|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * sparse memory mappings. | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include <asm/dma.h> | 
|  |  | 
|  | /* | 
|  | * Permanent SPARSEMEM data: | 
|  | * | 
|  | * 1) mem_section	- memory sections, mem_map's for valid memory | 
|  | */ | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | struct mem_section **mem_section; | 
|  | #else | 
|  | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] | 
|  | ____cacheline_internodealigned_in_smp; | 
|  | #endif | 
|  | EXPORT_SYMBOL(mem_section); | 
|  |  | 
|  | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
|  | /* | 
|  | * If we did not store the node number in the page then we have to | 
|  | * do a lookup in the section_to_node_table in order to find which | 
|  | * node the page belongs to. | 
|  | */ | 
|  | #if MAX_NUMNODES <= 256 | 
|  | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | 
|  | #else | 
|  | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | 
|  | #endif | 
|  |  | 
|  | int page_to_nid(const struct page *page) | 
|  | { | 
|  | return section_to_node_table[page_to_section(page)]; | 
|  | } | 
|  | EXPORT_SYMBOL(page_to_nid); | 
|  |  | 
|  | static void set_section_nid(unsigned long section_nr, int nid) | 
|  | { | 
|  | section_to_node_table[section_nr] = nid; | 
|  | } | 
|  | #else /* !NODE_NOT_IN_PAGE_FLAGS */ | 
|  | static inline void set_section_nid(unsigned long section_nr, int nid) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | static noinline struct mem_section __ref *sparse_index_alloc(int nid) | 
|  | { | 
|  | struct mem_section *section = NULL; | 
|  | unsigned long array_size = SECTIONS_PER_ROOT * | 
|  | sizeof(struct mem_section); | 
|  |  | 
|  | if (slab_is_available()) { | 
|  | section = kzalloc_node(array_size, GFP_KERNEL, nid); | 
|  | } else { | 
|  | section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, | 
|  | nid); | 
|  | if (!section) | 
|  | panic("%s: Failed to allocate %lu bytes nid=%d\n", | 
|  | __func__, array_size, nid); | 
|  | } | 
|  |  | 
|  | return section; | 
|  | } | 
|  |  | 
|  | static int __meminit sparse_index_init(unsigned long section_nr, int nid) | 
|  | { | 
|  | unsigned long root = SECTION_NR_TO_ROOT(section_nr); | 
|  | struct mem_section *section; | 
|  |  | 
|  | /* | 
|  | * An existing section is possible in the sub-section hotplug | 
|  | * case. First hot-add instantiates, follow-on hot-add reuses | 
|  | * the existing section. | 
|  | * | 
|  | * The mem_hotplug_lock resolves the apparent race below. | 
|  | */ | 
|  | if (mem_section[root]) | 
|  | return 0; | 
|  |  | 
|  | section = sparse_index_alloc(nid); | 
|  | if (!section) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mem_section[root] = section; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else /* !SPARSEMEM_EXTREME */ | 
|  | static inline int sparse_index_init(unsigned long section_nr, int nid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | unsigned long __section_nr(struct mem_section *ms) | 
|  | { | 
|  | unsigned long root_nr; | 
|  | struct mem_section *root = NULL; | 
|  |  | 
|  | for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { | 
|  | root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); | 
|  | if (!root) | 
|  | continue; | 
|  |  | 
|  | if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(!root); | 
|  |  | 
|  | return (root_nr * SECTIONS_PER_ROOT) + (ms - root); | 
|  | } | 
|  | #else | 
|  | unsigned long __section_nr(struct mem_section *ms) | 
|  | { | 
|  | return (unsigned long)(ms - mem_section[0]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * During early boot, before section_mem_map is used for an actual | 
|  | * mem_map, we use section_mem_map to store the section's NUMA | 
|  | * node.  This keeps us from having to use another data structure.  The | 
