mask; | 
|  | if (length < info->length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | low_limit = info->low_limit; | 
|  | if (low_limit < mmap_min_addr) | 
|  | low_limit = mmap_min_addr; | 
|  | high_limit = info->high_limit; | 
|  | retry: | 
|  | if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | gap = mas.index; | 
|  | gap += (info->align_offset - gap) & info->align_mask; | 
|  | tmp = mas_next(&mas, ULONG_MAX); | 
|  | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ | 
|  | if (vm_start_gap(tmp) < gap + length - 1) { | 
|  | low_limit = tmp->vm_end; | 
|  | mas_reset(&mas); | 
|  | goto retry; | 
|  | } | 
|  | } else { | 
|  | tmp = mas_prev(&mas, 0); | 
|  | if (tmp && vm_end_gap(tmp) > gap) { | 
|  | low_limit = vm_end_gap(tmp); | 
|  | mas_reset(&mas); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | return gap; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmapped_area_topdown() - Find an area between the low_limit and the | 
|  | * high_limit with the correct alignment and offset at the highest available | 
|  | * address, all from @info. Note: current->mm is used for the search. | 
|  | * | 
|  | * @info: The unmapped area information including the range [low_limit - | 
|  | * high_limit), the alignment offset and mask. | 
|  | * | 
|  | * Return: A memory address or -ENOMEM. | 
|  | */ | 
|  | static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | unsigned long length, gap, gap_end; | 
|  | unsigned long low_limit, high_limit; | 
|  | struct vm_area_struct *tmp; | 
|  |  | 
|  | MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); | 
|  | /* Adjust search length to account for worst case alignment overhead */ | 
|  | length = info->length + info->align_mask; | 
|  | if (length < info->length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | low_limit = info->low_limit; | 
|  | if (low_limit < mmap_min_addr) | 
|  | low_limit = mmap_min_addr; | 
|  | high_limit = info->high_limit; | 
|  | retry: | 
|  | if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | gap = mas.last + 1 - info->length; | 
|  | gap -= (gap - info->align_offset) & info->align_mask; | 
|  | gap_end = mas.last; | 
|  | tmp = mas_next(&mas, ULONG_MAX); | 
|  | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ | 
|  | if (vm_start_gap(tmp) <= gap_end) { | 
|  | high_limit = vm_start_gap(tmp); | 
|  | mas_reset(&mas); | 
|  | goto retry; | 
|  | } | 
|  | } else { | 
|  | tmp = mas_prev(&mas, 0); | 
|  | if (tmp && vm_end_gap(tmp) > gap) { | 
|  | high_limit = tmp->vm_start; | 
|  | mas_reset(&mas); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | return gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for an unmapped address range. | 
|  | * | 
|  | * We are looking for a range that: | 
|  | * - does not intersect with any VMA; | 
|  | * - is contained within the [low_limit, high_limit) interval; | 
|  | * - is at least the desired size. | 
|  | * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) | 
|  | */ | 
|  | unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) | 
|  | addr = unmapped_area_topdown(info); | 
|  | else | 
|  | addr = unmapped_area(info); | 
|  |  | 
|  | trace_vm_unmapped_area(addr, info); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* Get an address range which is currently unmapped. | 
|  | * For shmat() with addr=0. | 
|  | * | 
|  | * Ugly calling convention alert: | 
|  | * Return value with the low bits set means error value, | 
|  | * ie | 
|  | *	if (ret & ~PAGE_MASK) | 
|  | *		error = ret; | 
|  | * | 
|  | * This function "knows" that -ENOMEM has the bits set. | 
|  | */ | 
|  | unsigned long | 
|  | generic_get_unmapped_area(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | struct vm_unmapped_area_info info; | 
|  | const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); | 
|  |  | 
|  | if (len > mmap_end - mmap_min_addr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  |  | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma_prev(mm, addr, &prev); | 
|  | if (mmap_end - len >= addr && addr >= mmap_min_addr && | 
|  | (!vma || addr + len <= vm_start_gap(vma)) && | 
|  | (!prev || addr >= vm_end_gap(prev))) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | info.flags = 0; | 
|  | info.length = len; | 
|  | info.low_limit = mm->mmap_base; | 
|  | info.high_limit = mmap_end; | 
|  | info.align_mask = 0; | 
|  | info.align_offset = 0; | 
|  | return vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | #ifndef HAVE_ARCH_UNMAPPED_AREA | 
|  | unsigned long | 
|  | arch_get_unmapped_area(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | return generic_get_unmapped_area(filp, addr, len, pgoff, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This mmap-allocator allocates new areas top-down from below the | 
|  | * stack's low limit (the base): | 
|  | */ | 
|  | unsigned long | 
|  | generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_unmapped_area_info info; | 
|  | const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); | 
|  |  | 
|  | /* requested length too big for entire address space */ | 
|  | if (len > mmap_end - mmap_min_addr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  |  | 
|  | /* requesting a specific address */ | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma_prev(mm, addr, &prev); | 
|  | if (mmap_end - len >= addr && addr >= mmap_min_addr && | 
|  | (!vma || addr + len <= vm_start_gap(vma)) && | 
|  | (!prev || addr >= vm_end_gap(prev))) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | info.flags = VM_UNMAPPED_AREA_TOPDOWN; | 
|  | info.length = len; | 
|  | info.low_limit = PAGE_SIZE; | 
|  | info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); | 
|  | info.align_mask = 0; | 
|  | info.align_offset = 0; | 
|  | addr = vm_unmapped_area(&info); | 
|  |  | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | if (offset_in_page(addr)) { | 
|  | VM_BUG_ON(addr != -ENOMEM); | 
|  | info.flags = 0; | 
|  | info.low_limit = TASK_UNMAPPED_BASE; | 
|  | info.high_limit = mmap_end; | 
|  | addr = vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | 
|  | unsigned long | 
|  | arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned long | 
|  | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | unsigned long (*get_area)(struct file *, unsigned long, | 
|  | unsigned long, unsigned long, unsigned long); | 
|  |  | 
|  | unsigned long error = arch_mmap_check(addr, len, flags); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* Careful about overflows.. */ | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | get_area = current->mm->get_unmapped_area; | 
|  | if (file) { | 
|  | if (file->f_op->get_unmapped_area) | 
|  | get_area = file->f_op->get_unmapped_area; | 
|  | } else if (flags & MAP_SHARED) { | 
|  | /* | 
|  | * mmap_region() will call shmem_zero_setup() to create a file, | 
|  | * so use shmem's get_unmapped_area in case it can be huge. | 
|  | * do_mmap() will clear pgoff, so match alignment. | 
|  | */ | 
|  | pgoff = 0; | 
|  | get_area = shmem_get_unmapped_area; | 
|  | } | 
|  |  | 
|  | addr = get_area(file, addr, len, pgoff, flags); | 
|  | if (IS_ERR_VALUE(addr)) | 
|  | return addr; | 
|  |  | 
|  | if (addr > TASK_SIZE - len) | 
|  | return -ENOMEM; | 
|  | if (offset_in_page(addr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = security_mmap_addr(addr); | 
|  | return error ? error : addr; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(get_unmapped_area); | 
|  |  | 
|  | /** | 
|  | * find_vma_intersection() - Look up the first VMA which intersects the interval | 
|  | * @mm: The process address space. | 
|  | * @start_addr: The inclusive start user address. | 
|  | * @end_addr: The exclusive end user address. | 
|  | * | 
|  | * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes | 
|  | * start_addr < end_addr. | 
|  | */ | 
|  | struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, | 
|  | unsigned long start_addr, | 
|  | unsigned long end_addr) | 
|  | { | 
|  | unsigned long index = start_addr; | 
|  |  | 
|  | mmap_assert_locked(mm); | 
|  | return mt_find(&mm->mm_mt, &index, end_addr - 1); | 
|  | } | 
|  | EXPORT_SYMBOL(find_vma_intersection); | 
|  |  | 
|  | /** | 
|  | * find_vma() - Find the VMA for a given address, or the next VMA. | 
|  | * @mm: The mm_struct to check | 
|  | * @addr: The address | 
|  | * | 
|  | * Returns: The VMA associated with addr, or the next VMA. | 
|  | * May return %NULL in the case of no VMA at addr or above. | 
|  | */ | 
|  | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | unsigned long index = addr; | 
|  |  | 
|  | mmap_assert_locked(mm); | 
|  | return mt_find(&mm->mm_mt, &index, ULONG_MAX); | 
|  | } | 
|  | EXPORT_SYMBOL(find_vma); | 
|  |  | 
|  | /** | 
|  | * find_vma_prev() - Find the VMA for a given address, or the next vma and | 
|  | * set %pprev to the previous VMA, if any. | 
|  | * @mm: The mm_struct to check | 
