|  | /* | 
|  | * Intel 5400 class Memory Controllers kernel module (Seaburg) | 
|  | * | 
|  | * This file may be distributed under the terms of the | 
|  | * GNU General Public License. | 
|  | * | 
|  | * Copyright (c) 2008 by: | 
|  | *	 Ben Woodard <woodard@redhat.com> | 
|  | *	 Mauro Carvalho Chehab | 
|  | * | 
|  | * Red Hat Inc. https://www.redhat.com | 
|  | * | 
|  | * Forked and adapted from the i5000_edac driver which was | 
|  | * written by Douglas Thompson Linux Networx <norsk5@xmission.com> | 
|  | * | 
|  | * This module is based on the following document: | 
|  | * | 
|  | * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet | 
|  | * 	http://developer.intel.com/design/chipsets/datashts/313070.htm | 
|  | * | 
|  | * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with | 
|  | * 2 channels operating in lockstep no-mirror mode. Each channel can have up to | 
|  | * 4 dimm's, each with up to 8GB. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_ids.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/edac.h> | 
|  | #include <linux/mmzone.h> | 
|  |  | 
|  | #include "edac_module.h" | 
|  |  | 
|  | /* | 
|  | * Alter this version for the I5400 module when modifications are made | 
|  | */ | 
|  | #define I5400_REVISION    " Ver: 1.0.0" | 
|  |  | 
|  | #define EDAC_MOD_STR      "i5400_edac" | 
|  |  | 
|  | #define i5400_printk(level, fmt, arg...) \ | 
|  | edac_printk(level, "i5400", fmt, ##arg) | 
|  |  | 
|  | #define i5400_mc_printk(mci, level, fmt, arg...) \ | 
|  | edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg) | 
|  |  | 
|  | /* Limits for i5400 */ | 
|  | #define MAX_BRANCHES		2 | 
|  | #define CHANNELS_PER_BRANCH	2 | 
|  | #define DIMMS_PER_CHANNEL	4 | 
|  | #define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH) | 
|  |  | 
|  | /* Device 16, | 
|  | * Function 0: System Address | 
|  | * Function 1: Memory Branch Map, Control, Errors Register | 
|  | * Function 2: FSB Error Registers | 
|  | * | 
|  | * All 3 functions of Device 16 (0,1,2) share the SAME DID and | 
|  | * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2), | 
|  | * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1 | 
|  | * for device 21 (0,1). | 
|  | */ | 
|  |  | 
|  | /* OFFSETS for Function 0 */ | 
|  | #define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */ | 
|  | #define		MAXCH			0x56 /* Max Channel Number */ | 
|  | #define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */ | 
|  |  | 
|  | /* OFFSETS for Function 1 */ | 
|  | #define		TOLM			0x6C | 
|  | #define		REDMEMB			0x7C | 
|  | #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */ | 
|  | #define		MIR0			0x80 | 
|  | #define		MIR1			0x84 | 
|  | #define		AMIR0			0x8c | 
|  | #define		AMIR1			0x90 | 
|  |  | 
|  | /* Fatal error registers */ | 
|  | #define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */ | 
|  | #define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */ | 
|  |  | 
|  | #define		NERR_FAT_FBD		0x9c | 
|  | #define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */ | 
|  |  | 
|  | /* Non-fatal error register */ | 
|  | #define		NERR_NF_FBD		0xa4 | 
|  |  | 
|  | /* Enable error mask */ | 
|  | #define		EMASK_FBD		0xa8 | 
|  |  | 
|  | #define		ERR0_FBD		0xac | 
|  | #define		ERR1_FBD		0xb0 | 
|  | #define		ERR2_FBD		0xb4 | 
|  | #define		MCERR_FBD		0xb8 | 
|  |  | 
|  | /* No OFFSETS for Device 16 Function 2 */ | 
|  |  | 
|  | /* | 
|  | * Device 21, | 
|  | * Function 0: Memory Map Branch 0 | 
|  | * | 
|  | * Device 22, | 
|  | * Function 0: Memory Map Branch 1 | 
|  | */ | 
|  |  | 
|  | /* OFFSETS for Function 0 */ | 
|  | #define AMBPRESENT_0	0x64 | 
|  | #define AMBPRESENT_1	0x66 | 
|  | #define MTR0		0x80 | 
|  | #define MTR1		0x82 | 
|  | #define MTR2		0x84 | 
|  | #define MTR3		0x86 | 
|  |  | 
|  | /* OFFSETS for Function 1 */ | 
|  | #define NRECFGLOG		0x74 | 
|  | #define RECFGLOG		0x78 | 
|  | #define NRECMEMA		0xbe | 
|  | #define NRECMEMB		0xc0 | 
|  | #define NRECFB_DIMMA		0xc4 | 
|  | #define NRECFB_DIMMB		0xc8 | 
|  | #define NRECFB_DIMMC		0xcc | 
|  | #define NRECFB_DIMMD		0xd0 | 
|  | #define NRECFB_DIMME		0xd4 | 
|  | #define NRECFB_DIMMF		0xd8 | 
|  | #define REDMEMA			0xdC | 
|  | #define RECMEMA			0xf0 | 
|  | #define RECMEMB			0xf4 | 
|  | #define RECFB_DIMMA		0xf8 | 
|  | #define RECFB_DIMMB		0xec | 
|  | #define RECFB_DIMMC		0xf0 | 
|  | #define RECFB_DIMMD		0xf4 | 
|  | #define RECFB_DIMME		0xf8 | 
|  | #define RECFB_DIMMF		0xfC | 
|  |  | 
|  | /* | 
|  | * Error indicator bits and masks | 
|  | * Error masks are according with Table 5-17 of i5400 datasheet | 
|  | */ | 
|  |  | 
|  | enum error_mask { | 
|  | EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */ | 
|  | EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */ | 
|  | EMASK_M3  = 1<<2,  /* Reserved */ | 
|  | EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */ | 
|  | EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */ | 
|  | EMASK_M6  = 1<<5,  /* Unsupported on i5400 */ | 
|  | EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ | 
|  | EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */ | 
|  | EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */ | 
|  | EMASK_M10 = 1<<9,  /* Unsupported on i5400 */ | 
|  | EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */ | 
|  | EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */ | 
|  | EMASK_M13 = 1<<12, /* Memory Write error on first attempt */ | 
|  | EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */ | 
|  | EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */ | 
|  | EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */ | 
|  | EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */ | 
|  | EMASK_M18 = 1<<17, /* Unsupported on i5400 */ | 
|  | EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */ | 
|  | EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */ | 
|  | EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */ | 
|  | EMASK_M22 = 1<<21, /* SPD protocol Error */ | 
|  | EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */ | 
|  | EMASK_M24 = 1<<23, /* Refresh error */ | 