|  | * node information is cleared just before we store the real mem_map. | 
|  | */ | 
|  | static inline unsigned long sparse_encode_early_nid(int nid) | 
|  | { | 
|  | return (nid << SECTION_NID_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline int sparse_early_nid(struct mem_section *section) | 
|  | { | 
|  | return (section->section_mem_map >> SECTION_NID_SHIFT); | 
|  | } | 
|  |  | 
|  | /* Validate the physical addressing limitations of the model */ | 
|  | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, | 
|  | unsigned long *end_pfn) | 
|  | { | 
|  | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Sanity checks - do not allow an architecture to pass | 
|  | * in larger pfns than the maximum scope of sparsemem: | 
|  | */ | 
|  | if (*start_pfn > max_sparsemem_pfn) { | 
|  | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 
|  | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 
|  | *start_pfn, *end_pfn, max_sparsemem_pfn); | 
|  | WARN_ON_ONCE(1); | 
|  | *start_pfn = max_sparsemem_pfn; | 
|  | *end_pfn = max_sparsemem_pfn; | 
|  | } else if (*end_pfn > max_sparsemem_pfn) { | 
|  | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 
|  | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 
|  | *start_pfn, *end_pfn, max_sparsemem_pfn); | 
|  | WARN_ON_ONCE(1); | 
|  | *end_pfn = max_sparsemem_pfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a number of times that we loop over NR_MEM_SECTIONS, | 
|  | * looking for section_present() on each.  But, when we have very | 
|  | * large physical address spaces, NR_MEM_SECTIONS can also be | 
|  | * very large which makes the loops quite long. | 
|  | * | 
|  | * Keeping track of this gives us an easy way to break out of | 
|  | * those loops early. | 
|  | */ | 
|  | unsigned long __highest_present_section_nr; | 
|  | static void section_mark_present(struct mem_section *ms) | 
|  | { | 
|  | unsigned long section_nr = __section_nr(ms); | 
|  |  | 
|  | if (section_nr > __highest_present_section_nr) | 
|  | __highest_present_section_nr = section_nr; | 
|  |  | 
|  | ms->section_mem_map |= SECTION_MARKED_PRESENT; | 
|  | } | 
|  |  | 
|  | #define for_each_present_section_nr(start, section_nr)		\ | 
|  | for (section_nr = next_present_section_nr(start-1);	\ | 
|  | ((section_nr != -1) &&				\ | 
|  | (section_nr <= __highest_present_section_nr));	\ | 
|  | section_nr = next_present_section_nr(section_nr)) | 
|  |  | 
|  | static inline unsigned long first_present_section_nr(void) | 
|  | { | 
|  | return next_present_section_nr(-1); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | static void subsection_mask_set(unsigned long *map, unsigned long pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | int idx = subsection_map_index(pfn); | 
|  | int end = subsection_map_index(pfn + nr_pages - 1); | 
|  |  | 
|  | bitmap_set(map, idx, end - idx + 1); | 
|  | } | 
|  |  | 
|  | void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); | 
|  | unsigned long nr, start_sec = pfn_to_section_nr(pfn); | 
|  |  | 
|  | if (!nr_pages) | 
|  | return; | 
|  |  | 
|  | for (nr = start_sec; nr <= end_sec; nr++) { | 
|  | struct mem_section *ms; | 
|  | unsigned long pfns; | 
|  |  | 
|  | pfns = min(nr_pages, PAGES_PER_SECTION | 
|  | - (pfn & ~PAGE_SECTION_MASK)); | 
|  | ms = __nr_to_section(nr); | 
|  | subsection_mask_set(ms->usage->subsection_map, pfn, pfns); | 
|  |  | 
|  | pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, | 
|  | pfns, subsection_map_index(pfn), | 
|  | subsection_map_index(pfn + pfns - 1)); | 
|  |  | 
|  | pfn += pfns; | 
|  | nr_pages -= pfns; | 
|  | } | 
|  | } | 
|  | #else | 
|  | void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Record a memory area against a node. */ | 
|  | static void __init memory_present(int nid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | if (unlikely(!mem_section)) { | 