|  | * @addr: The address | 
|  | * @pprev: The pointer to set to the previous VMA | 
|  | * | 
|  | * Note that RCU lock is missing here since the external mmap_lock() is used | 
|  | * instead. | 
|  | * | 
|  | * Returns: The VMA associated with @addr, or the next vma. | 
|  | * May return %NULL in the case of no vma at addr or above. | 
|  | */ | 
|  | struct vm_area_struct * | 
|  | find_vma_prev(struct mm_struct *mm, unsigned long addr, | 
|  | struct vm_area_struct **pprev) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | MA_STATE(mas, &mm->mm_mt, addr, addr); | 
|  |  | 
|  | vma = mas_walk(&mas); | 
|  | *pprev = mas_prev(&mas, 0); | 
|  | if (!vma) | 
|  | vma = mas_next(&mas, ULONG_MAX); | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the stack growth is acceptable and | 
|  | * update accounting. This is shared with both the | 
|  | * grow-up and grow-down cases. | 
|  | */ | 
|  | static int acct_stack_growth(struct vm_area_struct *vma, | 
|  | unsigned long size, unsigned long grow) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long new_start; | 
|  |  | 
|  | /* address space limit tests */ | 
|  | if (!may_expand_vm(mm, vma->vm_flags, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Stack limit test */ | 
|  | if (size > rlimit(RLIMIT_STACK)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* mlock limit tests */ | 
|  | if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Check to ensure the stack will not grow into a hugetlb-only region */ | 
|  | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : | 
|  | vma->vm_end - size; | 
|  | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Overcommit..  This must be the final test, as it will | 
|  | * update security statistics. | 
|  | */ | 
|  | if (security_vm_enough_memory_mm(mm, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) | 
|  | /* | 
|  | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. | 
|  | * vma is the last one with address > vma->vm_end.  Have to extend vma. | 
|  | */ | 
|  | static int expand_upwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *next; | 
|  | unsigned long gap_addr; | 
|  | int error = 0; | 
|  | MA_STATE(mas, &mm->mm_mt, vma->vm_start, address); | 
|  |  | 
|  | if (!(vma->vm_flags & VM_GROWSUP)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Guard against exceeding limits of the address space. */ | 
|  | address &= PAGE_MASK; | 
|  | if (address >= (TASK_SIZE & PAGE_MASK)) | 
|  | return -ENOMEM; | 
|  | address += PAGE_SIZE; | 
|  |  | 
|  | /* Enforce stack_guard_gap */ | 
|  | gap_addr = address + stack_guard_gap; | 
|  |  | 
|  | /* Guard against overflow */ | 
|  | if (gap_addr < address || gap_addr > TASK_SIZE) | 
|  | gap_addr = TASK_SIZE; | 
|  |  | 
|  | next = find_vma_intersection(mm, vma->vm_end, gap_addr); | 
|  | if (next && vma_is_accessible(next)) { | 
|  | if (!(next->vm_flags & VM_GROWSUP)) | 
|  | return -ENOMEM; | 
|  | /* Check that both stack segments have the same anon_vma? */ | 
|  | } | 
|  |  | 
|  | if (next) | 
|  | mas_prev_range(&mas, address); | 
|  |  | 
|  | __mas_set_range(&mas, vma->vm_start, address - 1); | 
|  | if (mas_preallocate(&mas, vma, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* We must make sure the anon_vma is allocated. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | mas_destroy(&mas); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Lock the VMA before expanding to prevent concurrent page faults */ | 
|  | vma_start_write(vma); | 
|  | /* | 
|  | * vma->vm_start/vm_end cannot change under us because the caller | 
|  | * is required to hold the mmap_lock in read mode.  We need the | 
|  | * anon_vma lock to serialize against concurrent expand_stacks. | 
|  | */ | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address > vma->vm_end) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = address - vma->vm_start; | 
|  | grow = (address - vma->vm_end) >> PAGE_SHIFT; | 
|  |  | 
|  | error = -ENOMEM; | 
|  | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | /* | 
|  | * We only hold a shared mmap_lock lock here, so | 
|  | * we need to protect against concurrent vma | 
|  | * expansions.  anon_vma_lock_write() doesn't | 
|  | * help here, as we don't guarantee that all | 
|  | * growable vmas in a mm share the same root | 
|  | * anon vma.  So, we reuse mm->page_table_lock | 
|  | * to guard against concurrent vma expansions. | 
|  | */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, grow); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | vma->vm_end = address; | 
|  | /* Overwrite old entry in mtree. */ | 
|  | mas_store_prealloc(&mas, vma); | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  | } | 
|  | } | 
|  | } | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | khugepaged_enter_vma(vma, vma->vm_flags); | 
|  | mas_destroy(&mas); | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ | 
|  |  | 
|  | /* | 
|  | * vma is the first one with address < vma->vm_start.  Have to extend vma. | 
|  | * mmap_lock held for writing. | 
|  | */ | 
|  | int expand_downwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); | 
|  | struct vm_area_struct *prev; | 
|  | int error = 0; | 
|  |  | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | return -EFAULT; | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  | if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Enforce stack_guard_gap */ | 
|  | prev = mas_prev(&mas, 0); | 
|  | /* Check that both stack segments have the same anon_vma? */ | 
|  | if (prev) { | 
|  | if (!(prev->vm_flags & VM_GROWSDOWN) && | 
|  | vma_is_accessible(prev) && | 
|  | (address - prev->vm_end < stack_guard_gap)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (prev) | 
|  | mas_next_range(&mas, vma->vm_start); | 
|  |  | 
|  | __mas_set_range(&mas, address, vma->vm_end - 1); | 
|  | if (mas_preallocate(&mas, vma, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* We must make sure the anon_vma is allocated. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | mas_destroy(&mas); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Lock the VMA before expanding to prevent concurrent page faults */ | 
|  | vma_start_write(vma); | 
|  | /* | 
|  | * vma->vm_start/vm_end cannot change under us because the caller | 
|  | * is required to hold the mmap_lock in read mode.  We need the | 
|  | * anon_vma lock to serialize against concurrent expand_stacks. | 
|  | */ | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address < vma->vm_start) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = vma->vm_end - address; | 
|  | grow = (vma->vm_start - address) >> PAGE_SHIFT; | 
|  |  | 
|  | error = -ENOMEM; | 
|  | if (grow <= vma->vm_pgoff) { | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | /* | 
|  | * We only hold a shared mmap_lock lock here, so | 
|  | * we need to protect against concurrent vma | 
|  | * expansions.  anon_vma_lock_write() doesn't | 
|  | * help here, as we don't guarantee that all | 
|  | * growable vmas in a mm share the same root | 
|  | * anon vma.  So, we reuse mm->page_table_lock | 
|  | * to guard against concurrent vma expansions. | 
|  | */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, grow); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | vma->vm_start = address; | 
|  | vma->vm_pgoff -= grow; | 
|  | /* Overwrite old entry in mtree. */ | 
|  | mas_store_prealloc(&mas, vma); | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  | } | 
|  | } | 
|  | } | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | khugepaged_enter_vma(vma, vma->vm_flags); | 
|  | mas_destroy(&mas); | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* enforced gap between the expanding stack and other mappings. */ | 
|  | unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; | 
|  |  | 
|  | static int __init cmdline_parse_stack_guard_gap(char *p) | 
|  | { | 
|  | unsigned long val; | 
|  | char *endptr; | 
|  |  | 
|  | val = simple_strtoul(p, &endptr, 10); | 
|  | if (!*endptr) | 
|  | stack_guard_gap = val << PAGE_SHIFT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return expand_upwards(vma, address); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev; | 
|  |  | 
|  | addr &= PAGE_MASK; | 
|  | vma = find_vma_prev(mm, addr, &prev); | 
|  | if (vma && (vma->vm_start <= addr)) | 
|  | return vma; | 
|  | if (!prev) | 
|  | return NULL; | 
|  | if (expand_stack_locked(prev, addr)) | 
|  | return NULL; | 
|  | if (prev->vm_flags & VM_LOCKED) | 
|  | populate_vma_page_range(prev, addr, prev->vm_end, NULL); | 
|  | return prev; | 
|  | } | 
|  | #else | 
|  | int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) | 
|  | return -EINVAL; | 
|  | return expand_downwards(vma, address); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start; | 
|  |  | 
|  | addr &= PAGE_MASK; | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma) | 