|  | EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */ | 
|  | EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */ | 
|  | EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */ | 
|  | EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */ | 
|  | EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Names to translate bit error into something useful | 
|  | */ | 
|  | static const char *error_name[] = { | 
|  | [0]  = "Memory Write error on non-redundant retry", | 
|  | [1]  = "Memory or FB-DIMM configuration CRC read error", | 
|  | /* Reserved */ | 
|  | [3]  = "Uncorrectable Data ECC on Replay", | 
|  | [4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", | 
|  | /* M6 Unsupported on i5400 */ | 
|  | [6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", | 
|  | [7]  = "Aliased Uncorrectable Patrol Data ECC", | 
|  | [8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", | 
|  | /* M10 Unsupported on i5400 */ | 
|  | [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", | 
|  | [11] = "Non-Aliased Uncorrectable Patrol Data ECC", | 
|  | [12] = "Memory Write error on first attempt", | 
|  | [13] = "FB-DIMM Configuration Write error on first attempt", | 
|  | [14] = "Memory or FB-DIMM configuration CRC read error", | 
|  | [15] = "Channel Failed-Over Occurred", | 
|  | [16] = "Correctable Non-Mirrored Demand Data ECC", | 
|  | /* M18 Unsupported on i5400 */ | 
|  | [18] = "Correctable Resilver- or Spare-Copy Data ECC", | 
|  | [19] = "Correctable Patrol Data ECC", | 
|  | [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status", | 
|  | [21] = "SPD protocol Error", | 
|  | [22] = "Non-Redundant Fast Reset Timeout", | 
|  | [23] = "Refresh error", | 
|  | [24] = "Memory Write error on redundant retry", | 
|  | [25] = "Redundant Fast Reset Timeout", | 
|  | [26] = "Correctable Counter Threshold Exceeded", | 
|  | [27] = "DIMM-Spare Copy Completed", | 
|  | [28] = "DIMM-Isolation Completed", | 
|  | }; | 
|  |  | 
|  | /* Fatal errors */ | 
|  | #define ERROR_FAT_MASK		(EMASK_M1 | \ | 
|  | EMASK_M2 | \ | 
|  | EMASK_M23) | 
|  |  | 
|  | /* Correctable errors */ | 
|  | #define ERROR_NF_CORRECTABLE	(EMASK_M27 | \ | 
|  | EMASK_M20 | \ | 
|  | EMASK_M19 | \ | 
|  | EMASK_M18 | \ | 
|  | EMASK_M17 | \ | 
|  | EMASK_M16) | 
|  | #define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \ | 
|  | EMASK_M28) | 
|  | #define ERROR_NF_SPD_PROTOCOL	(EMASK_M22) | 
|  | #define ERROR_NF_NORTH_CRC	(EMASK_M21) | 
|  |  | 
|  | /* Recoverable errors */ | 
|  | #define ERROR_NF_RECOVERABLE	(EMASK_M26 | \ | 
|  | EMASK_M25 | \ | 
|  | EMASK_M24 | \ | 
|  | EMASK_M15 | \ | 
|  | EMASK_M14 | \ | 
|  | EMASK_M13 | \ | 
|  | EMASK_M12 | \ | 
|  | EMASK_M11 | \ | 
|  | EMASK_M9  | \ | 
|  | EMASK_M8  | \ | 
|  | EMASK_M7  | \ | 
|  | EMASK_M5) | 
|  |  | 
|  | /* uncorrectable errors */ | 
|  | #define ERROR_NF_UNCORRECTABLE	(EMASK_M4) | 
|  |  | 
|  | /* mask to all non-fatal errors */ | 
|  | #define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \ | 
|  | ERROR_NF_UNCORRECTABLE | \ | 
|  | ERROR_NF_RECOVERABLE   | \ | 
|  | ERROR_NF_DIMM_SPARE    | \ | 
|  | ERROR_NF_SPD_PROTOCOL  | \ | 
|  | ERROR_NF_NORTH_CRC) | 
|  |  | 
|  | /* | 
|  | * Define error masks for the several registers | 
|  | */ | 
|  |  | 
|  | /* Enable all fatal and non fatal errors */ | 
|  | #define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK) | 
|  |  | 
|  | /* mask for fatal error registers */ | 
|  | #define FERR_FAT_MASK ERROR_FAT_MASK | 
|  |  | 
|  | /* masks for non-fatal error register */ | 
|  | static inline int to_nf_mask(unsigned int mask) | 
|  | { | 
|  | return (mask & EMASK_M29) | (mask >> 3); | 
|  | }; | 
|  |  | 
|  | static inline int from_nf_ferr(unsigned int mask) | 
|  | { | 
|  | return (mask & EMASK_M29) |		/* Bit 28 */ | 
|  | (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */ | 
|  | }; | 
|  |  | 
|  | #define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK) | 
|  | #define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE) | 
|  | #define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE) | 
|  | #define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL) | 
|  | #define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC) | 
|  | #define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE) | 
|  | #define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE) | 
|  |  | 
|  | /* Defines to extract the vaious fields from the | 
|  | *	MTRx - Memory Technology Registers | 
|  | */ | 
|  | #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10)) | 
|  | #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9)) | 
|  | #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4) | 
|  | #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4) | 
|  | #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) | 
|  | #define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1) | 
|  | #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1) | 
|  | #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3) | 
|  | #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13) | 
|  | #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3) | 
|  | #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10) | 
|  |  | 
|  | /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */ | 
|  | static inline int extract_fbdchan_indx(u32 x) | 
|  | { | 
|  | return (x>>28) & 0x3; | 
|  | } | 
|  |  | 
|  | /* Device name and register DID (Device ID) */ | 
|  | struct i5400_dev_info { | 
|  | const char *ctl_name;	/* name for this device */ | 
|  | u16 fsb_mapping_errors;	/* DID for the branchmap,control */ | 
|  | }; | 
|  |  | 
|  | /* Table of devices attributes supported by this driver */ | 
|  | static const struct i5400_dev_info i5400_devs[] = { | 
|  | { | 
|  | .ctl_name = "I5400", | 
|  | .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | struct i5400_dimm_info { | 
|  | int megabytes;		/* size, 0 means not present  */ | 
|  | }; | 
|  |  | 
|  | /* driver private data structure */ | 
|  | struct i5400_pvt { | 
|  | struct pci_dev *system_address;		/* 16.0 */ | 