|  | unsigned long size, align; | 
|  |  | 
|  | size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; | 
|  | align = 1 << (INTERNODE_CACHE_SHIFT); | 
|  | mem_section = memblock_alloc(size, align); | 
|  | if (!mem_section) | 
|  | panic("%s: Failed to allocate %lu bytes align=0x%lx\n", | 
|  | __func__, size, align); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | start &= PAGE_SECTION_MASK; | 
|  | mminit_validate_memmodel_limits(&start, &end); | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { | 
|  | unsigned long section = pfn_to_section_nr(pfn); | 
|  | struct mem_section *ms; | 
|  |  | 
|  | sparse_index_init(section, nid); | 
|  | set_section_nid(section, nid); | 
|  |  | 
|  | ms = __nr_to_section(section); | 
|  | if (!ms->section_mem_map) { | 
|  | ms->section_mem_map = sparse_encode_early_nid(nid) | | 
|  | SECTION_IS_ONLINE; | 
|  | section_mark_present(ms); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark all memblocks as present using memory_present(). | 
|  | * This is a convenience function that is useful to mark all of the systems | 
|  | * memory as present during initialization. | 
|  | */ | 
|  | static void __init memblocks_present(void) | 
|  | { | 
|  | unsigned long start, end; | 
|  | int i, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) | 
|  | memory_present(nid, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subtle, we encode the real pfn into the mem_map such that | 
|  | * the identity pfn - section_mem_map will return the actual | 
|  | * physical page frame number. | 
|  | */ | 
|  | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) | 
|  | { | 
|  | unsigned long coded_mem_map = | 
|  | (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); | 
|  | BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); | 
|  | BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); | 
|  | return coded_mem_map; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Decode mem_map from the coded memmap | 
|  | */ | 
|  | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) | 
|  | { | 
|  | /* mask off the extra low bits of information */ | 
|  | coded_mem_map &= SECTION_MAP_MASK; | 
|  | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | static void __meminit sparse_init_one_section(struct mem_section *ms, | 
|  | unsigned long pnum, struct page *mem_map, | 
|  | struct mem_section_usage *usage, unsigned long flags) | 
|  | { | 
|  | ms->section_mem_map &= ~SECTION_MAP_MASK; | 
|  | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 
|  | | SECTION_HAS_MEM_MAP | flags; | 
|  | ms->usage = usage; | 
|  | } | 
|  |  | 
|  | static unsigned long usemap_size(void) | 
|  | { | 
|  | return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); | 
|  | } | 
|  |  | 
|  | size_t mem_section_usage_size(void) | 
|  | { | 
|  | return sizeof(struct mem_section_usage) + usemap_size(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | static struct mem_section_usage * __init | 
|  | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, | 
|  | unsigned long size) | 
|  | { | 
|  | struct mem_section_usage *usage; | 
|  | unsigned long goal, limit; | 
|  | int nid; | 
|  | /* | 
|  | * A page may contain usemaps for other sections preventing the | 
|  | * page being freed and making a section unremovable while | 
|  | * other sections referencing the usemap remain active. Similarly, | 
|  | * a pgdat can prevent a section being removed. If section A | 
|  | * contains a pgdat and section B contains the usemap, both | 
|  | * sections become inter-dependent. This allocates usemaps | 
|  | * from the same section as the pgdat where possible to avoid | 
|  | * this problem. | 
|  | */ | 
|  | goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); | 
|  | limit = goal + (1UL << PA_SECTION_SHIFT); | 