|  | return NULL; | 
|  | if (vma->vm_start <= addr) | 
|  | return vma; | 
|  | start = vma->vm_start; | 
|  | if (expand_stack_locked(vma, addr)) | 
|  | return NULL; | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | populate_vma_page_range(vma, addr, start, NULL); | 
|  | return vma; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * IA64 has some horrid mapping rules: it can expand both up and down, | 
|  | * but with various special rules. | 
|  | * | 
|  | * We'll get rid of this architecture eventually, so the ugliness is | 
|  | * temporary. | 
|  | */ | 
|  | #ifdef CONFIG_IA64 | 
|  | static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && | 
|  | REGION_OFFSET(addr) < RGN_MAP_LIMIT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IA64 stacks grow down, but there's a special register backing store | 
|  | * that can grow up. Only sequentially, though, so the new address must | 
|  | * match vm_end. | 
|  | */ | 
|  | static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | if (!vma_expand_ok(vma, addr)) | 
|  | return -EFAULT; | 
|  | if (vma->vm_end != (addr & PAGE_MASK)) | 
|  | return -EFAULT; | 
|  | return expand_upwards(vma, addr); | 
|  | } | 
|  |  | 
|  | static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | if (!vma_expand_ok(vma, addr)) | 
|  | return -EFAULT; | 
|  | return expand_downwards(vma, addr); | 
|  | } | 
|  |  | 
|  | #elif defined(CONFIG_STACK_GROWSUP) | 
|  |  | 
|  | #define vma_expand_up(vma,addr) expand_upwards(vma, addr) | 
|  | #define vma_expand_down(vma, addr) (-EFAULT) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define vma_expand_up(vma,addr) (-EFAULT) | 
|  | #define vma_expand_down(vma, addr) expand_downwards(vma, addr) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * expand_stack(): legacy interface for page faulting. Don't use unless | 
|  | * you have to. | 
|  | * | 
|  | * This is called with the mm locked for reading, drops the lock, takes | 
|  | * the lock for writing, tries to look up a vma again, expands it if | 
|  | * necessary, and downgrades the lock to reading again. | 
|  | * | 
|  | * If no vma is found or it can't be expanded, it returns NULL and has | 
|  | * dropped the lock. | 
|  | */ | 
|  | struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev; | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return NULL; | 
|  |  | 
|  | vma = find_vma_prev(mm, addr, &prev); | 
|  | if (vma && vma->vm_start <= addr) | 
|  | goto success; | 
|  |  | 
|  | if (prev && !vma_expand_up(prev, addr)) { | 
|  | vma = prev; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | if (vma && !vma_expand_down(vma, addr)) | 
|  | goto success; | 
|  |  | 
|  | mmap_write_unlock(mm); | 
|  | return NULL; | 
|  |  | 
|  | success: | 
|  | mmap_write_downgrade(mm); | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok - we have the memory areas we should free on a maple tree so release them, | 
|  | * and do the vma updates. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) | 
|  | { | 
|  | unsigned long nr_accounted = 0; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* Update high watermark before we lower total_vm */ | 
|  | update_hiwater_vm(mm); | 
|  | mas_for_each(mas, vma, ULONG_MAX) { | 
|  | long nrpages = vma_pages(vma); | 
|  |  | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | nr_accounted += nrpages; | 
|  | vm_stat_account(mm, vma->vm_flags, -nrpages); | 
|  | remove_vma(vma, false); | 
|  | } | 
|  | vm_unacct_memory(nr_accounted); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of page table information in the indicated region. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | static void unmap_region(struct mm_struct *mm, struct ma_state *mas, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *prev, | 
|  | struct vm_area_struct *next, unsigned long start, | 
|  | unsigned long end, unsigned long tree_end, bool mm_wr_locked) | 
|  | { | 
|  | struct mmu_gather tlb; | 
|  | unsigned long mt_start = mas->index; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb_gather_mmu(&tlb, mm); | 
|  | update_hiwater_rss(mm); | 
|  | unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); | 
|  | mas_set(mas, mt_start); | 
|  | free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, | 
|  | next ? next->vm_start : USER_PGTABLES_CEILING, | 
|  | mm_wr_locked); | 
|  | tlb_finish_mmu(&tlb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it | 
|  | * has already been checked or doesn't make sense to fail. | 
|  | * VMA Iterator will point to the end VMA. | 
|  | */ | 
|  | int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | struct vma_prepare vp; | 
|  | struct vm_area_struct *new; | 
|  | int err; | 
|  |  | 
|  | WARN_ON(vma->vm_start >= addr); | 
|  | WARN_ON(vma->vm_end <= addr); | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->may_split) { | 
|  | err = vma->vm_ops->may_split(vma, addr); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | new = vm_area_dup(vma); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (new_below) { | 
|  | new->vm_end = addr; | 
|  | } else { | 
|  | new->vm_start = addr; | 
|  | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | err = -ENOMEM; | 
|  | vma_iter_config(vmi, new->vm_start, new->vm_end); | 
|  | if (vma_iter_prealloc(vmi, new)) | 
|  | goto out_free_vma; | 
|  |  | 
|  | err = vma_dup_policy(vma, new); | 
|  | if (err) | 
|  | goto out_free_vmi; | 
|  |  | 
|  | err = anon_vma_clone(new, vma); | 
|  | if (err) | 
|  | goto out_free_mpol; | 
|  |  | 
|  | if (new->vm_file) | 
|  | get_file(new->vm_file); | 
|  |  | 
|  | if (new->vm_ops && new->vm_ops->open) | 
|  | new->vm_ops->open(new); | 
|  |  | 
|  | vma_start_write(vma); | 
|  | vma_start_write(new); | 
|  |  | 
|  | init_vma_prep(&vp, vma); | 
|  | vp.insert = new; | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); | 
|  |  | 
|  | if (new_below) { | 
|  | vma->vm_start = addr; | 
|  | vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; | 
|  | } else { | 
|  | vma->vm_end = addr; | 
|  | } | 
|  |  | 
|  | /* vma_complete stores the new vma */ | 
|  | vma_complete(&vp, vmi, vma->vm_mm); | 
|  |  | 
|  | /* Success. */ | 
|  | if (new_below) | 
|  | vma_next(vmi); | 
|  | return 0; | 
|  |  | 
|  | out_free_mpol: | 
|  | mpol_put(vma_policy(new)); | 
|  | out_free_vmi: | 
|  | vma_iter_free(vmi); | 
|  | out_free_vma: | 
|  | vm_area_free(new); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split a vma into two pieces at address 'addr', a new vma is allocated | 
|  | * either for the first part or the tail. | 
|  | */ | 
|  | int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | if (vma->vm_mm->map_count >= sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return __split_vma(vmi, vma, addr, new_below); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_vmi_align_munmap() - munmap the aligned region from @start to @end. | 
|  | * @vmi: The vma iterator | 
|  | * @vma: The starting vm_area_struct | 
|  | * @mm: The mm_struct | 
|  | * @start: The aligned start address to munmap. | 
|  | * @end: The aligned end address to munmap. | 
|  | * @uf: The userfaultfd list_head | 
|  | * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on | 
|  | * success. | 
|  | * | 
|  | * Return: 0 on success and drops the lock if so directed, error and leaves the | 
|  | * lock held otherwise. | 
|  | */ | 
|  | static int | 
|  | do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, struct list_head *uf, bool unlock) | 
|  | { | 
|  | struct vm_area_struct *prev, *next = NULL; | 
|  | struct maple_tree mt_detach; | 
|  | int count = 0; | 
|  | int error = -ENOMEM; | 
|  | unsigned long locked_vm = 0; | 
|  | MA_STATE(mas_detach, &mt_detach, 0, 0); | 
|  | mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); | 
|  | mt_on_stack(mt_detach); | 
|  |  | 
|  | /* | 
|  | * If we need to split any vma, do it now to save pain later. | 
|  | * | 
|  | * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially | 
|  | * unmapped vm_area_struct will remain in use: so lower split_vma | 
|  | * places tmp vma above, and higher split_vma places tmp vma below. | 
|  | */ | 
|  |  | 
|  | /* Does it split the first one? */ | 
|  | if (start > vma->vm_start) { | 
|  |  | 
|  | /* | 
|  | * Make sure that map_count on return from munmap() will | 
|  | * not exceed its limit; but let map_count go just above | 
|  | * its limit temporarily, to help free resources as expected. | 
|  | */ | 
|  | if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) | 
|  | goto map_count_exceeded; | 
|  |  | 
|  | error = __split_vma(vmi, vma, start, 1); | 
|  | if (error) | 
|  | goto start_split_failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detach a range of VMAs from the mm. Using next as a temp variable as | 
|  | * it is always overwritten. | 
|  | */ | 
|  | next = vma; | 
|  | do { | 
|  | /* Does it split the end? */ | 
