|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* Copyright (c) 2019, Intel Corporation. */ | 
|  |  | 
|  | #include <linux/bpf_trace.h> | 
|  | #include <net/xdp_sock_drv.h> | 
|  | #include <net/xdp.h> | 
|  | #include "ice.h" | 
|  | #include "ice_base.h" | 
|  | #include "ice_type.h" | 
|  | #include "ice_xsk.h" | 
|  | #include "ice_txrx.h" | 
|  | #include "ice_txrx_lib.h" | 
|  | #include "ice_lib.h" | 
|  |  | 
|  | static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) | 
|  | { | 
|  | return &rx_ring->xdp_buf[idx]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qp_reset_stats - Resets all stats for rings of given index | 
|  | * @vsi: VSI that contains rings of interest | 
|  | * @q_idx: ring index in array | 
|  | */ | 
|  | static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) | 
|  | { | 
|  | struct ice_vsi_stats *vsi_stat; | 
|  | struct ice_pf *pf; | 
|  |  | 
|  | pf = vsi->back; | 
|  | if (!pf->vsi_stats) | 
|  | return; | 
|  |  | 
|  | vsi_stat = pf->vsi_stats[vsi->idx]; | 
|  | if (!vsi_stat) | 
|  | return; | 
|  |  | 
|  | memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, | 
|  | sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); | 
|  | memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, | 
|  | sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); | 
|  | if (ice_is_xdp_ena_vsi(vsi)) | 
|  | memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, | 
|  | sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qp_clean_rings - Cleans all the rings of a given index | 
|  | * @vsi: VSI that contains rings of interest | 
|  | * @q_idx: ring index in array | 
|  | */ | 
|  | static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) | 
|  | { | 
|  | ice_clean_tx_ring(vsi->tx_rings[q_idx]); | 
|  | if (ice_is_xdp_ena_vsi(vsi)) | 
|  | ice_clean_tx_ring(vsi->xdp_rings[q_idx]); | 
|  | ice_clean_rx_ring(vsi->rx_rings[q_idx]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector | 
|  | * @vsi: VSI that has netdev | 
|  | * @q_vector: q_vector that has NAPI context | 
|  | * @enable: true for enable, false for disable | 
|  | */ | 
|  | static void | 
|  | ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, | 
|  | bool enable) | 
|  | { | 
|  | if (!vsi->netdev || !q_vector) | 
|  | return; | 
|  |  | 
|  | if (enable) | 
|  | napi_enable(&q_vector->napi); | 
|  | else | 
|  | napi_disable(&q_vector->napi); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring | 
|  | * @vsi: the VSI that contains queue vector being un-configured | 
|  | * @rx_ring: Rx ring that will have its IRQ disabled | 
|  | * @q_vector: queue vector | 
|  | */ | 
|  | static void | 
|  | ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, | 
|  | struct ice_q_vector *q_vector) | 
|  | { | 
|  | struct ice_pf *pf = vsi->back; | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | u16 reg; | 
|  | u32 val; | 
|  |  | 
|  | /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle | 
|  | * here only QINT_RQCTL | 
|  | */ | 
|  | reg = rx_ring->reg_idx; | 
|  | val = rd32(hw, QINT_RQCTL(reg)); | 
|  | val &= ~QINT_RQCTL_CAUSE_ENA_M; | 
|  | wr32(hw, QINT_RQCTL(reg), val); | 
|  |  | 
|  | if (q_vector) { | 
|  | wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); | 
|  | ice_flush(hw); | 
|  | synchronize_irq(q_vector->irq.virq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qvec_cfg_msix - Enable IRQ for given queue vector | 
|  | * @vsi: the VSI that contains queue vector | 
|  | * @q_vector: queue vector | 
|  | */ | 
|  | static void | 
|  | ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) | 
|  | { | 
|  | u16 reg_idx = q_vector->reg_idx; | 
|  | struct ice_pf *pf = vsi->back; | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | struct ice_tx_ring *tx_ring; | 
|  | struct ice_rx_ring *rx_ring; | 
|  |  | 
|  | ice_cfg_itr(hw, q_vector); | 
|  |  | 
|  | ice_for_each_tx_ring(tx_ring, q_vector->tx) | 
|  | ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, | 
|  | q_vector->tx.itr_idx); | 
|  |  | 
|  | ice_for_each_rx_ring(rx_ring, q_vector->rx) | 
|  | ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, | 
|  | q_vector->rx.itr_idx); | 
|  |  | 
|  | ice_flush(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qvec_ena_irq - Enable IRQ for given queue vector | 
|  | * @vsi: the VSI that contains queue vector | 
|  | * @q_vector: queue vector | 
|  | */ | 
|  | static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) | 
|  | { | 
|  | struct ice_pf *pf = vsi->back; | 
|  | struct ice_hw *hw = &pf->hw; | 
|  |  | 
|  | ice_irq_dynamic_ena(hw, vsi, q_vector); | 
|  |  | 
|  | ice_flush(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qp_dis - Disables a queue pair | 
|  | * @vsi: VSI of interest | 
|  | * @q_idx: ring index in array | 
|  | * | 
|  | * Returns 0 on success, negative on failure. | 
|  | */ | 
|  | static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) | 
|  | { | 
|  | struct ice_txq_meta txq_meta = { }; | 
|  | struct ice_q_vector *q_vector; | 
|  | struct ice_tx_ring *tx_ring; | 
|  | struct ice_rx_ring *rx_ring; | 
|  | int timeout = 50; | 
|  | int err; | 
|  |  | 
|  | if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) | 
|  | return -EINVAL; | 
|  |  | 
|  | tx_ring = vsi->tx_rings[q_idx]; | 
|  | rx_ring = vsi->rx_rings[q_idx]; | 
|  | q_vector = rx_ring->q_vector; | 
|  |  | 
|  | while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { | 
|  | timeout--; | 
|  | if (!timeout) | 
|  | return -EBUSY; | 
|  | usleep_range(1000, 2000); | 
|  | } | 
|  |  | 
|  | synchronize_net(); | 
|  | netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); | 
|  |  | 
|  | ice_qvec_dis_irq(vsi, rx_ring, q_vector); | 
|  | ice_qvec_toggle_napi(vsi, q_vector, false); | 
|  |  | 
|  | ice_fill_txq_meta(vsi, tx_ring, &txq_meta); | 
|  | err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); | 
|  | if (err) | 
|  | return err; | 
|  | if (ice_is_xdp_ena_vsi(vsi)) { | 
|  | struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; | 
|  |  | 
|  | memset(&txq_meta, 0, sizeof(txq_meta)); | 
|  | ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); | 
|  | err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, | 
|  | &txq_meta); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false); | 
|  | ice_qp_clean_rings(vsi, q_idx); | 
|  | ice_qp_reset_stats(vsi, q_idx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_qp_ena - Enables a queue pair | 
|  | * @vsi: VSI of interest | 
|  | * @q_idx: ring index in array | 
|  | * | 
|  | * Returns 0 on success, negative on failure. | 
|  | */ | 
|  | static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) | 
|  | { | 
|  | struct ice_aqc_add_tx_qgrp *qg_buf; | 
|  | struct ice_q_vector *q_vector; | 
|  | struct ice_tx_ring *tx_ring; | 
|  | struct ice_rx_ring *rx_ring; | 
|  | u16 size; | 
|  | int err; | 
|  |  | 
|  | if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) | 
|  | return -EINVAL; | 
|  |  | 
|  | size = struct_size(qg_buf, txqs, 1); | 
|  | qg_buf = kzalloc(size, GFP_KERNEL); | 
|  | if (!qg_buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | qg_buf->num_txqs = 1; | 
|  |  | 
|  | tx_ring = vsi->tx_rings[q_idx]; | 
|  | rx_ring = vsi->rx_rings[q_idx]; | 
|  | q_vector = rx_ring->q_vector; | 
|  |  | 
|  | err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); | 
|  | if (err) | 
|  | goto free_buf; | 
|  |  | 
|  | if (ice_is_xdp_ena_vsi(vsi)) { | 
|  | struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; | 
|  |  | 
|  | memset(qg_buf, 0, size); | 
|  | qg_buf->num_txqs = 1; | 
|  | err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); | 
|  | if (err) | 
|  | goto free_buf; | 
|  | ice_set_ring_xdp(xdp_ring); | 
|  | ice_tx_xsk_pool(vsi, q_idx); | 
|  | } | 
|  |  | 
|  | err = ice_vsi_cfg_rxq(rx_ring); | 
|  | if (err) | 
|  | goto free_buf; | 
|  |  | 
|  | ice_qvec_cfg_msix(vsi, q_vector); | 
|  |  | 
|  | err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); | 
|  | if (err) | 
|  | goto free_buf; | 
|  |  | 
|  | ice_qvec_toggle_napi(vsi, q_vector, true); | 
|  | ice_qvec_ena_irq(vsi, q_vector); | 
|  |  | 
|  | netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); | 
|  | clear_bit(ICE_CFG_BUSY, vsi->state); | 
|  | free_buf: | 
|  | kfree(qg_buf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_pool_disable - disable a buffer pool region | 
|  | * @vsi: Current VSI | 
|  | * @qid: queue ID | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | */ | 
|  | static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) | 
|  | { | 
|  | struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); | 
|  |  | 
|  | if (!pool) | 
|  | return -EINVAL; | 
|  |  | 
|  | xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_pool_enable - enable a buffer pool region | 
|  | * @vsi: Current VSI | 
|  | * @pool: pointer to a requested buffer pool region | 
|  | * @qid: queue ID | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | */ | 
|  | static int | 
|  | ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (vsi->type != ICE_VSI_PF) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (qid >= vsi->netdev->real_num_rx_queues || | 
|  | qid >= vsi->netdev->real_num_tx_queues) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), | 
|  | ICE_RX_DMA_ATTR); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer | 
|  | * @rx_ring: Rx ring | 
|  | * @pool_present: is pool for XSK present | 
|  | * | 
|  | * Try allocating memory and return ENOMEM, if failed to allocate. | 
|  | * If allocation was successful, substitute buffer with allocated one. | 
|  | * Returns 0 on success, negative on failure | 
|  | */ | 
|  | static int | 
|  | ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) | 
|  | { | 
|  | size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : | 
|  | sizeof(*rx_ring->rx_buf); | 
|  | void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); | 
|  |  | 
|  | if (!sw_ring) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (pool_present) { | 
|  | kfree(rx_ring->rx_buf); | 
|  | rx_ring->rx_buf = NULL; | 
|  | rx_ring->xdp_buf = sw_ring; | 
|  | } else { | 
|  | kfree(rx_ring->xdp_buf); | 
|  | rx_ring->xdp_buf = NULL; | 
|  | rx_ring->rx_buf = sw_ring; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_realloc_zc_buf - reallocate XDP ZC queue pairs | 
|  | * @vsi: Current VSI | 
|  | * @zc: is zero copy set | 
|  | * | 
|  | * Reallocate buffer for rx_rings that might be used by XSK. | 
|  | * XDP requires more memory, than rx_buf provides. | 
|  | * Returns 0 on success, negative on failure | 
|  | */ | 
|  | int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) | 
|  | { | 
|  | struct ice_rx_ring *rx_ring; | 
|  | uint i; | 
|  |  | 
|  | ice_for_each_rxq(vsi, i) { | 
|  | rx_ring = vsi->rx_rings[i]; | 
|  | if (!rx_ring->xsk_pool) | 
|  | continue; | 
|  |  | 
|  | if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state | 
|  | * @vsi: Current VSI | 
|  | * @pool: buffer pool to enable/associate to a ring, NULL to disable | 
|  | * @qid: queue ID | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | */ | 
|  | int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) | 
|  | { | 
|  | bool if_running, pool_present = !!pool; | 
|  | int ret = 0, pool_failure = 0; | 
|  |  | 
|  | if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { | 
|  | netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); | 
|  | pool_failure = -EINVAL; | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | if_running = !test_bit(ICE_VSI_DOWN, vsi->state) && | 
|  | ice_is_xdp_ena_vsi(vsi); | 
|  |  | 
|  | if (if_running) { | 
|  | struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; | 
|  |  | 
|  | ret = ice_qp_dis(vsi, qid); | 
|  | if (ret) { | 
|  | netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); | 
|  | goto xsk_pool_if_up; | 
|  | } | 
|  |  | 
|  | ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); | 
|  | if (ret) | 
|  | goto xsk_pool_if_up; | 
|  | } | 
|  |  | 
|  | pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : | 
|  | ice_xsk_pool_disable(vsi, qid); | 
|  |  | 
|  | xsk_pool_if_up: | 
|  | if (if_running) { | 
|  | ret = ice_qp_ena(vsi, qid); | 
|  | if (!ret && pool_present) | 
|  | napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); | 
|  | else if (ret) | 
|  | netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); | 
|  | } | 
|  |  | 
|  | failure: | 
|  | if (pool_failure) { | 
|  | netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", | 
|  | pool_present ? "en" : "dis", pool_failure); | 
|  | return pool_failure; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it | 
|  | * @pool: XSK Buffer pool to pull the buffers from | 
|  | * @xdp: SW ring of xdp_buff that will hold the buffers | 
|  | * @rx_desc: Pointer to Rx descriptors that will be filled | 
|  | * @count: The number of buffers to allocate | 
|  | * | 
|  | * This function allocates a number of Rx buffers from the fill ring | 
|  | * or the internal recycle mechanism and places them on the Rx ring. | 
|  | * | 
|  | * Note that ring wrap should be handled by caller of this function. | 
|  | * | 
|  | * Returns the amount of allocated Rx descriptors | 
|  | */ | 
|  | static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, | 
|  | union ice_32b_rx_flex_desc *rx_desc, u16 count) | 
|  | { | 
|  | dma_addr_t dma; | 
|  | u16 buffs; | 
|  | int i; | 
|  |  | 
|  | buffs = xsk_buff_alloc_batch(pool, xdp, count); | 
|  | for (i = 0; i < buffs; i++) { | 
|  | dma = xsk_buff_xdp_get_dma(*xdp); | 
|  | rx_desc->read.pkt_addr = cpu_to_le64(dma); | 
|  | rx_desc->wb.status_error0 = 0; | 
|  |  | 
|  | rx_desc++; | 
|  | xdp++; | 
|  | } | 
|  |  | 
|  | return buffs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers | 
|  | * @rx_ring: Rx ring | 
|  | * @count: The number of buffers to allocate | 
|  | * | 
|  | * Place the @count of descriptors onto Rx ring. Handle the ring wrap | 
|  | * for case where space from next_to_use up to the end of ring is less | 
|  | * than @count. Finally do a tail bump. | 
|  | * | 
|  | * Returns true if all allocations were successful, false if any fail. | 
|  | */ | 
|  | static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) | 
|  | { | 
|  | u32 nb_buffs_extra = 0, nb_buffs = 0; | 
|  | union ice_32b_rx_flex_desc *rx_desc; | 
|  | u16 ntu = rx_ring->next_to_use; | 
|  | u16 total_count = count; | 
|  | struct xdp_buff **xdp; | 
|  |  | 
|  | rx_desc = ICE_RX_DESC(rx_ring, ntu); | 
|  | xdp = ice_xdp_buf(rx_ring, ntu); | 
|  |  | 
|  | if (ntu + count >= rx_ring->count) { | 
|  | nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, | 
|  | rx_desc, | 
|  | rx_ring->count - ntu); | 
|  | if (nb_buffs_extra != rx_ring->count - ntu) { | 
|  | ntu += nb_buffs_extra; | 
|  | goto exit; | 
|  | } | 
|  | rx_desc = ICE_RX_DESC(rx_ring, 0); | 
|  | xdp = ice_xdp_buf(rx_ring, 0); | 
|  | ntu = 0; | 
|  | count -= nb_buffs_extra; | 
|  | ice_release_rx_desc(rx_ring, 0); | 
|  | } | 
|  |  | 
|  | nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); | 
|  |  | 
|  | ntu += nb_buffs; | 
|  | if (ntu == rx_ring->count) | 
|  | ntu = 0; | 
|  |  | 
|  | exit: | 
|  | if (rx_ring->next_to_use != ntu) | 
|  | ice_release_rx_desc(rx_ring, ntu); | 
|  |  | 
|  | return total_count == (nb_buffs_extra + nb_buffs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers | 
|  | * @rx_ring: Rx ring | 
|  | * @count: The number of buffers to allocate | 
|  | * | 
|  | * Wrapper for internal allocation routine; figure out how many tail | 
|  | * bumps should take place based on the given threshold | 
|  | * | 
|  | * Returns true if all calls to internal alloc routine succeeded | 
|  | */ | 
|  | bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) | 
|  | { | 
|  | u16 rx_thresh = ICE_RING_QUARTER(rx_ring); | 
|  | u16 leftover, i, tail_bumps; | 
|  |  | 
|  | tail_bumps = count / rx_thresh; | 
|  | leftover = count - (tail_bumps * rx_thresh); | 
|  |  | 
|  | for (i = 0; i < tail_bumps; i++) | 
|  | if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) | 
|  | return false; | 
|  | return __ice_alloc_rx_bufs_zc(rx_ring, leftover); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer | 
|  | * @rx_ring: Rx ring | 
|  | * @xdp: Pointer to XDP buffer | 
|  | * | 
|  | * This function allocates a new skb from a zero-copy Rx buffer. | 
|  | * | 
|  | * Returns the skb on success, NULL on failure. | 
|  | */ | 
|  | static struct sk_buff * | 
|  | ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) | 
|  | { | 
|  | unsigned int totalsize = xdp->data_end - xdp->data_meta; | 
|  | unsigned int metasize = xdp->data - xdp->data_meta; | 
|  | struct skb_shared_info *sinfo = NULL; | 
|  | struct sk_buff *skb; | 
|  | u32 nr_frags = 0; | 
|  |  | 
|  | if (unlikely(xdp_buff_has_frags(xdp))) { | 
|  | sinfo = xdp_get_shared_info_from_buff(xdp); | 
|  | nr_frags = sinfo->nr_frags; | 
|  | } | 
|  | net_prefetch(xdp->data_meta); | 
|  |  | 
|  | skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, | 
|  | GFP_ATOMIC | __GFP_NOWARN); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | memcpy(__skb_put(skb, totalsize), xdp->data_meta, | 
|  | ALIGN(totalsize, sizeof(long))); | 
|  |  | 
|  | if (metasize) { | 
|  | skb_metadata_set(skb, metasize); | 
|  | __skb_pull(skb, metasize); | 
|  | } | 
|  |  | 
|  | if (likely(!xdp_buff_has_frags(xdp))) | 
|  | goto out; | 
|  |  | 
|  | for (int i = 0; i < nr_frags; i++) { | 
|  | struct skb_shared_info *skinfo = skb_shinfo(skb); | 
|  | skb_frag_t *frag = &sinfo->frags[i]; | 
|  | struct page *page; | 
|  | void *addr; | 
|  |  | 
|  | page = dev_alloc_page(); | 
|  | if (!page) { | 
|  | dev_kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | addr = page_to_virt(page); | 
|  |  | 
|  | memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); | 
|  |  | 
|  | __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, | 
|  | addr, 0, skb_frag_size(frag)); | 
|  | } | 
|  |  | 
|  | out: | 
|  | xsk_buff_free(xdp); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ | 
|  | * @xdp_ring: XDP Tx ring | 
|  | */ | 
|  | static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) | 
|  | { | 
|  | u16 ntc = xdp_ring->next_to_clean; | 
|  | struct ice_tx_desc *tx_desc; | 
|  | u16 cnt = xdp_ring->count; | 
|  | struct ice_tx_buf *tx_buf; | 
|  | u16 completed_frames = 0; | 
|  | u16 xsk_frames = 0; | 
|  | u16 last_rs; | 
|  | int i; | 
|  |  | 
|  | last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; | 
|  | tx_desc = ICE_TX_DESC(xdp_ring, last_rs); | 
|  | if (tx_desc->cmd_type_offset_bsz & | 
|  | cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { | 
|  | if (last_rs >= ntc) | 
|  | completed_frames = last_rs - ntc + 1; | 
|  | else | 
|  | completed_frames = last_rs + cnt - ntc + 1; | 
|  | } | 
|  |  | 
|  | if (!completed_frames) | 
|  | return 0; | 
|  |  | 
|  | if (likely(!xdp_ring->xdp_tx_active)) { | 
|  | xsk_frames = completed_frames; | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | ntc = xdp_ring->next_to_clean; | 
|  | for (i = 0; i < completed_frames; i++) { | 
|  | tx_buf = &xdp_ring->tx_buf[ntc]; | 
|  |  | 
|  | if (tx_buf->type == ICE_TX_BUF_XSK_TX) { | 
|  | tx_buf->type = ICE_TX_BUF_EMPTY; | 
|  | xsk_buff_free(tx_buf->xdp); | 
|  | xdp_ring->xdp_tx_active--; | 
|  | } else { | 
|  | xsk_frames++; | 
|  | } | 
|  |  | 
|  | ntc++; | 
|  | if (ntc >= xdp_ring->count) | 
|  | ntc = 0; | 
|  | } | 
|  | skip: | 
|  | tx_desc->cmd_type_offset_bsz = 0; | 
|  | xdp_ring->next_to_clean += completed_frames; | 
|  | if (xdp_ring->next_to_clean >= cnt) | 
|  | xdp_ring->next_to_clean -= cnt; | 
|  | if (xsk_frames) | 
|  | xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); | 
|  |  | 
|  | return completed_frames; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX | 
|  | * @xdp: XDP buffer to xmit | 
|  | * @xdp_ring: XDP ring to produce descriptor onto | 
|  | * | 
|  | * note that this function works directly on xdp_buff, no need to convert | 
|  | * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning | 
|  | * side will be able to xsk_buff_free() it. | 
|  | * | 
|  | * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there | 
|  | * was not enough space on XDP ring | 
|  | */ | 
|  | static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, | 
|  | struct ice_tx_ring *xdp_ring) | 
|  | { | 
|  | struct skb_shared_info *sinfo = NULL; | 
|  | u32 size = xdp->data_end - xdp->data; | 
|  | u32 ntu = xdp_ring->next_to_use; | 
|  | struct ice_tx_desc *tx_desc; | 
|  | struct ice_tx_buf *tx_buf; | 
|  | struct xdp_buff *head; | 
|  | u32 nr_frags = 0; | 
|  | u32 free_space; | 
|  | u32 frag = 0; | 
|  |  | 
|  | free_space = ICE_DESC_UNUSED(xdp_ring); | 
|  | if (free_space < ICE_RING_QUARTER(xdp_ring)) | 
|  | free_space += ice_clean_xdp_irq_zc(xdp_ring); | 
|  |  | 
|  | if (unlikely(!free_space)) | 
|  | goto busy; | 
|  |  | 
|  | if (unlikely(xdp_buff_has_frags(xdp))) { | 
|  | sinfo = xdp_get_shared_info_from_buff(xdp); | 
|  | nr_frags = sinfo->nr_frags; | 
|  | if (free_space < nr_frags + 1) | 
|  | goto busy; | 
|  | } | 
|  |  | 
|  | tx_desc = ICE_TX_DESC(xdp_ring, ntu); | 
|  | tx_buf = &xdp_ring->tx_buf[ntu]; | 
|  | head = xdp; | 
|  |  | 
|  | for (;;) { | 
|  | dma_addr_t dma; | 
|  |  | 
|  | dma = xsk_buff_xdp_get_dma(xdp); | 
|  | xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); | 
|  |  | 
|  | tx_buf->xdp = xdp; | 
|  | tx_buf->type = ICE_TX_BUF_XSK_TX; | 
|  | tx_desc->buf_addr = cpu_to_le64(dma); | 
|  | tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); | 
|  | /* account for each xdp_buff from xsk_buff_pool */ | 
|  | xdp_ring->xdp_tx_active++; | 
|  |  | 
|  | if (++ntu == xdp_ring->count) | 
|  | ntu = 0; | 
|  |  | 
|  | if (frag == nr_frags) | 
|  | break; | 
|  |  | 
|  | tx_desc = ICE_TX_DESC(xdp_ring, ntu); | 
|  | tx_buf = &xdp_ring->tx_buf[ntu]; | 
|  |  | 
|  | xdp = xsk_buff_get_frag(head); | 
|  | size = skb_frag_size(&sinfo->frags[frag]); | 
|  | frag++; | 
|  | } | 
|  |  | 
|  | xdp_ring->next_to_use = ntu; | 
|  | /* update last descriptor from a frame with EOP */ | 
|  | tx_desc->cmd_type_offset_bsz |= | 
|  | cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); | 
|  |  | 
|  | return ICE_XDP_TX; | 
|  |  | 
|  | busy: | 
|  | xdp_ring->ring_stats->tx_stats.tx_busy++; | 
|  |  | 
|  | return ICE_XDP_CONSUMED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_run_xdp_zc - Executes an XDP program in zero-copy path | 
|  | * @rx_ring: Rx ring | 
|  | * @xdp: xdp_buff used as input to the XDP program | 
|  | * @xdp_prog: XDP program to run | 
|  | * @xdp_ring: ring to be used for XDP_TX action | 
|  | * | 
|  | * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} | 
|  | */ | 
|  | static int | 
|  | ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, | 
|  | struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) | 
|  | { | 
|  | int err, result = ICE_XDP_PASS; | 
|  | u32 act; | 
|  |  | 
|  | act = bpf_prog_run_xdp(xdp_prog, xdp); | 
|  |  | 
|  | if (likely(act == XDP_REDIRECT)) { | 
|  | err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); | 
|  | if (!err) | 
|  | return ICE_XDP_REDIR; | 
|  | if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) | 
|  | result = ICE_XDP_EXIT; | 
|  | else | 
|  | result = ICE_XDP_CONSUMED; | 
|  | goto out_failure; | 
|  | } | 
|  |  | 
|  | switch (act) { | 
|  | case XDP_PASS: | 
|  | break; | 
|  | case XDP_TX: | 
|  | result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); | 
|  | if (result == ICE_XDP_CONSUMED) | 
|  | goto out_failure; | 
|  | break; | 
|  | case XDP_DROP: | 
|  | result = ICE_XDP_CONSUMED; | 
|  | break; | 
|  | default: | 
|  | bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); | 
|  | fallthrough; | 
|  | case XDP_ABORTED: | 
|  | result = ICE_XDP_CONSUMED; | 
|  | out_failure: | 
|  | trace_xdp_exception(rx_ring->netdev, xdp_prog, act); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, | 
|  | struct xdp_buff *xdp, const unsigned int size) | 
|  | { | 
|  | struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); | 
|  |  | 
|  | if (!size) | 
|  | return 0; | 
|  |  | 
|  | if (!xdp_buff_has_frags(first)) { | 
|  | sinfo->nr_frags = 0; | 
|  | sinfo->xdp_frags_size = 0; | 
|  | xdp_buff_set_frags_flag(first); | 
|  | } | 
|  |  | 
|  | if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { | 
|  | xsk_buff_free(first); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, | 
|  | virt_to_page(xdp->data_hard_start), | 
|  | XDP_PACKET_HEADROOM, size); | 
|  | sinfo->xdp_frags_size += size; | 
|  | xsk_buff_add_frag(xdp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_clean_rx_irq_zc - consumes packets from the hardware ring | 
|  | * @rx_ring: AF_XDP Rx ring | 
|  | * @budget: NAPI budget | 
|  | * | 
|  | * Returns number of processed packets on success, remaining budget on failure. | 
|  | */ | 
|  | int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) | 
|  | { | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  | struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool; | 
|  | u32 ntc = rx_ring->next_to_clean; | 
|  | u32 ntu = rx_ring->next_to_use; | 
|  | struct xdp_buff *first = NULL; | 
|  | struct ice_tx_ring *xdp_ring; | 
|  | unsigned int xdp_xmit = 0; | 
|  | struct bpf_prog *xdp_prog; | 
|  | u32 cnt = rx_ring->count; | 
|  | bool failure = false; | 
|  | int entries_to_alloc; | 
|  |  | 
|  | /* ZC patch is enabled only when XDP program is set, | 
|  | * so here it can not be NULL | 
|  | */ | 
|  | xdp_prog = READ_ONCE(rx_ring->xdp_prog); | 
|  | xdp_ring = rx_ring->xdp_ring; | 
|  |  | 
|  | if (ntc != rx_ring->first_desc) | 
|  | first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); | 
|  |  | 
|  | while (likely(total_rx_packets < (unsigned int)budget)) { | 
|  | union ice_32b_rx_flex_desc *rx_desc; | 
|  | unsigned int size, xdp_res = 0; | 
|  | struct xdp_buff *xdp; | 
|  | struct sk_buff *skb; | 
|  | u16 stat_err_bits; | 
|  | u16 vlan_tag = 0; | 
|  | u16 rx_ptype; | 
|  |  | 
|  | rx_desc = ICE_RX_DESC(rx_ring, ntc); | 
|  |  | 
|  | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); | 
|  | if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) | 
|  | break; | 
|  |  | 
|  | /* This memory barrier is needed to keep us from reading | 
|  | * any other fields out of the rx_desc until we have | 
|  | * verified the descriptor has been written back. | 
|  | */ | 
|  | dma_rmb(); | 
|  |  | 
|  | if (unlikely(ntc == ntu)) | 
|  | break; | 
|  |  | 
|  | xdp = *ice_xdp_buf(rx_ring, ntc); | 
|  |  | 
|  | size = le16_to_cpu(rx_desc->wb.pkt_len) & | 
|  | ICE_RX_FLX_DESC_PKT_LEN_M; | 
|  |  | 
|  | xsk_buff_set_size(xdp, size); | 
|  | xsk_buff_dma_sync_for_cpu(xdp, xsk_pool); | 
|  |  | 
|  | if (!first) { | 
|  | first = xdp; | 
|  | } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (++ntc == cnt) | 
|  | ntc = 0; | 
|  |  | 
|  | if (ice_is_non_eop(rx_ring, rx_desc)) | 
|  | continue; | 
|  |  | 
|  | xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring); | 
|  | if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { | 
|  | xdp_xmit |= xdp_res; | 
|  | } else if (xdp_res == ICE_XDP_EXIT) { | 