|  | nid = early_pfn_to_nid(goal >> PAGE_SHIFT); | 
|  | again: | 
|  | usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); | 
|  | if (!usage && limit) { | 
|  | limit = 0; | 
|  | goto again; | 
|  | } | 
|  | return usage; | 
|  | } | 
|  |  | 
|  | static void __init check_usemap_section_nr(int nid, | 
|  | struct mem_section_usage *usage) | 
|  | { | 
|  | unsigned long usemap_snr, pgdat_snr; | 
|  | static unsigned long old_usemap_snr; | 
|  | static unsigned long old_pgdat_snr; | 
|  | struct pglist_data *pgdat = NODE_DATA(nid); | 
|  | int usemap_nid; | 
|  |  | 
|  | /* First call */ | 
|  | if (!old_usemap_snr) { | 
|  | old_usemap_snr = NR_MEM_SECTIONS; | 
|  | old_pgdat_snr = NR_MEM_SECTIONS; | 
|  | } | 
|  |  | 
|  | usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); | 
|  | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | 
|  | if (usemap_snr == pgdat_snr) | 
|  | return; | 
|  |  | 
|  | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | 
|  | /* skip redundant message */ | 
|  | return; | 
|  |  | 
|  | old_usemap_snr = usemap_snr; | 
|  | old_pgdat_snr = pgdat_snr; | 
|  |  | 
|  | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | 
|  | if (usemap_nid != nid) { | 
|  | pr_info("node %d must be removed before remove section %ld\n", | 
|  | nid, usemap_snr); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * There is a circular dependency. | 
|  | * Some platforms allow un-removable section because they will just | 
|  | * gather other removable sections for dynamic partitioning. | 
|  | * Just notify un-removable section's number here. | 
|  | */ | 
|  | pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", | 
|  | usemap_snr, pgdat_snr, nid); | 
|  | } | 
|  | #else | 
|  | static struct mem_section_usage * __init | 
|  | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, | 
|  | unsigned long size) | 
|  | { | 
|  | return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); | 
|  | } | 
|  |  | 
|  | static void __init check_usemap_section_nr(int nid, | 
|  | struct mem_section_usage *usage) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTREMOVE */ | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | static unsigned long __init section_map_size(void) | 
|  | { | 
|  | return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static unsigned long __init section_map_size(void) | 
|  | { | 
|  | return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); | 
|  | } | 
|  |  | 
|  | struct page __init *__populate_section_memmap(unsigned long pfn, | 
|  | unsigned long nr_pages, int nid, struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long size = section_map_size(); | 
|  | struct page *map = sparse_buffer_alloc(size); | 
|  | phys_addr_t addr = __pa(MAX_DMA_ADDRESS); | 
|  |  | 
|  | if (map) | 
|  | return map; | 
|  |  | 
|  | map = memblock_alloc_try_nid_raw(size, size, addr, | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
|  | if (!map) | 
|  | panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", | 
|  | __func__, size, PAGE_SIZE, nid, &addr); | 
|  |  | 
|  | return map; | 
|  | } | 
|  | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | static void *sparsemap_buf __meminitdata; | 
|  | static void *sparsemap_buf_end __meminitdata; | 
|  |  | 
|  | static inline void __meminit sparse_buffer_free(unsigned long size) | 
|  | { | 
|  | WARN_ON(!sparsemap_buf || size == 0); | 
|  | memblock_free_early(__pa(sparsemap_buf), size); | 
|  | } | 
|  |  | 
|  | static void __init sparse_buffer_init(unsigned long size, int nid) | 
|  | { | 
|  | phys_addr_t addr = __pa(MAX_DMA_ADDRESS); | 
|  | WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */ | 
|  | /* | 
|  | * Pre-allocated buffer is mainly used by __populate_section_memmap | 
|  | * and we want it to be properly aligned to the section size - this is | 