|  | if (next->vm_end > end) { | 
|  | error = __split_vma(vmi, next, end, 0); | 
|  | if (error) | 
|  | goto end_split_failed; | 
|  | } | 
|  | vma_start_write(next); | 
|  | mas_set(&mas_detach, count); | 
|  | error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); | 
|  | if (error) | 
|  | goto munmap_gather_failed; | 
|  | vma_mark_detached(next, true); | 
|  | if (next->vm_flags & VM_LOCKED) | 
|  | locked_vm += vma_pages(next); | 
|  |  | 
|  | count++; | 
|  | if (unlikely(uf)) { | 
|  | /* | 
|  | * If userfaultfd_unmap_prep returns an error the vmas | 
|  | * will remain split, but userland will get a | 
|  | * highly unexpected error anyway. This is no | 
|  | * different than the case where the first of the two | 
|  | * __split_vma fails, but we don't undo the first | 
|  | * split, despite we could. This is unlikely enough | 
|  | * failure that it's not worth optimizing it for. | 
|  | */ | 
|  | error = userfaultfd_unmap_prep(next, start, end, uf); | 
|  |  | 
|  | if (error) | 
|  | goto userfaultfd_error; | 
|  | } | 
|  | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE | 
|  | BUG_ON(next->vm_start < start); | 
|  | BUG_ON(next->vm_start > end); | 
|  | #endif | 
|  | } for_each_vma_range(*vmi, next, end); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) | 
|  | /* Make sure no VMAs are about to be lost. */ | 
|  | { | 
|  | MA_STATE(test, &mt_detach, 0, 0); | 
|  | struct vm_area_struct *vma_mas, *vma_test; | 
|  | int test_count = 0; | 
|  |  | 
|  | vma_iter_set(vmi, start); | 
|  | rcu_read_lock(); | 
|  | vma_test = mas_find(&test, count - 1); | 
|  | for_each_vma_range(*vmi, vma_mas, end) { | 
|  | BUG_ON(vma_mas != vma_test); | 
|  | test_count++; | 
|  | vma_test = mas_next(&test, count - 1); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | BUG_ON(count != test_count); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | while (vma_iter_addr(vmi) > start) | 
|  | vma_iter_prev_range(vmi); | 
|  |  | 
|  | error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); | 
|  | if (error) | 
|  | goto clear_tree_failed; | 
|  |  | 
|  | /* Point of no return */ | 
|  | mm->locked_vm -= locked_vm; | 
|  | mm->map_count -= count; | 
|  | if (unlock) | 
|  | mmap_write_downgrade(mm); | 
|  |  | 
|  | prev = vma_iter_prev_range(vmi); | 
|  | next = vma_next(vmi); | 
|  | if (next) | 
|  | vma_iter_prev_range(vmi); | 
|  |  | 
|  | /* | 
|  | * We can free page tables without write-locking mmap_lock because VMAs | 
|  | * were isolated before we downgraded mmap_lock. | 
|  | */ | 
|  | mas_set(&mas_detach, 1); | 
|  | unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, | 
|  | !unlock); | 
|  | /* Statistics and freeing VMAs */ | 
|  | mas_set(&mas_detach, 0); | 
|  | remove_mt(mm, &mas_detach); | 
|  | validate_mm(mm); | 
|  | if (unlock) | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | __mt_destroy(&mt_detach); | 
|  | return 0; | 
|  |  | 
|  | clear_tree_failed: | 
|  | userfaultfd_error: | 
|  | munmap_gather_failed: | 
|  | end_split_failed: | 
|  | mas_set(&mas_detach, 0); | 
|  | mas_for_each(&mas_detach, next, end) | 
|  | vma_mark_detached(next, false); | 
|  |  | 
|  | __mt_destroy(&mt_detach); | 
|  | start_split_failed: | 
|  | map_count_exceeded: | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_vmi_munmap() - munmap a given range. | 
|  | * @vmi: The vma iterator | 
|  | * @mm: The mm_struct | 
|  | * @start: The start address to munmap | 
|  | * @len: The length of the range to munmap | 
|  | * @uf: The userfaultfd list_head | 
|  | * @unlock: set to true if the user wants to drop the mmap_lock on success | 
|  | * | 
|  | * This function takes a @mas that is either pointing to the previous VMA or set | 
|  | * to MA_START and sets it up to remove the mapping(s).  The @len will be | 
|  | * aligned and any arch_unmap work will be preformed. | 
|  | * | 
|  | * Return: 0 on success and drops the lock if so directed, error and leaves the | 
|  | * lock held otherwise. | 
|  | */ | 
|  | int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, | 
|  | unsigned long start, size_t len, struct list_head *uf, | 
|  | bool unlock) | 
|  | { | 
|  | unsigned long end; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) | 
|  | return -EINVAL; | 
|  |  | 
|  | end = start + PAGE_ALIGN(len); | 
|  | if (end == start) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* arch_unmap() might do unmaps itself.  */ | 
|  | arch_unmap(mm, start, end); | 
|  |  | 
|  | /* Find the first overlapping VMA */ | 
|  | vma = vma_find(vmi, end); | 
|  | if (!vma) { | 
|  | if (unlock) | 
|  | mmap_write_unlock(mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); | 
|  | } | 
|  |  | 
|  | /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. | 
|  | * @mm: The mm_struct | 
|  | * @start: The start address to munmap | 
|  | * @len: The length to be munmapped. | 
|  | * @uf: The userfaultfd list_head | 
|  | * | 
|  | * Return: 0 on success, error otherwise. | 
|  | */ | 
|  | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, | 
|  | struct list_head *uf) | 
|  | { | 
|  | VMA_ITERATOR(vmi, mm, start); | 
|  |  | 
|  | return do_vmi_munmap(&vmi, mm, start, len, uf, false); | 
|  | } | 
|  |  | 
|  | static unsigned long __mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, | 
|  | struct list_head *uf) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | struct vm_area_struct *next, *prev, *merge; | 
|  | pgoff_t pglen = PHYS_PFN(len); | 
|  | unsigned long charged = 0; | 
|  | unsigned long end = addr + len; | 
|  | unsigned long merge_start = addr, merge_end = end; | 
|  | pgoff_t vm_pgoff; | 
|  | int error; | 
|  | VMA_ITERATOR(vmi, mm, addr); | 
|  |  | 
|  | /* Check against address space limit. */ | 
|  | if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | /* | 
|  | * MAP_FIXED may remove pages of mappings that intersects with | 
|  | * requested mapping. Account for the pages it would unmap. | 
|  | */ | 
|  | nr_pages = count_vma_pages_range(mm, addr, end); | 
|  |  | 
|  | if (!may_expand_vm(mm, vm_flags, | 
|  | (len >> PAGE_SHIFT) - nr_pages)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Unmap any existing mapping in the area */ | 
|  | if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Private writable mapping: check memory availability | 
|  | */ | 
|  | if (accountable_mapping(file, vm_flags)) { | 
|  | charged = len >> PAGE_SHIFT; | 
|  | if (security_vm_enough_memory_mm(mm, charged)) | 
|  | return -ENOMEM; | 
|  | vm_flags |= VM_ACCOUNT; | 
|  | } | 
|  |  | 
|  | next = vma_next(&vmi); | 
|  | prev = vma_prev(&vmi); | 
|  | if (vm_flags & VM_SPECIAL) { | 
|  | if (prev) | 
|  | vma_iter_next_range(&vmi); | 
|  | goto cannot_expand; | 
|  | } | 
|  |  | 
|  | /* Attempt to expand an old mapping */ | 
|  | /* Check next */ | 
|  | if (next && next->vm_start == end && !vma_policy(next) && | 
|  | can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, | 
|  | NULL_VM_UFFD_CTX, NULL)) { | 
|  | merge_end = next->vm_end; | 
|  | vma = next; | 
|  | vm_pgoff = next->vm_pgoff - pglen; | 
|  | } | 
|  |  | 
|  | /* Check prev */ | 
|  | if (prev && prev->vm_end == addr && !vma_policy(prev) && | 
|  | (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, | 
|  | pgoff, vma->vm_userfaultfd_ctx, NULL) : | 
|  | can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, | 
|  | NULL_VM_UFFD_CTX, NULL))) { | 
|  | merge_start = prev->vm_start; | 
|  | vma = prev; | 
|  | vm_pgoff = prev->vm_pgoff; | 
|  | } else if (prev) { | 
|  | vma_iter_next_range(&vmi); | 
|  | } | 
|  |  | 
|  | /* Actually expand, if possible */ | 
|  | if (vma && | 
|  | !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { | 
|  | khugepaged_enter_vma(vma, vm_flags); | 
|  | goto expanded; | 
|  | } | 
|  |  | 
|  | if (vma == prev) | 
|  | vma_iter_set(&vmi, addr); | 
|  | cannot_expand: | 
|  |  | 
|  | /* | 
|  | * Determine the object being mapped and call the appropriate | 
|  | * specific mapper. the address has already been validated, but | 
|  | * not unmapped, but the maps are removed from the list. | 
|  | */ | 
|  | vma = vm_area_alloc(mm); | 
|  | if (!vma) { | 
|  | error = -ENOMEM; | 
|  | goto unacct_error; | 
|  | } | 
|  |  | 
|  | vma_iter_config(&vmi, addr, end); | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = end; | 
|  | vm_flags_init(vma, vm_flags); | 
|  | vma->vm_page_prot = vm_get_page_prot(vm_flags); | 
|  | vma->vm_pgoff = pgoff; | 
|  |  | 
|  | if (vma_iter_prealloc(&vmi, vma)) { | 
|  | error = -ENOMEM; | 
|  | goto free_vma; | 
|  | } | 
|  |  | 
|  | if (file) { | 
|  | vma->vm_file = get_file(file); | 
|  | error = mmap_file(file, vma); | 
|  | if (error) | 
|  | goto unmap_and_free_file_vma; | 
|  |  | 
|  | /* Drivers cannot alter the address of the VMA. */ | 
|  | WARN_ON_ONCE(addr != vma->vm_start); | 
|  | /* | 
|  | * Drivers should not permit writability when previously it was | 
|  | * disallowed. | 
|  | */ | 
|  | VM_WARN_ON_ONCE(vm_flags != vma->vm_flags && | 
|  | !(vm_flags & VM_MAYWRITE) && | 
|  | (vma->vm_flags & VM_MAYWRITE)); | 
|  |  | 
|  | vma_iter_config(&vmi, addr, end); | 
|  | /* | 
|  | * If vm_flags changed after mmap_file(), we should try merge | 
|  | * vma again as we may succeed this time. | 
|  | */ | 
|  | if (unlikely(vm_flags != vma->vm_flags && prev)) { | 
|  | merge = vma_merge(&vmi, mm, prev, vma->vm_start, | 
|  | vma->vm_end, vma->vm_flags, NULL, | 
|  | vma->vm_file, vma->vm_pgoff, NULL, | 
|  | NULL_VM_UFFD_CTX, NULL); | 
|  |  | 
|  | if (merge) { | 
|  | /* | 
|  | * ->mmap() can change vma->vm_file and fput | 
|  | * the original file. So fput the vma->vm_file | 
|  | * here or we would add an extra fput for file | 
|  | * and cause general protection fault | 
|  | * ultimately. | 
|  | */ | 
|  | fput(vma->vm_file); | 
|  | vm_area_free(vma); | 
|  | vma = merge; | 
|  | /* Update vm_flags to pick up the change. */ | 
|  | vm_flags = vma->vm_flags; | 
|  | goto file_expanded; | 
|  | } | 
|  | } | 
|  |  | 
|  | vm_flags = vma->vm_flags; | 
|  | } else if (vm_flags & VM_SHARED) { | 
|  | error = shmem_zero_setup(vma); | 
|  | if (error) | 
|  | goto free_iter_vma; | 
|  | } else { | 
|  | vma_set_anonymous(vma); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARC64 | 
|  | /* TODO: Fix SPARC ADI! */ | 
|  | WARN_ON_ONCE(!arch_validate_flags(vm_flags)); | 
|  | #endif | 
|  |  | 
|  | /* Lock the VMA since it is modified after insertion into VMA tree */ | 
|  | vma_start_write(vma); | 
|  | vma_iter_store(&vmi, vma); | 
|  | mm->map_count++; | 
|  | if (vma->vm_file) { | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | mapping_allow_writable(vma->vm_file->f_mapping); | 
|  |  | 
|  | flush_dcache_mmap_lock(vma->vm_file->f_mapping); | 
|  | vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(vma->vm_file->f_mapping); | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_merge() calls khugepaged_enter_vma() either, the below | 
|  | * call covers the non-merge case. | 
|  | */ | 
|  | khugepaged_enter_vma(vma, vma->vm_flags); | 
|  |  | 
|  | file_expanded: | 
|  | file = vma->vm_file; | 
|  | ksm_add_vma(vma); | 
|  | expanded: | 
|  | perf_event_mmap(vma); | 
|  |  | 
|  | vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); | 
|  | if (vm_flags & VM_LOCKED) { | 
|  | if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || | 
|  | is_vm_hugetlb_page(vma) || | 
|  | vma == get_gate_vma(current->mm)) | 
|  | vm_flags_clear(vma, VM_LOCKED_MASK); | 
|  | else | 
|  | mm->locked_vm += (len >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | if (file) | 
|  | uprobe_mmap(vma); | 
|  |  | 
|  | /* | 
|  | * New (or expanded) vma always get soft dirty status. | 
|  | * Otherwise user-space soft-dirty page tracker won't | 
|  | * be able to distinguish situation when vma area unmapped, | 
|  | * then new mapped in-place (which must be aimed as | 
|  | * a completely new data area). | 
|  | */ | 
|  | vm_flags_set(vma, VM_SOFTDIRTY); | 
|  |  | 
|  | vma_set_page_prot(vma); | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | unmap_and_free_file_vma: | 
|  | fput(vma->vm_file); | 
|  | vma->vm_file = NULL; | 
|  |  | 
|  | vma_iter_set(&vmi, vma->vm_end); | 
|  | /* Undo any partial mapping done by a device driver. */ | 
|  | unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, | 
|  | vma->vm_end, vma->vm_end, true); | 
|  | free_iter_vma: | 
|  | vma_iter_free(&vmi); | 
|  | free_vma: | 
|  | vm_area_free(vma); | 
|  | unacct_error: | 
|  | if (charged) | 
|  | vm_unacct_memory(charged); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | unsigned long mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, | 
|  | struct list_head *uf) | 
|  | { | 
|  | unsigned long ret; | 
|  | bool writable_file_mapping = false; | 
|  |  | 
|  | /* Check to see if MDWE is applicable. */ | 
|  | if (map_deny_write_exec(vm_flags, vm_flags)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* Allow architectures to sanity-check the vm_flags. */ | 
|  | if (!arch_validate_flags(vm_flags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Map writable and ensure this isn't a sealed memfd. */ | 
|  | if (file && (vm_flags & VM_SHARED)) { | 
|  | int error = mapping_map_writable(file->f_mapping); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | writable_file_mapping = true; | 
|  | } | 
|  |  | 
|  | ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); | 
|  |  | 
|  | /* Clear our write mapping regardless of error. */ | 
|  | if (writable_file_mapping) | 
|  | mapping_unmap_writable(file->f_mapping); | 
|  |  | 
|  | validate_mm(current->mm); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __vm_munmap(unsigned long start, size_t len, bool unlock) | 
|  | { | 
|  | int ret; | 
|  | struct mm_struct *mm = current->mm; | 
|  | LIST_HEAD(uf); | 
|  | VMA_ITERATOR(vmi, mm, start); | 
|  |  | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); | 
|  | if (ret || !unlock) | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | userfaultfd_unmap_complete(mm, &uf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int vm_munmap(unsigned long start, size_t len) | 
|  | { | 
|  | return __vm_munmap(start, len, false); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_munmap); | 
|  |  | 
|  | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) | 
|  | { | 
|  | addr = untagged_addr(addr); | 
|  | return __vm_munmap(addr, len, true); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emulation of deprecated remap_file_pages() syscall. | 
|  | */ | 
|  | SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, | 
|  | unsigned long, prot, unsigned long, pgoff, unsigned long, flags) | 
|  | { | 
|  |  | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long populate = 0; | 
|  | unsigned long ret = -EINVAL; | 
|  | struct file *file; | 
|  | vm_flags_t vm_flags; | 
|  |  | 
|  | pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", | 
|  | current->comm, current->pid); | 
|  |  | 
|  | if (prot) | 
|  | return ret; | 
|  | start = start & PAGE_MASK; | 
|  | size = size & PAGE_MASK; | 
|  |  | 
|  | if (start + size <= start) | 
|  | return ret; | 
|  |  | 
|  | /* Does pgoff wrap? */ | 
|  | if (pgoff + (size >> PAGE_SHIFT) < pgoff) | 
|  | return ret; | 
|  |  | 
|  | if (mmap_read_lock_killable(mm)) | 
|  | return -EINTR; | 
|  |  | 
|  | /* | 
|  | * Look up VMA under read lock first so we can perform the security | 
|  | * without holding locks (which can be problematic). We reacquire a | 
|  | * write lock later and check nothing changed underneath us. | 
|  | */ | 
|  | vma = vma_lookup(mm, start); | 
|  |  | 
|  | if (!vma || !(vma->vm_flags & VM_SHARED)) { | 
|  | mmap_read_unlock(mm); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; | 
|  | prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; | 
|  | prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; | 
|  |  | 
|  | flags &= MAP_NONBLOCK; | 
|  | flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | flags |= MAP_LOCKED; | 
|  |  | 
|  | /* Save vm_flags used to calculate prot and flags, and recheck later. */ | 
|  | vm_flags = vma->vm_flags; | 
|  | file = get_file(vma->vm_file); | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | /* Call outside mmap_lock to be consistent with other callers. */ | 
|  | ret = security_mmap_file(file, prot, flags); | 
|  | if (ret) { | 
|  | fput(file); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  |  | 
|  | /* OK security check passed, take write lock + let it rip. */ | 
|  | if (mmap_write_lock_killable(mm)) { | 
|  | fput(file); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | vma = vma_lookup(mm, start); | 
|  |  | 
|  | if (!vma) | 
|  | goto out; | 
|  |  | 
|  | /* Make sure things didn't change under us. */ | 
|  | if (vma->vm_flags != vm_flags) | 
|  | goto out; | 
|  | if (vma->vm_file != file) | 
|  | goto out; | 
|  |  | 
|  | if (start + size > vma->vm_end) { | 
|  | VMA_ITERATOR(vmi, mm, vma->vm_end); | 
|  | struct vm_area_struct *next, *prev = vma; | 
|  |  | 
|  | for_each_vma_range(vmi, next, start + size) { | 
|  | /* hole between vmas ? */ | 
|  | if (next->vm_start != prev->vm_end) | 
|  | goto out; | 
|  |  | 
|  | if (next->vm_file != vma->vm_file) | 
|  | goto out; | 
|  |  | 
|  | if (next->vm_flags != vma->vm_flags) | 
|  | goto out; | 
|  |  | 
|  | if (start + size <= next->vm_end) | 
|  | break; | 
|  |  | 
|  | prev = next; | 
|  | } | 
|  |  | 
|  | if (!next) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = do_mmap(vma->vm_file, start, size, | 
|  | prot, flags, 0, pgoff, &populate, NULL); | 
|  | out: | 
|  | mmap_write_unlock(mm); | 
|  | fput(file); | 
|  | if (populate) | 
|  | mm_populate(ret, populate); | 
|  | if (!IS_ERR_VALUE(ret)) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_vma_munmap() - Unmap a full or partial vma. | 
