| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  *	Adaptec AAC series RAID controller driver | 
 |  *	(c) Copyright 2001 Red Hat Inc. | 
 |  * | 
 |  * based on the old aacraid driver that is.. | 
 |  * Adaptec aacraid device driver for Linux. | 
 |  * | 
 |  * Copyright (c) 2000-2010 Adaptec, Inc. | 
 |  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) | 
 |  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com) | 
 |  * | 
 |  * Module Name: | 
 |  *  commsup.c | 
 |  * | 
 |  * Abstract: Contain all routines that are required for FSA host/adapter | 
 |  *    communication. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/types.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/bcd.h> | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/scsi_host.h> | 
 | #include <scsi/scsi_device.h> | 
 | #include <scsi/scsi_cmnd.h> | 
 |  | 
 | #include "aacraid.h" | 
 |  | 
 | /** | 
 |  *	fib_map_alloc		-	allocate the fib objects | 
 |  *	@dev: Adapter to allocate for | 
 |  * | 
 |  *	Allocate and map the shared PCI space for the FIB blocks used to | 
 |  *	talk to the Adaptec firmware. | 
 |  */ | 
 |  | 
 | static int fib_map_alloc(struct aac_dev *dev) | 
 | { | 
 | 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) | 
 | 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; | 
 | 	else | 
 | 		dev->max_cmd_size = dev->max_fib_size; | 
 | 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { | 
 | 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; | 
 | 	} else { | 
 | 		dev->max_cmd_size = dev->max_fib_size; | 
 | 	} | 
 |  | 
 | 	dprintk((KERN_INFO | 
 | 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", | 
 | 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, | 
 | 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); | 
 | 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, | 
 | 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) | 
 | 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), | 
 | 		&dev->hw_fib_pa, GFP_KERNEL); | 
 | 	if (dev->hw_fib_va == NULL) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_map_free		-	free the fib objects | 
 |  *	@dev: Adapter to free | 
 |  * | 
 |  *	Free the PCI mappings and the memory allocated for FIB blocks | 
 |  *	on this adapter. | 
 |  */ | 
 |  | 
 | void aac_fib_map_free(struct aac_dev *dev) | 
 | { | 
 | 	size_t alloc_size; | 
 | 	size_t fib_size; | 
 | 	int num_fibs; | 
 |  | 
 | 	if(!dev->hw_fib_va || !dev->max_cmd_size) | 
 | 		return; | 
 |  | 
 | 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; | 
 | 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); | 
 | 	alloc_size = fib_size * num_fibs + ALIGN32 - 1; | 
 |  | 
 | 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, | 
 | 			  dev->hw_fib_pa); | 
 |  | 
 | 	dev->hw_fib_va = NULL; | 
 | 	dev->hw_fib_pa = 0; | 
 | } | 
 |  | 
 | void aac_fib_vector_assign(struct aac_dev *dev) | 
 | { | 
 | 	u32 i = 0; | 
 | 	u32 vector = 1; | 
 | 	struct fib *fibptr = NULL; | 
 |  | 
 | 	for (i = 0, fibptr = &dev->fibs[i]; | 
 | 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); | 
 | 		i++, fibptr++) { | 
 | 		if ((dev->max_msix == 1) || | 
 | 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) | 
 | 			- dev->vector_cap))) { | 
 | 			fibptr->vector_no = 0; | 
 | 		} else { | 
 | 			fibptr->vector_no = vector; | 
 | 			vector++; | 
 | 			if (vector == dev->max_msix) | 
 | 				vector = 1; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_setup	-	setup the fibs | 
 |  *	@dev: Adapter to set up | 
 |  * | 
 |  *	Allocate the PCI space for the fibs, map it and then initialise the | 
 |  *	fib area, the unmapped fib data and also the free list | 
 |  */ | 
 |  | 
 | int aac_fib_setup(struct aac_dev * dev) | 
 | { | 
 | 	struct fib *fibptr; | 
 | 	struct hw_fib *hw_fib; | 
 | 	dma_addr_t hw_fib_pa; | 
 | 	int i; | 
 | 	u32 max_cmds; | 
 |  | 
 | 	while (((i = fib_map_alloc(dev)) == -ENOMEM) | 
 | 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { | 
 | 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; | 
 | 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; | 
 | 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) | 
 | 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); | 
 | 	} | 
 | 	if (i<0) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset(dev->hw_fib_va, 0, | 
 | 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * | 
 | 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); | 
 |  | 
 | 	/* 32 byte alignment for PMC */ | 
 | 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); | 
 | 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + | 
 | 					(hw_fib_pa - dev->hw_fib_pa)); | 
 |  | 
 | 	/* add Xport header */ | 
 | 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + | 
 | 		sizeof(struct aac_fib_xporthdr)); | 
 | 	hw_fib_pa += sizeof(struct aac_fib_xporthdr); | 
 |  | 
 | 	/* | 
 | 	 *	Initialise the fibs | 
 | 	 */ | 
 | 	for (i = 0, fibptr = &dev->fibs[i]; | 
 | 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); | 
 | 		i++, fibptr++) | 
 | 	{ | 
 | 		fibptr->flags = 0; | 
 | 		fibptr->size = sizeof(struct fib); | 
 | 		fibptr->dev = dev; | 
 | 		fibptr->hw_fib_va = hw_fib; | 
 | 		fibptr->data = (void *) fibptr->hw_fib_va->data; | 
 | 		fibptr->next = fibptr+1;	/* Forward chain the fibs */ | 
 | 		init_completion(&fibptr->event_wait); | 
 | 		spin_lock_init(&fibptr->event_lock); | 
 | 		hw_fib->header.XferState = cpu_to_le32(0xffffffff); | 
 | 		hw_fib->header.SenderSize = | 
 | 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */ | 
 | 		fibptr->hw_fib_pa = hw_fib_pa; | 
 | 		fibptr->hw_sgl_pa = hw_fib_pa + | 
 | 			offsetof(struct aac_hba_cmd_req, sge[2]); | 
 | 		/* | 
 | 		 * one element is for the ptr to the separate sg list, | 
 | 		 * second element for 32 byte alignment | 
 | 		 */ | 
 | 		fibptr->hw_error_pa = hw_fib_pa + | 
 | 			offsetof(struct aac_native_hba, resp.resp_bytes[0]); | 
 |  | 
 | 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + | 
 | 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); | 
 | 		hw_fib_pa = hw_fib_pa + | 
 | 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *Assign vector numbers to fibs | 
 | 	 */ | 
 | 	aac_fib_vector_assign(dev); | 
 |  | 
 | 	/* | 
 | 	 *	Add the fib chain to the free list | 
 | 	 */ | 
 | 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; | 
 | 	/* | 
 | 	*	Set 8 fibs aside for management tools | 
 | 	*/ | 
 | 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_alloc_tag-allocate a fib using tags | 
 |  *	@dev: Adapter to allocate the fib for | 
 |  *	@scmd: SCSI command | 
 |  * | 
 |  *	Allocate a fib from the adapter fib pool using tags | 
 |  *	from the blk layer. | 
 |  */ | 
 |  | 
 | struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) | 
 | { | 
 | 	struct fib *fibptr; | 
 |  | 
 | 	fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag]; | 
 | 	/* | 
 | 	 *	Null out fields that depend on being zero at the start of | 
 | 	 *	each I/O | 
 | 	 */ | 
 | 	fibptr->hw_fib_va->header.XferState = 0; | 
 | 	fibptr->type = FSAFS_NTC_FIB_CONTEXT; | 
 | 	fibptr->callback_data = NULL; | 
 | 	fibptr->callback = NULL; | 
 | 	fibptr->flags = 0; | 
 |  | 
 | 	return fibptr; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_alloc	-	allocate a fib | 
 |  *	@dev: Adapter to allocate the fib for | 
 |  * | 
 |  *	Allocate a fib from the adapter fib pool. If the pool is empty we | 
 |  *	return NULL. | 
 |  */ | 
 |  | 
 | struct fib *aac_fib_alloc(struct aac_dev *dev) | 
 | { | 
 | 	struct fib * fibptr; | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&dev->fib_lock, flags); | 
 | 	fibptr = dev->free_fib; | 
 | 	if(!fibptr){ | 
 | 		spin_unlock_irqrestore(&dev->fib_lock, flags); | 
 | 		return fibptr; | 
 | 	} | 
 | 	dev->free_fib = fibptr->next; | 
 | 	spin_unlock_irqrestore(&dev->fib_lock, flags); | 
 | 	/* | 
 | 	 *	Set the proper node type code and node byte size | 
 | 	 */ | 
 | 	fibptr->type = FSAFS_NTC_FIB_CONTEXT; | 
 | 	fibptr->size = sizeof(struct fib); | 
 | 	/* | 
 | 	 *	Null out fields that depend on being zero at the start of | 
 | 	 *	each I/O | 
 | 	 */ | 
 | 	fibptr->hw_fib_va->header.XferState = 0; | 
 | 	fibptr->flags = 0; | 
 | 	fibptr->callback = NULL; | 
 | 	fibptr->callback_data = NULL; | 
 |  | 
 | 	return fibptr; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_free	-	free a fib | 
 |  *	@fibptr: fib to free up | 
 |  * | 
 |  *	Frees up a fib and places it on the appropriate queue | 
 |  */ | 
 |  | 
 | void aac_fib_free(struct fib *fibptr) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (fibptr->done == 2) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags); | 
 | 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) | 
 | 		aac_config.fib_timeouts++; | 
 | 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && | 
 | 		fibptr->hw_fib_va->header.XferState != 0) { | 
 | 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", | 
 | 			 (void*)fibptr, | 
 | 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); | 
 | 	} | 
 | 	fibptr->next = fibptr->dev->free_fib; | 
 | 	fibptr->dev->free_fib = fibptr; | 
 | 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_init	-	initialise a fib | 
 |  *	@fibptr: The fib to initialize | 
 |  * | 
 |  *	Set up the generic fib fields ready for use | 
 |  */ | 
 |  | 
 | void aac_fib_init(struct fib *fibptr) | 
 | { | 
 | 	struct hw_fib *hw_fib = fibptr->hw_fib_va; | 
 |  | 
 | 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); | 
 | 	hw_fib->header.StructType = FIB_MAGIC; | 
 | 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); | 
 | 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); | 
 | 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); | 
 | 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); | 
 | } | 
 |  | 
 | /** | 
 |  *	fib_dealloc		-	deallocate a fib | 
 |  *	@fibptr: fib to deallocate | 
 |  * | 
 |  *	Will deallocate and return to the free pool the FIB pointed to by the | 
 |  *	caller. | 
 |  */ | 
 |  | 
 | static void fib_dealloc(struct fib * fibptr) | 
 | { | 
 | 	struct hw_fib *hw_fib = fibptr->hw_fib_va; | 
 | 	hw_fib->header.XferState = 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Commuication primitives define and support the queuing method we use to | 
 |  *	support host to adapter commuication. All queue accesses happen through | 
 |  *	these routines and are the only routines which have a knowledge of the | 
 |  *	 how these queues are implemented. | 
 |  */ | 
 |  | 
 | /** | 
 |  *	aac_get_entry		-	get a queue entry | 
 |  *	@dev: Adapter | 
 |  *	@qid: Queue Number | 
 |  *	@entry: Entry return | 
 |  *	@index: Index return | 
 |  *	@nonotify: notification control | 
 |  * | 
 |  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue | 
 |  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is | 
 |  *	returned. | 
 |  */ | 
 |  | 
 | static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) | 
 | { | 
 | 	struct aac_queue * q; | 
 | 	unsigned long idx; | 
 |  | 
 | 	/* | 
 | 	 *	All of the queues wrap when they reach the end, so we check | 
 | 	 *	to see if they have reached the end and if they have we just | 
 | 	 *	set the index back to zero. This is a wrap. You could or off | 
 | 	 *	the high bits in all updates but this is a bit faster I think. | 
 | 	 */ | 
 |  | 
 | 	q = &dev->queues->queue[qid]; | 
 |  | 
 | 	idx = *index = le32_to_cpu(*(q->headers.producer)); | 
 | 	/* Interrupt Moderation, only interrupt for first two entries */ | 
 | 	if (idx != le32_to_cpu(*(q->headers.consumer))) { | 
 | 		if (--idx == 0) { | 
 | 			if (qid == AdapNormCmdQueue) | 
 | 				idx = ADAP_NORM_CMD_ENTRIES; | 
 | 			else | 
 | 				idx = ADAP_NORM_RESP_ENTRIES; | 
 | 		} | 
 | 		if (idx != le32_to_cpu(*(q->headers.consumer))) | 
 | 			*nonotify = 1; | 
 | 	} | 
 |  | 
 | 	if (qid == AdapNormCmdQueue) { | 
 | 		if (*index >= ADAP_NORM_CMD_ENTRIES) | 
 | 			*index = 0; /* Wrap to front of the Producer Queue. */ | 
 | 	} else { | 
 | 		if (*index >= ADAP_NORM_RESP_ENTRIES) | 
 | 			*index = 0; /* Wrap to front of the Producer Queue. */ | 
 | 	} | 
 |  | 
 | 	/* Queue is full */ | 
 | 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { | 
 | 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n", | 
 | 				qid, atomic_read(&q->numpending)); | 
 | 		return 0; | 
 | 	} else { | 
 | 		*entry = q->base + *index; | 
 | 		return 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_queue_get		-	get the next free QE | 
 |  *	@dev: Adapter | 
 |  *	@index: Returned index | 
 |  *	@qid: Queue number | 
 |  *	@hw_fib: Fib to associate with the queue entry | 
 |  *	@wait: Wait if queue full | 
 |  *	@fibptr: Driver fib object to go with fib | 
 |  *	@nonotify: Don't notify the adapter | 
 |  * | 
 |  *	Gets the next free QE off the requested priorty adapter command | 
 |  *	queue and associates the Fib with the QE. The QE represented by | 
 |  *	index is ready to insert on the queue when this routine returns | 
 |  *	success. | 
 |  */ | 
 |  | 
 | int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) | 
 | { | 
 | 	struct aac_entry * entry = NULL; | 
 | 	int map = 0; | 
 |  | 
 | 	if (qid == AdapNormCmdQueue) { | 
 | 		/*  if no entries wait for some if caller wants to */ | 
 | 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { | 
 | 			printk(KERN_ERR "GetEntries failed\n"); | 
 | 		} | 
 | 		/* | 
 | 		 *	Setup queue entry with a command, status and fib mapped | 
 | 		 */ | 
 | 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); | 
 | 		map = 1; | 
 | 	} else { | 
 | 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { | 
 | 			/* if no entries wait for some if caller wants to */ | 
 | 		} | 
 | 		/* | 
 | 		 *	Setup queue entry with command, status and fib mapped | 
 | 		 */ | 
 | 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); | 
 | 		entry->addr = hw_fib->header.SenderFibAddress; | 
 | 			/* Restore adapters pointer to the FIB */ | 
 | 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */ | 
 | 		map = 0; | 
 | 	} | 
 | 	/* | 
 | 	 *	If MapFib is true than we need to map the Fib and put pointers | 
 | 	 *	in the queue entry. | 
 | 	 */ | 
 | 	if (map) | 
 | 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Define the highest level of host to adapter communication routines. | 
 |  *	These routines will support host to adapter FS commuication. These | 
 |  *	routines have no knowledge of the commuication method used. This level | 
 |  *	sends and receives FIBs. This level has no knowledge of how these FIBs | 
 |  *	get passed back and forth. | 
 |  */ | 
 |  | 
 | /** | 
 |  *	aac_fib_send	-	send a fib to the adapter | 
 |  *	@command: Command to send | 
 |  *	@fibptr: The fib | 
 |  *	@size: Size of fib data area | 
 |  *	@priority: Priority of Fib | 
 |  *	@wait: Async/sync select | 
 |  *	@reply: True if a reply is wanted | 
 |  *	@callback: Called with reply | 
 |  *	@callback_data: Passed to callback | 
 |  * | 
 |  *	Sends the requested FIB to the adapter and optionally will wait for a | 
 |  *	response FIB. If the caller does not wish to wait for a response than | 
 |  *	an event to wait on must be supplied. This event will be set when a | 
 |  *	response FIB is received from the adapter. | 
 |  */ | 
 |  | 
 | int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, | 
 | 		int priority, int wait, int reply, fib_callback callback, | 
 | 		void *callback_data) | 
 | { | 
 | 	struct aac_dev * dev = fibptr->dev; | 
 | 	struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
 | 	unsigned long flags = 0; | 
 | 	unsigned long mflags = 0; | 
 | 	unsigned long sflags = 0; | 
 |  | 
 | 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 *	There are 5 cases with the wait and response requested flags. | 
 | 	 *	The only invalid cases are if the caller requests to wait and | 
 | 	 *	does not request a response and if the caller does not want a | 
 | 	 *	response and the Fib is not allocated from pool. If a response | 
 | 	 *	is not requested the Fib will just be deallocaed by the DPC | 
 | 	 *	routine when the response comes back from the adapter. No | 
 | 	 *	further processing will be done besides deleting the Fib. We | 
 | 	 *	will have a debug mode where the adapter can notify the host | 
 | 	 *	it had a problem and the host can log that fact. | 
 | 	 */ | 
 | 	fibptr->flags = 0; | 
 | 	if (wait && !reply) { | 
 | 		return -EINVAL; | 
 | 	} else if (!wait && reply) { | 
 | 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); | 
 | 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent); | 
 | 	} else if (!wait && !reply) { | 
 | 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); | 
 | 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); | 
 | 	} else if (wait && reply) { | 
 | 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); | 
 | 		FIB_COUNTER_INCREMENT(aac_config.NormalSent); | 
 | 	} | 
 | 	/* | 
 | 	 *	Map the fib into 32bits by using the fib number | 
 | 	 */ | 
 |  | 
 | 	hw_fib->header.SenderFibAddress = | 
 | 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); | 
 |  | 
 | 	/* use the same shifted value for handle to be compatible | 
 | 	 * with the new native hba command handle | 
 | 	 */ | 
 | 	hw_fib->header.Handle = | 
 | 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); | 
 |  | 
 | 	/* | 
 | 	 *	Set FIB state to indicate where it came from and if we want a | 
 | 	 *	response from the adapter. Also load the command from the | 
 | 	 *	caller. | 
 | 	 * | 
 | 	 *	Map the hw fib pointer as a 32bit value | 
 | 	 */ | 
 | 	hw_fib->header.Command = cpu_to_le16(command); | 
 | 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost); | 
 | 	/* | 
 | 	 *	Set the size of the Fib we want to send to the adapter | 
 | 	 */ | 
 | 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); | 
 | 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { | 
 | 		return -EMSGSIZE; | 
 | 	} | 
 | 	/* | 
 | 	 *	Get a queue entry connect the FIB to it and send an notify | 
 | 	 *	the adapter a command is ready. | 
 | 	 */ | 
 | 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority); | 
 |  | 
 | 	/* | 
 | 	 *	Fill in the Callback and CallbackContext if we are not | 
 | 	 *	going to wait. | 
 | 	 */ | 
 | 	if (!wait) { | 
 | 		fibptr->callback = callback; | 
 | 		fibptr->callback_data = callback_data; | 
 | 		fibptr->flags = FIB_CONTEXT_FLAG; | 
 | 	} | 
 |  | 
 | 	fibptr->done = 0; | 
 |  | 
 | 	FIB_COUNTER_INCREMENT(aac_config.FibsSent); | 
 |  | 
 | 	dprintk((KERN_DEBUG "Fib contents:.\n")); | 
 | 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command))); | 
 | 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); | 
 | 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState))); | 
 | 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va)); | 
 | 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); | 
 | 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr)); | 
 |  | 
 | 	if (!dev->queues) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (wait) { | 
 |  | 
 | 		spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { | 
 | 			printk(KERN_INFO "No management Fibs Available:%d\n", | 
 | 						dev->management_fib_count); | 
 | 			spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		dev->management_fib_count++; | 
 | 		spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 | 		spin_lock_irqsave(&fibptr->event_lock, flags); | 
 | 	} | 
 |  | 
 | 	if (dev->sync_mode) { | 
 | 		if (wait) | 
 | 			spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 		spin_lock_irqsave(&dev->sync_lock, sflags); | 
 | 		if (dev->sync_fib) { | 
 | 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); | 
 | 			spin_unlock_irqrestore(&dev->sync_lock, sflags); | 
 | 		} else { | 
 | 			dev->sync_fib = fibptr; | 
 | 			spin_unlock_irqrestore(&dev->sync_lock, sflags); | 
 | 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, | 
 | 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, | 
 | 				NULL, NULL, NULL, NULL, NULL); | 
 | 		} | 
 | 		if (wait) { | 
 | 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; | 
 | 			if (wait_for_completion_interruptible(&fibptr->event_wait)) { | 
 | 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; | 
 | 				return -EFAULT; | 
 | 			} | 
 | 			return 0; | 
 | 		} | 
 | 		return -EINPROGRESS; | 
 | 	} | 
 |  | 
 | 	if (aac_adapter_deliver(fibptr) != 0) { | 
 | 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); | 
 | 		if (wait) { | 
 | 			spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 			spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 			dev->management_fib_count--; | 
 | 			spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 | 		} | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 *	If the caller wanted us to wait for response wait now. | 
 | 	 */ | 
 |  | 
 | 	if (wait) { | 
 | 		spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 		/* Only set for first known interruptable command */ | 
 | 		if (wait < 0) { | 
 | 			/* | 
 | 			 * *VERY* Dangerous to time out a command, the | 
 | 			 * assumption is made that we have no hope of | 
 | 			 * functioning because an interrupt routing or other | 
 | 			 * hardware failure has occurred. | 
 | 			 */ | 
 | 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ | 
 | 			while (!try_wait_for_completion(&fibptr->event_wait)) { | 
 | 				int blink; | 
 | 				if (time_is_before_eq_jiffies(timeout)) { | 
 | 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; | 
 | 					atomic_dec(&q->numpending); | 
 | 					if (wait == -1) { | 
 | 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" | 
 | 						  "Usually a result of a PCI interrupt routing problem;\n" | 
 | 						  "update mother board BIOS or consider utilizing one of\n" | 
 | 						  "the SAFE mode kernel options (acpi, apic etc)\n"); | 
 | 					} | 
 | 					return -ETIMEDOUT; | 
 | 				} | 
 |  | 
 | 				if (unlikely(aac_pci_offline(dev))) | 
 | 					return -EFAULT; | 
 |  | 
 | 				if ((blink = aac_adapter_check_health(dev)) > 0) { | 
 | 					if (wait == -1) { | 
 | 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" | 
 | 						  "Usually a result of a serious unrecoverable hardware problem\n", | 
 | 						  blink); | 
 | 					} | 
 | 					return -EFAULT; | 
 | 				} | 
 | 				/* | 
 | 				 * Allow other processes / CPUS to use core | 
 | 				 */ | 
 | 				schedule(); | 
 | 			} | 
 | 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) { | 
 | 			/* Do nothing ... satisfy | 
 | 			 * wait_for_completion_interruptible must_check */ | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&fibptr->event_lock, flags); | 
 | 		if (fibptr->done == 0) { | 
 | 			fibptr->done = 2; /* Tell interrupt we aborted */ | 
 | 			spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 			return -ERESTARTSYS; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 		BUG_ON(fibptr->done == 0); | 
 |  | 
 | 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) | 
 | 			return -ETIMEDOUT; | 
 | 		return 0; | 
 | 	} | 
 | 	/* | 
 | 	 *	If the user does not want a response than return success otherwise | 
 | 	 *	return pending | 
 | 	 */ | 
 | 	if (reply) | 
 | 		return -EINPROGRESS; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, | 
 | 		void *callback_data) | 
 | { | 
 | 	struct aac_dev *dev = fibptr->dev; | 
 | 	int wait; | 
 | 	unsigned long flags = 0; | 
 | 	unsigned long mflags = 0; | 
 | 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) | 
 | 			fibptr->hw_fib_va; | 
 |  | 
 | 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); | 
 | 	if (callback) { | 
 | 		wait = 0; | 
 | 		fibptr->callback = callback; | 
 | 		fibptr->callback_data = callback_data; | 
 | 	} else | 
 | 		wait = 1; | 
 |  | 
 |  | 
 | 	hbacmd->iu_type = command; | 
 |  | 
 | 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { | 
 | 		/* bit1 of request_id must be 0 */ | 
 | 		hbacmd->request_id = | 
 | 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); | 
 | 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; | 
 | 	} else | 
 | 		return -EINVAL; | 
 |  | 
 |  | 
 | 	if (wait) { | 
 | 		spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { | 
 | 			spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		dev->management_fib_count++; | 
 | 		spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 | 		spin_lock_irqsave(&fibptr->event_lock, flags); | 
 | 	} | 
 |  | 
 | 	if (aac_adapter_deliver(fibptr) != 0) { | 
 | 		if (wait) { | 
 | 			spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 			spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 			dev->management_fib_count--; | 
 | 			spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 | 		} | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	FIB_COUNTER_INCREMENT(aac_config.NativeSent); | 
 |  | 
 | 	if (wait) { | 
 |  | 
 | 		spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 |  | 
 | 		if (unlikely(aac_pci_offline(dev))) | 
 | 			return -EFAULT; | 
 |  | 
 | 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; | 
 | 		if (wait_for_completion_interruptible(&fibptr->event_wait)) | 
 | 			fibptr->done = 2; | 
 | 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); | 
 |  | 
 | 		spin_lock_irqsave(&fibptr->event_lock, flags); | 
 | 		if ((fibptr->done == 0) || (fibptr->done == 2)) { | 
 | 			fibptr->done = 2; /* Tell interrupt we aborted */ | 
 | 			spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 			return -ERESTARTSYS; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
 | 		WARN_ON(fibptr->done == 0); | 
 |  | 
 | 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) | 
 | 			return -ETIMEDOUT; | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EINPROGRESS; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_consumer_get	-	get the top of the queue | 
 |  *	@dev: Adapter | 
 |  *	@q: Queue | 
 |  *	@entry: Return entry | 
 |  * | 
 |  *	Will return a pointer to the entry on the top of the queue requested that | 
 |  *	we are a consumer of, and return the address of the queue entry. It does | 
 |  *	not change the state of the queue. | 
 |  */ | 
 |  | 
 | int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) | 
 | { | 
 | 	u32 index; | 
 | 	int status; | 
 | 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { | 
 | 		status = 0; | 
 | 	} else { | 
 | 		/* | 
 | 		 *	The consumer index must be wrapped if we have reached | 
 | 		 *	the end of the queue, else we just use the entry | 
 | 		 *	pointed to by the header index | 
 | 		 */ | 
 | 		if (le32_to_cpu(*q->headers.consumer) >= q->entries) | 
 | 			index = 0; | 
 | 		else | 
 | 			index = le32_to_cpu(*q->headers.consumer); | 
 | 		*entry = q->base + index; | 
 | 		status = 1; | 
 | 	} | 
 | 	return(status); | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_consumer_free	-	free consumer entry | 
 |  *	@dev: Adapter | 
 |  *	@q: Queue | 
 |  *	@qid: Queue ident | 
 |  * | 
 |  *	Frees up the current top of the queue we are a consumer of. If the | 
 |  *	queue was full notify the producer that the queue is no longer full. | 
 |  */ | 
 |  | 
 | void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) | 
 | { | 
 | 	int wasfull = 0; | 
 | 	u32 notify; | 
 |  | 
 | 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) | 
 | 		wasfull = 1; | 
 |  | 
 | 	if (le32_to_cpu(*q->headers.consumer) >= q->entries) | 
 | 		*q->headers.consumer = cpu_to_le32(1); | 
 | 	else | 
 | 		le32_add_cpu(q->headers.consumer, 1); | 
 |  | 
 | 	if (wasfull) { | 
 | 		switch (qid) { | 
 |  | 
 | 		case HostNormCmdQueue: | 
 | 			notify = HostNormCmdNotFull; | 
 | 			break; | 
 | 		case HostNormRespQueue: | 
 | 			notify = HostNormRespNotFull; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 			return; | 
 | 		} | 
 | 		aac_adapter_notify(dev, notify); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_adapter_complete	-	complete adapter issued fib | 
 |  *	@fibptr: fib to complete | 
 |  *	@size: size of fib | 
 |  * | 
 |  *	Will do all necessary work to complete a FIB that was sent from | 
 |  *	the adapter. | 
 |  */ | 
 |  | 
 | int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) | 
 | { | 
 | 	struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
 | 	struct aac_dev * dev = fibptr->dev; | 
 | 	struct aac_queue * q; | 
 | 	unsigned long nointr = 0; | 
 | 	unsigned long qflags; | 
 |  | 
 | 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || | 
 | 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || | 
 | 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { | 
 | 		kfree(hw_fib); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (hw_fib->header.XferState == 0) { | 
 | 		if (dev->comm_interface == AAC_COMM_MESSAGE) | 
 | 			kfree(hw_fib); | 
 | 		return 0; | 
 | 	} | 
 | 	/* | 
 | 	 *	If we plan to do anything check the structure type first. | 
 | 	 */ | 
 | 	if (hw_fib->header.StructType != FIB_MAGIC && | 
 | 	    hw_fib->header.StructType != FIB_MAGIC2 && | 
 | 	    hw_fib->header.StructType != FIB_MAGIC2_64) { | 
 | 		if (dev->comm_interface == AAC_COMM_MESSAGE) | 
 | 			kfree(hw_fib); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* | 
 | 	 *	This block handles the case where the adapter had sent us a | 
 | 	 *	command and we have finished processing the command. We | 
 | 	 *	call completeFib when we are done processing the command | 
 | 	 *	and want to send a response back to the adapter. This will | 
 | 	 *	send the completed cdb to the adapter. | 
 | 	 */ | 
 | 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { | 
 | 		if (dev->comm_interface == AAC_COMM_MESSAGE) { | 
 | 			kfree (hw_fib); | 
 | 		} else { | 
 | 			u32 index; | 
 | 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed); | 
 | 			if (size) { | 
 | 				size += sizeof(struct aac_fibhdr); | 
 | 				if (size > le16_to_cpu(hw_fib->header.SenderSize)) | 
 | 					return -EMSGSIZE; | 
 | 				hw_fib->header.Size = cpu_to_le16(size); | 
 | 			} | 
 | 			q = &dev->queues->queue[AdapNormRespQueue]; | 
 | 			spin_lock_irqsave(q->lock, qflags); | 
 | 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); | 
 | 			*(q->headers.producer) = cpu_to_le32(index + 1); | 
 | 			spin_unlock_irqrestore(q->lock, qflags); | 
 | 			if (!(nointr & (int)aac_config.irq_mod)) | 
 | 				aac_adapter_notify(dev, AdapNormRespQueue); | 
 | 		} | 
 | 	} else { | 
 | 		printk(KERN_WARNING "aac_fib_adapter_complete: " | 
 | 			"Unknown xferstate detected.\n"); | 
 | 		BUG(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_fib_complete	-	fib completion handler | 
 |  *	@fibptr: FIB to complete | 
 |  * | 
 |  *	Will do all necessary work to complete a FIB. | 
 |  */ | 
 |  | 
 | int aac_fib_complete(struct fib *fibptr) | 
 | { | 
 | 	struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
 |  | 
 | 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { | 
 | 		fib_dealloc(fibptr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *	Check for a fib which has already been completed or with a | 
 | 	 *	status wait timeout | 
 | 	 */ | 
 |  | 
 | 	if (hw_fib->header.XferState == 0 || fibptr->done == 2) | 
 | 		return 0; | 
 | 	/* | 
 | 	 *	If we plan to do anything check the structure type first. | 
 | 	 */ | 
 |  | 
 | 	if (hw_fib->header.StructType != FIB_MAGIC && | 
 | 	    hw_fib->header.StructType != FIB_MAGIC2 && | 
 | 	    hw_fib->header.StructType != FIB_MAGIC2_64) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 *	This block completes a cdb which orginated on the host and we | 
 | 	 *	just need to deallocate the cdb or reinit it. At this point the | 
 | 	 *	command is complete that we had sent to the adapter and this | 
 | 	 *	cdb could be reused. | 
 | 	 */ | 
 |  | 
 | 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && | 
 | 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) | 
 | 	{ | 
 | 		fib_dealloc(fibptr); | 
 | 	} | 
 | 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) | 
 | 	{ | 
 | 		/* | 
 | 		 *	This handles the case when the host has aborted the I/O | 
 | 		 *	to the adapter because the adapter is not responding | 
 | 		 */ | 
 | 		fib_dealloc(fibptr); | 
 | 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { | 
 | 		fib_dealloc(fibptr); | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_printf	-	handle printf from firmware | 
 |  *	@dev: Adapter | 
 |  *	@val: Message info | 
 |  * | 
 |  *	Print a message passed to us by the controller firmware on the | 
 |  *	Adaptec board | 
 |  */ | 
 |  | 
 | void aac_printf(struct aac_dev *dev, u32 val) | 
 | { | 
 | 	char *cp = dev->printfbuf; | 
 | 	if (dev->printf_enabled) | 
 | 	{ | 
 | 		int length = val & 0xffff; | 
 | 		int level = (val >> 16) & 0xffff; | 
 |  | 
 | 		/* | 
 | 		 *	The size of the printfbuf is set in port.c | 
 | 		 *	There is no variable or define for it | 
 | 		 */ | 
 | 		if (length > 255) | 
 | 			length = 255; | 
 | 		if (cp[length] != 0) | 
 | 			cp[length] = 0; | 
 | 		if (level == LOG_AAC_HIGH_ERROR) | 
 | 			printk(KERN_WARNING "%s:%s", dev->name, cp); | 
 | 		else | 
 | 			printk(KERN_INFO "%s:%s", dev->name, cp); | 
 | 	} | 
 | 	memset(cp, 0, 256); | 
 | } | 
 |  | 
 | static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) | 
 | { | 
 | 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]); | 
 | } | 
 |  | 
 |  | 
 | static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) | 
 | { | 
 | 	switch (aac_aif_data(aifcmd, 1)) { | 
 | 	case AifBuCacheDataLoss: | 
 | 		if (aac_aif_data(aifcmd, 2)) | 
 | 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", | 
 | 			aac_aif_data(aifcmd, 2)); | 
 | 		else | 
 | 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); | 
 | 		break; | 
 | 	case AifBuCacheDataRecover: | 
 | 		if (aac_aif_data(aifcmd, 2)) | 
 | 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", | 
 | 			aac_aif_data(aifcmd, 2)); | 
 | 		else | 
 | 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | #define AIF_SNIFF_TIMEOUT	(500*HZ) | 
 | /** | 
 |  *	aac_handle_aif		-	Handle a message from the firmware | 
 |  *	@dev: Which adapter this fib is from | 
 |  *	@fibptr: Pointer to fibptr from adapter | 
 |  * | 
 |  *	This routine handles a driver notify fib from the adapter and | 
 |  *	dispatches it to the appropriate routine for handling. | 
 |  */ | 
 | static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) | 
 | { | 
 | 	struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
 | 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; | 
 | 	u32 channel, id, lun, container; | 
 | 	struct scsi_device *device; | 
 | 	enum { | 
 | 		NOTHING, | 
 | 		DELETE, | 
 | 		ADD, | 
 | 		CHANGE | 
 | 	} device_config_needed = NOTHING; | 
 |  | 
 | 	/* Sniff for container changes */ | 
 |  | 
 | 	if (!dev || !dev->fsa_dev) | 
 | 		return; | 
 | 	container = channel = id = lun = (u32)-1; | 
 |  | 
 | 	/* | 
 | 	 *	We have set this up to try and minimize the number of | 
 | 	 * re-configures that take place. As a result of this when | 
 | 	 * certain AIF's come in we will set a flag waiting for another | 
 | 	 * type of AIF before setting the re-config flag. | 
 | 	 */ | 
 | 	switch (le32_to_cpu(aifcmd->command)) { | 
 | 	case AifCmdDriverNotify: | 
 | 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { | 
 | 		case AifRawDeviceRemove: | 
 | 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
 | 			if ((container >> 28)) { | 
 | 				container = (u32)-1; | 
 | 				break; | 
 | 			} | 
 | 			channel = (container >> 24) & 0xF; | 
 | 			if (channel >= dev->maximum_num_channels) { | 
 | 				container = (u32)-1; | 
 | 				break; | 
 | 			} | 
 | 			id = container & 0xFFFF; | 
 | 			if (id >= dev->maximum_num_physicals) { | 
 | 				container = (u32)-1; | 
 | 				break; | 
 | 			} | 
 | 			lun = (container >> 16) & 0xFF; | 
 | 			container = (u32)-1; | 
 | 			channel = aac_phys_to_logical(channel); | 
 | 			device_config_needed = DELETE; | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 *	Morph or Expand complete | 
 | 		 */ | 
 | 		case AifDenMorphComplete: | 
 | 		case AifDenVolumeExtendComplete: | 
 | 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
 | 			if (container >= dev->maximum_num_containers) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 *	Find the scsi_device associated with the SCSI | 
 | 			 * address. Make sure we have the right array, and if | 
 | 			 * so set the flag to initiate a new re-config once we | 
 | 			 * see an AifEnConfigChange AIF come through. | 
 | 			 */ | 
 |  | 
 | 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { | 
 | 				device = scsi_device_lookup(dev->scsi_host_ptr, | 
 | 					CONTAINER_TO_CHANNEL(container), | 
 | 					CONTAINER_TO_ID(container), | 
 | 					CONTAINER_TO_LUN(container)); | 
 | 				if (device) { | 
 | 					dev->fsa_dev[container].config_needed = CHANGE; | 
 | 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; | 
 | 					dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
 | 					scsi_device_put(device); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 *	If we are waiting on something and this happens to be | 
 | 		 * that thing then set the re-configure flag. | 
 | 		 */ | 
 | 		if (container != (u32)-1) { | 
 | 			if (container >= dev->maximum_num_containers) | 
 | 				break; | 
 | 			if ((dev->fsa_dev[container].config_waiting_on == | 
 | 			    le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
 | 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
 | 				dev->fsa_dev[container].config_waiting_on = 0; | 
 | 		} else for (container = 0; | 
 | 		    container < dev->maximum_num_containers; ++container) { | 
 | 			if ((dev->fsa_dev[container].config_waiting_on == | 
 | 			    le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
 | 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
 | 				dev->fsa_dev[container].config_waiting_on = 0; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case AifCmdEventNotify: | 
 | 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { | 
 | 		case AifEnBatteryEvent: | 
 | 			dev->cache_protected = | 
 | 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); | 
 | 			break; | 
 | 		/* | 
 | 		 *	Add an Array. | 
 | 		 */ | 
 | 		case AifEnAddContainer: | 
 | 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
 | 			if (container >= dev->maximum_num_containers) | 
 | 				break; | 
 | 			dev->fsa_dev[container].config_needed = ADD; | 
 | 			dev->fsa_dev[container].config_waiting_on = | 
 | 				AifEnConfigChange; | 
 | 			dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 *	Delete an Array. | 
 | 		 */ | 
 | 		case AifEnDeleteContainer: | 
 | 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
 | 			if (container >= dev->maximum_num_containers) | 
 | 				break; | 
 | 			dev->fsa_dev[container].config_needed = DELETE; | 
 | 			dev->fsa_dev[container].config_waiting_on = | 
 | 				AifEnConfigChange; | 
 | 			dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 *	Container change detected. If we currently are not | 
 | 		 * waiting on something else, setup to wait on a Config Change. | 
 | 		 */ | 
 | 		case AifEnContainerChange: | 
 | 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
 | 			if (container >= dev->maximum_num_containers) | 
 | 				break; | 
 | 			if (dev->fsa_dev[container].config_waiting_on && | 
 | 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
 | 				break; | 
 | 			dev->fsa_dev[container].config_needed = CHANGE; | 
 | 			dev->fsa_dev[container].config_waiting_on = | 
 | 				AifEnConfigChange; | 
 | 			dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
 | 			break; | 
 |  | 
 | 		case AifEnConfigChange: | 
 | 			break; | 
 |  | 
 | 		case AifEnAddJBOD: | 
 | 		case AifEnDeleteJBOD: | 
 | 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
 | 			if ((container >> 28)) { | 
 | 				container = (u32)-1; | 
 | 				break; | 
 | 			} | 
 | 			channel = (container >> 24) & 0xF; | 
 | 			if (channel >= dev->maximum_num_channels) { | 
 | 				container = (u32)-1; | 
 | 				break; | 
 | 			} | 
 | 			id = container & 0xFFFF; | 
 | 			if (id >= dev->maximum_num_physicals) { | 
 | 				container = (u32)-1; | 
 | 				break; | 
 | 			} | 
 | 			lun = (container >> 16) & 0xFF; | 
 | 			container = (u32)-1; | 
 | 			channel = aac_phys_to_logical(channel); | 
 | 			device_config_needed = | 
 | 			  (((__le32 *)aifcmd->data)[0] == | 
 | 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; | 
 | 			if (device_config_needed == ADD) { | 
 | 				device = scsi_device_lookup(dev->scsi_host_ptr, | 
 | 					channel, | 
 | 					id, | 
 | 					lun); | 
 | 				if (device) { | 
 | 					scsi_remove_device(device); | 
 | 					scsi_device_put(device); | 
 | 				} | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case AifEnEnclosureManagement: | 
 | 			/* | 
 | 			 * If in JBOD mode, automatic exposure of new | 
 | 			 * physical target to be suppressed until configured. | 
 | 			 */ | 
 | 			if (dev->jbod) | 
 | 				break; | 
 | 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { | 
 | 			case EM_DRIVE_INSERTION: | 
 | 			case EM_DRIVE_REMOVAL: | 
 | 			case EM_SES_DRIVE_INSERTION: | 
 | 			case EM_SES_DRIVE_REMOVAL: | 
 | 				container = le32_to_cpu( | 
 | 					((__le32 *)aifcmd->data)[2]); | 
 | 				if ((container >> 28)) { | 
 | 					container = (u32)-1; | 
 | 					break; | 
 | 				} | 
 | 				channel = (container >> 24) & 0xF; | 
 | 				if (channel >= dev->maximum_num_channels) { | 
 | 					container = (u32)-1; | 
 | 					break; | 
 | 				} | 
 | 				id = container & 0xFFFF; | 
 | 				lun = (container >> 16) & 0xFF; | 
 | 				container = (u32)-1; | 
 | 				if (id >= dev->maximum_num_physicals) { | 
 | 					/* legacy dev_t ? */ | 
 | 					if ((0x2000 <= id) || lun || channel || | 
 | 					  ((channel = (id >> 7) & 0x3F) >= | 
 | 					  dev->maximum_num_channels)) | 
 | 						break; | 
 | 					lun = (id >> 4) & 7; | 
 | 					id &= 0xF; | 
 | 				} | 
 | 				channel = aac_phys_to_logical(channel); | 
 | 				device_config_needed = | 
 | 				  ((((__le32 *)aifcmd->data)[3] | 
 | 				    == cpu_to_le32(EM_DRIVE_INSERTION)) || | 
 | 				    (((__le32 *)aifcmd->data)[3] | 
 | 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? | 
 | 				  ADD : DELETE; | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case AifBuManagerEvent: | 
 | 			aac_handle_aif_bu(dev, aifcmd); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 *	If we are waiting on something and this happens to be | 
 | 		 * that thing then set the re-configure flag. | 
 | 		 */ | 
 | 		if (container != (u32)-1) { | 
 | 			if (container >= dev->maximum_num_containers) | 
 | 				break; | 
 | 			if ((dev->fsa_dev[container].config_waiting_on == | 
 | 			    le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
 | 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
 | 				dev->fsa_dev[container].config_waiting_on = 0; | 
 | 		} else for (container = 0; | 
 | 		    container < dev->maximum_num_containers; ++container) { | 
 | 			if ((dev->fsa_dev[container].config_waiting_on == | 
 | 			    le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
 | 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
 | 				dev->fsa_dev[container].config_waiting_on = 0; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case AifCmdJobProgress: | 
 | 		/* | 
 | 		 *	These are job progress AIF's. When a Clear is being | 
 | 		 * done on a container it is initially created then hidden from | 
 | 		 * the OS. When the clear completes we don't get a config | 
 | 		 * change so we monitor the job status complete on a clear then | 
 | 		 * wait for a container change. | 
 | 		 */ | 
 |  | 
 | 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && | 
 | 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || | 
 | 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { | 
 | 			for (container = 0; | 
 | 			    container < dev->maximum_num_containers; | 
 | 			    ++container) { | 
 | 				/* | 
 | 				 * Stomp on all config sequencing for all | 
 | 				 * containers? | 
 | 				 */ | 
 | 				dev->fsa_dev[container].config_waiting_on = | 
 | 					AifEnContainerChange; | 
 | 				dev->fsa_dev[container].config_needed = ADD; | 
 | 				dev->fsa_dev[container].config_waiting_stamp = | 
 | 					jiffies; | 
 | 			} | 
 | 		} | 
 | 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && | 
 | 		    ((__le32 *)aifcmd->data)[6] == 0 && | 
 | 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { | 
 | 			for (container = 0; | 
 | 			    container < dev->maximum_num_containers; | 
 | 			    ++container) { | 
 | 				/* | 
 | 				 * Stomp on all config sequencing for all | 
 | 				 * containers? | 
 | 				 */ | 
 | 				dev->fsa_dev[container].config_waiting_on = | 
 | 					AifEnContainerChange; | 
 | 				dev->fsa_dev[container].config_needed = DELETE; | 
 | 				dev->fsa_dev[container].config_waiting_stamp = | 
 | 					jiffies; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	container = 0; | 
 | retry_next: | 
 | 	if (device_config_needed == NOTHING) { | 
 | 		for (; container < dev->maximum_num_containers; ++container) { | 
 | 			if ((dev->fsa_dev[container].config_waiting_on == 0) && | 
 | 			    (dev->fsa_dev[container].config_needed != NOTHING) && | 
 | 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { | 
 | 				device_config_needed = | 
 | 					dev->fsa_dev[container].config_needed; | 
 | 				dev->fsa_dev[container].config_needed = NOTHING; | 
 | 				channel = CONTAINER_TO_CHANNEL(container); | 
 | 				id = CONTAINER_TO_ID(container); | 
 | 				lun = CONTAINER_TO_LUN(container); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (device_config_needed == NOTHING) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 *	If we decided that a re-configuration needs to be done, | 
 | 	 * schedule it here on the way out the door, please close the door | 
 | 	 * behind you. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 *	Find the scsi_device associated with the SCSI address, | 
 | 	 * and mark it as changed, invalidating the cache. This deals | 
 | 	 * with changes to existing device IDs. | 
 | 	 */ | 
 |  | 
 | 	if (!dev || !dev->scsi_host_ptr) | 
 | 		return; | 
 | 	/* | 
 | 	 * force reload of disk info via aac_probe_container | 
 | 	 */ | 
 | 	if ((channel == CONTAINER_CHANNEL) && | 
 | 	  (device_config_needed != NOTHING)) { | 
 | 		if (dev->fsa_dev[container].valid == 1) | 
 | 			dev->fsa_dev[container].valid = 2; | 
 | 		aac_probe_container(dev, container); | 
 | 	} | 
 | 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); | 
 | 	if (device) { | 
 | 		switch (device_config_needed) { | 
 | 		case DELETE: | 
 | #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) | 
 | 			scsi_remove_device(device); | 
 | #else | 
 | 			if (scsi_device_online(device)) { | 
 | 				scsi_device_set_state(device, SDEV_OFFLINE); | 
 | 				sdev_printk(KERN_INFO, device, | 
 | 					"Device offlined - %s\n", | 
 | 					(channel == CONTAINER_CHANNEL) ? | 
 | 						"array deleted" : | 
 | 						"enclosure services event"); | 
 | 			} | 
 | #endif | 
 | 			break; | 
 | 		case ADD: | 
 | 			if (!scsi_device_online(device)) { | 
 | 				sdev_printk(KERN_INFO, device, | 
 | 					"Device online - %s\n", | 
 | 					(channel == CONTAINER_CHANNEL) ? | 
 | 						"array created" : | 
 | 						"enclosure services event"); | 
 | 				scsi_device_set_state(device, SDEV_RUNNING); | 
 | 			} | 
 | 			fallthrough; | 
 | 		case CHANGE: | 
 | 			if ((channel == CONTAINER_CHANNEL) | 
 | 			 && (!dev->fsa_dev[container].valid)) { | 
 | #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) | 
 | 				scsi_remove_device(device); | 
 | #else | 
 | 				if (!scsi_device_online(device)) | 
 | 					break; | 
 | 				scsi_device_set_state(device, SDEV_OFFLINE); | 
 | 				sdev_printk(KERN_INFO, device, | 
 | 					"Device offlined - %s\n", | 
 | 					"array failed"); | 
 | #endif | 
 | 				break; | 
 | 			} | 
 | 			scsi_rescan_device(device); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		scsi_device_put(device); | 
 | 		device_config_needed = NOTHING; | 
 | 	} | 
 | 	if (device_config_needed == ADD) | 
 | 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun); | 
 | 	if (channel == CONTAINER_CHANNEL) { | 
 | 		container++; | 
 | 		device_config_needed = NOTHING; | 
 | 		goto retry_next; | 
 | 	} | 
 | } | 
 |  | 
 | static void aac_schedule_bus_scan(struct aac_dev *aac) | 
 | { | 
 | 	if (aac->sa_firmware) | 
 | 		aac_schedule_safw_scan_worker(aac); | 
 | 	else | 
 | 		aac_schedule_src_reinit_aif_worker(aac); | 
 | } | 
 |  | 
 | static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) | 
 | { | 
 | 	int index, quirks; | 
 | 	int retval; | 
 | 	struct Scsi_Host *host = aac->scsi_host_ptr; | 
 | 	int jafo = 0; | 
 | 	int bled; | 
 | 	u64 dmamask; | 
 | 	int num_of_fibs = 0; | 
 |  | 
 | 	/* | 
 | 	 * Assumptions: | 
 | 	 *	- host is locked, unless called by the aacraid thread. | 
 | 	 *	  (a matter of convenience, due to legacy issues surrounding | 
 | 	 *	  eh_host_adapter_reset). | 
 | 	 *	- in_reset is asserted, so no new i/o is getting to the | 
 | 	 *	  card. | 
 | 	 *	- The card is dead, or will be very shortly ;-/ so no new | 
 | 	 *	  commands are completing in the interrupt service. | 
 | 	 */ | 
 | 	aac_adapter_disable_int(aac); | 
 | 	if (aac->thread && aac->thread->pid != current->pid) { | 
 | 		spin_unlock_irq(host->host_lock); | 
 | 		kthread_stop(aac->thread); | 
 | 		aac->thread = NULL; | 
 | 		jafo = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *	If a positive health, means in a known DEAD PANIC | 
 | 	 * state and the adapter could be reset to `try again'. | 
 | 	 */ | 
 | 	bled = forced ? 0 : aac_adapter_check_health(aac); | 
 | 	retval = aac_adapter_restart(aac, bled, reset_type); | 
 |  | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 *	Loop through the fibs, close the synchronous FIBS | 
 | 	 */ | 
 | 	retval = 1; | 
 | 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; | 
 | 	for (index = 0; index <  num_of_fibs; index++) { | 
 |  | 
 | 		struct fib *fib = &aac->fibs[index]; | 
 | 		__le32 XferState = fib->hw_fib_va->header.XferState; | 
 | 		bool is_response_expected = false; | 
 |  | 
 | 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && | 
 | 		   (XferState & cpu_to_le32(ResponseExpected))) | 
 | 			is_response_expected = true; | 
 |  | 
 | 		if (is_response_expected | 
 | 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) { | 
 | 			unsigned long flagv; | 
 | 			spin_lock_irqsave(&fib->event_lock, flagv); | 
 | 			complete(&fib->event_wait); | 
 | 			spin_unlock_irqrestore(&fib->event_lock, flagv); | 
 | 			schedule(); | 
 | 			retval = 0; | 
 | 		} | 
 | 	} | 
 | 	/* Give some extra time for ioctls to complete. */ | 
 | 	if (retval == 0) | 
 | 		ssleep(2); | 
 | 	index = aac->cardtype; | 
 |  | 
 | 	/* | 
 | 	 * Re-initialize the adapter, first free resources, then carefully | 
 | 	 * apply the initialization sequence to come back again. Only risk | 
 | 	 * is a change in Firmware dropping cache, it is assumed the caller | 
 | 	 * will ensure that i/o is queisced and the card is flushed in that | 
 | 	 * case. | 
 | 	 */ | 
 | 	aac_free_irq(aac); | 
 | 	aac_fib_map_free(aac); | 
 | 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, | 
 | 			  aac->comm_phys); | 
 | 	aac_adapter_ioremap(aac, 0); | 
 | 	aac->comm_addr = NULL; | 
 | 	aac->comm_phys = 0; | 
 | 	kfree(aac->queues); | 
 | 	aac->queues = NULL; | 
 | 	kfree(aac->fsa_dev); | 
 | 	aac->fsa_dev = NULL; | 
 |  | 
 | 	dmamask = DMA_BIT_MASK(32); | 
 | 	quirks = aac_get_driver_ident(index)->quirks; | 
 | 	if (quirks & AAC_QUIRK_31BIT) | 
 | 		retval = dma_set_mask(&aac->pdev->dev, dmamask); | 
 | 	else if (!(quirks & AAC_QUIRK_SRC)) | 
 | 		retval = dma_set_mask(&aac->pdev->dev, dmamask); | 
 | 	else | 
 | 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); | 
 |  | 
 | 	if (quirks & AAC_QUIRK_31BIT && !retval) { | 
 | 		dmamask = DMA_BIT_MASK(31); | 
 | 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); | 
 | 	} | 
 |  | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) | 
 | 		goto out; | 
 |  | 
 | 	if (jafo) { | 
 | 		aac->thread = kthread_run(aac_command_thread, aac, "%s", | 
 | 					  aac->name); | 
 | 		if (IS_ERR(aac->thread)) { | 
 | 			retval = PTR_ERR(aac->thread); | 
 | 			aac->thread = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	(void)aac_get_adapter_info(aac); | 
 | 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { | 
 | 		host->sg_tablesize = 34; | 
 | 		host->max_sectors = (host->sg_tablesize * 8) + 112; | 
 | 	} | 
 | 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { | 
 | 		host->sg_tablesize = 17; | 
 | 		host->max_sectors = (host->sg_tablesize * 8) + 112; | 
 | 	} | 
 | 	aac_get_config_status(aac, 1); | 
 | 	aac_get_containers(aac); | 
 | 	/* | 
 | 	 * This is where the assumption that the Adapter is quiesced | 
 | 	 * is important. | 
 | 	 */ | 
 | 	scsi_host_complete_all_commands(host, DID_RESET); | 
 |  | 
 | 	retval = 0; | 
 | out: | 
 | 	aac->in_reset = 0; | 
 |  | 
 | 	/* | 
 | 	 * Issue bus rescan to catch any configuration that might have | 
 | 	 * occurred | 
 | 	 */ | 
 | 	if (!retval && !is_kdump_kernel()) { | 
 | 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); | 
 | 		aac_schedule_bus_scan(aac); | 
 | 	} | 
 |  | 
 | 	if (jafo) { | 
 | 		spin_lock_irq(host->host_lock); | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) | 
 | { | 
 | 	unsigned long flagv = 0; | 
 | 	int retval, unblock_retval; | 
 | 	struct Scsi_Host *host = aac->scsi_host_ptr; | 
 | 	int bled; | 
 |  | 
 | 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (aac->in_reset) { | 
 | 		spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	aac->in_reset = 1; | 
 | 	spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
 |  | 
 | 	/* | 
 | 	 * Wait for all commands to complete to this specific | 
 | 	 * target (block maximum 60 seconds). Although not necessary, | 
 | 	 * it does make us a good storage citizen. | 
 | 	 */ | 
 | 	scsi_host_block(host); | 
 |  | 
 | 	/* Quiesce build, flush cache, write through mode */ | 
 | 	if (forced < 2) | 
 | 		aac_send_shutdown(aac); | 
 | 	spin_lock_irqsave(host->host_lock, flagv); | 
 | 	bled = forced ? forced : | 
 | 			(aac_check_reset != 0 && aac_check_reset != 1); | 
 | 	retval = _aac_reset_adapter(aac, bled, reset_type); | 
 | 	spin_unlock_irqrestore(host->host_lock, flagv); | 
 |  | 
 | 	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING); | 
 | 	if (!retval) | 
 | 		retval = unblock_retval; | 
 | 	if ((forced < 2) && (retval == -ENODEV)) { | 
 | 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ | 
 | 		struct fib * fibctx = aac_fib_alloc(aac); | 
 | 		if (fibctx) { | 
 | 			struct aac_pause *cmd; | 
 | 			int status; | 
 |  | 
 | 			aac_fib_init(fibctx); | 
 |  | 
 | 			cmd = (struct aac_pause *) fib_data(fibctx); | 
 |  | 
 | 			cmd->command = cpu_to_le32(VM_ContainerConfig); | 
 | 			cmd->type = cpu_to_le32(CT_PAUSE_IO); | 
 | 			cmd->timeout = cpu_to_le32(1); | 
 | 			cmd->min = cpu_to_le32(1); | 
 | 			cmd->noRescan = cpu_to_le32(1); | 
 | 			cmd->count = cpu_to_le32(0); | 
 |  | 
 | 			status = aac_fib_send(ContainerCommand, | 
 | 			  fibctx, | 
 | 			  sizeof(struct aac_pause), | 
 | 			  FsaNormal, | 
 | 			  -2 /* Timeout silently */, 1, | 
 | 			  NULL, NULL); | 
 |  | 
 | 			if (status >= 0) | 
 | 				aac_fib_complete(fibctx); | 
 | 			/* FIB should be freed only after getting | 
 | 			 * the response from the F/W */ | 
 | 			if (status != -ERESTARTSYS) | 
 | 				aac_fib_free(fibctx); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | int aac_check_health(struct aac_dev * aac) | 
 | { | 
 | 	int BlinkLED; | 
 | 	unsigned long time_now, flagv = 0; | 
 | 	struct list_head * entry; | 
 |  | 
 | 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */ | 
 | 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { | 
 | 		spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
 | 		return 0; /* OK */ | 
 | 	} | 
 |  | 
 | 	aac->in_reset = 1; | 
 |  | 
 | 	/* Fake up an AIF: | 
 | 	 *	aac_aifcmd.command = AifCmdEventNotify = 1 | 
 | 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF | 
 | 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23 | 
 | 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 | 
 | 	 *	aac.aifcmd.data[2] = AifHighPriority = 3 | 
 | 	 *	aac.aifcmd.data[3] = BlinkLED | 
 | 	 */ | 
 |  | 
 | 	time_now = jiffies/HZ; | 
 | 	entry = aac->fib_list.next; | 
 |  | 
 | 	/* | 
 | 	 * For each Context that is on the | 
 | 	 * fibctxList, make a copy of the | 
 | 	 * fib, and then set the event to wake up the | 
 | 	 * thread that is waiting for it. | 
 | 	 */ | 
 | 	while (entry != &aac->fib_list) { | 
 | 		/* | 
 | 		 * Extract the fibctx | 
 | 		 */ | 
 | 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); | 
 | 		struct hw_fib * hw_fib; | 
 | 		struct fib * fib; | 
 | 		/* | 
 | 		 * Check if the queue is getting | 
 | 		 * backlogged | 
 | 		 */ | 
 | 		if (fibctx->count > 20) { | 
 | 			/* | 
 | 			 * It's *not* jiffies folks, | 
 | 			 * but jiffies / HZ, so do not | 
 | 			 * panic ... | 
 | 			 */ | 
 | 			u32 time_last = fibctx->jiffies; | 
 | 			/* | 
 | 			 * Has it been > 2 minutes | 
 | 			 * since the last read off | 
 | 			 * the queue? | 
 | 			 */ | 
 | 			if ((time_now - time_last) > aif_timeout) { | 
 | 				entry = entry->next; | 
 | 				aac_close_fib_context(aac, fibctx); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * Warning: no sleep allowed while | 
 | 		 * holding spinlock | 
 | 		 */ | 
 | 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); | 
 | 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); | 
 | 		if (fib && hw_fib) { | 
 | 			struct aac_aifcmd * aif; | 
 |  | 
 | 			fib->hw_fib_va = hw_fib; | 
 | 			fib->dev = aac; | 
 | 			aac_fib_init(fib); | 
 | 			fib->type = FSAFS_NTC_FIB_CONTEXT; | 
 | 			fib->size = sizeof (struct fib); | 
 | 			fib->data = hw_fib->data; | 
 | 			aif = (struct aac_aifcmd *)hw_fib->data; | 
 | 			aif->command = cpu_to_le32(AifCmdEventNotify); | 
 | 			aif->seqnum = cpu_to_le32(0xFFFFFFFF); | 
 | 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); | 
 | 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); | 
 | 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); | 
 | 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); | 
 |  | 
 | 			/* | 
 | 			 * Put the FIB onto the | 
 | 			 * fibctx's fibs | 
 | 			 */ | 
 | 			list_add_tail(&fib->fiblink, &fibctx->fib_list); | 
 | 			fibctx->count++; | 
 | 			/* | 
 | 			 * Set the event to wake up the | 
 | 			 * thread that will waiting. | 
 | 			 */ | 
 | 			complete(&fibctx->completion); | 
 | 		} else { | 
 | 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); | 
 | 			kfree(fib); | 
 | 			kfree(hw_fib); | 
 | 		} | 
 | 		entry = entry->next; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
 |  | 
 | 	if (BlinkLED < 0) { | 
 | 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", | 
 | 				aac->name, BlinkLED); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); | 
 |  | 
 | out: | 
 | 	aac->in_reset = 0; | 
 | 	return BlinkLED; | 
 | } | 
 |  | 
 | static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) | 
 | { | 
 | 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; | 
 | } | 
 |  | 
 | static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, | 
 | 								int bus, | 
 | 								int target) | 
 | { | 
 | 	if (bus != CONTAINER_CHANNEL) | 
 | 		bus = aac_phys_to_logical(bus); | 
 |  | 
 | 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); | 
 | } | 
 |  | 
 | static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) | 
 | { | 
 | 	if (bus != CONTAINER_CHANNEL) | 
 | 		bus = aac_phys_to_logical(bus); | 
 |  | 
 | 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); | 
 | } | 
 |  | 
 | static void aac_put_safw_scsi_device(struct scsi_device *sdev) | 
 | { | 
 | 	if (sdev) | 
 | 		scsi_device_put(sdev); | 
 | } | 
 |  | 
 | static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) | 
 | { | 
 | 	struct scsi_device *sdev; | 
 |  | 
 | 	sdev = aac_lookup_safw_scsi_device(dev, bus, target); | 
 | 	scsi_remove_device(sdev); | 
 | 	aac_put_safw_scsi_device(sdev); | 
 | } | 
 |  | 
 | static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, | 
 | 	int bus, int target) | 
 | { | 
 | 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter; | 
 | } | 
 |  | 
 | static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) | 
 | { | 
 | 	if (is_safw_raid_volume(dev, bus, target)) | 
 | 		return dev->fsa_dev[target].valid; | 
 | 	else | 
 | 		return aac_is_safw_scan_count_equal(dev, bus, target); | 
 | } | 
 |  | 
 | static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) | 
 | { | 
 | 	int is_exposed = 0; | 
 | 	struct scsi_device *sdev; | 
 |  | 
 | 	sdev = aac_lookup_safw_scsi_device(dev, bus, target); | 
 | 	if (sdev) | 
 | 		is_exposed = 1; | 
 | 	aac_put_safw_scsi_device(sdev); | 
 |  | 
 | 	return is_exposed; | 
 | } | 
 |  | 
 | static int aac_update_safw_host_devices(struct aac_dev *dev) | 
 | { | 
 | 	int i; | 
 | 	int bus; | 
 | 	int target; | 
 | 	int is_exposed = 0; | 
 | 	int rcode = 0; | 
 |  | 
 | 	rcode = aac_setup_safw_adapter(dev); | 
 | 	if (unlikely(rcode < 0)) { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { | 
 |  | 
 | 		bus = get_bus_number(i); | 
 | 		target = get_target_number(i); | 
 |  | 
 | 		is_exposed = aac_is_safw_device_exposed(dev, bus, target); | 
 |  | 
 | 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) | 
 | 			aac_add_safw_device(dev, bus, target); | 
 | 		else if (!aac_is_safw_target_valid(dev, bus, target) && | 
 | 								is_exposed) | 
 | 			aac_remove_safw_device(dev, bus, target); | 
 | 	} | 
 | out: | 
 | 	return rcode; | 
 | } | 
 |  | 
 | static int aac_scan_safw_host(struct aac_dev *dev) | 
 | { | 
 | 	int rcode = 0; | 
 |  | 
 | 	rcode = aac_update_safw_host_devices(dev); | 
 | 	if (rcode) | 
 | 		aac_schedule_safw_scan_worker(dev); | 
 |  | 
 | 	return rcode; | 
 | } | 
 |  | 
 | int aac_scan_host(struct aac_dev *dev) | 
 | { | 
 | 	int rcode = 0; | 
 |  | 
 | 	mutex_lock(&dev->scan_mutex); | 
 | 	if (dev->sa_firmware) | 
 | 		rcode = aac_scan_safw_host(dev); | 
 | 	else | 
 | 		scsi_scan_host(dev->scsi_host_ptr); | 
 | 	mutex_unlock(&dev->scan_mutex); | 
 |  | 
 | 	return rcode; | 
 | } | 
 |  | 
 | void aac_src_reinit_aif_worker(struct work_struct *work) | 
 | { | 
 | 	struct aac_dev *dev = container_of(to_delayed_work(work), | 
 | 				struct aac_dev, src_reinit_aif_worker); | 
 |  | 
 | 	wait_event(dev->scsi_host_ptr->host_wait, | 
 | 			!scsi_host_in_recovery(dev->scsi_host_ptr)); | 
 | 	aac_reinit_aif(dev, dev->cardtype); | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_handle_sa_aif -	Handle a message from the firmware | 
 |  *	@dev: Which adapter this fib is from | 
 |  *	@fibptr: Pointer to fibptr from adapter | 
 |  * | 
 |  *	This routine handles a driver notify fib from the adapter and | 
 |  *	dispatches it to the appropriate routine for handling. | 
 |  */ | 
 | static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) | 
 | { | 
 | 	int i; | 
 | 	u32 events = 0; | 
 |  | 
 | 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) | 
 | 		events = SA_AIF_HOTPLUG; | 
 | 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) | 
 | 		events = SA_AIF_HARDWARE; | 
 | 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) | 
 | 		events = SA_AIF_PDEV_CHANGE; | 
 | 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) | 
 | 		events = SA_AIF_LDEV_CHANGE; | 
 | 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) | 
 | 		events = SA_AIF_BPSTAT_CHANGE; | 
 | 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) | 
 | 		events = SA_AIF_BPCFG_CHANGE; | 
 |  | 
 | 	switch (events) { | 
 | 	case SA_AIF_HOTPLUG: | 
 | 	case SA_AIF_HARDWARE: | 
 | 	case SA_AIF_PDEV_CHANGE: | 
 | 	case SA_AIF_LDEV_CHANGE: | 
 | 	case SA_AIF_BPCFG_CHANGE: | 
 |  | 
 | 		aac_scan_host(dev); | 
 |  | 
 | 		break; | 
 |  | 
 | 	case SA_AIF_BPSTAT_CHANGE: | 
 | 		/* currently do nothing */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	for (i = 1; i <= 10; ++i) { | 
 | 		events = src_readl(dev, MUnit.IDR); | 
 | 		if (events & (1<<23)) { | 
 | 			pr_warn(" AIF not cleared by firmware - %d/%d)\n", | 
 | 				i, 10); | 
 | 			ssleep(1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int get_fib_count(struct aac_dev *dev) | 
 | { | 
 | 	unsigned int num = 0; | 
 | 	struct list_head *entry; | 
 | 	unsigned long flagv; | 
 |  | 
 | 	/* | 
 | 	 * Warning: no sleep allowed while | 
 | 	 * holding spinlock. We take the estimate | 
 | 	 * and pre-allocate a set of fibs outside the | 
 | 	 * lock. | 
 | 	 */ | 
 | 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size) | 
 | 			/ sizeof(struct hw_fib); /* some extra */ | 
 | 	spin_lock_irqsave(&dev->fib_lock, flagv); | 
 | 	entry = dev->fib_list.next; | 
 | 	while (entry != &dev->fib_list) { | 
 | 		entry = entry->next; | 
 | 		++num; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&dev->fib_lock, flagv); | 
 |  | 
 | 	return num; | 
 | } | 
 |  | 
 | static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, | 
 | 						struct fib **fib_pool, | 
 | 						unsigned int num) | 
 | { | 
 | 	struct hw_fib **hw_fib_p; | 
 | 	struct fib **fib_p; | 
 |  | 
 | 	hw_fib_p = hw_fib_pool; | 
 | 	fib_p = fib_pool; | 
 | 	while (hw_fib_p < &hw_fib_pool[num]) { | 
 | 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); | 
 | 		if (!(*(hw_fib_p++))) { | 
 | 			--hw_fib_p; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); | 
 | 		if (!(*(fib_p++))) { | 
 | 			kfree(*(--hw_fib_p)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the actual number of allocated fibs | 
 | 	 */ | 
 | 	num = hw_fib_p - hw_fib_pool; | 
 | 	return num; | 
 | } | 
 |  | 
 | static void wakeup_fibctx_threads(struct aac_dev *dev, | 
 | 						struct hw_fib **hw_fib_pool, | 
 | 						struct fib **fib_pool, | 
 | 						struct fib *fib, | 
 | 						struct hw_fib *hw_fib, | 
 | 						unsigned int num) | 
 | { | 
 | 	unsigned long flagv; | 
 | 	struct list_head *entry; | 
 | 	struct hw_fib **hw_fib_p; | 
 | 	struct fib **fib_p; | 
 | 	u32 time_now, time_last; | 
 | 	struct hw_fib *hw_newfib; | 
 | 	struct fib *newfib; | 
 | 	struct aac_fib_context *fibctx; | 
 |  | 
 | 	time_now = jiffies/HZ; | 
 | 	spin_lock_irqsave(&dev->fib_lock, flagv); | 
 | 	entry = dev->fib_list.next; | 
 | 	/* | 
 | 	 * For each Context that is on the | 
 | 	 * fibctxList, make a copy of the | 
 | 	 * fib, and then set the event to wake up the | 
 | 	 * thread that is waiting for it. | 
 | 	 */ | 
 |  | 
 | 	hw_fib_p = hw_fib_pool; | 
 | 	fib_p = fib_pool; | 
 | 	while (entry != &dev->fib_list) { | 
 | 		/* | 
 | 		 * Extract the fibctx | 
 | 		 */ | 
 | 		fibctx = list_entry(entry, struct aac_fib_context, | 
 | 				next); | 
 | 		/* | 
 | 		 * Check if the queue is getting | 
 | 		 * backlogged | 
 | 		 */ | 
 | 		if (fibctx->count > 20) { | 
 | 			/* | 
 | 			 * It's *not* jiffies folks, | 
 | 			 * but jiffies / HZ so do not | 
 | 			 * panic ... | 
 | 			 */ | 
 | 			time_last = fibctx->jiffies; | 
 | 			/* | 
 | 			 * Has it been > 2 minutes | 
 | 			 * since the last read off | 
 | 			 * the queue? | 
 | 			 */ | 
 | 			if ((time_now - time_last) > aif_timeout) { | 
 | 				entry = entry->next; | 
 | 				aac_close_fib_context(dev, fibctx); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * Warning: no sleep allowed while | 
 | 		 * holding spinlock | 
 | 		 */ | 
 | 		if (hw_fib_p >= &hw_fib_pool[num]) { | 
 | 			pr_warn("aifd: didn't allocate NewFib\n"); | 
 | 			entry = entry->next; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		hw_newfib = *hw_fib_p; | 
 | 		*(hw_fib_p++) = NULL; | 
 | 		newfib = *fib_p; | 
 | 		*(fib_p++) = NULL; | 
 | 		/* | 
 | 		 * Make the copy of the FIB | 
 | 		 */ | 
 | 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); | 
 | 		memcpy(newfib, fib, sizeof(struct fib)); | 
 | 		newfib->hw_fib_va = hw_newfib; | 
 | 		/* | 
 | 		 * Put the FIB onto the | 
 | 		 * fibctx's fibs | 
 | 		 */ | 
 | 		list_add_tail(&newfib->fiblink, &fibctx->fib_list); | 
 | 		fibctx->count++; | 
 | 		/* | 
 | 		 * Set the event to wake up the | 
 | 		 * thread that is waiting. | 
 | 		 */ | 
 | 		complete(&fibctx->completion); | 
 |  | 
 | 		entry = entry->next; | 
 | 	} | 
 | 	/* | 
 | 	 *	Set the status of this FIB | 
 | 	 */ | 
 | 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); | 
 | 	aac_fib_adapter_complete(fib, sizeof(u32)); | 
 | 	spin_unlock_irqrestore(&dev->fib_lock, flagv); | 
 |  | 
 | } | 
 |  | 
 | static void aac_process_events(struct aac_dev *dev) | 
 | { | 
 | 	struct hw_fib *hw_fib; | 
 | 	struct fib *fib; | 
 | 	unsigned long flags; | 
 | 	spinlock_t *t_lock; | 
 |  | 
 | 	t_lock = dev->queues->queue[HostNormCmdQueue].lock; | 
 | 	spin_lock_irqsave(t_lock, flags); | 
 |  | 
 | 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { | 
 | 		struct list_head *entry; | 
 | 		struct aac_aifcmd *aifcmd; | 
 | 		unsigned int  num; | 
 | 		struct hw_fib **hw_fib_pool, **hw_fib_p; | 
 | 		struct fib **fib_pool, **fib_p; | 
 |  | 
 | 		set_current_state(TASK_RUNNING); | 
 |  | 
 | 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; | 
 | 		list_del(entry); | 
 |  | 
 | 		t_lock = dev->queues->queue[HostNormCmdQueue].lock; | 
 | 		spin_unlock_irqrestore(t_lock, flags); | 
 |  | 
 | 		fib = list_entry(entry, struct fib, fiblink); | 
 | 		hw_fib = fib->hw_fib_va; | 
 | 		if (dev->sa_firmware) { | 
 | 			/* Thor AIF */ | 
 | 			aac_handle_sa_aif(dev, fib); | 
 | 			aac_fib_adapter_complete(fib, (u16)sizeof(u32)); | 
 | 			goto free_fib; | 
 | 		} | 
 | 		/* | 
 | 		 *	We will process the FIB here or pass it to a | 
 | 		 *	worker thread that is TBD. We Really can't | 
 | 		 *	do anything at this point since we don't have | 
 | 		 *	anything defined for this thread to do. | 
 | 		 */ | 
 | 		memset(fib, 0, sizeof(struct fib)); | 
 | 		fib->type = FSAFS_NTC_FIB_CONTEXT; | 
 | 		fib->size = sizeof(struct fib); | 
 | 		fib->hw_fib_va = hw_fib; | 
 | 		fib->data = hw_fib->data; | 
 | 		fib->dev = dev; | 
 | 		/* | 
 | 		 *	We only handle AifRequest fibs from the adapter. | 
 | 		 */ | 
 |  | 
 | 		aifcmd = (struct aac_aifcmd *) hw_fib->data; | 
 | 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { | 
 | 			/* Handle Driver Notify Events */ | 
 | 			aac_handle_aif(dev, fib); | 
 | 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); | 
 | 			aac_fib_adapter_complete(fib, (u16)sizeof(u32)); | 
 | 			goto free_fib; | 
 | 		} | 
 | 		/* | 
 | 		 * The u32 here is important and intended. We are using | 
 | 		 * 32bit wrapping time to fit the adapter field | 
 | 		 */ | 
 |  | 
 | 		/* Sniff events */ | 
 | 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) | 
 | 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { | 
 | 			aac_handle_aif(dev, fib); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * get number of fibs to process | 
 | 		 */ | 
 | 		num = get_fib_count(dev); | 
 | 		if (!num) | 
 | 			goto free_fib; | 
 |  | 
 | 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), | 
 | 						GFP_KERNEL); | 
 | 		if (!hw_fib_pool) | 
 | 			goto free_fib; | 
 |  | 
 | 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); | 
 | 		if (!fib_pool) | 
 | 			goto free_hw_fib_pool; | 
 |  | 
 | 		/* | 
 | 		 * Fill up fib pointer pools with actual fibs | 
 | 		 * and hw_fibs | 
 | 		 */ | 
 | 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num); | 
 | 		if (!num) | 
 | 			goto free_mem; | 
 |  | 
 | 		/* | 
 | 		 * wakeup the thread that is waiting for | 
 | 		 * the response from fw (ioctl) | 
 | 		 */ | 
 | 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, | 
 | 							    fib, hw_fib, num); | 
 |  | 
 | free_mem: | 
 | 		/* Free up the remaining resources */ | 
 | 		hw_fib_p = hw_fib_pool; | 
 | 		fib_p = fib_pool; | 
 | 		while (hw_fib_p < &hw_fib_pool[num]) { | 
 | 			kfree(*hw_fib_p); | 
 | 			kfree(*fib_p); | 
 | 			++fib_p; | 
 | 			++hw_fib_p; | 
 | 		} | 
 | 		kfree(fib_pool); | 
 | free_hw_fib_pool: | 
 | 		kfree(hw_fib_pool); | 
 | free_fib: | 
 | 		kfree(fib); | 
 | 		t_lock = dev->queues->queue[HostNormCmdQueue].lock; | 
 | 		spin_lock_irqsave(t_lock, flags); | 
 | 	} | 
 | 	/* | 
 | 	 *	There are no more AIF's | 
 | 	 */ | 
 | 	t_lock = dev->queues->queue[HostNormCmdQueue].lock; | 
 | 	spin_unlock_irqrestore(t_lock, flags); | 
 | } | 
 |  | 
 | static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, | 
 | 							u32 datasize) | 
 | { | 
 | 	struct aac_srb *srbcmd; | 
 | 	struct sgmap64 *sg64; | 
 | 	dma_addr_t addr; | 
 | 	char *dma_buf; | 
 | 	struct fib *fibptr; | 
 | 	int ret = -ENOMEM; | 
 | 	u32 vbus, vid; | 
 |  | 
 | 	fibptr = aac_fib_alloc(dev); | 
 | 	if (!fibptr) | 
 | 		goto out; | 
 |  | 
 | 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, | 
 | 				     GFP_KERNEL); | 
 | 	if (!dma_buf) | 
 | 		goto fib_free_out; | 
 |  | 
 | 	aac_fib_init(fibptr); | 
 |  | 
 | 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); | 
 | 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); | 
 |  | 
 | 	srbcmd = (struct aac_srb *)fib_data(fibptr); | 
 |  | 
 | 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); | 
 | 	srbcmd->channel = cpu_to_le32(vbus); | 
 | 	srbcmd->id = cpu_to_le32(vid); | 
 | 	srbcmd->lun = 0; | 
 | 	srbcmd->flags = cpu_to_le32(SRB_DataOut); | 
 | 	srbcmd->timeout = cpu_to_le32(10); | 
 | 	srbcmd->retry_limit = 0; | 
 | 	srbcmd->cdb_size = cpu_to_le32(12); | 
 | 	srbcmd->count = cpu_to_le32(datasize); | 
 |  | 
 | 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); | 
 | 	srbcmd->cdb[0] = BMIC_OUT; | 
 | 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS; | 
 | 	memcpy(dma_buf, (char *)wellness_str, datasize); | 
 |  | 
 | 	sg64 = (struct sgmap64 *)&srbcmd->sg; | 
 | 	sg64->count = cpu_to_le32(1); | 
 | 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); | 
 | 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); | 
 | 	sg64->sg[0].count = cpu_to_le32(datasize); | 
 |  | 
 | 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), | 
 | 				FsaNormal, 1, 1, NULL, NULL); | 
 |  | 
 | 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); | 
 |  | 
 | 	/* | 
 | 	 * Do not set XferState to zero unless | 
 | 	 * receives a response from F/W | 
 | 	 */ | 
 | 	if (ret >= 0) | 
 | 		aac_fib_complete(fibptr); | 
 |  | 
 | 	/* | 
 | 	 * FIB should be freed only after | 
 | 	 * getting the response from the F/W | 
 | 	 */ | 
 | 	if (ret != -ERESTARTSYS) | 
 | 		goto fib_free_out; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | fib_free_out: | 
 | 	aac_fib_free(fibptr); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) | 
 | { | 
 | 	struct tm cur_tm; | 
 | 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; | 
 | 	u32 datasize = sizeof(wellness_str); | 
 | 	time64_t local_time; | 
 | 	int ret = -ENODEV; | 
 |  | 
 | 	if (!dev->sa_firmware) | 
 | 		goto out; | 
 |  | 
 | 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); | 
 | 	time64_to_tm(local_time, 0, &cur_tm); | 
 | 	cur_tm.tm_mon += 1; | 
 | 	cur_tm.tm_year += 1900; | 
 | 	wellness_str[8] = bin2bcd(cur_tm.tm_hour); | 
 | 	wellness_str[9] = bin2bcd(cur_tm.tm_min); | 
 | 	wellness_str[10] = bin2bcd(cur_tm.tm_sec); | 
 | 	wellness_str[12] = bin2bcd(cur_tm.tm_mon); | 
 | 	wellness_str[13] = bin2bcd(cur_tm.tm_mday); | 
 | 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); | 
 | 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); | 
 |  | 
 | 	ret = aac_send_wellness_command(dev, wellness_str, datasize); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) | 
 | { | 
 | 	int ret = -ENOMEM; | 
 | 	struct fib *fibptr; | 
 | 	__le32 *info; | 
 |  | 
 | 	fibptr = aac_fib_alloc(dev); | 
 | 	if (!fibptr) | 
 | 		goto out; | 
 |  | 
 | 	aac_fib_init(fibptr); | 
 | 	info = (__le32 *)fib_data(fibptr); | 
 | 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ | 
 | 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, | 
 | 					1, 1, NULL, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Do not set XferState to zero unless | 
 | 	 * receives a response from F/W | 
 | 	 */ | 
 | 	if (ret >= 0) | 
 | 		aac_fib_complete(fibptr); | 
 |  | 
 | 	/* | 
 | 	 * FIB should be freed only after | 
 | 	 * getting the response from the F/W | 
 | 	 */ | 
 | 	if (ret != -ERESTARTSYS) | 
 | 		aac_fib_free(fibptr); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	aac_command_thread	-	command processing thread | 
 |  *	@data: Adapter to monitor | 
 |  * | 
 |  *	Waits on the commandready event in it's queue. When the event gets set | 
 |  *	it will pull FIBs off it's queue. It will continue to pull FIBs off | 
 |  *	until the queue is empty. When the queue is empty it will wait for | 
 |  *	more FIBs. | 
 |  */ | 
 |  | 
 | int aac_command_thread(void *data) | 
 | { | 
 | 	struct aac_dev *dev = data; | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 | 	unsigned long next_jiffies = jiffies + HZ; | 
 | 	unsigned long next_check_jiffies = next_jiffies; | 
 | 	long difference = HZ; | 
 |  | 
 | 	/* | 
 | 	 *	We can only have one thread per adapter for AIF's. | 
 | 	 */ | 
 | 	if (dev->aif_thread) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 *	Let the DPC know it has a place to send the AIF's to. | 
 | 	 */ | 
 | 	dev->aif_thread = 1; | 
 | 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); | 
 | 	set_current_state(TASK_INTERRUPTIBLE); | 
 | 	dprintk ((KERN_INFO "aac_command_thread start\n")); | 
 | 	while (1) { | 
 |  | 
 | 		aac_process_events(dev); | 
 |  | 
 | 		/* | 
 | 		 *	Background activity | 
 | 		 */ | 
 | 		if ((time_before(next_check_jiffies,next_jiffies)) | 
 | 		 && ((difference = next_check_jiffies - jiffies) <= 0)) { | 
 | 			next_check_jiffies = next_jiffies; | 
 | 			if (aac_adapter_check_health(dev) == 0) { | 
 | 				difference = ((long)(unsigned)check_interval) | 
 | 					   * HZ; | 
 | 				next_check_jiffies = jiffies + difference; | 
 | 			} else if (!dev->queues) | 
 | 				break; | 
 | 		} | 
 | 		if (!time_before(next_check_jiffies,next_jiffies) | 
 | 		 && ((difference = next_jiffies - jiffies) <= 0)) { | 
 | 			struct timespec64 now; | 
 | 			int ret; | 
 |  | 
 | 			/* Don't even try to talk to adapter if its sick */ | 
 | 			ret = aac_adapter_check_health(dev); | 
 | 			if (ret || !dev->queues) | 
 | 				break; | 
 | 			next_check_jiffies = jiffies | 
 | 					   + ((long)(unsigned)check_interval) | 
 | 					   * HZ; | 
 | 			ktime_get_real_ts64(&now); | 
 |  | 
 | 			/* Synchronize our watches */ | 
 | 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) | 
 | 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) | 
 | 				difference = HZ + HZ / 2 - | 
 | 					     now.tv_nsec / (NSEC_PER_SEC / HZ); | 
 | 			else { | 
 | 				if (now.tv_nsec > NSEC_PER_SEC / 2) | 
 | 					++now.tv_sec; | 
 |  | 
 | 				if (dev->sa_firmware) | 
 | 					ret = | 
 | 					aac_send_safw_hostttime(dev, &now); | 
 | 				else | 
 | 					ret = aac_send_hosttime(dev, &now); | 
 |  | 
 | 				difference = (long)(unsigned)update_interval*HZ; | 
 | 			} | 
 | 			next_jiffies = jiffies + difference; | 
 | 			if (time_before(next_check_jiffies,next_jiffies)) | 
 | 				difference = next_check_jiffies - jiffies; | 
 | 		} | 
 | 		if (difference <= 0) | 
 | 			difference = 1; | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 |  | 
 | 		if (kthread_should_stop()) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * we probably want usleep_range() here instead of the | 
 | 		 * jiffies computation | 
 | 		 */ | 
 | 		schedule_timeout(difference); | 
 |  | 
 | 		if (kthread_should_stop()) | 
 | 			break; | 
 | 	} | 
 | 	if (dev->queues) | 
 | 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); | 
 | 	dev->aif_thread = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int aac_acquire_irq(struct aac_dev *dev) | 
 | { | 
 | 	int i; | 
 | 	int j; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { | 
 | 		for (i = 0; i < dev->max_msix; i++) { | 
 | 			dev->aac_msix[i].vector_no = i; | 
 | 			dev->aac_msix[i].dev = dev; | 
 | 			if (request_irq(pci_irq_vector(dev->pdev, i), | 
 | 					dev->a_ops.adapter_intr, | 
 | 					0, "aacraid", &(dev->aac_msix[i]))) { | 
 | 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", | 
 | 						dev->name, dev->id, i); | 
 | 				for (j = 0 ; j < i ; j++) | 
 | 					free_irq(pci_irq_vector(dev->pdev, j), | 
 | 						 &(dev->aac_msix[j])); | 
 | 				pci_disable_msix(dev->pdev); | 
 | 				ret = -1; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		dev->aac_msix[0].vector_no = 0; | 
 | 		dev->aac_msix[0].dev = dev; | 
 |  | 
 | 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, | 
 | 			IRQF_SHARED, "aacraid", | 
 | 			&(dev->aac_msix[0])) < 0) { | 
 | 			if (dev->msi) | 
 | 				pci_disable_msi(dev->pdev); | 
 | 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n", | 
 | 					dev->name, dev->id); | 
 | 			ret = -1; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void aac_free_irq(struct aac_dev *dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (aac_is_src(dev)) { | 
 | 		if (dev->max_msix > 1) { | 
 | 			for (i = 0; i < dev->max_msix; i++) | 
 | 				free_irq(pci_irq_vector(dev->pdev, i), | 
 | 					 &(dev->aac_msix[i])); | 
 | 		} else { | 
 | 			free_irq(dev->pdev->irq, &(dev->aac_msix[0])); | 
 | 		} | 
 | 	} else { | 
 | 		free_irq(dev->pdev->irq, dev); | 
 | 	} | 
 | 	if (dev->msi) | 
 | 		pci_disable_msi(dev->pdev); | 
 | 	else if (dev->max_msix > 1) | 
 | 		pci_disable_msix(dev->pdev); | 
 | } |