|  | * especially the case for VMEMMAP which maps memmap to PMDs | 
|  | */ | 
|  | sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), | 
|  | addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
|  | sparsemap_buf_end = sparsemap_buf + size; | 
|  | } | 
|  |  | 
|  | static void __init sparse_buffer_fini(void) | 
|  | { | 
|  | unsigned long size = sparsemap_buf_end - sparsemap_buf; | 
|  |  | 
|  | if (sparsemap_buf && size > 0) | 
|  | sparse_buffer_free(size); | 
|  | sparsemap_buf = NULL; | 
|  | } | 
|  |  | 
|  | void * __meminit sparse_buffer_alloc(unsigned long size) | 
|  | { | 
|  | void *ptr = NULL; | 
|  |  | 
|  | if (sparsemap_buf) { | 
|  | ptr = (void *) roundup((unsigned long)sparsemap_buf, size); | 
|  | if (ptr + size > sparsemap_buf_end) | 
|  | ptr = NULL; | 
|  | else { | 
|  | /* Free redundant aligned space */ | 
|  | if ((unsigned long)(ptr - sparsemap_buf) > 0) | 
|  | sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); | 
|  | sparsemap_buf = ptr + size; | 
|  | } | 
|  | } | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | void __weak __meminit vmemmap_populate_print_last(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) | 
|  | * And number of present sections in this node is map_count. | 
|  | */ | 
|  | static void __init sparse_init_nid(int nid, unsigned long pnum_begin, | 
|  | unsigned long pnum_end, | 
|  | unsigned long map_count) | 
|  | { | 
|  | struct mem_section_usage *usage; | 
|  | unsigned long pnum; | 
|  | struct page *map; | 
|  |  | 
|  | usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), | 
|  | mem_section_usage_size() * map_count); | 
|  | if (!usage) { | 
|  | pr_err("%s: node[%d] usemap allocation failed", __func__, nid); | 
|  | goto failed; | 
|  | } | 
|  | sparse_buffer_init(map_count * section_map_size(), nid); | 
|  | for_each_present_section_nr(pnum_begin, pnum) { | 
|  | unsigned long pfn = section_nr_to_pfn(pnum); | 
|  |  | 
|  | if (pnum >= pnum_end) | 
|  | break; | 
|  |  | 
|  | map = __populate_section_memmap(pfn, PAGES_PER_SECTION, | 
|  | nid, NULL); | 
|  | if (!map) { | 
|  | pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", | 
|  | __func__, nid); | 
|  | pnum_begin = pnum; | 
|  | sparse_buffer_fini(); | 
|  | goto failed; | 
|  | } | 
|  | check_usemap_section_nr(nid, usage); | 
|  | sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, | 
|  | SECTION_IS_EARLY); | 
|  | usage = (void *) usage + mem_section_usage_size(); | 
|  | } | 
|  | sparse_buffer_fini(); | 
|  | return; | 
|  | failed: | 
|  | /* We failed to allocate, mark all the following pnums as not present */ | 
|  | for_each_present_section_nr(pnum_begin, pnum) { | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (pnum >= pnum_end) | 
|  | break; | 
|  | ms = __nr_to_section(pnum); | 
|  | ms->section_mem_map = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate the accumulated non-linear sections, allocate a mem_map | 
|  | * for each and record the physical to section mapping. | 
|  | */ | 
|  | void __init sparse_init(void) | 
|  | { | 
|  | unsigned long pnum_end, pnum_begin, map_count = 1; | 
|  | int nid_begin; | 
|  |  | 
|  | memblocks_present(); | 
|  |  | 
|  | pnum_begin = first_present_section_nr(); | 
|  | nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); | 
|  |  | 
|  | /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  | set_pageblock_order(); | 
|  |  | 
|  | for_each_present_section_nr(pnum_begin + 1, pnum_end) { | 
|  | int nid = sparse_early_nid(__nr_to_section(pnum_end)); | 
|  |  | 
|  | if (nid == nid_begin) { | 
|  | map_count++; | 
|  | continue; | 
|  | } | 
|  | /* Init node with sections in range [pnum_begin, pnum_end) */ | 
|  | sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); | 
|  | nid_begin = nid; | 
|  | pnum_begin = pnum_end; | 
|  | map_count = 1; | 
|  | } | 
|  | /* cover the last node */ | 
|  | sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); | 
|  | vmemmap_populate_print_last(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  |  | 
|  | /* Mark all memory sections within the pfn range as online */ | 
|  | void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 
|  | unsigned long section_nr = pfn_to_section_nr(pfn); | 
|  | struct mem_section *ms; | 
|  |  | 
|  | /* onlining code should never touch invalid ranges */ | 
|  | if (WARN_ON(!valid_section_nr(section_nr))) | 
|  | continue; | 
|  |  | 
|  | ms = __nr_to_section(section_nr); | 
|  | ms->section_mem_map |= SECTION_IS_ONLINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | /* Mark all memory sections within the pfn range as offline */ | 
|  | void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 
|  | unsigned long section_nr = pfn_to_section_nr(pfn); | 
|  | struct mem_section *ms; | 
|  |  | 
|  | /* | 
|  | * TODO this needs some double checking. Offlining code makes | 
|  | * sure to check pfn_valid but those checks might be just bogus | 
|  | */ | 
|  | if (WARN_ON(!valid_section_nr(section_nr))) | 
|  | continue; | 
|  |  | 
|  | ms = __nr_to_section(section_nr); | 
|  | ms->section_mem_map &= ~SECTION_IS_ONLINE; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | static struct page * __meminit populate_section_memmap(unsigned long pfn, | 
|  | unsigned long nr_pages, int nid, struct vmem_altmap *altmap) | 
|  | { | 
|  | return __populate_section_memmap(pfn, nr_pages, nid, altmap); | 
|  | } | 
|  |  | 
|  | static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long start = (unsigned long) pfn_to_page(pfn); | 
|  | unsigned long end = start + nr_pages * sizeof(struct page); | 
|  |  | 
|  | vmemmap_free(start, end, altmap); | 
|  | } | 
|  | static void free_map_bootmem(struct page *memmap) | 
|  | { | 
|  | unsigned long start = (unsigned long)memmap; | 
|  | unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); | 
|  |  | 
|  | vmemmap_free(start, end, NULL); | 
|  | } | 
|  |  | 
|  | static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; | 
|  | DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; | 
|  | struct mem_section *ms = __pfn_to_section(pfn); | 
|  | unsigned long *subsection_map = ms->usage | 
|  | ? &ms->usage->subsection_map[0] : NULL; | 
|  |  | 
|  | subsection_mask_set(map, pfn, nr_pages); | 
|  | if (subsection_map) | 
|  | bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); | 
|  |  | 
|  | if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), | 
|  | "section already deactivated (%#lx + %ld)\n", | 
|  | pfn, nr_pages)) | 
|  | return -EINVAL; | 
|  |  | 
|  | bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_subsection_map_empty(struct mem_section *ms) | 
|  | { | 
|  | return bitmap_empty(&ms->usage->subsection_map[0], | 
|  | SUBSECTIONS_PER_SECTION); | 
|  | } | 
|  |  | 
|  | static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | struct mem_section *ms = __pfn_to_section(pfn); | 
|  | DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; | 
|  | unsigned long *subsection_map; | 
|  | int rc = 0; | 
|  |  | 
|  | subsection_mask_set(map, pfn, nr_pages); | 
|  |  | 
|  | subsection_map = &ms->usage->subsection_map[0]; | 
|  |  | 
|  | if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) | 
|  | rc = -EINVAL; | 
|  | else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) | 
|  | rc = -EEXIST; | 
|  | else | 
|  | bitmap_or(subsection_map, map, subsection_map, | 
|  | SUBSECTIONS_PER_SECTION); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | #else | 
|  | struct page * __meminit populate_section_memmap(unsigned long pfn, | 
|  | unsigned long nr_pages, int nid, struct vmem_altmap *altmap) | 
|  | { | 
|  | return kvmalloc_node(array_size(sizeof(struct page), | 
|  | PAGES_PER_SECTION), GFP_KERNEL, nid); | 
|  | } | 
|  |  | 
|  | static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | kvfree(pfn_to_page(pfn)); | 
|  | } | 
|  |  | 
|  | static void free_map_bootmem(struct page *memmap) | 
|  | { | 
|  | unsigned long maps_section_nr, removing_section_nr, i; | 
|  | unsigned long magic, nr_pages; | 
|  | struct page *page = virt_to_page(memmap); | 
|  |  | 
|  | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) | 
|  | >> PAGE_SHIFT; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++, page++) { | 
|  | magic = (unsigned long) page->freelist; | 
|  |  | 
|  | BUG_ON(magic == NODE_INFO); | 
|  |  | 
|  | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); | 
|  | removing_section_nr = page_private(page); | 
|  |  | 
|  | /* | 
|  | * When this function is called, the removing section is | 
|  | * logical offlined state. This means all pages are isolated | 
|  | * from page allocator. If removing section's memmap is placed | 
|  | * on the same section, it must not be freed. | 
|  | * If it is freed, page allocator may allocate it which will | 
|  | * be removed physically soon. | 
|  | */ | 
|  | if (maps_section_nr != removing_section_nr) | 
|  | put_page_bootmem(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_subsection_map_empty(struct mem_section *ms) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | /* | 
|  | * To deactivate a memory region, there are 3 cases to handle across | 
|  | * two configurations (SPARSEMEM_VMEMMAP={y,n}): | 
|  | * | 
|  | * 1. deactivation of a partial hot-added section (only possible in | 
|  | *    the SPARSEMEM_VMEMMAP=y case). | 
|  | *      a) section was present at memory init. | 
|  | *      b) section was hot-added post memory init. | 
|  | * 2. deactivation of a complete hot-added section. | 
|  | * 3. deactivation of a complete section from memory init. | 
|  | * | 
|  | * For 1, when subsection_map does not empty we will not be freeing the | 
|  | * usage map, but still need to free the vmemmap range. | 
|  | * | 
|  | * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified | 
|  | */ | 
|  | static void section_deactivate(unsigned long pfn, unsigned long nr_pages, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | struct mem_section *ms = __pfn_to_section(pfn); | 
|  | bool section_is_early = early_section(ms); | 
|  | struct page *memmap = NULL; | 
|  | bool empty; | 
|  |  | 
|  | if (clear_subsection_map(pfn, nr_pages)) | 
|  | return; | 
|  |  | 
|  | empty = is_subsection_map_empty(ms); | 
|  | if (empty) { | 
|  | unsigned long section_nr = pfn_to_section_nr(pfn); | 
|  |  | 
|  | /* | 
|  | * When removing an early section, the usage map is kept (as the | 
|  | * usage maps of other sections fall into the same page). It | 
|  | * will be re-used when re-adding the section - which is then no | 
|  | * longer an early section. If the usage map is PageReserved, it | 
|  | * was allocated during boot. | 
|  | */ | 
|  | if (!PageReserved(virt_to_page(ms->usage))) { | 
|  | kfree(ms->usage); | 
|  | ms->usage = NULL; | 
|  | } | 
|  | memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); | 
|  | /* | 
|  | * Mark the section invalid so that valid_section() | 
|  | * return false. This prevents code from dereferencing | 
|  | * ms->usage array. | 
|  | */ | 
|  | ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The memmap of early sections is always fully populated. See | 
|  | * section_activate() and pfn_valid() . | 
|  | */ | 
|  | if (!section_is_early) | 
|  | depopulate_section_memmap(pfn, nr_pages, altmap); | 
|  | else if (memmap) | 
|  | free_map_bootmem(memmap); | 
|  |  | 
|  | if (empty) | 
|  | ms->section_mem_map = (unsigned long)NULL; | 
|  | } | 
|  |  | 
|  | static struct page * __meminit section_activate(int nid, unsigned long pfn, | 
|  | unsigned long nr_pages, struct vmem_altmap *altmap) | 