|  | * @vmi: The vma iterator pointing at the vma | 
|  | * @vma: The first vma to be munmapped | 
|  | * @start: the start of the address to unmap | 
|  | * @end: The end of the address to unmap | 
|  | * @uf: The userfaultfd list_head | 
|  | * @unlock: Drop the lock on success | 
|  | * | 
|  | * unmaps a VMA mapping when the vma iterator is already in position. | 
|  | * Does not handle alignment. | 
|  | * | 
|  | * Return: 0 on success drops the lock of so directed, error on failure and will | 
|  | * still hold the lock. | 
|  | */ | 
|  | int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, struct list_head *uf, | 
|  | bool unlock) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | arch_unmap(mm, start, end); | 
|  | return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_brk_flags() - Increase the brk vma if the flags match. | 
|  | * @vmi: The vma iterator | 
|  | * @addr: The start address | 
|  | * @len: The length of the increase | 
|  | * @vma: The vma, | 
|  | * @flags: The VMA Flags | 
|  | * | 
|  | * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags | 
|  | * do not match then create a new anonymous VMA.  Eventually we may be able to | 
|  | * do some brk-specific accounting here. | 
|  | */ | 
|  | static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long len, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vma_prepare vp; | 
|  |  | 
|  | /* | 
|  | * Check against address space limits by the changed size | 
|  | * Note: This happens *after* clearing old mappings in some code paths. | 
|  | */ | 
|  | flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; | 
|  | if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Expand the existing vma if possible; Note that singular lists do not | 
|  | * occur after forking, so the expand will only happen on new VMAs. | 
|  | */ | 
|  | if (vma && vma->vm_end == addr && !vma_policy(vma) && | 
|  | can_vma_merge_after(vma, flags, NULL, NULL, | 
|  | addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { | 
|  | vma_iter_config(vmi, vma->vm_start, addr + len); | 
|  | if (vma_iter_prealloc(vmi, vma)) | 
|  | goto unacct_fail; | 
|  |  | 
|  | vma_start_write(vma); | 
|  |  | 
|  | init_vma_prep(&vp, vma); | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); | 
|  | vma->vm_end = addr + len; | 
|  | vm_flags_set(vma, VM_SOFTDIRTY); | 
|  | vma_iter_store(vmi, vma); | 
|  |  | 
|  | vma_complete(&vp, vmi, mm); | 
|  | khugepaged_enter_vma(vma, flags); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (vma) | 
|  | vma_iter_next_range(vmi); | 
|  | /* create a vma struct for an anonymous mapping */ | 
|  | vma = vm_area_alloc(mm); | 
|  | if (!vma) | 
|  | goto unacct_fail; | 
|  |  | 
|  | vma_set_anonymous(vma); | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  | vma->vm_pgoff = addr >> PAGE_SHIFT; | 
|  | vm_flags_init(vma, flags); | 
|  | vma->vm_page_prot = vm_get_page_prot(flags); | 
|  | vma_start_write(vma); | 
|  | if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) | 
|  | goto mas_store_fail; | 
|  |  | 
|  | mm->map_count++; | 
|  | validate_mm(mm); | 
|  | ksm_add_vma(vma); | 
|  | out: | 
|  | perf_event_mmap(vma); | 
|  | mm->total_vm += len >> PAGE_SHIFT; | 
|  | mm->data_vm += len >> PAGE_SHIFT; | 
|  | if (flags & VM_LOCKED) | 
|  | mm->locked_vm += (len >> PAGE_SHIFT); | 
|  | vm_flags_set(vma, VM_SOFTDIRTY); | 
|  | return 0; | 
|  |  | 
|  | mas_store_fail: | 
|  | vm_area_free(vma); | 
|  | unacct_fail: | 
|  | vm_unacct_memory(len >> PAGE_SHIFT); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | unsigned long len; | 
|  | int ret; | 
|  | bool populate; | 
|  | LIST_HEAD(uf); | 
|  | VMA_ITERATOR(vmi, mm, addr); | 
|  |  | 
|  | len = PAGE_ALIGN(request); | 
|  | if (len < request) | 
|  | return -ENOMEM; | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | /* Until we need other flags, refuse anything except VM_EXEC. */ | 
|  | if ((flags & (~VM_EXEC)) != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = check_brk_limits(addr, len); | 
|  | if (ret) | 
|  | goto limits_failed; | 
|  |  | 
|  | ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); | 
|  | if (ret) | 
|  | goto munmap_failed; | 
|  |  | 
|  | vma = vma_prev(&vmi); | 
|  | ret = do_brk_flags(&vmi, vma, addr, len, flags); | 
|  | populate = ((mm->def_flags & VM_LOCKED) != 0); | 
|  | mmap_write_unlock(mm); | 
|  | userfaultfd_unmap_complete(mm, &uf); | 
|  | if (populate && !ret) | 
|  | mm_populate(addr, len); | 
|  | return ret; | 
|  |  | 
|  | munmap_failed: | 
|  | limits_failed: | 
|  | mmap_write_unlock(mm); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_brk_flags); | 
|  |  | 
|  | int vm_brk(unsigned long addr, unsigned long len) | 
|  | { | 
|  | return vm_brk_flags(addr, len, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_brk); | 
|  |  | 
|  | /* Release all mmaps. */ | 
|  | void exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | struct mmu_gather tlb; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long nr_accounted = 0; | 
|  | MA_STATE(mas, &mm->mm_mt, 0, 0); | 
|  | int count = 0; | 
|  |  | 
|  | /* mm's last user has gone, and its about to be pulled down */ | 
|  | mmu_notifier_release(mm); | 
|  |  | 
|  | mmap_read_lock(mm); | 
|  | arch_exit_mmap(mm); | 
|  |  | 
|  | vma = mas_find(&mas, ULONG_MAX); | 
|  | if (!vma) { | 
|  | /* Can happen if dup_mmap() received an OOM */ | 
|  | mmap_read_unlock(mm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | lru_add_drain(); | 
|  | flush_cache_mm(mm); | 
|  | tlb_gather_mmu_fullmm(&tlb, mm); | 
|  | /* update_hiwater_rss(mm) here? but nobody should be looking */ | 
|  | /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ | 
|  | unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false); | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | /* | 
|  | * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper | 
|  | * because the memory has been already freed. | 
|  | */ | 
|  | set_bit(MMF_OOM_SKIP, &mm->flags); | 
|  | mmap_write_lock(mm); | 
|  | mt_clear_in_rcu(&mm->mm_mt); | 
|  | mas_set(&mas, vma->vm_end); | 
|  | free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS, | 
|  | USER_PGTABLES_CEILING, true); | 
|  | tlb_finish_mmu(&tlb); | 
|  |  | 
|  | /* | 
|  | * Walk the list again, actually closing and freeing it, with preemption | 
|  | * enabled, without holding any MM locks besides the unreachable | 
|  | * mmap_write_lock. | 
|  | */ | 
|  | mas_set(&mas, vma->vm_end); | 
|  | do { | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | nr_accounted += vma_pages(vma); | 
|  | remove_vma(vma, true); | 
|  | count++; | 
|  | cond_resched(); | 
|  | } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); | 
|  |  | 
|  | BUG_ON(count != mm->map_count); | 
|  |  | 
|  | trace_exit_mmap(mm); | 
|  | __mt_destroy(&mm->mm_mt); | 
|  | mmap_write_unlock(mm); | 
|  | vm_unacct_memory(nr_accounted); | 
|  | } | 
|  |  | 
|  | /* Insert vm structure into process list sorted by address | 
|  | * and into the inode's i_mmap tree.  If vm_file is non-NULL | 
|  | * then i_mmap_rwsem is taken here. | 
|  | */ | 
|  | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long charged = vma_pages(vma); | 
|  |  | 
|  |  | 
|  | if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if ((vma->vm_flags & VM_ACCOUNT) && | 
|  | security_vm_enough_memory_mm(mm, charged)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * The vm_pgoff of a purely anonymous vma should be irrelevant | 
|  | * until its first write fault, when page's anon_vma and index | 
|  | * are set.  But now set the vm_pgoff it will almost certainly | 
|  | * end up with (unless mremap moves it elsewhere before that | 
|  | * first wfault), so /proc/pid/maps tells a consistent story. | 
|  | * | 
|  | * By setting it to reflect the virtual start address of the | 
|  | * vma, merges and splits can happen in a seamless way, just | 
|  | * using the existing file pgoff checks and manipulations. | 
|  | * Similarly in do_mmap and in do_brk_flags. | 
|  | */ | 
|  | if (vma_is_anonymous(vma)) { | 
|  | BUG_ON(vma->anon_vma); | 
|  | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | if (vma_link(mm, vma)) { | 
|  | vm_unacct_memory(charged); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the vma structure to a new location in the same mm, | 
|  | * prior to moving page table entries, to effect an mremap move. | 
|  | */ | 
|  | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, | 
|  | unsigned long addr, unsigned long len, pgoff_t pgoff, | 
|  | bool *need_rmap_locks) | 
|  | { | 
|  | struct vm_area_struct *vma = *vmap; | 
|  | unsigned long vma_start = vma->vm_start; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *new_vma, *prev; | 
|  | bool faulted_in_anon_vma = true; | 
|  | VMA_ITERATOR(vmi, mm, addr); | 
|  |  | 
|  | /* | 
|  | * If anonymous vma has not yet been faulted, update new pgoff | 
|  | * to match new location, to increase its chance of merging. | 
|  | */ | 
|  | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  | faulted_in_anon_vma = false; | 
|  | } | 
|  |  | 
|  | new_vma = find_vma_prev(mm, addr, &prev); | 
|  | if (new_vma && new_vma->vm_start < addr + len) | 
|  | return NULL;	/* should never get here */ | 
|  |  | 
|  | new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, | 
|  | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), | 
|  | vma->vm_userfaultfd_ctx, anon_vma_name(vma)); | 
|  | if (new_vma) { | 
|  | /* | 
|  | * Source vma may have been merged into new_vma | 
|  | */ | 
|  | if (unlikely(vma_start >= new_vma->vm_start && | 
|  | vma_start < new_vma->vm_end)) { | 
|  | /* | 
|  | * The only way we can get a vma_merge with | 
|  | * self during an mremap is if the vma hasn't | 
|  | * been faulted in yet and we were allowed to | 
|  | * reset the dst vma->vm_pgoff to the | 
|  | * destination address of the mremap to allow | 
|  | * the merge to happen. mremap must change the | 
|  | * vm_pgoff linearity between src and dst vmas | 
|  | * (in turn preventing a vma_merge) to be | 
|  | * safe. It is only safe to keep the vm_pgoff | 
|  | * linear if there are no pages mapped yet. | 
|  | */ | 
|  | VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); | 
|  | *vmap = vma = new_vma; | 
|  | } | 
|  | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); | 
|  | } else { | 
|  | new_vma = vm_area_dup(vma); | 
|  | if (!new_vma) | 
|  | goto out; | 
|  | new_vma->vm_start = addr; | 
|  | new_vma->vm_end = addr + len; | 
|  | new_vma->vm_pgoff = pgoff; | 
|  | if (vma_dup_policy(vma, new_vma)) | 
|  | goto out_free_vma; | 
|  | if (anon_vma_clone(new_vma, vma)) | 
|  | goto out_free_mempol; | 
|  | if (new_vma->vm_file) | 
|  | get_file(new_vma->vm_file); | 
|  | if (new_vma->vm_ops && new_vma->vm_ops->open) | 
|  | new_vma->vm_ops->open(new_vma); | 
|  | if (vma_link(mm, new_vma)) | 
|  | goto out_vma_link; | 
|  | *need_rmap_locks = false; | 
|  | } | 
|  | return new_vma; | 
|  |  | 
|  | out_vma_link: | 
|  | vma_close(new_vma); | 
|  |  | 
|  | if (new_vma->vm_file) | 
|  | fput(new_vma->vm_file); | 
|  |  | 
|  | unlink_anon_vmas(new_vma); | 
|  | out_free_mempol: | 
|  | mpol_put(vma_policy(new_vma)); | 
|  | out_free_vma: | 
|  | vm_area_free(new_vma); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the calling process may expand its vm space by the passed | 
|  | * number of pages | 
|  | */ | 
|  | bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) | 
|  | { | 
|  | if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) | 
|  | return false; | 
|  |  | 
|  | if (is_data_mapping(flags) && | 
|  | mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { | 
|  | /* Workaround for Valgrind */ | 
|  | if (rlimit(RLIMIT_DATA) == 0 && | 
|  | mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) | 
|  | return true; | 
|  |  | 
|  | pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", | 
|  | current->comm, current->pid, | 
|  | (mm->data_vm + npages) << PAGE_SHIFT, | 
|  | rlimit(RLIMIT_DATA), | 
|  | ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); | 
|  |  | 
|  | if (!ignore_rlimit_data) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) | 
|  | { | 
|  | WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); | 
|  |  | 
|  | if (is_exec_mapping(flags)) | 
|  | mm->exec_vm += npages; | 
|  | else if (is_stack_mapping(flags)) | 
|  | mm->stack_vm += npages; | 
|  | else if (is_data_mapping(flags)) | 
|  | mm->data_vm += npages; | 
|  | } | 
|  |  | 
|  | static vm_fault_t special_mapping_fault(struct vm_fault *vmf); | 
|  |  | 
|  | /* | 
|  | * Having a close hook prevents vma merging regardless of flags. | 
|  | */ | 
|  | static void special_mapping_close(struct vm_area_struct *vma) | 
|  | { | 
|  | } | 
|  |  | 
|  | static const char *special_mapping_name(struct vm_area_struct *vma) | 
|  | { | 
|  | return ((struct vm_special_mapping *)vma->vm_private_data)->name; | 
|  | } | 
|  |  | 
|  | static int special_mapping_mremap(struct vm_area_struct *new_vma) | 
|  | { | 
|  | struct vm_special_mapping *sm = new_vma->vm_private_data; | 
|  |  | 
|  | if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (sm->mremap) | 
|  | return sm->mremap(sm, new_vma); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | /* | 
|  | * Forbid splitting special mappings - kernel has expectations over | 
|  | * the number of pages in mapping. Together with VM_DONTEXPAND | 
|  | * the size of vma should stay the same over the special mapping's | 
|  | * lifetime. | 
|  | */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct special_mapping_vmops = { | 
|  | .close = special_mapping_close, | 
|  | .fault = special_mapping_fault, | 
|  | .mremap = special_mapping_mremap, | 
|  | .name = special_mapping_name, | 
|  | /* vDSO code relies that VVAR can't be accessed remotely */ | 
|  | .access = NULL, | 
|  | .may_split = special_mapping_split, | 
|  | }; | 
|  |  | 
|  | static const struct vm_operations_struct legacy_special_mapping_vmops = { | 
|  | .close = special_mapping_close, | 
|  | .fault = special_mapping_fault, | 
|  | }; | 
|  |  | 
|  | static vm_fault_t special_mapping_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | pgoff_t pgoff; | 
|  | struct page **pages; | 
|  |  | 
|  | if (vma->vm_ops == &legacy_special_mapping_vmops) { | 
|  | pages = vma->vm_private_data; | 
|  | } else { | 
|  | struct vm_special_mapping *sm = vma->vm_private_data; | 
|  |  | 
|  | if (sm->fault) | 
|  | return sm->fault(sm, vmf->vma, vmf); | 
|  |  | 
|  | pages = sm->pages; | 
|  | } | 
|  |  | 
|  | for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) | 
|  | pgoff--; | 
|  |  | 
|  | if (*pages) { | 
|  | struct page *page = *pages; | 
|  | get_page(page); | 
|  | vmf->page = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *__install_special_mapping( | 
|  | struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, void *priv, | 
|  | const struct vm_operations_struct *ops) | 
|  | { | 
|  | int ret; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = vm_area_alloc(mm); | 
|  | if (unlikely(vma == NULL)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  |  | 
|  | vm_flags_init(vma, (vm_flags | mm->def_flags | | 
|  | VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  |  | 
|  | vma->vm_ops = ops; | 
|  | vma->vm_private_data = priv; | 
|  |  | 
|  | ret = insert_vm_struct(mm, vma); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  |  | 
|  | return vma; | 
|  |  | 
|  | out: | 
|  | vm_area_free(vma); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | bool vma_is_special_mapping(const struct vm_area_struct *vma, | 
|  | const struct vm_special_mapping *sm) | 
|  | { | 
|  | return vma->vm_private_data == sm && | 
|  | (vma->vm_ops == &special_mapping_vmops || | 
|  | vma->vm_ops == &legacy_special_mapping_vmops); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with mm->mmap_lock held for writing. | 
|  | * Insert a new vma covering the given region, with the given flags. | 
|  | * Its pages are supplied by the given array of struct page *. | 
|  | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. | 
|  | * The region past the last page supplied will always produce SIGBUS. | 
|  | * The array pointer and the pages it points to are assumed to stay alive | 
|  | * for as long as this mapping might exist. | 
|  | */ | 
|  | struct vm_area_struct *_install_special_mapping( | 
|  | struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, const struct vm_special_mapping *spec) | 
|  | { | 
|  | return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, | 
|  | &special_mapping_vmops); | 
|  | } | 
|  |  | 
|  | int install_special_mapping(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, struct page **pages) | 
|  | { | 
|  | struct vm_area_struct *vma = __install_special_mapping( | 
|  | mm, addr, len, vm_flags, (void *)pages, | 
|  | &legacy_special_mapping_vmops); | 
|  |  | 
|  | return PTR_ERR_OR_ZERO(vma); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(mm_all_locks_mutex); | 
|  |  | 
|  | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | 
|  | { | 
|  | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { | 
|  | /* | 
|  | * The LSB of head.next can't change from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); | 
|  | /* | 
|  | * We can safely modify head.next after taking the | 
|  | * anon_vma->root->rwsem. If some other vma in this mm shares | 
|  | * the same anon_vma we won't take it again. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us thanks to the | 
|  | * anon_vma->root->rwsem. | 
|  | */ | 
|  | if (__test_and_set_bit(0, (unsigned long *) | 
|  | &anon_vma->root->rb_root.rb_root.rb_node)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) | 
|  | { | 
|  | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change from under us because | 
|  | * we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * Operations on ->flags have to be atomic because | 
|  | * even if AS_MM_ALL_LOCKS is stable thanks to the | 
|  | * mm_all_locks_mutex, there may be other cpus | 
|  | * changing other bitflags in parallel to us. | 
|  | */ | 
|  | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | 
|  | BUG(); | 
|  | down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This operation locks against the VM for all pte/vma/mm related | 
|  | * operations that could ever happen on a certain mm. This includes | 
|  | * vmtruncate, try_to_unmap, and all page faults. | 
|  | * | 
|  | * The caller must take the mmap_lock in write mode before calling | 
|  | * mm_take_all_locks(). The caller isn't allowed to release the | 
|  | * mmap_lock until mm_drop_all_locks() returns. | 
|  | * | 
|  | * mmap_lock in write mode is required in order to block all operations | 
|  | * that could modify pagetables and free pages without need of | 
|  | * altering the vma layout. It's also needed in write mode to avoid new | 
|  | * anon_vmas to be associated with existing vmas. | 
|  | * | 
|  | * A single task can't take more than one mm_take_all_locks() in a row | 
|  | * or it would deadlock. | 
|  | * | 
|  | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in | 
|  | * mapping->flags avoid to take the same lock twice, if more than one | 
|  | * vma in this mm is backed by the same anon_vma or address_space. | 
|  | * | 
|  | * We take locks in following order, accordingly to comment at beginning | 
|  | * of mm/rmap.c: | 
|  | *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for | 
|  | *     hugetlb mapping); | 
|  | *   - all vmas marked locked | 
|  | *   - all i_mmap_rwsem locks; | 
|  | *   - all anon_vma->rwseml | 
|  | * | 
|  | * We can take all locks within these types randomly because the VM code | 
|  | * doesn't nest them and we protected from parallel mm_take_all_locks() by | 
|  | * mm_all_locks_mutex. | 
|  | * | 
|  | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | 
|  | * that may have to take thousand of locks. | 
|  | * | 
|  | * mm_take_all_locks() can fail if it's interrupted by signals. | 
|  | */ | 
|  | int mm_take_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *avc; | 
|  | MA_STATE(mas, &mm->mm_mt, 0, 0); | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | mutex_lock(&mm_all_locks_mutex); | 
|  |  | 
|  | /* | 
|  | * vma_start_write() does not have a complement in mm_drop_all_locks() | 
|  | * because vma_start_write() is always asymmetrical; it marks a VMA as | 
|  | * being written to until mmap_write_unlock() or mmap_write_downgrade() | 
|  | * is reached. | 
|  | */ | 
|  | mas_for_each(&mas, vma, ULONG_MAX) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | vma_start_write(vma); | 
|  | } | 
|  |  | 
|  | mas_set(&mas, 0); | 
|  | mas_for_each(&mas, vma, ULONG_MAX) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping && | 
|  | is_vm_hugetlb_page(vma)) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | mas_set(&mas, 0); | 
|  | mas_for_each(&mas, vma, ULONG_MAX) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping && | 
|  | !is_vm_hugetlb_page(vma)) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | mas_set(&mas, 0); | 
|  | mas_for_each(&mas, vma, ULONG_MAX) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->anon_vma) | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | vm_lock_anon_vma(mm, avc->anon_vma); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | mm_drop_all_locks(mm); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { | 
|  | /* | 
|  | * The LSB of head.next can't change to 0 from under | 
|  | * us because we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * We must however clear the bitflag before unlocking | 
|  | * the vma so the users using the anon_vma->rb_root will | 
|  | * never see our bitflag. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us until we release the | 
|  | * anon_vma->root->rwsem. | 
|  | */ | 
|  | if (!__test_and_clear_bit(0, (unsigned long *) | 
|  | &anon_vma->root->rb_root.rb_root.rb_node)) | 
|  | BUG(); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change to 0 from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | i_mmap_unlock_write(mapping); | 
|  | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, | 
|  | &mapping->flags)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mmap_lock cannot be released by the caller until | 
|  | * mm_drop_all_locks() returns. | 
|  | */ | 
|  | void mm_drop_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *avc; | 
|  | MA_STATE(mas, &mm->mm_mt, 0, 0); | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | 
|  |  | 
|  | mas_for_each(&mas, vma, ULONG_MAX) { | 
|  | if (vma->anon_vma) | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | vm_unlock_anon_vma(avc->anon_vma); | 
|  | if (vma->vm_file && vma->vm_file->f_mapping) | 
|  | vm_unlock_mapping(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&mm_all_locks_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialise the percpu counter for VM | 
|  | */ | 
|  | void __init mmap_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); | 
|  | VM_BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise sysctl_user_reserve_kbytes. | 
|  | * | 
|  | * This is intended to prevent a user from starting a single memory hogging | 
|  | * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER | 
|  | * mode. | 
|  | * | 
|  | * The default value is min(3% of free memory, 128MB) | 
|  | * 128MB is enough to recover with sshd/login, bash, and top/kill. | 
|  | */ | 
|  | static int init_user_reserve(void) | 
|  | { | 
|  | unsigned long free_kbytes; | 
|  |  | 
|  | free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); | 
|  |  | 
|  | sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_user_reserve); | 
|  |  | 
|  | /* | 
|  | * Initialise sysctl_admin_reserve_kbytes. | 
|  | * | 
|  | * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin | 
|  | * to log in and kill a memory hogging process. | 
|  | * | 
|  | * Systems with more than 256MB will reserve 8MB, enough to recover | 
|  | * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will | 
|  | * only reserve 3% of free pages by default. | 
|  | */ | 
|  | static int init_admin_reserve(void) | 
|  | { | 
|  | unsigned long free_kbytes; | 
|  |  | 
|  | free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); | 
|  |  | 
|  | sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_admin_reserve); | 
|  |  | 
|  | /* | 
|  | * Reinititalise user and admin reserves if memory is added or removed. | 
|  | * | 
|  | * The default user reserve max is 128MB, and the default max for the | 
|  | * admin reserve is 8MB. These are usually, but not always, enough to | 
|  | * enable recovery from a memory hogging process using login/sshd, a shell, | 
|  | * and tools like top. It may make sense to increase or even disable the | 
|  | * reserve depending on the existence of swap or variations in the recovery | 
|  | * tools. So, the admin may have changed them. | 
|  | * | 
|  | * If memory is added and the reserves have been eliminated or increased above | 
|  | * the default max, then we'll trust the admin. | 
|  | * | 
|  | * If memory is removed and there isn't enough free memory, then we | 
|  | * need to reset the reserves. | 
|  | * | 
|  | * Otherwise keep the reserve set by the admin. | 
|  | */ | 
|  | static int reserve_mem_notifier(struct notifier_block *nb, | 
|  | unsigned long action, void *data) | 
|  | { | 
|  | unsigned long tmp, free_kbytes; | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_ONLINE: | 
|  | /* Default max is 128MB. Leave alone if modified by operator. */ | 
|  | tmp = sysctl_user_reserve_kbytes; | 
|  | if (0 < tmp && tmp < (1UL << 17)) | 
|  | init_user_reserve(); | 
|  |  | 
|  | /* Default max is 8MB.  Leave alone if modified by operator. */ | 
|  | tmp = sysctl_admin_reserve_kbytes; | 
|  | if (0 < tmp && tmp < (1UL << 13)) | 
|  | init_admin_reserve(); | 
|  |  | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); | 
|  |  | 
|  | if (sysctl_user_reserve_kbytes > free_kbytes) { | 
|  | init_user_reserve(); | 
|  | pr_info("vm.user_reserve_kbytes reset to %lu\n", | 
|  | sysctl_user_reserve_kbytes); | 
|  | } | 
|  |  | 
|  | if (sysctl_admin_reserve_kbytes > free_kbytes) { | 
|  | init_admin_reserve(); | 
|  | pr_info("vm.admin_reserve_kbytes reset to %lu\n", | 
|  | sysctl_admin_reserve_kbytes); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int __meminit init_reserve_notifier(void) | 
|  | { | 
|  | if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) | 
|  | pr_err("Failed registering memory add/remove notifier for admin reserve\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_reserve_notifier); |