|  | struct pci_dev *branchmap_werrors;	/* 16.1 */ | 
|  | struct pci_dev *fsb_error_regs;		/* 16.2 */ | 
|  | struct pci_dev *branch_0;		/* 21.0 */ | 
|  | struct pci_dev *branch_1;		/* 22.0 */ | 
|  |  | 
|  | u16 tolm;				/* top of low memory */ | 
|  | union { | 
|  | u64 ambase;				/* AMB BAR */ | 
|  | struct { | 
|  | u32 ambase_bottom; | 
|  | u32 ambase_top; | 
|  | } u __packed; | 
|  | }; | 
|  |  | 
|  | u16 mir0, mir1; | 
|  |  | 
|  | u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */ | 
|  | u16 b0_ambpresent0;			/* Branch 0, Channel 0 */ | 
|  | u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */ | 
|  |  | 
|  | u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */ | 
|  | u16 b1_ambpresent0;			/* Branch 1, Channel 8 */ | 
|  | u16 b1_ambpresent1;			/* Branch 1, Channel 1 */ | 
|  |  | 
|  | /* DIMM information matrix, allocating architecture maximums */ | 
|  | struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS]; | 
|  |  | 
|  | /* Actual values for this controller */ | 
|  | int maxch;				/* Max channels */ | 
|  | int maxdimmperch;			/* Max DIMMs per channel */ | 
|  | }; | 
|  |  | 
|  | /* I5400 MCH error information retrieved from Hardware */ | 
|  | struct i5400_error_info { | 
|  | /* These registers are always read from the MC */ | 
|  | u32 ferr_fat_fbd;	/* First Errors Fatal */ | 
|  | u32 nerr_fat_fbd;	/* Next Errors Fatal */ | 
|  | u32 ferr_nf_fbd;	/* First Errors Non-Fatal */ | 
|  | u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */ | 
|  |  | 
|  | /* These registers are input ONLY if there was a Recoverable Error */ | 
|  | u32 redmemb;		/* Recoverable Mem Data Error log B */ | 
|  | u16 recmema;		/* Recoverable Mem Error log A */ | 
|  | u32 recmemb;		/* Recoverable Mem Error log B */ | 
|  |  | 
|  | /* These registers are input ONLY if there was a Non-Rec Error */ | 
|  | u16 nrecmema;		/* Non-Recoverable Mem log A */ | 
|  | u32 nrecmemb;		/* Non-Recoverable Mem log B */ | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and | 
|  | 5400 better to use an inline function than a macro in this case */ | 
|  | static inline int nrec_bank(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->nrecmema) >> 12) & 0x7; | 
|  | } | 
|  | static inline int nrec_rank(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->nrecmema) >> 8) & 0xf; | 
|  | } | 
|  | static inline int nrec_buf_id(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->nrecmema)) & 0xff; | 
|  | } | 
|  | static inline int nrec_rdwr(struct i5400_error_info *info) | 
|  | { | 
|  | return (info->nrecmemb) >> 31; | 
|  | } | 
|  | /* This applies to both NREC and REC string so it can be used with nrec_rdwr | 
|  | and rec_rdwr */ | 
|  | static inline const char *rdwr_str(int rdwr) | 
|  | { | 
|  | return rdwr ? "Write" : "Read"; | 
|  | } | 
|  | static inline int nrec_cas(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->nrecmemb) >> 16) & 0x1fff; | 
|  | } | 
|  | static inline int nrec_ras(struct i5400_error_info *info) | 
|  | { | 
|  | return (info->nrecmemb) & 0xffff; | 
|  | } | 
|  | static inline int rec_bank(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->recmema) >> 12) & 0x7; | 
|  | } | 
|  | static inline int rec_rank(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->recmema) >> 8) & 0xf; | 
|  | } | 
|  | static inline int rec_rdwr(struct i5400_error_info *info) | 
|  | { | 
|  | return (info->recmemb) >> 31; | 
|  | } | 
|  | static inline int rec_cas(struct i5400_error_info *info) | 
|  | { | 
|  | return ((info->recmemb) >> 16) & 0x1fff; | 
|  | } | 
|  | static inline int rec_ras(struct i5400_error_info *info) | 
|  | { | 
|  | return (info->recmemb) & 0xffff; | 
|  | } | 
|  |  | 
|  | static struct edac_pci_ctl_info *i5400_pci; | 
|  |  | 
|  | /* | 
|  | *	i5400_get_error_info	Retrieve the hardware error information from | 
|  | *				the hardware and cache it in the 'info' | 
|  | *				structure | 
|  | */ | 
|  | static void i5400_get_error_info(struct mem_ctl_info *mci, | 
|  | struct i5400_error_info *info) | 
|  | { | 
|  | struct i5400_pvt *pvt; | 
|  | u32 value; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* read in the 1st FATAL error register */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); | 
|  |  | 
|  | /* Mask only the bits that the doc says are valid | 
|  | */ | 
|  | value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); | 
|  |  | 
|  | /* If there is an error, then read in the | 
|  | NEXT FATAL error register and the Memory Error Log Register A | 
|  | */ | 
|  | if (value & FERR_FAT_MASK) { | 
|  | info->ferr_fat_fbd = value; | 
|  |  | 
|  | /* harvest the various error data we need */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | NERR_FAT_FBD, &info->nerr_fat_fbd); | 
|  | pci_read_config_word(pvt->branchmap_werrors, | 
|  | NRECMEMA, &info->nrecmema); | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | NRECMEMB, &info->nrecmemb); | 
|  |  | 
|  | /* Clear the error bits, by writing them back */ | 
|  | pci_write_config_dword(pvt->branchmap_werrors, | 
|  | FERR_FAT_FBD, value); | 
|  | } else { | 
|  | info->ferr_fat_fbd = 0; | 
|  | info->nerr_fat_fbd = 0; | 
|  | info->nrecmema = 0; | 
|  | info->nrecmemb = 0; | 
|  | } | 
|  |  | 
|  | /* read in the 1st NON-FATAL error register */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); | 
|  |  | 
|  | /* If there is an error, then read in the 1st NON-FATAL error | 
|  | * register as well */ | 
|  | if (value & FERR_NF_MASK) { | 
|  | info->ferr_nf_fbd = value; | 
|  |  | 
|  | /* harvest the various error data we need */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | NERR_NF_FBD, &info->nerr_nf_fbd); | 
|  | pci_read_config_word(pvt->branchmap_werrors, | 
|  | RECMEMA, &info->recmema); | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | RECMEMB, &info->recmemb); | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | REDMEMB, &info->redmemb); | 
|  |  | 
|  | /* Clear the error bits, by writing them back */ | 
|  | pci_write_config_dword(pvt->branchmap_werrors, | 
|  | FERR_NF_FBD, value); | 
|  | } else { | 