|  | { | 
|  | struct mem_section *ms = __pfn_to_section(pfn); | 
|  | struct mem_section_usage *usage = NULL; | 
|  | struct page *memmap; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!ms->usage) { | 
|  | usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); | 
|  | if (!usage) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | ms->usage = usage; | 
|  | } | 
|  |  | 
|  | rc = fill_subsection_map(pfn, nr_pages); | 
|  | if (rc) { | 
|  | if (usage) | 
|  | ms->usage = NULL; | 
|  | kfree(usage); | 
|  | return ERR_PTR(rc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The early init code does not consider partially populated | 
|  | * initial sections, it simply assumes that memory will never be | 
|  | * referenced.  If we hot-add memory into such a section then we | 
|  | * do not need to populate the memmap and can simply reuse what | 
|  | * is already there. | 
|  | */ | 
|  | if (nr_pages < PAGES_PER_SECTION && early_section(ms)) | 
|  | return pfn_to_page(pfn); | 
|  |  | 
|  | memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); | 
|  | if (!memmap) { | 
|  | section_deactivate(pfn, nr_pages, altmap); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | return memmap; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sparse_add_section - add a memory section, or populate an existing one | 
|  | * @nid: The node to add section on | 
|  | * @start_pfn: start pfn of the memory range | 
|  | * @nr_pages: number of pfns to add in the section | 
|  | * @altmap: device page map | 
|  | * | 
|  | * This is only intended for hotplug. | 
|  | * | 
|  | * Note that only VMEMMAP supports sub-section aligned hotplug, | 
|  | * the proper alignment and size are gated by check_pfn_span(). | 
|  | * | 
|  | * | 
|  | * Return: | 
|  | * * 0		- On success. | 
|  | * * -EEXIST	- Section has been present. | 
|  | * * -ENOMEM	- Out of memory. | 
|  | */ | 
|  | int __meminit sparse_add_section(int nid, unsigned long start_pfn, | 
|  | unsigned long nr_pages, struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long section_nr = pfn_to_section_nr(start_pfn); | 
|  | struct mem_section *ms; | 
|  | struct page *memmap; | 
|  | int ret; | 
|  |  | 
|  | ret = sparse_index_init(section_nr, nid); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | memmap = section_activate(nid, start_pfn, nr_pages, altmap); | 
|  | if (IS_ERR(memmap)) | 
|  | return PTR_ERR(memmap); | 
|  |  | 
|  | /* | 
|  | * Poison uninitialized struct pages in order to catch invalid flags | 
|  | * combinations. | 
|  | */ | 
|  | page_init_poison(memmap, sizeof(struct page) * nr_pages); | 
|  |  | 
|  | ms = __nr_to_section(section_nr); | 
|  | set_section_nid(section_nr, nid); | 
|  | section_mark_present(ms); | 
|  |  | 
|  | /* Align memmap to section boundary in the subsection case */ | 
|  | if (section_nr_to_pfn(section_nr) != start_pfn) | 
|  | memmap = pfn_to_page(section_nr_to_pfn(section_nr)); | 
|  | sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * A further optimization is to have per section refcounted | 
|  | * num_poisoned_pages.  But that would need more space per memmap, so | 
|  | * for now just do a quick global check to speed up this routine in the | 
|  | * absence of bad pages. | 
|  | */ | 
|  | if (atomic_long_read(&num_poisoned_pages) == 0) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | if (PageHWPoison(&memmap[i])) { | 
|  | num_poisoned_pages_dec(); | 
|  | ClearPageHWPoison(&memmap[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void sparse_remove_section(struct mem_section *ms, unsigned long pfn, | 
|  | unsigned long nr_pages, unsigned long map_offset, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, | 
|  | nr_pages - map_offset); | 
|  | section_deactivate(pfn, nr_pages, altmap); | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ |