|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs | 
|  | * Copyright (C) 2013, 2021 Intel Corporation | 
|  | */ | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/property.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/spi/pxa2xx_spi.h> | 
|  | #include <linux/spi/spi.h> | 
|  |  | 
|  | #include "spi-pxa2xx.h" | 
|  |  | 
|  | MODULE_AUTHOR("Stephen Street"); | 
|  | MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:pxa2xx-spi"); | 
|  |  | 
|  | #define TIMOUT_DFLT		1000 | 
|  |  | 
|  | /* | 
|  | * For testing SSCR1 changes that require SSP restart, basically | 
|  | * everything except the service and interrupt enables, the PXA270 developer | 
|  | * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this | 
|  | * list, but the PXA255 developer manual says all bits without really meaning | 
|  | * the service and interrupt enables. | 
|  | */ | 
|  | #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | 
|  | | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | 
|  | | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | 
|  | | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | 
|  | | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ | 
|  | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) | 
|  |  | 
|  | #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\ | 
|  | | QUARK_X1000_SSCR1_EFWR	\ | 
|  | | QUARK_X1000_SSCR1_RFT		\ | 
|  | | QUARK_X1000_SSCR1_TFT		\ | 
|  | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) | 
|  |  | 
|  | #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | 
|  | | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | 
|  | | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | 
|  | | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | 
|  | | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ | 
|  | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) | 
|  |  | 
|  | #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24) | 
|  | #define LPSS_CS_CONTROL_SW_MODE			BIT(0) | 
|  | #define LPSS_CS_CONTROL_CS_HIGH			BIT(1) | 
|  | #define LPSS_CAPS_CS_EN_SHIFT			9 | 
|  | #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT) | 
|  |  | 
|  | #define LPSS_PRIV_CLOCK_GATE 0x38 | 
|  | #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 | 
|  | #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 | 
|  |  | 
|  | struct lpss_config { | 
|  | /* LPSS offset from drv_data->ioaddr */ | 
|  | unsigned offset; | 
|  | /* Register offsets from drv_data->lpss_base or -1 */ | 
|  | int reg_general; | 
|  | int reg_ssp; | 
|  | int reg_cs_ctrl; | 
|  | int reg_capabilities; | 
|  | /* FIFO thresholds */ | 
|  | u32 rx_threshold; | 
|  | u32 tx_threshold_lo; | 
|  | u32 tx_threshold_hi; | 
|  | /* Chip select control */ | 
|  | unsigned cs_sel_shift; | 
|  | unsigned cs_sel_mask; | 
|  | unsigned cs_num; | 
|  | /* Quirks */ | 
|  | unsigned cs_clk_stays_gated : 1; | 
|  | }; | 
|  |  | 
|  | /* Keep these sorted with enum pxa_ssp_type */ | 
|  | static const struct lpss_config lpss_platforms[] = { | 
|  | {	/* LPSS_LPT_SSP */ | 
|  | .offset = 0x800, | 
|  | .reg_general = 0x08, | 
|  | .reg_ssp = 0x0c, | 
|  | .reg_cs_ctrl = 0x18, | 
|  | .reg_capabilities = -1, | 
|  | .rx_threshold = 64, | 
|  | .tx_threshold_lo = 160, | 
|  | .tx_threshold_hi = 224, | 
|  | }, | 
|  | {	/* LPSS_BYT_SSP */ | 
|  | .offset = 0x400, | 
|  | .reg_general = 0x08, | 
|  | .reg_ssp = 0x0c, | 
|  | .reg_cs_ctrl = 0x18, | 
|  | .reg_capabilities = -1, | 
|  | .rx_threshold = 64, | 
|  | .tx_threshold_lo = 160, | 
|  | .tx_threshold_hi = 224, | 
|  | }, | 
|  | {	/* LPSS_BSW_SSP */ | 
|  | .offset = 0x400, | 
|  | .reg_general = 0x08, | 
|  | .reg_ssp = 0x0c, | 
|  | .reg_cs_ctrl = 0x18, | 
|  | .reg_capabilities = -1, | 
|  | .rx_threshold = 64, | 
|  | .tx_threshold_lo = 160, | 
|  | .tx_threshold_hi = 224, | 
|  | .cs_sel_shift = 2, | 
|  | .cs_sel_mask = 1 << 2, | 
|  | .cs_num = 2, | 
|  | }, | 
|  | {	/* LPSS_SPT_SSP */ | 
|  | .offset = 0x200, | 
|  | .reg_general = -1, | 
|  | .reg_ssp = 0x20, | 
|  | .reg_cs_ctrl = 0x24, | 
|  | .reg_capabilities = -1, | 
|  | .rx_threshold = 1, | 
|  | .tx_threshold_lo = 32, | 
|  | .tx_threshold_hi = 56, | 
|  | }, | 
|  | {	/* LPSS_BXT_SSP */ | 
|  | .offset = 0x200, | 
|  | .reg_general = -1, | 
|  | .reg_ssp = 0x20, | 
|  | .reg_cs_ctrl = 0x24, | 
|  | .reg_capabilities = 0xfc, | 
|  | .rx_threshold = 1, | 
|  | .tx_threshold_lo = 16, | 
|  | .tx_threshold_hi = 48, | 
|  | .cs_sel_shift = 8, | 
|  | .cs_sel_mask = 3 << 8, | 
|  | .cs_clk_stays_gated = true, | 
|  | }, | 
|  | {	/* LPSS_CNL_SSP */ | 
|  | .offset = 0x200, | 
|  | .reg_general = -1, | 
|  | .reg_ssp = 0x20, | 
|  | .reg_cs_ctrl = 0x24, | 
|  | .reg_capabilities = 0xfc, | 
|  | .rx_threshold = 1, | 
|  | .tx_threshold_lo = 32, | 
|  | .tx_threshold_hi = 56, | 
|  | .cs_sel_shift = 8, | 
|  | .cs_sel_mask = 3 << 8, | 
|  | .cs_clk_stays_gated = true, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static inline const struct lpss_config | 
|  | *lpss_get_config(const struct driver_data *drv_data) | 
|  | { | 
|  | return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; | 
|  | } | 
|  |  | 
|  | static bool is_lpss_ssp(const struct driver_data *drv_data) | 
|  | { | 
|  | switch (drv_data->ssp_type) { | 
|  | case LPSS_LPT_SSP: | 
|  | case LPSS_BYT_SSP: | 
|  | case LPSS_BSW_SSP: | 
|  | case LPSS_SPT_SSP: | 
|  | case LPSS_BXT_SSP: | 
|  | case LPSS_CNL_SSP: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_quark_x1000_ssp(const struct driver_data *drv_data) | 
|  | { | 
|  | return drv_data->ssp_type == QUARK_X1000_SSP; | 
|  | } | 
|  |  | 
|  | static bool is_mmp2_ssp(const struct driver_data *drv_data) | 
|  | { | 
|  | return drv_data->ssp_type == MMP2_SSP; | 
|  | } | 
|  |  | 
|  | static bool is_mrfld_ssp(const struct driver_data *drv_data) | 
|  | { | 
|  | return drv_data->ssp_type == MRFLD_SSP; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) | 
|  | { | 
|  | if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) | 
|  | pxa2xx_spi_write(drv_data, reg, value & mask); | 
|  | } | 
|  |  | 
|  | static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) | 
|  | { | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | return QUARK_X1000_SSCR1_CHANGE_MASK; | 
|  | case CE4100_SSP: | 
|  | return CE4100_SSCR1_CHANGE_MASK; | 
|  | default: | 
|  | return SSCR1_CHANGE_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) | 
|  | { | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | return RX_THRESH_QUARK_X1000_DFLT; | 
|  | case CE4100_SSP: | 
|  | return RX_THRESH_CE4100_DFLT; | 
|  | default: | 
|  | return RX_THRESH_DFLT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) | 
|  | { | 
|  | u32 mask; | 
|  |  | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | mask = QUARK_X1000_SSSR_TFL_MASK; | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | mask = CE4100_SSSR_TFL_MASK; | 
|  | break; | 
|  | default: | 
|  | mask = SSSR_TFL_MASK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return read_SSSR_bits(drv_data, mask) == mask; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, | 
|  | u32 *sccr1_reg) | 
|  | { | 
|  | u32 mask; | 
|  |  | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | mask = QUARK_X1000_SSCR1_RFT; | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | mask = CE4100_SSCR1_RFT; | 
|  | break; | 
|  | default: | 
|  | mask = SSCR1_RFT; | 
|  | break; | 
|  | } | 
|  | *sccr1_reg &= ~mask; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, | 
|  | u32 *sccr1_reg, u32 threshold) | 
|  | { | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); | 
|  | break; | 
|  | default: | 
|  | *sccr1_reg |= SSCR1_RxTresh(threshold); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, | 
|  | u32 clk_div, u8 bits) | 
|  | { | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | return clk_div | 
|  | | QUARK_X1000_SSCR0_Motorola | 
|  | | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); | 
|  | default: | 
|  | return clk_div | 
|  | | SSCR0_Motorola | 
|  | | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) | 
|  | | (bits > 16 ? SSCR0_EDSS : 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read and write LPSS SSP private registers. Caller must first check that | 
|  | * is_lpss_ssp() returns true before these can be called. | 
|  | */ | 
|  | static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) | 
|  | { | 
|  | WARN_ON(!drv_data->lpss_base); | 
|  | return readl(drv_data->lpss_base + offset); | 
|  | } | 
|  |  | 
|  | static void __lpss_ssp_write_priv(struct driver_data *drv_data, | 
|  | unsigned offset, u32 value) | 
|  | { | 
|  | WARN_ON(!drv_data->lpss_base); | 
|  | writel(value, drv_data->lpss_base + offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lpss_ssp_setup - perform LPSS SSP specific setup | 
|  | * @drv_data: pointer to the driver private data | 
|  | * | 
|  | * Perform LPSS SSP specific setup. This function must be called first if | 
|  | * one is going to use LPSS SSP private registers. | 
|  | */ | 
|  | static void lpss_ssp_setup(struct driver_data *drv_data) | 
|  | { | 
|  | const struct lpss_config *config; | 
|  | u32 value; | 
|  |  | 
|  | config = lpss_get_config(drv_data); | 
|  | drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; | 
|  |  | 
|  | /* Enable software chip select control */ | 
|  | value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); | 
|  | value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); | 
|  | value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; | 
|  | __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); | 
|  |  | 
|  | /* Enable multiblock DMA transfers */ | 
|  | if (drv_data->controller_info->enable_dma) { | 
|  | __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); | 
|  |  | 
|  | if (config->reg_general >= 0) { | 
|  | value = __lpss_ssp_read_priv(drv_data, | 
|  | config->reg_general); | 
|  | value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; | 
|  | __lpss_ssp_write_priv(drv_data, | 
|  | config->reg_general, value); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lpss_ssp_select_cs(struct spi_device *spi, | 
|  | const struct lpss_config *config) | 
|  | { | 
|  | struct driver_data *drv_data = | 
|  | spi_controller_get_devdata(spi->controller); | 
|  | u32 value, cs; | 
|  |  | 
|  | if (!config->cs_sel_mask) | 
|  | return; | 
|  |  | 
|  | value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); | 
|  |  | 
|  | cs = spi_get_chipselect(spi, 0); | 
|  | cs <<= config->cs_sel_shift; | 
|  | if (cs != (value & config->cs_sel_mask)) { | 
|  | /* | 
|  | * When switching another chip select output active the | 
|  | * output must be selected first and wait 2 ssp_clk cycles | 
|  | * before changing state to active. Otherwise a short | 
|  | * glitch will occur on the previous chip select since | 
|  | * output select is latched but state control is not. | 
|  | */ | 
|  | value &= ~config->cs_sel_mask; | 
|  | value |= cs; | 
|  | __lpss_ssp_write_priv(drv_data, | 
|  | config->reg_cs_ctrl, value); | 
|  | ndelay(1000000000 / | 
|  | (drv_data->controller->max_speed_hz / 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) | 
|  | { | 
|  | struct driver_data *drv_data = | 
|  | spi_controller_get_devdata(spi->controller); | 
|  | const struct lpss_config *config; | 
|  | u32 value; | 
|  |  | 
|  | config = lpss_get_config(drv_data); | 
|  |  | 
|  | if (enable) | 
|  | lpss_ssp_select_cs(spi, config); | 
|  |  | 
|  | value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); | 
|  | if (enable) | 
|  | value &= ~LPSS_CS_CONTROL_CS_HIGH; | 
|  | else | 
|  | value |= LPSS_CS_CONTROL_CS_HIGH; | 
|  | __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); | 
|  | if (config->cs_clk_stays_gated) { | 
|  | u32 clkgate; | 
|  |  | 
|  | /* | 
|  | * Changing CS alone when dynamic clock gating is on won't | 
|  | * actually flip CS at that time. This ruins SPI transfers | 
|  | * that specify delays, or have no data. Toggle the clock mode | 
|  | * to force on briefly to poke the CS pin to move. | 
|  | */ | 
|  | clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); | 
|  | value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | | 
|  | LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; | 
|  |  | 
|  | __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); | 
|  | __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cs_assert(struct spi_device *spi) | 
|  | { | 
|  | struct driver_data *drv_data = | 
|  | spi_controller_get_devdata(spi->controller); | 
|  |  | 
|  | if (drv_data->ssp_type == CE4100_SSP) { | 
|  | pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_lpss_ssp(drv_data)) | 
|  | lpss_ssp_cs_control(spi, true); | 
|  | } | 
|  |  | 
|  | static void cs_deassert(struct spi_device *spi) | 
|  | { | 
|  | struct driver_data *drv_data = | 
|  | spi_controller_get_devdata(spi->controller); | 
|  | unsigned long timeout; | 
|  |  | 
|  | if (drv_data->ssp_type == CE4100_SSP) | 
|  | return; | 
|  |  | 
|  | /* Wait until SSP becomes idle before deasserting the CS */ | 
|  | timeout = jiffies + msecs_to_jiffies(10); | 
|  | while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && | 
|  | !time_after(jiffies, timeout)) | 
|  | cpu_relax(); | 
|  |  | 
|  | if (is_lpss_ssp(drv_data)) | 
|  | lpss_ssp_cs_control(spi, false); | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) | 
|  | { | 
|  | if (level) | 
|  | cs_deassert(spi); | 
|  | else | 
|  | cs_assert(spi); | 
|  | } | 
|  |  | 
|  | int pxa2xx_spi_flush(struct driver_data *drv_data) | 
|  | { | 
|  | unsigned long limit = loops_per_jiffy << 1; | 
|  |  | 
|  | do { | 
|  | while (read_SSSR_bits(drv_data, SSSR_RNE)) | 
|  | pxa2xx_spi_read(drv_data, SSDR); | 
|  | } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); | 
|  | write_SSSR_CS(drv_data, SSSR_ROR); | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_off(struct driver_data *drv_data) | 
|  | { | 
|  | /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ | 
|  | if (is_mmp2_ssp(drv_data)) | 
|  | return; | 
|  |  | 
|  | pxa_ssp_disable(drv_data->ssp); | 
|  | } | 
|  |  | 
|  | static int null_writer(struct driver_data *drv_data) | 
|  | { | 
|  | u8 n_bytes = drv_data->n_bytes; | 
|  |  | 
|  | if (pxa2xx_spi_txfifo_full(drv_data) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | pxa2xx_spi_write(drv_data, SSDR, 0); | 
|  | drv_data->tx += n_bytes; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int null_reader(struct driver_data *drv_data) | 
|  | { | 
|  | u8 n_bytes = drv_data->n_bytes; | 
|  |  | 
|  | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { | 
|  | pxa2xx_spi_read(drv_data, SSDR); | 
|  | drv_data->rx += n_bytes; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static int u8_writer(struct driver_data *drv_data) | 
|  | { | 
|  | if (pxa2xx_spi_txfifo_full(drv_data) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); | 
|  | ++drv_data->tx; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int u8_reader(struct driver_data *drv_data) | 
|  | { | 
|  | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { | 
|  | *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); | 
|  | ++drv_data->rx; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static int u16_writer(struct driver_data *drv_data) | 
|  | { | 
|  | if (pxa2xx_spi_txfifo_full(drv_data) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); | 
|  | drv_data->tx += 2; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int u16_reader(struct driver_data *drv_data) | 
|  | { | 
|  | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { | 
|  | *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); | 
|  | drv_data->rx += 2; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static int u32_writer(struct driver_data *drv_data) | 
|  | { | 
|  | if (pxa2xx_spi_txfifo_full(drv_data) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); | 
|  | drv_data->tx += 4; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int u32_reader(struct driver_data *drv_data) | 
|  | { | 
|  | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { | 
|  | *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); | 
|  | drv_data->rx += 4; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static void reset_sccr1(struct driver_data *drv_data) | 
|  | { | 
|  | u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; | 
|  | struct chip_data *chip; | 
|  |  | 
|  | if (drv_data->controller->cur_msg) { | 
|  | chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); | 
|  | threshold = chip->threshold; | 
|  | } else { | 
|  | threshold = 0; | 
|  | } | 
|  |  | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | mask |= QUARK_X1000_SSCR1_RFT; | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | mask |= CE4100_SSCR1_RFT; | 
|  | break; | 
|  | default: | 
|  | mask |= SSCR1_RFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); | 
|  | } | 
|  |  | 
|  | static void int_stop_and_reset(struct driver_data *drv_data) | 
|  | { | 
|  | /* Clear and disable interrupts */ | 
|  | write_SSSR_CS(drv_data, drv_data->clear_sr); | 
|  | reset_sccr1(drv_data); | 
|  | if (pxa25x_ssp_comp(drv_data)) | 
|  | return; | 
|  |  | 
|  | pxa2xx_spi_write(drv_data, SSTO, 0); | 
|  | } | 
|  |  | 
|  | static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) | 
|  | { | 
|  | int_stop_and_reset(drv_data); | 
|  | pxa2xx_spi_flush(drv_data); | 
|  | pxa2xx_spi_off(drv_data); | 
|  |  | 
|  | dev_err(drv_data->ssp->dev, "%s\n", msg); | 
|  |  | 
|  | drv_data->controller->cur_msg->status = err; | 
|  | spi_finalize_current_transfer(drv_data->controller); | 
|  | } | 
|  |  | 
|  | static void int_transfer_complete(struct driver_data *drv_data) | 
|  | { | 
|  | int_stop_and_reset(drv_data); | 
|  |  | 
|  | spi_finalize_current_transfer(drv_data->controller); | 
|  | } | 
|  |  | 
|  | static irqreturn_t interrupt_transfer(struct driver_data *drv_data) | 
|  | { | 
|  | u32 irq_status; | 
|  |  | 
|  | irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); | 
|  | if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) | 
|  | irq_status &= ~SSSR_TFS; | 
|  |  | 
|  | if (irq_status & SSSR_ROR) { | 
|  | int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (irq_status & SSSR_TUR) { | 
|  | int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (irq_status & SSSR_TINT) { | 
|  | pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); | 
|  | if (drv_data->read(drv_data)) { | 
|  | int_transfer_complete(drv_data); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ | 
|  | do { | 
|  | if (drv_data->read(drv_data)) { | 
|  | int_transfer_complete(drv_data); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | } while (drv_data->write(drv_data)); | 
|  |  | 
|  | if (drv_data->read(drv_data)) { | 
|  | int_transfer_complete(drv_data); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (drv_data->tx == drv_data->tx_end) { | 
|  | u32 bytes_left; | 
|  | u32 sccr1_reg; | 
|  |  | 
|  | sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); | 
|  | sccr1_reg &= ~SSCR1_TIE; | 
|  |  | 
|  | /* | 
|  | * PXA25x_SSP has no timeout, set up Rx threshold for | 
|  | * the remaining Rx bytes. | 
|  | */ | 
|  | if (pxa25x_ssp_comp(drv_data)) { | 
|  | u32 rx_thre; | 
|  |  | 
|  | pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); | 
|  |  | 
|  | bytes_left = drv_data->rx_end - drv_data->rx; | 
|  | switch (drv_data->n_bytes) { | 
|  | case 4: | 
|  | bytes_left >>= 2; | 
|  | break; | 
|  | case 2: | 
|  | bytes_left >>= 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); | 
|  | if (rx_thre > bytes_left) | 
|  | rx_thre = bytes_left; | 
|  |  | 
|  | pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); | 
|  | } | 
|  | pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); | 
|  | } | 
|  |  | 
|  | /* We did something */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void handle_bad_msg(struct driver_data *drv_data) | 
|  | { | 
|  | int_stop_and_reset(drv_data); | 
|  | pxa2xx_spi_off(drv_data); | 
|  |  | 
|  | dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); | 
|  | } | 
|  |  | 
|  | static irqreturn_t ssp_int(int irq, void *dev_id) | 
|  | { | 
|  | struct driver_data *drv_data = dev_id; | 
|  | u32 sccr1_reg; | 
|  | u32 mask = drv_data->mask_sr; | 
|  | u32 status; | 
|  |  | 
|  | /* | 
|  | * The IRQ might be shared with other peripherals so we must first | 
|  | * check that are we RPM suspended or not. If we are we assume that | 
|  | * the IRQ was not for us (we shouldn't be RPM suspended when the | 
|  | * interrupt is enabled). | 
|  | */ | 
|  | if (pm_runtime_suspended(drv_data->ssp->dev)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* | 
|  | * If the device is not yet in RPM suspended state and we get an | 
|  | * interrupt that is meant for another device, check if status bits | 
|  | * are all set to one. That means that the device is already | 
|  | * powered off. | 
|  | */ | 
|  | status = pxa2xx_spi_read(drv_data, SSSR); | 
|  | if (status == ~0) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); | 
|  |  | 
|  | /* Ignore possible writes if we don't need to write */ | 
|  | if (!(sccr1_reg & SSCR1_TIE)) | 
|  | mask &= ~SSSR_TFS; | 
|  |  | 
|  | /* Ignore RX timeout interrupt if it is disabled */ | 
|  | if (!(sccr1_reg & SSCR1_TINTE)) | 
|  | mask &= ~SSSR_TINT; | 
|  |  | 
|  | if (!(status & mask)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); | 
|  | pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); | 
|  |  | 
|  | if (!drv_data->controller->cur_msg) { | 
|  | handle_bad_msg(drv_data); | 
|  | /* Never fail */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return drv_data->transfer_handler(drv_data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply | 
|  | * input frequency by fractions of 2^24. It also has a divider by 5. | 
|  | * | 
|  | * There are formulas to get baud rate value for given input frequency and | 
|  | * divider parameters, such as DDS_CLK_RATE and SCR: | 
|  | * | 
|  | * Fsys = 200MHz | 
|  | * | 
|  | * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1) | 
|  | * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2) | 
|  | * | 
|  | * DDS_CLK_RATE either 2^n or 2^n / 5. | 
|  | * SCR is in range 0 .. 255 | 
|  | * | 
|  | * Divisor = 5^i * 2^j * 2 * k | 
|  | *       i = [0, 1]      i = 1 iff j = 0 or j > 3 | 
|  | *       j = [0, 23]     j = 0 iff i = 1 | 
|  | *       k = [1, 256] | 
|  | * Special case: j = 0, i = 1: Divisor = 2 / 5 | 
|  | * | 
|  | * Accordingly to the specification the recommended values for DDS_CLK_RATE | 
|  | * are: | 
|  | *	Case 1:		2^n, n = [0, 23] | 
|  | *	Case 2:		2^24 * 2 / 5 (0x666666) | 
|  | *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333) | 
|  | * | 
|  | * In all cases the lowest possible value is better. | 
|  | * | 
|  | * The function calculates parameters for all cases and chooses the one closest | 
|  | * to the asked baud rate. | 
|  | */ | 
|  | static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) | 
|  | { | 
|  | unsigned long xtal = 200000000; | 
|  | unsigned long fref = xtal / 2;		/* mandatory division by 2, | 
|  | see (2) */ | 
|  | /* case 3 */ | 
|  | unsigned long fref1 = fref / 2;		/* case 1 */ | 
|  | unsigned long fref2 = fref * 2 / 5;	/* case 2 */ | 
|  | unsigned long scale; | 
|  | unsigned long q, q1, q2; | 
|  | long r, r1, r2; | 
|  | u32 mul; | 
|  |  | 
|  | /* Case 1 */ | 
|  |  | 
|  | /* Set initial value for DDS_CLK_RATE */ | 
|  | mul = (1 << 24) >> 1; | 
|  |  | 
|  | /* Calculate initial quot */ | 
|  | q1 = DIV_ROUND_UP(fref1, rate); | 
|  |  | 
|  | /* Scale q1 if it's too big */ | 
|  | if (q1 > 256) { | 
|  | /* Scale q1 to range [1, 512] */ | 
|  | scale = fls_long(q1 - 1); | 
|  | if (scale > 9) { | 
|  | q1 >>= scale - 9; | 
|  | mul >>= scale - 9; | 
|  | } | 
|  |  | 
|  | /* Round the result if we have a remainder */ | 
|  | q1 += q1 & 1; | 
|  | } | 
|  |  | 
|  | /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ | 
|  | scale = __ffs(q1); | 
|  | q1 >>= scale; | 
|  | mul >>= scale; | 
|  |  | 
|  | /* Get the remainder */ | 
|  | r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); | 
|  |  | 
|  | /* Case 2 */ | 
|  |  | 
|  | q2 = DIV_ROUND_UP(fref2, rate); | 
|  | r2 = abs(fref2 / q2 - rate); | 
|  |  | 
|  | /* | 
|  | * Choose the best between two: less remainder we have the better. We | 
|  | * can't go case 2 if q2 is greater than 256 since SCR register can | 
|  | * hold only values 0 .. 255. | 
|  | */ | 
|  | if (r2 >= r1 || q2 > 256) { | 
|  | /* case 1 is better */ | 
|  | r = r1; | 
|  | q = q1; | 
|  | } else { | 
|  | /* case 2 is better */ | 
|  | r = r2; | 
|  | q = q2; | 
|  | mul = (1 << 24) * 2 / 5; | 
|  | } | 
|  |  | 
|  | /* Check case 3 only if the divisor is big enough */ | 
|  | if (fref / rate >= 80) { | 
|  | u64 fssp; | 
|  | u32 m; | 
|  |  | 
|  | /* Calculate initial quot */ | 
|  | q1 = DIV_ROUND_UP(fref, rate); | 
|  | m = (1 << 24) / q1; | 
|  |  | 
|  | /* Get the remainder */ | 
|  | fssp = (u64)fref * m; | 
|  | do_div(fssp, 1 << 24); | 
|  | r1 = abs(fssp - rate); | 
|  |  | 
|  | /* Choose this one if it suits better */ | 
|  | if (r1 < r) { | 
|  | /* case 3 is better */ | 
|  | q = 1; | 
|  | mul = m; | 
|  | } | 
|  | } | 
|  |  | 
|  | *dds = mul; | 
|  | return q - 1; | 
|  | } | 
|  |  | 
|  | static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) | 
|  | { | 
|  | unsigned long ssp_clk = drv_data->controller->max_speed_hz; | 
|  | const struct ssp_device *ssp = drv_data->ssp; | 
|  |  | 
|  | rate = min_t(int, ssp_clk, rate); | 
|  |  | 
|  | /* | 
|  | * Calculate the divisor for the SCR (Serial Clock Rate), avoiding | 
|  | * that the SSP transmission rate can be greater than the device rate. | 
|  | */ | 
|  | if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) | 
|  | return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; | 
|  | else | 
|  | return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff; | 
|  | } | 
|  |  | 
|  | static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, | 
|  | int rate) | 
|  | { | 
|  | struct chip_data *chip = | 
|  | spi_get_ctldata(drv_data->controller->cur_msg->spi); | 
|  | unsigned int clk_div; | 
|  |  | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); | 
|  | break; | 
|  | default: | 
|  | clk_div = ssp_get_clk_div(drv_data, rate); | 
|  | break; | 
|  | } | 
|  | return clk_div << 8; | 
|  | } | 
|  |  | 
|  | static bool pxa2xx_spi_can_dma(struct spi_controller *controller, | 
|  | struct spi_device *spi, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct chip_data *chip = spi_get_ctldata(spi); | 
|  |  | 
|  | return chip->enable_dma && | 
|  | xfer->len <= MAX_DMA_LEN && | 
|  | xfer->len >= chip->dma_burst_size; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_transfer_one(struct spi_controller *controller, | 
|  | struct spi_device *spi, | 
|  | struct spi_transfer *transfer) | 
|  | { | 
|  | struct driver_data *drv_data = spi_controller_get_devdata(controller); | 
|  | struct spi_message *message = controller->cur_msg; | 
|  | struct chip_data *chip = spi_get_ctldata(spi); | 
|  | u32 dma_thresh = chip->dma_threshold; | 
|  | u32 dma_burst = chip->dma_burst_size; | 
|  | u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); | 
|  | u32 clk_div; | 
|  | u8 bits; | 
|  | u32 speed; | 
|  | u32 cr0; | 
|  | u32 cr1; | 
|  | int err; | 
|  | int dma_mapped; | 
|  |  | 
|  | /* Check if we can DMA this transfer */ | 
|  | if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { | 
|  |  | 
|  | /* Reject already-mapped transfers; PIO won't always work */ | 
|  | if (message->is_dma_mapped | 
|  | || transfer->rx_dma || transfer->tx_dma) { | 
|  | dev_err(&spi->dev, | 
|  | "Mapped transfer length of %u is greater than %d\n", | 
|  | transfer->len, MAX_DMA_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Warn ... we force this to PIO mode */ | 
|  | dev_warn_ratelimited(&spi->dev, | 
|  | "DMA disabled for transfer length %u greater than %d\n", | 
|  | transfer->len, MAX_DMA_LEN); | 
|  | } | 
|  |  | 
|  | /* Setup the transfer state based on the type of transfer */ | 
|  | if (pxa2xx_spi_flush(drv_data) == 0) { | 
|  | dev_err(&spi->dev, "Flush failed\n"); | 
|  | return -EIO; | 
|  | } | 
|  | drv_data->tx = (void *)transfer->tx_buf; | 
|  | drv_data->tx_end = drv_data->tx + transfer->len; | 
|  | drv_data->rx = transfer->rx_buf; | 
|  | drv_data->rx_end = drv_data->rx + transfer->len; | 
|  |  | 
|  | /* Change speed and bit per word on a per transfer */ | 
|  | bits = transfer->bits_per_word; | 
|  | speed = transfer->speed_hz; | 
|  |  | 
|  | clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); | 
|  |  | 
|  | if (bits <= 8) { | 
|  | drv_data->n_bytes = 1; | 
|  | drv_data->read = drv_data->rx ? u8_reader : null_reader; | 
|  | drv_data->write = drv_data->tx ? u8_writer : null_writer; | 
|  | } else if (bits <= 16) { | 
|  | drv_data->n_bytes = 2; | 
|  | drv_data->read = drv_data->rx ? u16_reader : null_reader; | 
|  | drv_data->write = drv_data->tx ? u16_writer : null_writer; | 
|  | } else if (bits <= 32) { | 
|  | drv_data->n_bytes = 4; | 
|  | drv_data->read = drv_data->rx ? u32_reader : null_reader; | 
|  | drv_data->write = drv_data->tx ? u32_writer : null_writer; | 
|  | } | 
|  | /* | 
|  | * If bits per word is changed in DMA mode, then must check | 
|  | * the thresholds and burst also. | 
|  | */ | 
|  | if (chip->enable_dma) { | 
|  | if (pxa2xx_spi_set_dma_burst_and_threshold(chip, | 
|  | spi, | 
|  | bits, &dma_burst, | 
|  | &dma_thresh)) | 
|  | dev_warn_ratelimited(&spi->dev, | 
|  | "DMA burst size reduced to match bits_per_word\n"); | 
|  | } | 
|  |  | 
|  | dma_mapped = controller->can_dma && | 
|  | controller->can_dma(controller, spi, transfer) && | 
|  | controller->cur_msg_mapped; | 
|  | if (dma_mapped) { | 
|  |  | 
|  | /* Ensure we have the correct interrupt handler */ | 
|  | drv_data->transfer_handler = pxa2xx_spi_dma_transfer; | 
|  |  | 
|  | err = pxa2xx_spi_dma_prepare(drv_data, transfer); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Clear status and start DMA engine */ | 
|  | cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; | 
|  | pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); | 
|  |  | 
|  | pxa2xx_spi_dma_start(drv_data); | 
|  | } else { | 
|  | /* Ensure we have the correct interrupt handler	*/ | 
|  | drv_data->transfer_handler = interrupt_transfer; | 
|  |  | 
|  | /* Clear status  */ | 
|  | cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; | 
|  | write_SSSR_CS(drv_data, drv_data->clear_sr); | 
|  | } | 
|  |  | 
|  | /* NOTE:  PXA25x_SSP _could_ use external clocking ... */ | 
|  | cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); | 
|  | if (!pxa25x_ssp_comp(drv_data)) | 
|  | dev_dbg(&spi->dev, "%u Hz actual, %s\n", | 
|  | controller->max_speed_hz | 
|  | / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), | 
|  | dma_mapped ? "DMA" : "PIO"); | 
|  | else | 
|  | dev_dbg(&spi->dev, "%u Hz actual, %s\n", | 
|  | controller->max_speed_hz / 2 | 
|  | / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), | 
|  | dma_mapped ? "DMA" : "PIO"); | 
|  |  | 
|  | if (is_lpss_ssp(drv_data)) { | 
|  | pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); | 
|  | pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); | 
|  | } | 
|  |  | 
|  | if (is_mrfld_ssp(drv_data)) { | 
|  | u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; | 
|  | u32 thresh = 0; | 
|  |  | 
|  | thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); | 
|  | thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); | 
|  |  | 
|  | pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); | 
|  | } | 
|  |  | 
|  | if (is_quark_x1000_ssp(drv_data)) | 
|  | pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); | 
|  |  | 
|  | /* Stop the SSP */ | 
|  | if (!is_mmp2_ssp(drv_data)) | 
|  | pxa_ssp_disable(drv_data->ssp); | 
|  |  | 
|  | if (!pxa25x_ssp_comp(drv_data)) | 
|  | pxa2xx_spi_write(drv_data, SSTO, chip->timeout); | 
|  |  | 
|  | /* First set CR1 without interrupt and service enables */ | 
|  | pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); | 
|  |  | 
|  | /* See if we need to reload the configuration registers */ | 
|  | pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); | 
|  |  | 
|  | /* Restart the SSP */ | 
|  | pxa_ssp_enable(drv_data->ssp); | 
|  |  | 
|  | if (is_mmp2_ssp(drv_data)) { | 
|  | u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; | 
|  |  | 
|  | if (tx_level) { | 
|  | /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ | 
|  | dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); | 
|  | if (tx_level > transfer->len) | 
|  | tx_level = transfer->len; | 
|  | drv_data->tx += tx_level; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (spi_controller_is_target(controller)) { | 
|  | while (drv_data->write(drv_data)) | 
|  | ; | 
|  | if (drv_data->gpiod_ready) { | 
|  | gpiod_set_value(drv_data->gpiod_ready, 1); | 
|  | udelay(1); | 
|  | gpiod_set_value(drv_data->gpiod_ready, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the data by enabling service requests and interrupts, | 
|  | * without changing any mode bits. | 
|  | */ | 
|  | pxa2xx_spi_write(drv_data, SSCR1, cr1); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_target_abort(struct spi_controller *controller) | 
|  | { | 
|  | struct driver_data *drv_data = spi_controller_get_devdata(controller); | 
|  |  | 
|  | int_error_stop(drv_data, "transfer aborted", -EINTR); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_handle_err(struct spi_controller *controller, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct driver_data *drv_data = spi_controller_get_devdata(controller); | 
|  |  | 
|  | int_stop_and_reset(drv_data); | 
|  |  | 
|  | /* Disable the SSP */ | 
|  | pxa2xx_spi_off(drv_data); | 
|  |  | 
|  | /* | 
|  | * Stop the DMA if running. Note DMA callback handler may have unset | 
|  | * the dma_running already, which is fine as stopping is not needed | 
|  | * then but we shouldn't rely this flag for anything else than | 
|  | * stopping. For instance to differentiate between PIO and DMA | 
|  | * transfers. | 
|  | */ | 
|  | if (atomic_read(&drv_data->dma_running)) | 
|  | pxa2xx_spi_dma_stop(drv_data); | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) | 
|  | { | 
|  | struct driver_data *drv_data = spi_controller_get_devdata(controller); | 
|  |  | 
|  | /* Disable the SSP now */ | 
|  | pxa2xx_spi_off(drv_data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int setup(struct spi_device *spi) | 
|  | { | 
|  | struct pxa2xx_spi_chip *chip_info; | 
|  | struct chip_data *chip; | 
|  | const struct lpss_config *config; | 
|  | struct driver_data *drv_data = | 
|  | spi_controller_get_devdata(spi->controller); | 
|  | uint tx_thres, tx_hi_thres, rx_thres; | 
|  |  | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | tx_thres = TX_THRESH_QUARK_X1000_DFLT; | 
|  | tx_hi_thres = 0; | 
|  | rx_thres = RX_THRESH_QUARK_X1000_DFLT; | 
|  | break; | 
|  | case MRFLD_SSP: | 
|  | tx_thres = TX_THRESH_MRFLD_DFLT; | 
|  | tx_hi_thres = 0; | 
|  | rx_thres = RX_THRESH_MRFLD_DFLT; | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | tx_thres = TX_THRESH_CE4100_DFLT; | 
|  | tx_hi_thres = 0; | 
|  | rx_thres = RX_THRESH_CE4100_DFLT; | 
|  | break; | 
|  | case LPSS_LPT_SSP: | 
|  | case LPSS_BYT_SSP: | 
|  | case LPSS_BSW_SSP: | 
|  | case LPSS_SPT_SSP: | 
|  | case LPSS_BXT_SSP: | 
|  | case LPSS_CNL_SSP: | 
|  | config = lpss_get_config(drv_data); | 
|  | tx_thres = config->tx_threshold_lo; | 
|  | tx_hi_thres = config->tx_threshold_hi; | 
|  | rx_thres = config->rx_threshold; | 
|  | break; | 
|  | default: | 
|  | tx_hi_thres = 0; | 
|  | if (spi_controller_is_target(drv_data->controller)) { | 
|  | tx_thres = 1; | 
|  | rx_thres = 2; | 
|  | } else { | 
|  | tx_thres = TX_THRESH_DFLT; | 
|  | rx_thres = RX_THRESH_DFLT; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Only allocate on the first setup */ | 
|  | chip = spi_get_ctldata(spi); | 
|  | if (!chip) { | 
|  | chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); | 
|  | if (!chip) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (drv_data->ssp_type == CE4100_SSP) { | 
|  | if (spi_get_chipselect(spi, 0) > 4) { | 
|  | dev_err(&spi->dev, | 
|  | "failed setup: cs number must not be > 4.\n"); | 
|  | kfree(chip); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | chip->enable_dma = drv_data->controller_info->enable_dma; | 
|  | chip->timeout = TIMOUT_DFLT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Protocol drivers may change the chip settings, so... | 
|  | * if chip_info exists, use it. | 
|  | */ | 
|  | chip_info = spi->controller_data; | 
|  |  | 
|  | /* chip_info isn't always needed */ | 
|  | if (chip_info) { | 
|  | if (chip_info->timeout) | 
|  | chip->timeout = chip_info->timeout; | 
|  | if (chip_info->tx_threshold) | 
|  | tx_thres = chip_info->tx_threshold; | 
|  | if (chip_info->tx_hi_threshold) | 
|  | tx_hi_thres = chip_info->tx_hi_threshold; | 
|  | if (chip_info->rx_threshold) | 
|  | rx_thres = chip_info->rx_threshold; | 
|  | chip->dma_threshold = 0; | 
|  | } | 
|  |  | 
|  | chip->cr1 = 0; | 
|  | if (spi_controller_is_target(drv_data->controller)) { | 
|  | chip->cr1 |= SSCR1_SCFR; | 
|  | chip->cr1 |= SSCR1_SCLKDIR; | 
|  | chip->cr1 |= SSCR1_SFRMDIR; | 
|  | chip->cr1 |= SSCR1_SPH; | 
|  | } | 
|  |  | 
|  | if (is_lpss_ssp(drv_data)) { | 
|  | chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); | 
|  | chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | | 
|  | SSITF_TxHiThresh(tx_hi_thres); | 
|  | } | 
|  |  | 
|  | if (is_mrfld_ssp(drv_data)) { | 
|  | chip->lpss_rx_threshold = rx_thres; | 
|  | chip->lpss_tx_threshold = tx_thres; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set DMA burst and threshold outside of chip_info path so that if | 
|  | * chip_info goes away after setting chip->enable_dma, the burst and | 
|  | * threshold can still respond to changes in bits_per_word. | 
|  | */ | 
|  | if (chip->enable_dma) { | 
|  | /* Set up legal burst and threshold for DMA */ | 
|  | if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, | 
|  | spi->bits_per_word, | 
|  | &chip->dma_burst_size, | 
|  | &chip->dma_threshold)) { | 
|  | dev_warn(&spi->dev, | 
|  | "in setup: DMA burst size reduced to match bits_per_word\n"); | 
|  | } | 
|  | dev_dbg(&spi->dev, | 
|  | "in setup: DMA burst size set to %u\n", | 
|  | chip->dma_burst_size); | 
|  | } | 
|  |  | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) | 
|  | & QUARK_X1000_SSCR1_RFT) | 
|  | | (QUARK_X1000_SSCR1_TxTresh(tx_thres) | 
|  | & QUARK_X1000_SSCR1_TFT); | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | | 
|  | (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); | 
|  | break; | 
|  | default: | 
|  | chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | | 
|  | (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); | 
|  | chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | | 
|  | ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); | 
|  |  | 
|  | if (spi->mode & SPI_LOOP) | 
|  | chip->cr1 |= SSCR1_LBM; | 
|  |  | 
|  | spi_set_ctldata(spi, chip); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cleanup(struct spi_device *spi) | 
|  | { | 
|  | struct chip_data *chip = spi_get_ctldata(spi); | 
|  |  | 
|  | kfree(chip); | 
|  | } | 
|  |  | 
|  | static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) | 
|  | { | 
|  | return param == chan->device->dev; | 
|  | } | 
|  |  | 
|  | static struct pxa2xx_spi_controller * | 
|  | pxa2xx_spi_init_pdata(struct platform_device *pdev) | 
|  | { | 
|  | struct pxa2xx_spi_controller *pdata; | 
|  | struct device *dev = &pdev->dev; | 
|  | struct device *parent = dev->parent; | 
|  | struct ssp_device *ssp; | 
|  | struct resource *res; | 
|  | enum pxa_ssp_type type = SSP_UNDEFINED; | 
|  | const void *match; | 
|  | bool is_lpss_priv; | 
|  | int status; | 
|  | u64 uid; | 
|  |  | 
|  | is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv"); | 
|  |  | 
|  | match = device_get_match_data(dev); | 
|  | if (match) | 
|  | type = (uintptr_t)match; | 
|  | else if (is_lpss_priv) { | 
|  | u32 value; | 
|  |  | 
|  | status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value); | 
|  | if (status) | 
|  | return ERR_PTR(status); | 
|  |  | 
|  | type = (enum pxa_ssp_type)value; | 
|  | } | 
|  |  | 
|  | /* Validate the SSP type correctness */ | 
|  | if (!(type > SSP_UNDEFINED && type < SSP_MAX)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); | 
|  | if (!pdata) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ssp = &pdata->ssp; | 
|  |  | 
|  | ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); | 
|  | if (IS_ERR(ssp->mmio_base)) | 
|  | return ERR_CAST(ssp->mmio_base); | 
|  |  | 
|  | ssp->phys_base = res->start; | 
|  |  | 
|  | /* Platforms with iDMA 64-bit */ | 
|  | if (is_lpss_priv) { | 
|  | pdata->tx_param = parent; | 
|  | pdata->rx_param = parent; | 
|  | pdata->dma_filter = pxa2xx_spi_idma_filter; | 
|  | } | 
|  |  | 
|  | ssp->clk = devm_clk_get(dev, NULL); | 
|  | if (IS_ERR(ssp->clk)) | 
|  | return ERR_CAST(ssp->clk); | 
|  |  | 
|  | ssp->irq = platform_get_irq(pdev, 0); | 
|  | if (ssp->irq < 0) | 
|  | return ERR_PTR(ssp->irq); | 
|  |  | 
|  | ssp->type = type; | 
|  | ssp->dev = dev; | 
|  |  | 
|  | status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid); | 
|  | if (status) | 
|  | ssp->port_id = -1; | 
|  | else | 
|  | ssp->port_id = uid; | 
|  |  | 
|  | pdata->is_target = device_property_read_bool(dev, "spi-slave"); | 
|  | pdata->num_chipselect = 1; | 
|  | pdata->enable_dma = true; | 
|  | pdata->dma_burst_size = 1; | 
|  |  | 
|  | return pdata; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, | 
|  | unsigned int cs) | 
|  | { | 
|  | struct driver_data *drv_data = spi_controller_get_devdata(controller); | 
|  |  | 
|  | if (has_acpi_companion(drv_data->ssp->dev)) { | 
|  | switch (drv_data->ssp_type) { | 
|  | /* | 
|  | * For Atoms the ACPI DeviceSelection used by the Windows | 
|  | * driver starts from 1 instead of 0 so translate it here | 
|  | * to match what Linux expects. | 
|  | */ | 
|  | case LPSS_BYT_SSP: | 
|  | case LPSS_BSW_SSP: | 
|  | return cs - 1; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return cs; | 
|  | } | 
|  |  | 
|  | static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) | 
|  | { | 
|  | return MAX_DMA_LEN; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct pxa2xx_spi_controller *platform_info; | 
|  | struct spi_controller *controller; | 
|  | struct driver_data *drv_data; | 
|  | struct ssp_device *ssp; | 
|  | const struct lpss_config *config; | 
|  | int status; | 
|  | u32 tmp; | 
|  |  | 
|  | platform_info = dev_get_platdata(dev); | 
|  | if (!platform_info) { | 
|  | platform_info = pxa2xx_spi_init_pdata(pdev); | 
|  | if (IS_ERR(platform_info)) { | 
|  | dev_err(&pdev->dev, "missing platform data\n"); | 
|  | return PTR_ERR(platform_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | ssp = pxa_ssp_request(pdev->id, pdev->name); | 
|  | if (!ssp) | 
|  | ssp = &platform_info->ssp; | 
|  |  | 
|  | if (!ssp->mmio_base) { | 
|  | dev_err(&pdev->dev, "failed to get SSP\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (platform_info->is_target) | 
|  | controller = devm_spi_alloc_target(dev, sizeof(*drv_data)); | 
|  | else | 
|  | controller = devm_spi_alloc_host(dev, sizeof(*drv_data)); | 
|  |  | 
|  | if (!controller) { | 
|  | dev_err(&pdev->dev, "cannot alloc spi_controller\n"); | 
|  | status = -ENOMEM; | 
|  | goto out_error_controller_alloc; | 
|  | } | 
|  | drv_data = spi_controller_get_devdata(controller); | 
|  | drv_data->controller = controller; | 
|  | drv_data->controller_info = platform_info; | 
|  | drv_data->ssp = ssp; | 
|  |  | 
|  | device_set_node(&controller->dev, dev_fwnode(dev)); | 
|  |  | 
|  | /* The spi->mode bits understood by this driver: */ | 
|  | controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; | 
|  |  | 
|  | controller->bus_num = ssp->port_id; | 
|  | controller->dma_alignment = DMA_ALIGNMENT; | 
|  | controller->cleanup = cleanup; | 
|  | controller->setup = setup; | 
|  | controller->set_cs = pxa2xx_spi_set_cs; | 
|  | controller->transfer_one = pxa2xx_spi_transfer_one; | 
|  | controller->target_abort = pxa2xx_spi_target_abort; | 
|  | controller->handle_err = pxa2xx_spi_handle_err; | 
|  | controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; | 
|  | controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; | 
|  | controller->auto_runtime_pm = true; | 
|  | controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; | 
|  |  | 
|  | drv_data->ssp_type = ssp->type; | 
|  |  | 
|  | if (pxa25x_ssp_comp(drv_data)) { | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); | 
|  | break; | 
|  | default: | 
|  | controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); | 
|  | break; | 
|  | } | 
|  |  | 
|  | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; | 
|  | drv_data->dma_cr1 = 0; | 
|  | drv_data->clear_sr = SSSR_ROR; | 
|  | drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; | 
|  | } else { | 
|  | controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); | 
|  | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; | 
|  | drv_data->dma_cr1 = DEFAULT_DMA_CR1; | 
|  | drv_data->clear_sr = SSSR_ROR | SSSR_TINT; | 
|  | drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | 
|  | | SSSR_ROR | SSSR_TUR; | 
|  | } | 
|  |  | 
|  | status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), | 
|  | drv_data); | 
|  | if (status < 0) { | 
|  | dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); | 
|  | goto out_error_controller_alloc; | 
|  | } | 
|  |  | 
|  | /* Setup DMA if requested */ | 
|  | if (platform_info->enable_dma) { | 
|  | status = pxa2xx_spi_dma_setup(drv_data); | 
|  | if (status) { | 
|  | dev_warn(dev, "no DMA channels available, using PIO\n"); | 
|  | platform_info->enable_dma = false; | 
|  | } else { | 
|  | controller->can_dma = pxa2xx_spi_can_dma; | 
|  | controller->max_dma_len = MAX_DMA_LEN; | 
|  | controller->max_transfer_size = | 
|  | pxa2xx_spi_max_dma_transfer_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable SOC clock */ | 
|  | status = clk_prepare_enable(ssp->clk); | 
|  | if (status) | 
|  | goto out_error_dma_irq_alloc; | 
|  |  | 
|  | controller->max_speed_hz = clk_get_rate(ssp->clk); | 
|  | /* | 
|  | * Set minimum speed for all other platforms than Intel Quark which is | 
|  | * able do under 1 Hz transfers. | 
|  | */ | 
|  | if (!pxa25x_ssp_comp(drv_data)) | 
|  | controller->min_speed_hz = | 
|  | DIV_ROUND_UP(controller->max_speed_hz, 4096); | 
|  | else if (!is_quark_x1000_ssp(drv_data)) | 
|  | controller->min_speed_hz = | 
|  | DIV_ROUND_UP(controller->max_speed_hz, 512); | 
|  |  | 
|  | pxa_ssp_disable(ssp); | 
|  |  | 
|  | /* Load default SSP configuration */ | 
|  | switch (drv_data->ssp_type) { | 
|  | case QUARK_X1000_SSP: | 
|  | tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | | 
|  | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); | 
|  | pxa2xx_spi_write(drv_data, SSCR1, tmp); | 
|  |  | 
|  | /* Using the Motorola SPI protocol and use 8 bit frame */ | 
|  | tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); | 
|  | pxa2xx_spi_write(drv_data, SSCR0, tmp); | 
|  | break; | 
|  | case CE4100_SSP: | 
|  | tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | | 
|  | CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); | 
|  | pxa2xx_spi_write(drv_data, SSCR1, tmp); | 
|  | tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); | 
|  | pxa2xx_spi_write(drv_data, SSCR0, tmp); | 
|  | break; | 
|  | default: | 
|  |  | 
|  | if (spi_controller_is_target(controller)) { | 
|  | tmp = SSCR1_SCFR | | 
|  | SSCR1_SCLKDIR | | 
|  | SSCR1_SFRMDIR | | 
|  | SSCR1_RxTresh(2) | | 
|  | SSCR1_TxTresh(1) | | 
|  | SSCR1_SPH; | 
|  | } else { | 
|  | tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | | 
|  | SSCR1_TxTresh(TX_THRESH_DFLT); | 
|  | } | 
|  | pxa2xx_spi_write(drv_data, SSCR1, tmp); | 
|  | tmp = SSCR0_Motorola | SSCR0_DataSize(8); | 
|  | if (!spi_controller_is_target(controller)) | 
|  | tmp |= SSCR0_SCR(2); | 
|  | pxa2xx_spi_write(drv_data, SSCR0, tmp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!pxa25x_ssp_comp(drv_data)) | 
|  | pxa2xx_spi_write(drv_data, SSTO, 0); | 
|  |  | 
|  | if (!is_quark_x1000_ssp(drv_data)) | 
|  | pxa2xx_spi_write(drv_data, SSPSP, 0); | 
|  |  | 
|  | if (is_lpss_ssp(drv_data)) { | 
|  | lpss_ssp_setup(drv_data); | 
|  | config = lpss_get_config(drv_data); | 
|  | if (config->reg_capabilities >= 0) { | 
|  | tmp = __lpss_ssp_read_priv(drv_data, | 
|  | config->reg_capabilities); | 
|  | tmp &= LPSS_CAPS_CS_EN_MASK; | 
|  | tmp >>= LPSS_CAPS_CS_EN_SHIFT; | 
|  | platform_info->num_chipselect = ffz(tmp); | 
|  | } else if (config->cs_num) { | 
|  | platform_info->num_chipselect = config->cs_num; | 
|  | } | 
|  | } | 
|  | controller->num_chipselect = platform_info->num_chipselect; | 
|  | controller->use_gpio_descriptors = true; | 
|  |  | 
|  | if (platform_info->is_target) { | 
|  | drv_data->gpiod_ready = devm_gpiod_get_optional(dev, | 
|  | "ready", GPIOD_OUT_LOW); | 
|  | if (IS_ERR(drv_data->gpiod_ready)) { | 
|  | status = PTR_ERR(drv_data->gpiod_ready); | 
|  | goto out_error_clock_enabled; | 
|  | } | 
|  | } | 
|  |  | 
|  | pm_runtime_set_autosuspend_delay(&pdev->dev, 50); | 
|  | pm_runtime_use_autosuspend(&pdev->dev); | 
|  | pm_runtime_set_active(&pdev->dev); | 
|  | pm_runtime_enable(&pdev->dev); | 
|  |  | 
|  | /* Register with the SPI framework */ | 
|  | platform_set_drvdata(pdev, drv_data); | 
|  | status = spi_register_controller(controller); | 
|  | if (status) { | 
|  | dev_err(&pdev->dev, "problem registering SPI controller\n"); | 
|  | goto out_error_pm_runtime_enabled; | 
|  | } | 
|  |  | 
|  | return status; | 
|  |  | 
|  | out_error_pm_runtime_enabled: | 
|  | pm_runtime_disable(&pdev->dev); | 
|  |  | 
|  | out_error_clock_enabled: | 
|  | clk_disable_unprepare(ssp->clk); | 
|  |  | 
|  | out_error_dma_irq_alloc: | 
|  | pxa2xx_spi_dma_release(drv_data); | 
|  | free_irq(ssp->irq, drv_data); | 
|  |  | 
|  | out_error_controller_alloc: | 
|  | pxa_ssp_free(ssp); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct driver_data *drv_data = platform_get_drvdata(pdev); | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  |  | 
|  | pm_runtime_get_sync(&pdev->dev); | 
|  |  | 
|  | spi_unregister_controller(drv_data->controller); | 
|  |  | 
|  | /* Disable the SSP at the peripheral and SOC level */ | 
|  | pxa_ssp_disable(ssp); | 
|  | clk_disable_unprepare(ssp->clk); | 
|  |  | 
|  | /* Release DMA */ | 
|  | if (drv_data->controller_info->enable_dma) | 
|  | pxa2xx_spi_dma_release(drv_data); | 
|  |  | 
|  | pm_runtime_put_noidle(&pdev->dev); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  |  | 
|  | /* Release IRQ */ | 
|  | free_irq(ssp->irq, drv_data); | 
|  |  | 
|  | /* Release SSP */ | 
|  | pxa_ssp_free(ssp); | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_suspend(struct device *dev) | 
|  | { | 
|  | struct driver_data *drv_data = dev_get_drvdata(dev); | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  | int status; | 
|  |  | 
|  | status = spi_controller_suspend(drv_data->controller); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | pxa_ssp_disable(ssp); | 
|  |  | 
|  | if (!pm_runtime_suspended(dev)) | 
|  | clk_disable_unprepare(ssp->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_resume(struct device *dev) | 
|  | { | 
|  | struct driver_data *drv_data = dev_get_drvdata(dev); | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  | int status; | 
|  |  | 
|  | /* Enable the SSP clock */ | 
|  | if (!pm_runtime_suspended(dev)) { | 
|  | status = clk_prepare_enable(ssp->clk); | 
|  | if (status) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Start the queue running */ | 
|  | return spi_controller_resume(drv_data->controller); | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct driver_data *drv_data = dev_get_drvdata(dev); | 
|  |  | 
|  | clk_disable_unprepare(drv_data->ssp->clk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct driver_data *drv_data = dev_get_drvdata(dev); | 
|  |  | 
|  | return clk_prepare_enable(drv_data->ssp->clk); | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops pxa2xx_spi_pm_ops = { | 
|  | SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) | 
|  | RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL) | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { | 
|  | { "80860F0E", LPSS_BYT_SSP }, | 
|  | { "8086228E", LPSS_BSW_SSP }, | 
|  | { "INT33C0", LPSS_LPT_SSP }, | 
|  | { "INT33C1", LPSS_LPT_SSP }, | 
|  | { "INT3430", LPSS_LPT_SSP }, | 
|  | { "INT3431", LPSS_LPT_SSP }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); | 
|  | #endif | 
|  |  | 
|  | static const struct of_device_id pxa2xx_spi_of_match[] __maybe_unused = { | 
|  | { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); | 
|  |  | 
|  | static struct platform_driver driver = { | 
|  | .driver = { | 
|  | .name	= "pxa2xx-spi", | 
|  | .pm	= pm_ptr(&pxa2xx_spi_pm_ops), | 
|  | .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), | 
|  | .of_match_table = of_match_ptr(pxa2xx_spi_of_match), | 
|  | }, | 
|  | .probe = pxa2xx_spi_probe, | 
|  | .remove_new = pxa2xx_spi_remove, | 
|  | }; | 
|  |  | 
|  | static int __init pxa2xx_spi_init(void) | 
|  | { | 
|  | return platform_driver_register(&driver); | 
|  | } | 
|  | subsys_initcall(pxa2xx_spi_init); | 
|  |  | 
|  | static void __exit pxa2xx_spi_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&driver); | 
|  | } | 
|  | module_exit(pxa2xx_spi_exit); | 
|  |  | 
|  | MODULE_SOFTDEP("pre: dw_dmac"); |