|  | info->ferr_nf_fbd = 0; | 
|  | info->nerr_nf_fbd = 0; | 
|  | info->recmema = 0; | 
|  | info->recmemb = 0; | 
|  | info->redmemb = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, | 
|  | * 					struct i5400_error_info *info, | 
|  | * 					int handle_errors); | 
|  | * | 
|  | *	handle the Intel FATAL and unrecoverable errors, if any | 
|  | */ | 
|  | static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, | 
|  | struct i5400_error_info *info, | 
|  | unsigned long allErrors) | 
|  | { | 
|  | char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; | 
|  | int branch; | 
|  | int channel; | 
|  | int bank; | 
|  | int buf_id; | 
|  | int rank; | 
|  | int rdwr; | 
|  | int ras, cas; | 
|  | int errnum; | 
|  | char *type = NULL; | 
|  | enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED; | 
|  |  | 
|  | if (!allErrors) | 
|  | return;		/* if no error, return now */ | 
|  |  | 
|  | if (allErrors &  ERROR_FAT_MASK) { | 
|  | type = "FATAL"; | 
|  | tp_event = HW_EVENT_ERR_FATAL; | 
|  | } else if (allErrors & FERR_NF_UNCORRECTABLE) | 
|  | type = "NON-FATAL uncorrected"; | 
|  | else | 
|  | type = "NON-FATAL recoverable"; | 
|  |  | 
|  | /* ONLY ONE of the possible error bits will be set, as per the docs */ | 
|  |  | 
|  | branch = extract_fbdchan_indx(info->ferr_fat_fbd); | 
|  | channel = branch; | 
|  |  | 
|  | /* Use the NON-Recoverable macros to extract data */ | 
|  | bank = nrec_bank(info); | 
|  | rank = nrec_rank(info); | 
|  | buf_id = nrec_buf_id(info); | 
|  | rdwr = nrec_rdwr(info); | 
|  | ras = nrec_ras(info); | 
|  | cas = nrec_cas(info); | 
|  |  | 
|  | edac_dbg(0, "\t\t%s DIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n", | 
|  | type, rank, channel, channel + 1, branch >> 1, bank, | 
|  | buf_id, rdwr_str(rdwr), ras, cas); | 
|  |  | 
|  | /* Only 1 bit will be on */ | 
|  | errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); | 
|  |  | 
|  | /* Form out message */ | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)", | 
|  | bank, buf_id, ras, cas, allErrors, error_name[errnum]); | 
|  |  | 
|  | edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0, | 
|  | branch >> 1, -1, rank, | 
|  | rdwr ? "Write error" : "Read error", | 
|  | msg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i5400_process_fatal_error_info(struct mem_ctl_info *mci, | 
|  | * 				struct i5400_error_info *info, | 
|  | * 				int handle_errors); | 
|  | * | 
|  | *	handle the Intel NON-FATAL errors, if any | 
|  | */ | 
|  | static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci, | 
|  | struct i5400_error_info *info) | 
|  | { | 
|  | char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; | 
|  | unsigned long allErrors; | 
|  | int branch; | 
|  | int channel; | 
|  | int bank; | 
|  | int rank; | 
|  | int rdwr; | 
|  | int ras, cas; | 
|  | int errnum; | 
|  |  | 
|  | /* mask off the Error bits that are possible */ | 
|  | allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK); | 
|  | if (!allErrors) | 
|  | return;		/* if no error, return now */ | 
|  |  | 
|  | /* ONLY ONE of the possible error bits will be set, as per the docs */ | 
|  |  | 
|  | if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) { | 
|  | i5400_proccess_non_recoverable_info(mci, info, allErrors); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Correctable errors */ | 
|  | if (allErrors & ERROR_NF_CORRECTABLE) { | 
|  | edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors); | 
|  |  | 
|  | branch = extract_fbdchan_indx(info->ferr_nf_fbd); | 
|  |  | 
|  | channel = 0; | 
|  | if (REC_ECC_LOCATOR_ODD(info->redmemb)) | 
|  | channel = 1; | 
|  |  | 
|  | /* Convert channel to be based from zero, instead of | 
|  | * from branch base of 0 */ | 
|  | channel += branch; | 
|  |  | 
|  | bank = rec_bank(info); | 
|  | rank = rec_rank(info); | 
|  | rdwr = rec_rdwr(info); | 
|  | ras = rec_ras(info); | 
|  | cas = rec_cas(info); | 
|  |  | 
|  | /* Only 1 bit will be on */ | 
|  | errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); | 
|  |  | 
|  | edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | 
|  | rank, channel, branch >> 1, bank, | 
|  | rdwr_str(rdwr), ras, cas); | 
|  |  | 
|  | /* Form out message */ | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s " | 
|  | "RAS=%d CAS=%d, CE Err=0x%lx (%s))", | 
|  | branch >> 1, bank, rdwr_str(rdwr), ras, cas, | 
|  | allErrors, error_name[errnum]); | 
|  |  | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, | 
|  | branch >> 1, channel % 2, rank, | 
|  | rdwr ? "Write error" : "Read error", | 
|  | msg); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Miscellaneous errors */ | 
|  | errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); | 
|  |  | 
|  | branch = extract_fbdchan_indx(info->ferr_nf_fbd); | 
|  |  | 
|  | i5400_mc_printk(mci, KERN_EMERG, | 
|  | "Non-Fatal misc error (Branch=%d Err=%#lx (%s))", | 
|  | branch >> 1, allErrors, error_name[errnum]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_process_error_info	Process the error info that is | 
|  | *	in the 'info' structure, previously retrieved from hardware | 
|  | */ | 
|  | static void i5400_process_error_info(struct mem_ctl_info *mci, | 
|  | struct i5400_error_info *info) | 
|  | {	u32 allErrors; | 
|  |  | 
|  | /* First handle any fatal errors that occurred */ | 
|  | allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); | 
|  | i5400_proccess_non_recoverable_info(mci, info, allErrors); | 
|  |  | 
|  | /* now handle any non-fatal errors that occurred */ | 
|  | i5400_process_nonfatal_error_info(mci, info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_clear_error	Retrieve any error from the hardware | 
|  | *				but do NOT process that error. | 
|  | *				Used for 'clearing' out of previous errors | 
|  | *				Called by the Core module. | 
|  | */ | 
|  | static void i5400_clear_error(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5400_error_info info; | 
|  |  | 
|  | i5400_get_error_info(mci, &info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_check_error	Retrieve and process errors reported by the | 
|  | *				hardware. Called by the Core module. | 
|  | */ | 
|  | static void i5400_check_error(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5400_error_info info; | 
|  |  | 
|  | i5400_get_error_info(mci, &info); | 
|  | i5400_process_error_info(mci, &info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_put_devices	'put' all the devices that we have | 
|  | *				reserved via 'get' | 
|  | */ | 
|  | static void i5400_put_devices(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5400_pvt *pvt; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* Decrement usage count for devices */ | 
|  | pci_dev_put(pvt->branch_1); | 
|  | pci_dev_put(pvt->branch_0); | 
|  | pci_dev_put(pvt->fsb_error_regs); | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_get_devices	Find and perform 'get' operation on the MCH's | 
|  | *			device/functions we want to reference for this driver | 
|  | * | 
|  | *			Need to 'get' device 16 func 1 and func 2 | 
|  | */ | 
|  | static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx) | 
|  | { | 
|  | struct i5400_pvt *pvt; | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | pvt->branchmap_werrors = NULL; | 
|  | pvt->fsb_error_regs = NULL; | 
|  | pvt->branch_0 = NULL; | 
|  | pvt->branch_1 = NULL; | 
|  |  | 
|  | /* Attempt to 'get' the MCH register we want */ | 
|  | pdev = NULL; | 
|  | while (1) { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_ERR, pdev); | 
|  | if (!pdev) { | 
|  | /* End of list, leave */ | 
|  | i5400_printk(KERN_ERR, | 
|  | "'system address,Process Bus' " | 
|  | "device not found:" | 
|  | "vendor 0x%x device 0x%x ERR func 1 " | 
|  | "(broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_ERR); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Store device 16 func 1 */ | 
|  | if (PCI_FUNC(pdev->devfn) == 1) | 
|  | break; | 
|  | } | 
|  | pvt->branchmap_werrors = pdev; | 
|  |  | 
|  | pdev = NULL; | 
|  | while (1) { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_ERR, pdev); | 
|  | if (!pdev) { | 
|  | /* End of list, leave */ | 
|  | i5400_printk(KERN_ERR, | 
|  | "'system address,Process Bus' " | 
|  | "device not found:" | 
|  | "vendor 0x%x device 0x%x ERR func 2 " | 
|  | "(broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_ERR); | 
|  |  | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Store device 16 func 2 */ | 
|  | if (PCI_FUNC(pdev->devfn) == 2) | 
|  | break; | 
|  | } | 
|  | pvt->fsb_error_regs = pdev; | 
|  |  | 
|  | edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n", | 
|  | pci_name(pvt->system_address), | 
|  | pvt->system_address->vendor, pvt->system_address->device); | 
|  | edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n", | 
|  | pci_name(pvt->branchmap_werrors), | 
|  | pvt->branchmap_werrors->vendor, | 
|  | pvt->branchmap_werrors->device); | 
|  | edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n", | 
|  | pci_name(pvt->fsb_error_regs), | 
|  | pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); | 
|  |  | 
|  | pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_FBD0, NULL); | 
|  | if (!pvt->branch_0) { | 
|  | i5400_printk(KERN_ERR, | 
|  | "MC: 'BRANCH 0' device not found:" | 
|  | "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0); | 
|  |  | 
|  | pci_dev_put(pvt->fsb_error_regs); | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* If this device claims to have more than 2 channels then | 
|  | * fetch Branch 1's information | 
|  | */ | 
|  | if (pvt->maxch < CHANNELS_PER_BRANCH) | 
|  | return 0; | 
|  |  | 
|  | pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_FBD1, NULL); | 
|  | if (!pvt->branch_1) { | 
|  | i5400_printk(KERN_ERR, | 
|  | "MC: 'BRANCH 1' device not found:" | 
|  | "vendor 0x%x device 0x%x Func 0 " | 
|  | "(broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_5400_FBD1); | 
|  |  | 
|  | pci_dev_put(pvt->branch_0); | 
|  | pci_dev_put(pvt->fsb_error_regs); | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	determine_amb_present | 
|  | * | 
|  | *		the information is contained in DIMMS_PER_CHANNEL different | 
|  | *		registers determining which of the DIMMS_PER_CHANNEL requires | 
|  | *              knowing which channel is in question | 
|  | * | 
|  | *	2 branches, each with 2 channels | 
|  | *		b0_ambpresent0 for channel '0' | 
|  | *		b0_ambpresent1 for channel '1' | 
|  | *		b1_ambpresent0 for channel '2' | 
|  | *		b1_ambpresent1 for channel '3' | 
|  | */ | 
|  | static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel) | 
|  | { | 
|  | int amb_present; | 
|  |  | 
|  | if (channel < CHANNELS_PER_BRANCH) { | 
|  | if (channel & 0x1) | 
|  | amb_present = pvt->b0_ambpresent1; | 
|  | else | 
|  | amb_present = pvt->b0_ambpresent0; | 
|  | } else { | 
|  | if (channel & 0x1) | 
|  | amb_present = pvt->b1_ambpresent1; | 
|  | else | 
|  | amb_present = pvt->b1_ambpresent0; | 
|  | } | 
|  |  | 
|  | return amb_present; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * determine_mtr(pvt, dimm, channel) | 
|  | * | 
|  | * return the proper MTR register as determine by the dimm and desired channel | 
|  | */ | 
|  | static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel) | 
|  | { | 
|  | int mtr; | 
|  | int n; | 
|  |  | 
|  | /* There is one MTR for each slot pair of FB-DIMMs, | 
|  | Each slot pair may be at branch 0 or branch 1. | 
|  | */ | 
|  | n = dimm; | 
|  |  | 
|  | if (n >= DIMMS_PER_CHANNEL) { | 
|  | edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n", | 
|  | dimm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (channel < CHANNELS_PER_BRANCH) | 
|  | mtr = pvt->b0_mtr[n]; | 
|  | else | 
|  | mtr = pvt->b1_mtr[n]; | 
|  |  | 
|  | return mtr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | */ | 
|  | static void decode_mtr(int slot_row, u16 mtr) | 
|  | { | 
|  | int ans; | 
|  |  | 
|  | ans = MTR_DIMMS_PRESENT(mtr); | 
|  |  | 
|  | edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n", | 
|  | slot_row, mtr, ans ? "" : "NOT "); | 
|  | if (!ans) | 
|  | return; | 
|  |  | 
|  | edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); | 
|  |  | 
|  | edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", | 
|  | MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); | 
|  |  | 
|  | edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); | 
|  | edac_dbg(2, "\t\tNUMRANK: %s\n", | 
|  | MTR_DIMM_RANK(mtr) ? "double" : "single"); | 
|  | edac_dbg(2, "\t\tNUMROW: %s\n", | 
|  | MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : | 
|  | MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : | 
|  | MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : | 
|  | "65,536 - 16 rows"); | 
|  | edac_dbg(2, "\t\tNUMCOL: %s\n", | 
|  | MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : | 
|  | MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : | 
|  | MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : | 
|  | "reserved"); | 
|  | } | 
|  |  | 
|  | static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel, | 
|  | struct i5400_dimm_info *dinfo) | 
|  | { | 
|  | int mtr; | 
|  | int amb_present_reg; | 
|  | int addrBits; | 
|  |  | 
|  | mtr = determine_mtr(pvt, dimm, channel); | 
|  | if (MTR_DIMMS_PRESENT(mtr)) { | 
|  | amb_present_reg = determine_amb_present_reg(pvt, channel); | 
|  |  | 
|  | /* Determine if there is a DIMM present in this DIMM slot */ | 
|  | if (amb_present_reg & (1 << dimm)) { | 
|  | /* Start with the number of bits for a Bank | 
|  | * on the DRAM */ | 
|  | addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); | 
|  | /* Add thenumber of ROW bits */ | 
|  | addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); | 
|  | /* add the number of COLUMN bits */ | 
|  | addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); | 
|  | /* add the number of RANK bits */ | 
|  | addrBits += MTR_DIMM_RANK(mtr); | 
|  |  | 
|  | addrBits += 6;	/* add 64 bits per DIMM */ | 
|  | addrBits -= 20;	/* divide by 2^^20 */ | 
|  | addrBits -= 3;	/* 8 bits per bytes */ | 
|  |  | 
|  | dinfo->megabytes = 1 << addrBits; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	calculate_dimm_size | 
|  | * | 
|  | *	also will output a DIMM matrix map, if debug is enabled, for viewing | 
|  | *	how the DIMMs are populated | 
|  | */ | 
|  | static void calculate_dimm_size(struct i5400_pvt *pvt) | 
|  | { | 
|  | struct i5400_dimm_info *dinfo; | 
|  | int dimm, max_dimms; | 
|  | char *p, *mem_buffer; | 
|  | int space, n; | 
|  | int channel, branch; | 
|  |  | 
|  | /* ================= Generate some debug output ================= */ | 
|  | space = PAGE_SIZE; | 
|  | mem_buffer = p = kmalloc(space, GFP_KERNEL); | 
|  | if (p == NULL) { | 
|  | i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", | 
|  | __FILE__, __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Scan all the actual DIMMS | 
|  | * and calculate the information for each DIMM | 
|  | * Start with the highest dimm first, to display it first | 
|  | * and work toward the 0th dimm | 
|  | */ | 
|  | max_dimms = pvt->maxdimmperch; | 
|  | for (dimm = max_dimms - 1; dimm >= 0; dimm--) { | 
|  |  | 
|  | /* on an odd dimm, first output a 'boundary' marker, | 
|  | * then reset the message buffer  */ | 
|  | if (dimm & 0x1) { | 
|  | n = snprintf(p, space, "---------------------------" | 
|  | "-------------------------------"); | 
|  | p += n; | 
|  | space -= n; | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  | } | 
|  | n = snprintf(p, space, "dimm %2d    ", dimm); | 
|  | p += n; | 
|  | space -= n; | 
|  |  | 
|  | for (channel = 0; channel < pvt->maxch; channel++) { | 
|  | dinfo = &pvt->dimm_info[dimm][channel]; | 
|  | handle_channel(pvt, dimm, channel, dinfo); | 
|  | n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes); | 
|  | p += n; | 
|  | space -= n; | 
|  | } | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* Output the last bottom 'boundary' marker */ | 
|  | n = snprintf(p, space, "---------------------------" | 
|  | "-------------------------------"); | 
|  | p += n; | 
|  | space -= n; | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  |  | 
|  | /* now output the 'channel' labels */ | 
|  | n = snprintf(p, space, "           "); | 
|  | p += n; | 
|  | space -= n; | 
|  | for (channel = 0; channel < pvt->maxch; channel++) { | 
|  | n = snprintf(p, space, "channel %d | ", channel); | 
|  | p += n; | 
|  | space -= n; | 
|  | } | 
|  |  | 
|  | space -= n; | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  |  | 
|  | n = snprintf(p, space, "           "); | 
|  | p += n; | 
|  | for (branch = 0; branch < MAX_BRANCHES; branch++) { | 
|  | n = snprintf(p, space, "       branch %d       | ", branch); | 
|  | p += n; | 
|  | space -= n; | 
|  | } | 
|  |  | 
|  | /* output the last message and free buffer */ | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | kfree(mem_buffer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_get_mc_regs	read in the necessary registers and | 
|  | *				cache locally | 
|  | * | 
|  | *			Fills in the private data members | 
|  | */ | 
|  | static void i5400_get_mc_regs(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5400_pvt *pvt; | 
|  | u32 actual_tolm; | 
|  | u16 limit; | 
|  | int slot_row; | 
|  | int way0, way1; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | pci_read_config_dword(pvt->system_address, AMBASE, | 
|  | &pvt->u.ambase_bottom); | 
|  | pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), | 
|  | &pvt->u.ambase_top); | 
|  |  | 
|  | edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n", | 
|  | (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); | 
|  |  | 
|  | /* Get the Branch Map regs */ | 
|  | pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); | 
|  | pvt->tolm >>= 12; | 
|  | edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n", | 
|  | pvt->tolm, pvt->tolm); | 
|  |  | 
|  | actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); | 
|  | edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n", | 
|  | actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); | 
|  |  | 
|  | pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); | 
|  | pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); | 
