|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Randomized tests for eBPF longest-prefix-match maps | 
|  | * | 
|  | * This program runs randomized tests against the lpm-bpf-map. It implements a | 
|  | * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked | 
|  | * lists. The implementation should be pretty straightforward. | 
|  | * | 
|  | * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies | 
|  | * the trie-based bpf-map implementation behaves the same way as tlpm. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <errno.h> | 
|  | #include <inttypes.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <pthread.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <time.h> | 
|  | #include <unistd.h> | 
|  | #include <arpa/inet.h> | 
|  | #include <sys/time.h> | 
|  |  | 
|  | #include <bpf/bpf.h> | 
|  |  | 
|  | #include "bpf_util.h" | 
|  | #include "bpf_rlimit.h" | 
|  |  | 
|  | struct tlpm_node { | 
|  | struct tlpm_node *next; | 
|  | size_t n_bits; | 
|  | uint8_t key[]; | 
|  | }; | 
|  |  | 
|  | static struct tlpm_node *tlpm_match(struct tlpm_node *list, | 
|  | const uint8_t *key, | 
|  | size_t n_bits); | 
|  |  | 
|  | static struct tlpm_node *tlpm_add(struct tlpm_node *list, | 
|  | const uint8_t *key, | 
|  | size_t n_bits) | 
|  | { | 
|  | struct tlpm_node *node; | 
|  | size_t n; | 
|  |  | 
|  | n = (n_bits + 7) / 8; | 
|  |  | 
|  | /* 'overwrite' an equivalent entry if one already exists */ | 
|  | node = tlpm_match(list, key, n_bits); | 
|  | if (node && node->n_bits == n_bits) { | 
|  | memcpy(node->key, key, n); | 
|  | return list; | 
|  | } | 
|  |  | 
|  | /* add new entry with @key/@n_bits to @list and return new head */ | 
|  |  | 
|  | node = malloc(sizeof(*node) + n); | 
|  | assert(node); | 
|  |  | 
|  | node->next = list; | 
|  | node->n_bits = n_bits; | 
|  | memcpy(node->key, key, n); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static void tlpm_clear(struct tlpm_node *list) | 
|  | { | 
|  | struct tlpm_node *node; | 
|  |  | 
|  | /* free all entries in @list */ | 
|  |  | 
|  | while ((node = list)) { | 
|  | list = list->next; | 
|  | free(node); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct tlpm_node *tlpm_match(struct tlpm_node *list, | 
|  | const uint8_t *key, | 
|  | size_t n_bits) | 
|  | { | 
|  | struct tlpm_node *best = NULL; | 
|  | size_t i; | 
|  |  | 
|  | /* Perform longest prefix-match on @key/@n_bits. That is, iterate all | 
|  | * entries and match each prefix against @key. Remember the "best" | 
|  | * entry we find (i.e., the longest prefix that matches) and return it | 
|  | * to the caller when done. | 
|  | */ | 
|  |  | 
|  | for ( ; list; list = list->next) { | 
|  | for (i = 0; i < n_bits && i < list->n_bits; ++i) { | 
|  | if ((key[i / 8] & (1 << (7 - i % 8))) != | 
|  | (list->key[i / 8] & (1 << (7 - i % 8)))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i >= list->n_bits) { | 
|  | if (!best || i > best->n_bits) | 
|  | best = list; | 
|  | } | 
|  | } | 
|  |  | 
|  | return best; | 
|  | } | 
|  |  | 
|  | static struct tlpm_node *tlpm_delete(struct tlpm_node *list, | 
|  | const uint8_t *key, | 
|  | size_t n_bits) | 
|  | { | 
|  | struct tlpm_node *best = tlpm_match(list, key, n_bits); | 
|  | struct tlpm_node *node; | 
|  |  | 
|  | if (!best || best->n_bits != n_bits) | 
|  | return list; | 
|  |  | 
|  | if (best == list) { | 
|  | node = best->next; | 
|  | free(best); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | for (node = list; node; node = node->next) { | 
|  | if (node->next == best) { | 
|  | node->next = best->next; | 
|  | free(best); | 
|  | return list; | 
|  | } | 
|  | } | 
|  | /* should never get here */ | 
|  | assert(0); | 
|  | return list; | 
|  | } | 
|  |  | 
|  | static void test_lpm_basic(void) | 
|  | { | 
|  | struct tlpm_node *list = NULL, *t1, *t2; | 
|  |  | 
|  | /* very basic, static tests to verify tlpm works as expected */ | 
|  |  | 
|  | assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | 
|  |  | 
|  | t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); | 
|  | assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); | 
|  | assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); | 
|  | assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); | 
|  |  | 
|  | t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | 
|  | assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); | 
|  | assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); | 
|  |  | 
|  | list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | 
|  | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); | 
|  |  | 
|  | list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); | 
|  | assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | 
|  |  | 
|  | tlpm_clear(list); | 
|  | } | 
|  |  | 
|  | static void test_lpm_order(void) | 
|  | { | 
|  | struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; | 
|  | size_t i, j; | 
|  |  | 
|  | /* Verify the tlpm implementation works correctly regardless of the | 
|  | * order of entries. Insert a random set of entries into @l1, and copy | 
|  | * the same data in reverse order into @l2. Then verify a lookup of | 
|  | * random keys will yield the same result in both sets. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < (1 << 12); ++i) | 
|  | l1 = tlpm_add(l1, (uint8_t[]){ | 
|  | rand() % 0xff, | 
|  | rand() % 0xff, | 
|  | }, rand() % 16 + 1); | 
|  |  | 
|  | for (t1 = l1; t1; t1 = t1->next) | 
|  | l2 = tlpm_add(l2, t1->key, t1->n_bits); | 
|  |  | 
|  | for (i = 0; i < (1 << 8); ++i) { | 
|  | uint8_t key[] = { rand() % 0xff, rand() % 0xff }; | 
|  |  | 
|  | t1 = tlpm_match(l1, key, 16); | 
|  | t2 = tlpm_match(l2, key, 16); | 
|  |  | 
|  | assert(!t1 == !t2); | 
|  | if (t1) { | 
|  | assert(t1->n_bits == t2->n_bits); | 
|  | for (j = 0; j < t1->n_bits; ++j) | 
|  | assert((t1->key[j / 8] & (1 << (7 - j % 8))) == | 
|  | (t2->key[j / 8] & (1 << (7 - j % 8)))); | 
|  | } | 
|  | } | 
|  |  | 
|  | tlpm_clear(l1); | 
|  | tlpm_clear(l2); | 
|  | } | 
|  |  | 
|  | static void test_lpm_map(int keysize) | 
|  | { | 
|  | size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups; | 
|  | struct tlpm_node *t, *list = NULL; | 
|  | struct bpf_lpm_trie_key *key; | 
|  | uint8_t *data, *value; | 
|  | int r, map; | 
|  |  | 
|  | /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of | 
|  | * prefixes and insert it into both tlpm and bpf-lpm. Then run some | 
|  | * randomized lookups and verify both maps return the same result. | 
|  | */ | 
|  |  | 
|  | n_matches = 0; | 
|  | n_matches_after_delete = 0; | 
|  | n_nodes = 1 << 8; | 
|  | n_lookups = 1 << 16; | 
|  |  | 
|  | data = alloca(keysize); | 
|  | memset(data, 0, keysize); | 
|  |  | 
|  | value = alloca(keysize + 1); | 
|  | memset(value, 0, keysize + 1); | 
|  |  | 
|  | key = alloca(sizeof(*key) + keysize); | 
|  | memset(key, 0, sizeof(*key) + keysize); | 
|  |  | 
|  | map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, | 
|  | sizeof(*key) + keysize, | 
|  | keysize + 1, | 
|  | 4096, | 
|  | BPF_F_NO_PREALLOC); | 
|  | assert(map >= 0); | 
|  |  | 
|  | for (i = 0; i < n_nodes; ++i) { | 
|  | for (j = 0; j < keysize; ++j) | 
|  | value[j] = rand() & 0xff; | 
|  | value[keysize] = rand() % (8 * keysize + 1); | 
|  |  | 
|  | list = tlpm_add(list, value, value[keysize]); | 
|  |  | 
|  | key->prefixlen = value[keysize]; | 
|  | memcpy(key->data, value, keysize); | 
|  | r = bpf_map_update_elem(map, key, value, 0); | 
|  | assert(!r); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n_lookups; ++i) { | 
|  | for (j = 0; j < keysize; ++j) | 
|  | data[j] = rand() & 0xff; | 
|  |  | 
|  | t = tlpm_match(list, data, 8 * keysize); | 
|  |  | 
|  | key->prefixlen = 8 * keysize; | 
|  | memcpy(key->data, data, keysize); | 
|  | r = bpf_map_lookup_elem(map, key, value); | 
|  | assert(!r || errno == ENOENT); | 
|  | assert(!t == !!r); | 
|  |  | 
|  | if (t) { | 
|  | ++n_matches; | 
|  | assert(t->n_bits == value[keysize]); | 
|  | for (j = 0; j < t->n_bits; ++j) | 
|  | assert((t->key[j / 8] & (1 << (7 - j % 8))) == | 
|  | (value[j / 8] & (1 << (7 - j % 8)))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove the first half of the elements in the tlpm and the | 
|  | * corresponding nodes from the bpf-lpm.  Then run the same | 
|  | * large number of random lookups in both and make sure they match. | 
|  | * Note: we need to count the number of nodes actually inserted | 
|  | * since there may have been duplicates. | 
|  | */ | 
|  | for (i = 0, t = list; t; i++, t = t->next) | 
|  | ; | 
|  | for (j = 0; j < i / 2; ++j) { | 
|  | key->prefixlen = list->n_bits; | 
|  | memcpy(key->data, list->key, keysize); | 
|  | r = bpf_map_delete_elem(map, key); | 
|  | assert(!r); | 
|  | list = tlpm_delete(list, list->key, list->n_bits); | 
|  | assert(list); | 
|  | } | 
|  | for (i = 0; i < n_lookups; ++i) { | 
|  | for (j = 0; j < keysize; ++j) | 
|  | data[j] = rand() & 0xff; | 
|  |  | 
|  | t = tlpm_match(list, data, 8 * keysize); | 
|  |  | 
|  | key->prefixlen = 8 * keysize; | 
|  | memcpy(key->data, data, keysize); | 
|  | r = bpf_map_lookup_elem(map, key, value); | 
|  | assert(!r || errno == ENOENT); | 
|  | assert(!t == !!r); | 
|  |  | 
|  | if (t) { | 
|  | ++n_matches_after_delete; | 
|  | assert(t->n_bits == value[keysize]); | 
|  | for (j = 0; j < t->n_bits; ++j) | 
|  | assert((t->key[j / 8] & (1 << (7 - j % 8))) == | 
|  | (value[j / 8] & (1 << (7 - j % 8)))); | 
|  | } | 
|  | } | 
|  |  | 
|  | close(map); | 
|  | tlpm_clear(list); | 
|  |  | 
|  | /* With 255 random nodes in the map, we are pretty likely to match | 
|  | * something on every lookup. For statistics, use this: | 
|  | * | 
|  | *     printf("          nodes: %zu\n" | 
|  | *            "        lookups: %zu\n" | 
|  | *            "        matches: %zu\n" | 
|  | *            "matches(delete): %zu\n", | 
|  | *            n_nodes, n_lookups, n_matches, n_matches_after_delete); | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* Test the implementation with some 'real world' examples */ | 
|  |  | 
|  | static void test_lpm_ipaddr(void) | 
|  | { | 
|  | struct bpf_lpm_trie_key *key_ipv4; | 
|  | struct bpf_lpm_trie_key *key_ipv6; | 
|  | size_t key_size_ipv4; | 
|  | size_t key_size_ipv6; | 
|  | int map_fd_ipv4; | 
|  | int map_fd_ipv6; | 
|  | __u64 value; | 
|  |  | 
|  | key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); | 
|  | key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; | 
|  | key_ipv4 = alloca(key_size_ipv4); | 
|  | key_ipv6 = alloca(key_size_ipv6); | 
|  |  | 
|  | map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, | 
|  | key_size_ipv4, sizeof(value), | 
|  | 100, BPF_F_NO_PREALLOC); | 
|  | assert(map_fd_ipv4 >= 0); | 
|  |  | 
|  | map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, | 
|  | key_size_ipv6, sizeof(value), | 
|  | 100, BPF_F_NO_PREALLOC); | 
|  | assert(map_fd_ipv6 >= 0); | 
|  |  | 
|  | /* Fill data some IPv4 and IPv6 address ranges */ | 
|  | value = 1; | 
|  | key_ipv4->prefixlen = 16; | 
|  | inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); | 
|  | assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); | 
|  |  | 
|  | value = 2; | 
|  | key_ipv4->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); | 
|  | assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); | 
|  |  | 
|  | value = 3; | 
|  | key_ipv4->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); | 
|  | assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); | 
|  |  | 
|  | value = 5; | 
|  | key_ipv4->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); | 
|  | assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); | 
|  |  | 
|  | value = 4; | 
|  | key_ipv4->prefixlen = 23; | 
|  | inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); | 
|  | assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); | 
|  |  | 
|  | value = 0xdeadbeef; | 
|  | key_ipv6->prefixlen = 64; | 
|  | inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); | 
|  | assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); | 
|  |  | 
|  | /* Set tprefixlen to maximum for lookups */ | 
|  | key_ipv4->prefixlen = 32; | 
|  | key_ipv6->prefixlen = 128; | 
|  |  | 
|  | /* Test some lookups that should come back with a value */ | 
|  | inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); | 
|  | assert(value == 3); | 
|  |  | 
|  | inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); | 
|  | assert(value == 2); | 
|  |  | 
|  | inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); | 
|  | assert(value == 0xdeadbeef); | 
|  |  | 
|  | inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); | 
|  | assert(value == 0xdeadbeef); | 
|  |  | 
|  | /* Test some lookups that should not match any entry */ | 
|  | inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); | 
|  | assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | close(map_fd_ipv4); | 
|  | close(map_fd_ipv6); | 
|  | } | 
|  |  | 
|  | static void test_lpm_delete(void) | 
|  | { | 
|  | struct bpf_lpm_trie_key *key; | 
|  | size_t key_size; | 
|  | int map_fd; | 
|  | __u64 value; | 
|  |  | 
|  | key_size = sizeof(*key) + sizeof(__u32); | 
|  | key = alloca(key_size); | 
|  |  | 
|  | map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, | 
|  | key_size, sizeof(value), | 
|  | 100, BPF_F_NO_PREALLOC); | 
|  | assert(map_fd >= 0); | 
|  |  | 
|  | /* Add nodes: | 
|  | * 192.168.0.0/16   (1) | 
|  | * 192.168.0.0/24   (2) | 
|  | * 192.168.128.0/24 (3) | 
|  | * 192.168.1.0/24   (4) | 
|  | * | 
|  | *         (1) | 
|  | *        /   \ | 
|  | *     (IM)    (3) | 
|  | *    /   \ | 
|  | *   (2)  (4) | 
|  | */ | 
|  | value = 1; | 
|  | key->prefixlen = 16; | 
|  | inet_pton(AF_INET, "192.168.0.0", key->data); | 
|  | assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); | 
|  |  | 
|  | value = 2; | 
|  | key->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.0.0", key->data); | 
|  | assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); | 
|  |  | 
|  | value = 3; | 
|  | key->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.128.0", key->data); | 
|  | assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); | 
|  |  | 
|  | value = 4; | 
|  | key->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.1.0", key->data); | 
|  | assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); | 
|  |  | 
|  | /* remove non-existent node */ | 
|  | key->prefixlen = 32; | 
|  | inet_pton(AF_INET, "10.0.0.1", key->data); | 
|  | assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | key->prefixlen = 30; // unused prefix so far | 
|  | inet_pton(AF_INET, "192.255.0.0", key->data); | 
|  | assert(bpf_map_delete_elem(map_fd, key) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | key->prefixlen = 16; // same prefix as the root node | 
|  | inet_pton(AF_INET, "192.255.0.0", key->data); | 
|  | assert(bpf_map_delete_elem(map_fd, key) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* assert initial lookup */ | 
|  | key->prefixlen = 32; | 
|  | inet_pton(AF_INET, "192.168.0.1", key->data); | 
|  | assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); | 
|  | assert(value == 2); | 
|  |  | 
|  | /* remove leaf node */ | 
|  | key->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.0.0", key->data); | 
|  | assert(bpf_map_delete_elem(map_fd, key) == 0); | 
|  |  | 
|  | key->prefixlen = 32; | 
|  | inet_pton(AF_INET, "192.168.0.1", key->data); | 
|  | assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); | 
|  | assert(value == 1); | 
|  |  | 
|  | /* remove leaf (and intermediary) node */ | 
|  | key->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.1.0", key->data); | 
|  | assert(bpf_map_delete_elem(map_fd, key) == 0); | 
|  |  | 
|  | key->prefixlen = 32; | 
|  | inet_pton(AF_INET, "192.168.1.1", key->data); | 
|  | assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); | 
|  | assert(value == 1); | 
|  |  | 
|  | /* remove root node */ | 
|  | key->prefixlen = 16; | 
|  | inet_pton(AF_INET, "192.168.0.0", key->data); | 
|  | assert(bpf_map_delete_elem(map_fd, key) == 0); | 
|  |  | 
|  | key->prefixlen = 32; | 
|  | inet_pton(AF_INET, "192.168.128.1", key->data); | 
|  | assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); | 
|  | assert(value == 3); | 
|  |  | 
|  | /* remove last node */ | 
|  | key->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.128.0", key->data); | 
|  | assert(bpf_map_delete_elem(map_fd, key) == 0); | 
|  |  | 
|  | key->prefixlen = 32; | 
|  | inet_pton(AF_INET, "192.168.128.1", key->data); | 
|  | assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | close(map_fd); | 
|  | } | 
|  |  | 
|  | static void test_lpm_get_next_key(void) | 
|  | { | 
|  | struct bpf_lpm_trie_key *key_p, *next_key_p; | 
|  | size_t key_size; | 
|  | __u32 value = 0; | 
|  | int map_fd; | 
|  |  | 
|  | key_size = sizeof(*key_p) + sizeof(__u32); | 
|  | key_p = alloca(key_size); | 
|  | next_key_p = alloca(key_size); | 
|  |  | 
|  | map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value), | 
|  | 100, BPF_F_NO_PREALLOC); | 
|  | assert(map_fd >= 0); | 
|  |  | 
|  | /* empty tree. get_next_key should return ENOENT */ | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* get and verify the first key, get the second one should fail. */ | 
|  | key_p->prefixlen = 16; | 
|  | inet_pton(AF_INET, "192.168.0.0", key_p->data); | 
|  | assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); | 
|  |  | 
|  | memset(key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); | 
|  | assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && | 
|  | key_p->data[1] == 168); | 
|  |  | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* no exact matching key should get the first one in post order. */ | 
|  | key_p->prefixlen = 8; | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); | 
|  | assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && | 
|  | key_p->data[1] == 168); | 
|  |  | 
|  | /* add one more element (total two) */ | 
|  | key_p->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.128.0", key_p->data); | 
|  | assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); | 
|  |  | 
|  | memset(key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); | 
|  | assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && | 
|  | key_p->data[1] == 168 && key_p->data[2] == 128); | 
|  |  | 
|  | memset(next_key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* Add one more element (total three) */ | 
|  | key_p->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.0.0", key_p->data); | 
|  | assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); | 
|  |  | 
|  | memset(key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); | 
|  | assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && | 
|  | key_p->data[1] == 168 && key_p->data[2] == 0); | 
|  |  | 
|  | memset(next_key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 128); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* Add one more element (total four) */ | 
|  | key_p->prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.1.0", key_p->data); | 
|  | assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); | 
|  |  | 
|  | memset(key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); | 
|  | assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && | 
|  | key_p->data[1] == 168 && key_p->data[2] == 0); | 
|  |  | 
|  | memset(next_key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 1); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 128); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* Add one more element (total five) */ | 
|  | key_p->prefixlen = 28; | 
|  | inet_pton(AF_INET, "192.168.1.128", key_p->data); | 
|  | assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); | 
|  |  | 
|  | memset(key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); | 
|  | assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && | 
|  | key_p->data[1] == 168 && key_p->data[2] == 0); | 
|  |  | 
|  | memset(next_key_p, 0, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 1 && | 
|  | next_key_p->data[3] == 128); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 1); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 128); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168); | 
|  |  | 
|  | memcpy(key_p, next_key_p, key_size); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && | 
|  | errno == ENOENT); | 
|  |  | 
|  | /* no exact matching key should return the first one in post order */ | 
|  | key_p->prefixlen = 22; | 
|  | inet_pton(AF_INET, "192.168.1.0", key_p->data); | 
|  | assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); | 
|  | assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && | 
|  | next_key_p->data[1] == 168 && next_key_p->data[2] == 0); | 
|  |  | 
|  | close(map_fd); | 
|  | } | 
|  |  | 
|  | #define MAX_TEST_KEYS	4 | 
|  | struct lpm_mt_test_info { | 
|  | int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */ | 
|  | int iter; | 
|  | int map_fd; | 
|  | struct { | 
|  | __u32 prefixlen; | 
|  | __u32 data; | 
|  | } key[MAX_TEST_KEYS]; | 
|  | }; | 
|  |  | 
|  | static void *lpm_test_command(void *arg) | 
|  | { | 
|  | int i, j, ret, iter, key_size; | 
|  | struct lpm_mt_test_info *info = arg; | 
|  | struct bpf_lpm_trie_key *key_p; | 
|  |  | 
|  | key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32); | 
|  | key_p = alloca(key_size); | 
|  | for (iter = 0; iter < info->iter; iter++) | 
|  | for (i = 0; i < MAX_TEST_KEYS; i++) { | 
|  | /* first half of iterations in forward order, | 
|  | * and second half in backward order. | 
|  | */ | 
|  | j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1; | 
|  | key_p->prefixlen = info->key[j].prefixlen; | 
|  | memcpy(key_p->data, &info->key[j].data, sizeof(__u32)); | 
|  | if (info->cmd == 0) { | 
|  | __u32 value = j; | 
|  | /* update must succeed */ | 
|  | assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0); | 
|  | } else if (info->cmd == 1) { | 
|  | ret = bpf_map_delete_elem(info->map_fd, key_p); | 
|  | assert(ret == 0 || errno == ENOENT); | 
|  | } else if (info->cmd == 2) { | 
|  | __u32 value; | 
|  | ret = bpf_map_lookup_elem(info->map_fd, key_p, &value); | 
|  | assert(ret == 0 || errno == ENOENT); | 
|  | } else { | 
|  | struct bpf_lpm_trie_key *next_key_p = alloca(key_size); | 
|  | ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p); | 
|  | assert(ret == 0 || errno == ENOENT || errno == ENOMEM); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pass successful exit info back to the main thread | 
|  | pthread_exit((void *)info); | 
|  | } | 
|  |  | 
|  | static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd) | 
|  | { | 
|  | info->iter = 2000; | 
|  | info->map_fd = map_fd; | 
|  | info->key[0].prefixlen = 16; | 
|  | inet_pton(AF_INET, "192.168.0.0", &info->key[0].data); | 
|  | info->key[1].prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.0.0", &info->key[1].data); | 
|  | info->key[2].prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.128.0", &info->key[2].data); | 
|  | info->key[3].prefixlen = 24; | 
|  | inet_pton(AF_INET, "192.168.1.0", &info->key[3].data); | 
|  | } | 
|  |  | 
|  | static void test_lpm_multi_thread(void) | 
|  | { | 
|  | struct lpm_mt_test_info info[4]; | 
|  | size_t key_size, value_size; | 
|  | pthread_t thread_id[4]; | 
|  | int i, map_fd; | 
|  | void *ret; | 
|  |  | 
|  | /* create a trie */ | 
|  | value_size = sizeof(__u32); | 
|  | key_size = sizeof(struct bpf_lpm_trie_key) + value_size; | 
|  | map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, value_size, | 
|  | 100, BPF_F_NO_PREALLOC); | 
|  |  | 
|  | /* create 4 threads to test update, delete, lookup and get_next_key */ | 
|  | setup_lpm_mt_test_info(&info[0], map_fd); | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (i != 0) | 
|  | memcpy(&info[i], &info[0], sizeof(info[i])); | 
|  | info[i].cmd = i; | 
|  | assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]); | 
|  |  | 
|  | close(map_fd); | 
|  | } | 
|  |  | 
|  | int main(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* we want predictable, pseudo random tests */ | 
|  | srand(0xf00ba1); | 
|  |  | 
|  | test_lpm_basic(); | 
|  | test_lpm_order(); | 
|  |  | 
|  | /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ | 
|  | for (i = 1; i <= 16; ++i) | 
|  | test_lpm_map(i); | 
|  |  | 
|  | test_lpm_ipaddr(); | 
|  | test_lpm_delete(); | 
|  | test_lpm_get_next_key(); | 
|  | test_lpm_multi_thread(); | 
|  |  | 
|  | printf("test_lpm: OK\n"); | 
|  | return 0; | 
|  | } |