|  | failure = true; | 
|  | first = NULL; | 
|  | rx_ring->first_desc = ntc; | 
|  | break; | 
|  | } else if (xdp_res == ICE_XDP_CONSUMED) { | 
|  | xsk_buff_free(first); | 
|  | } else if (xdp_res == ICE_XDP_PASS) { | 
|  | goto construct_skb; | 
|  | } | 
|  |  | 
|  | total_rx_bytes += xdp_get_buff_len(first); | 
|  | total_rx_packets++; | 
|  |  | 
|  | first = NULL; | 
|  | rx_ring->first_desc = ntc; | 
|  | continue; | 
|  |  | 
|  | construct_skb: | 
|  | /* XDP_PASS path */ | 
|  | skb = ice_construct_skb_zc(rx_ring, first); | 
|  | if (!skb) { | 
|  | rx_ring->ring_stats->rx_stats.alloc_buf_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | first = NULL; | 
|  | rx_ring->first_desc = ntc; | 
|  |  | 
|  | if (eth_skb_pad(skb)) { | 
|  | skb = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); | 
|  |  | 
|  | rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & | 
|  | ICE_RX_FLEX_DESC_PTYPE_M; | 
|  |  | 
|  | ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); | 
|  | ice_receive_skb(rx_ring, skb, vlan_tag); | 
|  | } | 
|  |  | 
|  | rx_ring->next_to_clean = ntc; | 
|  | entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); | 
|  | if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) | 
|  | failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); | 
|  |  | 
|  | ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); | 
|  | ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); | 
|  |  | 
|  | if (xsk_uses_need_wakeup(xsk_pool)) { | 
|  | /* ntu could have changed when allocating entries above, so | 
|  | * use rx_ring value instead of stack based one | 
|  | */ | 
|  | if (failure || ntc == rx_ring->next_to_use) | 
|  | xsk_set_rx_need_wakeup(xsk_pool); | 
|  | else | 
|  | xsk_clear_rx_need_wakeup(xsk_pool); | 
|  |  | 
|  | return (int)total_rx_packets; | 
|  | } | 
|  |  | 
|  | return failure ? budget : (int)total_rx_packets; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor | 
|  | * @xdp_ring: XDP ring to produce the HW Tx descriptor on | 
|  | * @desc: AF_XDP descriptor to pull the DMA address and length from | 
|  | * @total_bytes: bytes accumulator that will be used for stats update | 
|  | */ | 
|  | static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, | 
|  | unsigned int *total_bytes) | 
|  | { | 
|  | struct ice_tx_desc *tx_desc; | 
|  | dma_addr_t dma; | 
|  |  | 
|  | dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); | 
|  | xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); | 
|  |  | 
|  | tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); | 
|  | tx_desc->buf_addr = cpu_to_le64(dma); | 
|  | tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), | 
|  | 0, desc->len, 0); | 
|  |  | 
|  | *total_bytes += desc->len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors | 
|  | * @xdp_ring: XDP ring to produce the HW Tx descriptors on | 
|  | * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from | 
|  | * @total_bytes: bytes accumulator that will be used for stats update | 
|  | */ | 
|  | static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, | 
|  | unsigned int *total_bytes) | 
|  | { | 
|  | u16 ntu = xdp_ring->next_to_use; | 
|  | struct ice_tx_desc *tx_desc; | 
|  | u32 i; | 
|  |  | 
|  | loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { | 
|  | dma_addr_t dma; | 
|  |  | 
|  | dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); | 
|  | xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); | 
|  |  | 
|  | tx_desc = ICE_TX_DESC(xdp_ring, ntu++); | 
|  | tx_desc->buf_addr = cpu_to_le64(dma); | 
|  | tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), | 
|  | 0, descs[i].len, 0); | 
|  |  | 
|  | *total_bytes += descs[i].len; | 
|  | } | 
|  |  | 
|  | xdp_ring->next_to_use = ntu; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring | 
|  | * @xdp_ring: XDP ring to produce the HW Tx descriptors on | 
|  | * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from | 
|  | * @nb_pkts: count of packets to be send | 
|  | * @total_bytes: bytes accumulator that will be used for stats update | 
|  | */ | 
|  | static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, | 
|  | u32 nb_pkts, unsigned int *total_bytes) | 
|  | { | 
|  | u32 batched, leftover, i; | 
|  |  | 
|  | batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); | 
|  | leftover = nb_pkts & (PKTS_PER_BATCH - 1); | 
|  | for (i = 0; i < batched; i += PKTS_PER_BATCH) | 
|  | ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); | 
|  | for (; i < batched + leftover; i++) | 
|  | ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring | 
|  | * @xdp_ring: XDP ring to produce the HW Tx descriptors on | 
|  | * | 
|  | * Returns true if there is no more work that needs to be done, false otherwise | 
|  | */ | 
|  | bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) | 
|  | { | 
|  | struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; | 
|  | u32 nb_pkts, nb_processed = 0; | 
|  | unsigned int total_bytes = 0; | 
|  | int budget; | 
|  |  | 
|  | ice_clean_xdp_irq_zc(xdp_ring); | 
|  |  | 
|  | if (!netif_carrier_ok(xdp_ring->vsi->netdev) || | 
|  | !netif_running(xdp_ring->vsi->netdev)) | 
|  | return true; | 
|  |  | 
|  | budget = ICE_DESC_UNUSED(xdp_ring); | 
|  | budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); | 
|  |  | 
|  | nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); | 
|  | if (!nb_pkts) | 
|  | return true; | 
|  |  | 
|  | if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { | 
|  | nb_processed = xdp_ring->count - xdp_ring->next_to_use; | 
|  | ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); | 
|  | xdp_ring->next_to_use = 0; | 
|  | } | 
|  |  | 
|  | ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, | 
|  | &total_bytes); | 
|  |  | 
|  | ice_set_rs_bit(xdp_ring); | 
|  | ice_xdp_ring_update_tail(xdp_ring); | 
|  | ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); | 
|  |  | 
|  | if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) | 
|  | xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); | 
|  |  | 
|  | return nb_pkts < budget; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_wakeup - Implements ndo_xsk_wakeup | 
|  | * @netdev: net_device | 
|  | * @queue_id: queue to wake up | 
|  | * @flags: ignored in our case, since we have Rx and Tx in the same NAPI | 
|  | * | 
|  | * Returns negative on error, zero otherwise. | 
|  | */ | 
|  | int | 
|  | ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, | 
|  | u32 __always_unused flags) | 
|  | { | 
|  | struct ice_netdev_priv *np = netdev_priv(netdev); | 
|  | struct ice_q_vector *q_vector; | 
|  | struct ice_vsi *vsi = np->vsi; | 
|  | struct ice_tx_ring *ring; | 
|  |  | 
|  | if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev)) | 
|  | return -ENETDOWN; | 
|  |  | 
|  | if (!ice_is_xdp_ena_vsi(vsi)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) | 
|  | return -EINVAL; | 
|  |  | 
|  | ring = vsi->rx_rings[queue_id]->xdp_ring; | 
|  |  | 
|  | if (!ring->xsk_pool) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* The idea here is that if NAPI is running, mark a miss, so | 
|  | * it will run again. If not, trigger an interrupt and | 
|  | * schedule the NAPI from interrupt context. If NAPI would be | 
|  | * scheduled here, the interrupt affinity would not be | 
|  | * honored. | 
|  | */ | 
|  | q_vector = ring->q_vector; | 
|  | if (!napi_if_scheduled_mark_missed(&q_vector->napi)) | 
|  | ice_trigger_sw_intr(&vsi->back->hw, q_vector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached | 
|  | * @vsi: VSI to be checked | 
|  | * | 
|  | * Returns true if any of the Rx rings has an AF_XDP buff pool attached | 
|  | */ | 
|  | bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | ice_for_each_rxq(vsi, i) { | 
|  | if (xsk_get_pool_from_qid(vsi->netdev, i)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring | 
|  | * @rx_ring: ring to be cleaned | 
|  | */ | 
|  | void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) | 
|  | { | 
|  | u16 ntc = rx_ring->next_to_clean; | 
|  | u16 ntu = rx_ring->next_to_use; | 
|  |  | 
|  | while (ntc != ntu) { | 
|  | struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); | 
|  |  | 
|  | xsk_buff_free(xdp); | 
|  | ntc++; | 
|  | if (ntc >= rx_ring->count) | 
|  | ntc = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues | 
|  | * @xdp_ring: XDP_Tx ring | 
|  | */ | 
|  | void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) | 
|  | { | 
|  | u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; | 
|  | u32 xsk_frames = 0; | 
|  |  | 
|  | while (ntc != ntu) { | 
|  | struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; | 
|  |  | 
|  | if (tx_buf->type == ICE_TX_BUF_XSK_TX) { | 
|  | tx_buf->type = ICE_TX_BUF_EMPTY; | 
|  | xsk_buff_free(tx_buf->xdp); | 
|  | } else { | 
|  | xsk_frames++; | 
|  | } | 
|  |  | 
|  | ntc++; | 
|  | if (ntc >= xdp_ring->count) | 
|  | ntc = 0; | 
|  | } | 
|  |  | 
|  | if (xsk_frames) | 
|  | xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); | 
|  | } |