|  |  | 
|  | /* Get the MIR[0-1] regs */ | 
|  | limit = (pvt->mir0 >> 4) & 0x0fff; | 
|  | way0 = pvt->mir0 & 0x1; | 
|  | way1 = pvt->mir0 & 0x2; | 
|  | edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", | 
|  | limit, way1, way0); | 
|  | limit = (pvt->mir1 >> 4) & 0xfff; | 
|  | way0 = pvt->mir1 & 0x1; | 
|  | way1 = pvt->mir1 & 0x2; | 
|  | edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", | 
|  | limit, way1, way0); | 
|  |  | 
|  | /* Get the set of MTR[0-3] regs by each branch */ | 
|  | for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) { | 
|  | int where = MTR0 + (slot_row * sizeof(u16)); | 
|  |  | 
|  | /* Branch 0 set of MTR registers */ | 
|  | pci_read_config_word(pvt->branch_0, where, | 
|  | &pvt->b0_mtr[slot_row]); | 
|  |  | 
|  | edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", | 
|  | slot_row, where, pvt->b0_mtr[slot_row]); | 
|  |  | 
|  | if (pvt->maxch < CHANNELS_PER_BRANCH) { | 
|  | pvt->b1_mtr[slot_row] = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Branch 1 set of MTR registers */ | 
|  | pci_read_config_word(pvt->branch_1, where, | 
|  | &pvt->b1_mtr[slot_row]); | 
|  | edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", | 
|  | slot_row, where, pvt->b1_mtr[slot_row]); | 
|  | } | 
|  |  | 
|  | /* Read and dump branch 0's MTRs */ | 
|  | edac_dbg(2, "Memory Technology Registers:\n"); | 
|  | edac_dbg(2, "   Branch 0:\n"); | 
|  | for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) | 
|  | decode_mtr(slot_row, pvt->b0_mtr[slot_row]); | 
|  |  | 
|  | pci_read_config_word(pvt->branch_0, AMBPRESENT_0, | 
|  | &pvt->b0_ambpresent0); | 
|  | edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); | 
|  | pci_read_config_word(pvt->branch_0, AMBPRESENT_1, | 
|  | &pvt->b0_ambpresent1); | 
|  | edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); | 
|  |  | 
|  | /* Only if we have 2 branchs (4 channels) */ | 
|  | if (pvt->maxch < CHANNELS_PER_BRANCH) { | 
|  | pvt->b1_ambpresent0 = 0; | 
|  | pvt->b1_ambpresent1 = 0; | 
|  | } else { | 
|  | /* Read and dump  branch 1's MTRs */ | 
|  | edac_dbg(2, "   Branch 1:\n"); | 
|  | for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) | 
|  | decode_mtr(slot_row, pvt->b1_mtr[slot_row]); | 
|  |  | 
|  | pci_read_config_word(pvt->branch_1, AMBPRESENT_0, | 
|  | &pvt->b1_ambpresent0); | 
|  | edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", | 
|  | pvt->b1_ambpresent0); | 
|  | pci_read_config_word(pvt->branch_1, AMBPRESENT_1, | 
|  | &pvt->b1_ambpresent1); | 
|  | edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", | 
|  | pvt->b1_ambpresent1); | 
|  | } | 
|  |  | 
|  | /* Go and determine the size of each DIMM and place in an | 
|  | * orderly matrix */ | 
|  | calculate_dimm_size(pvt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_init_dimms	Initialize the 'dimms' table within | 
|  | *				the mci control	structure with the | 
|  | *				addressing of memory. | 
|  | * | 
|  | *	return: | 
|  | *		0	success | 
|  | *		1	no actual memory found on this MC | 
|  | */ | 
|  | static int i5400_init_dimms(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5400_pvt *pvt; | 
|  | struct dimm_info *dimm; | 
|  | int ndimms; | 
|  | int mtr; | 
|  | int size_mb; | 
|  | int  channel, slot; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | ndimms = 0; | 
|  |  | 
|  | /* | 
|  | * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3 | 
|  | * layers here. | 
|  | */ | 
|  | for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size; | 
|  | channel++) { | 
|  | for (slot = 0; slot < mci->layers[2].size; slot++) { | 
|  | mtr = determine_mtr(pvt, slot, channel); | 
|  |  | 
|  | /* if no DIMMS on this slot, continue */ | 
|  | if (!MTR_DIMMS_PRESENT(mtr)) | 
|  | continue; | 
|  |  | 
|  | dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot); | 
|  |  | 
|  | size_mb =  pvt->dimm_info[slot][channel].megabytes; | 
|  |  | 
|  | edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n", | 
|  | channel / 2, channel % 2, slot, | 
|  | size_mb / 1000, size_mb % 1000); | 
|  |  | 
|  | dimm->nr_pages = size_mb << 8; | 
|  | dimm->grain = 8; | 
|  | dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ? | 
|  | DEV_X8 : DEV_X4; | 
|  | dimm->mtype = MEM_FB_DDR2; | 
|  | /* | 
|  | * The eccc mechanism is SDDC (aka SECC), with | 
|  | * is similar to Chipkill. | 
|  | */ | 
|  | dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ? | 
|  | EDAC_S8ECD8ED : EDAC_S4ECD4ED; | 
|  | ndimms++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When just one memory is provided, it should be at location (0,0,0). | 
|  | * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+. | 
|  | */ | 
|  | if (ndimms == 1) | 
|  | mci->dimms[0]->edac_mode = EDAC_SECDED; | 
|  |  | 
|  | return (ndimms == 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_enable_error_reporting | 
|  | *			Turn on the memory reporting features of the hardware | 
|  | */ | 
|  | static void i5400_enable_error_reporting(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5400_pvt *pvt; | 
|  | u32 fbd_error_mask; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* Read the FBD Error Mask Register */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, | 
|  | &fbd_error_mask); | 
|  |  | 
|  | /* Enable with a '0' */ | 
|  | fbd_error_mask &= ~(ENABLE_EMASK_ALL); | 
|  |  | 
|  | pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, | 
|  | fbd_error_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_probe1	Probe for ONE instance of device to see if it is | 
|  | *			present. | 
|  | *	return: | 
|  | *		0 for FOUND a device | 
|  | *		< 0 for error code | 
|  | */ | 
|  | static int i5400_probe1(struct pci_dev *pdev, int dev_idx) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct i5400_pvt *pvt; | 
|  | struct edac_mc_layer layers[3]; | 
|  |  | 
|  | if (dev_idx >= ARRAY_SIZE(i5400_devs)) | 
|  | return -EINVAL; | 
|  |  | 
|  | edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", | 
|  | pdev->bus->number, | 
|  | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | 
|  |  | 
|  | /* We only are looking for func 0 of the set */ | 
|  | if (PCI_FUNC(pdev->devfn) != 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * allocate a new MC control structure | 
|  | * | 
|  | * This drivers uses the DIMM slot as "csrow" and the rest as "channel". | 
|  | */ | 
|  | layers[0].type = EDAC_MC_LAYER_BRANCH; | 
|  | layers[0].size = MAX_BRANCHES; | 
|  | layers[0].is_virt_csrow = false; | 
|  | layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
|  | layers[1].size = CHANNELS_PER_BRANCH; | 
|  | layers[1].is_virt_csrow = false; | 
|  | layers[2].type = EDAC_MC_LAYER_SLOT; | 
|  | layers[2].size = DIMMS_PER_CHANNEL; | 
|  | layers[2].is_virt_csrow = true; | 
|  | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); | 
|  | if (mci == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | edac_dbg(0, "MC: mci = %p\n", mci); | 
|  |  | 
|  | mci->pdev = &pdev->dev;	/* record ptr  to the generic device */ | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | pvt->system_address = pdev;	/* Record this device in our private */ | 
|  | pvt->maxch = MAX_CHANNELS; | 
|  | pvt->maxdimmperch = DIMMS_PER_CHANNEL; | 
|  |  | 
|  | /* 'get' the pci devices we want to reserve for our use */ | 
|  | if (i5400_get_devices(mci, dev_idx)) | 
|  | goto fail0; | 
|  |  | 
|  | /* Time to get serious */ | 
|  | i5400_get_mc_regs(mci);	/* retrieve the hardware registers */ | 
|  |  | 
|  | mci->mc_idx = 0; | 
|  | mci->mtype_cap = MEM_FLAG_FB_DDR2; | 
|  | mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
|  | mci->edac_cap = EDAC_FLAG_NONE; | 
|  | mci->mod_name = "i5400_edac.c"; | 
|  | mci->ctl_name = i5400_devs[dev_idx].ctl_name; | 
|  | mci->dev_name = pci_name(pdev); | 
|  | mci->ctl_page_to_phys = NULL; | 
|  |  | 
|  | /* Set the function pointer to an actual operation function */ | 
|  | mci->edac_check = i5400_check_error; | 
|  |  | 
|  | /* initialize the MC control structure 'dimms' table | 
|  | * with the mapping and control information */ | 
|  | if (i5400_init_dimms(mci)) { | 
|  | edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n"); | 
|  | mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */ | 
|  | } else { | 
|  | edac_dbg(1, "MC: Enable error reporting now\n"); | 
|  | i5400_enable_error_reporting(mci); | 
|  | } | 
|  |  | 
|  | /* add this new MC control structure to EDAC's list of MCs */ | 
|  | if (edac_mc_add_mc(mci)) { | 
|  | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
|  | /* FIXME: perhaps some code should go here that disables error | 
|  | * reporting if we just enabled it | 
|  | */ | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | i5400_clear_error(mci); | 
|  |  | 
|  | /* allocating generic PCI control info */ | 
|  | i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); | 
|  | if (!i5400_pci) { | 
|  | printk(KERN_WARNING | 
|  | "%s(): Unable to create PCI control\n", | 
|  | __func__); | 
|  | printk(KERN_WARNING | 
|  | "%s(): PCI error report via EDAC not setup\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /* Error exit unwinding stack */ | 
|  | fail1: | 
|  |  | 
|  | i5400_put_devices(mci); | 
|  |  | 
|  | fail0: | 
|  | edac_mc_free(mci); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_init_one	constructor for one instance of device | 
|  | * | 
|  | * 	returns: | 
|  | *		negative on error | 
|  | *		count (>= 0) | 
|  | */ | 
|  | static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | edac_dbg(0, "MC:\n"); | 
|  |  | 
|  | /* wake up device */ | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* now probe and enable the device */ | 
|  | return i5400_probe1(pdev, id->driver_data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_remove_one	destructor for one instance of device | 
|  | * | 
|  | */ | 
|  | static void i5400_remove_one(struct pci_dev *pdev) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  |  | 
|  | edac_dbg(0, "\n"); | 
|  |  | 
|  | if (i5400_pci) | 
|  | edac_pci_release_generic_ctl(i5400_pci); | 
|  |  | 
|  | mci = edac_mc_del_mc(&pdev->dev); | 
|  | if (!mci) | 
|  | return; | 
|  |  | 
|  | /* retrieve references to resources, and free those resources */ | 
|  | i5400_put_devices(mci); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | edac_mc_free(mci); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pci_device_id	table for which devices we are looking for | 
|  | * | 
|  | *	The "E500P" device is the first device supported. | 
|  | */ | 
|  | static const struct pci_device_id i5400_pci_tbl[] = { | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)}, | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, i5400_pci_tbl); | 
|  |  | 
|  | /* | 
|  | *	i5400_driver	pci_driver structure for this module | 
|  | * | 
|  | */ | 
|  | static struct pci_driver i5400_driver = { | 
|  | .name = "i5400_edac", | 
|  | .probe = i5400_init_one, | 
|  | .remove = i5400_remove_one, | 
|  | .id_table = i5400_pci_tbl, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *	i5400_init		Module entry function | 
|  | *			Try to initialize this module for its devices | 
|  | */ | 
|  | static int __init i5400_init(void) | 
|  | { | 
|  | int pci_rc; | 
|  |  | 
|  | edac_dbg(2, "MC:\n"); | 
|  |  | 
|  | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
|  | opstate_init(); | 
|  |  | 
|  | pci_rc = pci_register_driver(&i5400_driver); | 
|  |  | 
|  | return (pci_rc < 0) ? pci_rc : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5400_exit()	Module exit function | 
|  | *			Unregister the driver | 
|  | */ | 
|  | static void __exit i5400_exit(void) | 
|  | { | 
|  | edac_dbg(2, "MC:\n"); | 
|  | pci_unregister_driver(&i5400_driver); | 
|  | } | 
|  |  | 
|  | module_init(i5400_init); | 
|  | module_exit(i5400_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>"); | 
|  | MODULE_AUTHOR("Mauro Carvalho Chehab"); | 
|  | MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)"); | 
|  | MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - " | 
|  | I5400_REVISION); | 
|  |  | 
|  | module_param(edac_op_state, int, 0444); | 
|  | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |