|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * ACPI probing code for ARM performance counters. | 
|  | * | 
|  | * Copyright (C) 2017 ARM Ltd. | 
|  | */ | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/irqdesc.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/perf/arm_pmu.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  |  | 
|  | static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus); | 
|  | static DEFINE_PER_CPU(int, pmu_irqs); | 
|  |  | 
|  | static int arm_pmu_acpi_register_irq(int cpu) | 
|  | { | 
|  | struct acpi_madt_generic_interrupt *gicc; | 
|  | int gsi, trigger; | 
|  |  | 
|  | gicc = acpi_cpu_get_madt_gicc(cpu); | 
|  |  | 
|  | gsi = gicc->performance_interrupt; | 
|  |  | 
|  | /* | 
|  | * Per the ACPI spec, the MADT cannot describe a PMU that doesn't | 
|  | * have an interrupt. QEMU advertises this by using a GSI of zero, | 
|  | * which is not known to be valid on any hardware despite being | 
|  | * valid per the spec. Take the pragmatic approach and reject a | 
|  | * GSI of zero for now. | 
|  | */ | 
|  | if (!gsi) | 
|  | return 0; | 
|  |  | 
|  | if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) | 
|  | trigger = ACPI_EDGE_SENSITIVE; | 
|  | else | 
|  | trigger = ACPI_LEVEL_SENSITIVE; | 
|  |  | 
|  | /* | 
|  | * Helpfully, the MADT GICC doesn't have a polarity flag for the | 
|  | * "performance interrupt". Luckily, on compliant GICs the polarity is | 
|  | * a fixed value in HW (for both SPIs and PPIs) that we cannot change | 
|  | * from SW. | 
|  | * | 
|  | * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This | 
|  | * may not match the real polarity, but that should not matter. | 
|  | * | 
|  | * Other interrupt controllers are not supported with ACPI. | 
|  | */ | 
|  | return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH); | 
|  | } | 
|  |  | 
|  | static void arm_pmu_acpi_unregister_irq(int cpu) | 
|  | { | 
|  | struct acpi_madt_generic_interrupt *gicc; | 
|  | int gsi; | 
|  |  | 
|  | gicc = acpi_cpu_get_madt_gicc(cpu); | 
|  |  | 
|  | gsi = gicc->performance_interrupt; | 
|  | if (gsi) | 
|  | acpi_unregister_gsi(gsi); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ARM_SPE_PMU) | 
|  | static struct resource spe_resources[] = { | 
|  | { | 
|  | /* irq */ | 
|  | .flags          = IORESOURCE_IRQ, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static struct platform_device spe_dev = { | 
|  | .name = ARMV8_SPE_PDEV_NAME, | 
|  | .id = -1, | 
|  | .resource = spe_resources, | 
|  | .num_resources = ARRAY_SIZE(spe_resources) | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * For lack of a better place, hook the normal PMU MADT walk | 
|  | * and create a SPE device if we detect a recent MADT with | 
|  | * a homogeneous PPI mapping. | 
|  | */ | 
|  | static void arm_spe_acpi_register_device(void) | 
|  | { | 
|  | int cpu, hetid, irq, ret; | 
|  | bool first = true; | 
|  | u16 gsi = 0; | 
|  |  | 
|  | /* | 
|  | * Sanity check all the GICC tables for the same interrupt number. | 
|  | * For now, we only support homogeneous ACPI/SPE machines. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct acpi_madt_generic_interrupt *gicc; | 
|  |  | 
|  | gicc = acpi_cpu_get_madt_gicc(cpu); | 
|  | if (gicc->header.length < ACPI_MADT_GICC_SPE) | 
|  | return; | 
|  |  | 
|  | if (first) { | 
|  | gsi = gicc->spe_interrupt; | 
|  | if (!gsi) | 
|  | return; | 
|  | hetid = find_acpi_cpu_topology_hetero_id(cpu); | 
|  | first = false; | 
|  | } else if ((gsi != gicc->spe_interrupt) || | 
|  | (hetid != find_acpi_cpu_topology_hetero_id(cpu))) { | 
|  | pr_warn("ACPI: SPE must be homogeneous\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE, | 
|  | ACPI_ACTIVE_HIGH); | 
|  | if (irq < 0) { | 
|  | pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spe_resources[0].start = irq; | 
|  | ret = platform_device_register(&spe_dev); | 
|  | if (ret < 0) { | 
|  | pr_warn("ACPI: SPE: Unable to register device\n"); | 
|  | acpi_unregister_gsi(gsi); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void arm_spe_acpi_register_device(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_ARM_SPE_PMU */ | 
|  |  | 
|  | static int arm_pmu_acpi_parse_irqs(void) | 
|  | { | 
|  | int irq, cpu, irq_cpu, err; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | irq = arm_pmu_acpi_register_irq(cpu); | 
|  | if (irq < 0) { | 
|  | err = irq; | 
|  | pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n", | 
|  | cpu, err); | 
|  | goto out_err; | 
|  | } else if (irq == 0) { | 
|  | pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log and request the IRQ so the core arm_pmu code can manage | 
|  | * it. We'll have to sanity-check IRQs later when we associate | 
|  | * them with their PMUs. | 
|  | */ | 
|  | per_cpu(pmu_irqs, cpu) = irq; | 
|  | armpmu_request_irq(irq, cpu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | for_each_possible_cpu(cpu) { | 
|  | irq = per_cpu(pmu_irqs, cpu); | 
|  | if (!irq) | 
|  | continue; | 
|  |  | 
|  | arm_pmu_acpi_unregister_irq(cpu); | 
|  |  | 
|  | /* | 
|  | * Blat all copies of the IRQ so that we only unregister the | 
|  | * corresponding GSI once (e.g. when we have PPIs). | 
|  | */ | 
|  | for_each_possible_cpu(irq_cpu) { | 
|  | if (per_cpu(pmu_irqs, irq_cpu) == irq) | 
|  | per_cpu(pmu_irqs, irq_cpu) = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void) | 
|  | { | 
|  | unsigned long cpuid = read_cpuid_id(); | 
|  | struct arm_pmu *pmu; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | pmu = per_cpu(probed_pmus, cpu); | 
|  | if (!pmu || pmu->acpi_cpuid != cpuid) | 
|  | continue; | 
|  |  | 
|  | return pmu; | 
|  | } | 
|  |  | 
|  | pmu = armpmu_alloc_atomic(); | 
|  | if (!pmu) { | 
|  | pr_warn("Unable to allocate PMU for CPU%d\n", | 
|  | smp_processor_id()); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pmu->acpi_cpuid = cpuid; | 
|  |  | 
|  | return pmu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the new IRQ is compatible with those already associated with | 
|  | * the PMU (e.g. we don't have mismatched PPIs). | 
|  | */ | 
|  | static bool pmu_irq_matches(struct arm_pmu *pmu, int irq) | 
|  | { | 
|  | struct pmu_hw_events __percpu *hw_events = pmu->hw_events; | 
|  | int cpu; | 
|  |  | 
|  | if (!irq) | 
|  | return true; | 
|  |  | 
|  | for_each_cpu(cpu, &pmu->supported_cpus) { | 
|  | int other_irq = per_cpu(hw_events->irq, cpu); | 
|  | if (!other_irq) | 
|  | continue; | 
|  |  | 
|  | if (irq == other_irq) | 
|  | continue; | 
|  | if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq)) | 
|  | continue; | 
|  |  | 
|  | pr_warn("mismatched PPIs detected\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must run before the common arm_pmu hotplug logic, so that we can | 
|  | * associate a CPU and its interrupt before the common code tries to manage the | 
|  | * affinity and so on. | 
|  | * | 
|  | * Note that hotplug events are serialized, so we cannot race with another CPU | 
|  | * coming up. The perf core won't open events while a hotplug event is in | 
|  | * progress. | 
|  | */ | 
|  | static int arm_pmu_acpi_cpu_starting(unsigned int cpu) | 
|  | { | 
|  | struct arm_pmu *pmu; | 
|  | struct pmu_hw_events __percpu *hw_events; | 
|  | int irq; | 
|  |  | 
|  | /* If we've already probed this CPU, we have nothing to do */ | 
|  | if (per_cpu(probed_pmus, cpu)) | 
|  | return 0; | 
|  |  | 
|  | irq = per_cpu(pmu_irqs, cpu); | 
|  |  | 
|  | pmu = arm_pmu_acpi_find_alloc_pmu(); | 
|  | if (!pmu) | 
|  | return -ENOMEM; | 
|  |  | 
|  | per_cpu(probed_pmus, cpu) = pmu; | 
|  |  | 
|  | if (pmu_irq_matches(pmu, irq)) { | 
|  | hw_events = pmu->hw_events; | 
|  | per_cpu(hw_events->irq, cpu) = irq; | 
|  | } | 
|  |  | 
|  | cpumask_set_cpu(cpu, &pmu->supported_cpus); | 
|  |  | 
|  | /* | 
|  | * Ideally, we'd probe the PMU here when we find the first matching | 
|  | * CPU. We can't do that for several reasons; see the comment in | 
|  | * arm_pmu_acpi_init(). | 
|  | * | 
|  | * So for the time being, we're done. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int arm_pmu_acpi_probe(armpmu_init_fn init_fn) | 
|  | { | 
|  | int pmu_idx = 0; | 
|  | int cpu, ret; | 
|  |  | 
|  | /* | 
|  | * Initialise and register the set of PMUs which we know about right | 
|  | * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we | 
|  | * could handle late hotplug, but this may lead to deadlock since we | 
|  | * might try to register a hotplug notifier instance from within a | 
|  | * hotplug notifier. | 
|  | * | 
|  | * There's also the problem of having access to the right init_fn, | 
|  | * without tying this too deeply into the "real" PMU driver. | 
|  | * | 
|  | * For the moment, as with the platform/DT case, we need at least one | 
|  | * of a PMU's CPUs to be online at probe time. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct arm_pmu *pmu = per_cpu(probed_pmus, cpu); | 
|  | char *base_name; | 
|  |  | 
|  | if (!pmu || pmu->name) | 
|  | continue; | 
|  |  | 
|  | ret = init_fn(pmu); | 
|  | if (ret == -ENODEV) { | 
|  | /* PMU not handled by this driver, or not present */ | 
|  | continue; | 
|  | } else if (ret) { | 
|  | pr_warn("Unable to initialise PMU for CPU%d\n", cpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | base_name = pmu->name; | 
|  | pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++); | 
|  | if (!pmu->name) { | 
|  | pr_warn("Unable to allocate PMU name for CPU%d\n", cpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = armpmu_register(pmu); | 
|  | if (ret) { | 
|  | pr_warn("Failed to register PMU for CPU%d\n", cpu); | 
|  | kfree(pmu->name); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int arm_pmu_acpi_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (acpi_disabled) | 
|  | return 0; | 
|  |  | 
|  | arm_spe_acpi_register_device(); | 
|  |  | 
|  | ret = arm_pmu_acpi_parse_irqs(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING, | 
|  | "perf/arm/pmu_acpi:starting", | 
|  | arm_pmu_acpi_cpu_starting, NULL); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | subsys_initcall(arm_pmu_acpi_init) |