|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (c) 2009, Microsoft Corporation. | 
|  | * | 
|  | * Authors: | 
|  | *   Haiyang Zhang <haiyangz@microsoft.com> | 
|  | *   Hank Janssen  <hjanssen@microsoft.com> | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/hyperv.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <clocksource/hyperv_timer.h> | 
|  | #include <asm/mshyperv.h> | 
|  | #include "hyperv_vmbus.h" | 
|  |  | 
|  | /* The one and only */ | 
|  | struct hv_context hv_context; | 
|  |  | 
|  | /* | 
|  | * hv_init - Main initialization routine. | 
|  | * | 
|  | * This routine must be called before any other routines in here are called | 
|  | */ | 
|  | int hv_init(void) | 
|  | { | 
|  | hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context); | 
|  | if (!hv_context.cpu_context) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions for allocating and freeing memory with size and | 
|  | * alignment HV_HYP_PAGE_SIZE. These functions are needed because | 
|  | * the guest page size may not be the same as the Hyper-V page | 
|  | * size. We depend upon kmalloc() aligning power-of-two size | 
|  | * allocations to the allocation size boundary, so that the | 
|  | * allocated memory appears to Hyper-V as a page of the size | 
|  | * it expects. | 
|  | */ | 
|  |  | 
|  | void *hv_alloc_hyperv_page(void) | 
|  | { | 
|  | BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE); | 
|  |  | 
|  | if (PAGE_SIZE == HV_HYP_PAGE_SIZE) | 
|  | return (void *)__get_free_page(GFP_KERNEL); | 
|  | else | 
|  | return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void *hv_alloc_hyperv_zeroed_page(void) | 
|  | { | 
|  | if (PAGE_SIZE == HV_HYP_PAGE_SIZE) | 
|  | return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
|  | else | 
|  | return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void hv_free_hyperv_page(unsigned long addr) | 
|  | { | 
|  | if (PAGE_SIZE == HV_HYP_PAGE_SIZE) | 
|  | free_page(addr); | 
|  | else | 
|  | kfree((void *)addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hv_post_message - Post a message using the hypervisor message IPC. | 
|  | * | 
|  | * This involves a hypercall. | 
|  | */ | 
|  | int hv_post_message(union hv_connection_id connection_id, | 
|  | enum hv_message_type message_type, | 
|  | void *payload, size_t payload_size) | 
|  | { | 
|  | struct hv_input_post_message *aligned_msg; | 
|  | struct hv_per_cpu_context *hv_cpu; | 
|  | u64 status; | 
|  |  | 
|  | if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | hv_cpu = get_cpu_ptr(hv_context.cpu_context); | 
|  | aligned_msg = hv_cpu->post_msg_page; | 
|  | aligned_msg->connectionid = connection_id; | 
|  | aligned_msg->reserved = 0; | 
|  | aligned_msg->message_type = message_type; | 
|  | aligned_msg->payload_size = payload_size; | 
|  | memcpy((void *)aligned_msg->payload, payload, payload_size); | 
|  |  | 
|  | status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL); | 
|  |  | 
|  | /* Preemption must remain disabled until after the hypercall | 
|  | * so some other thread can't get scheduled onto this cpu and | 
|  | * corrupt the per-cpu post_msg_page | 
|  | */ | 
|  | put_cpu_ptr(hv_cpu); | 
|  |  | 
|  | return hv_result(status); | 
|  | } | 
|  |  | 
|  | int hv_synic_alloc(void) | 
|  | { | 
|  | int cpu; | 
|  | struct hv_per_cpu_context *hv_cpu; | 
|  |  | 
|  | /* | 
|  | * First, zero all per-cpu memory areas so hv_synic_free() can | 
|  | * detect what memory has been allocated and cleanup properly | 
|  | * after any failures. | 
|  | */ | 
|  | for_each_present_cpu(cpu) { | 
|  | hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); | 
|  | memset(hv_cpu, 0, sizeof(*hv_cpu)); | 
|  | } | 
|  |  | 
|  | hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask), | 
|  | GFP_KERNEL); | 
|  | if (hv_context.hv_numa_map == NULL) { | 
|  | pr_err("Unable to allocate NUMA map\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for_each_present_cpu(cpu) { | 
|  | hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); | 
|  |  | 
|  | tasklet_init(&hv_cpu->msg_dpc, | 
|  | vmbus_on_msg_dpc, (unsigned long) hv_cpu); | 
|  |  | 
|  | hv_cpu->synic_message_page = | 
|  | (void *)get_zeroed_page(GFP_ATOMIC); | 
|  | if (hv_cpu->synic_message_page == NULL) { | 
|  | pr_err("Unable to allocate SYNIC message page\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | hv_cpu->synic_event_page = (void *)get_zeroed_page(GFP_ATOMIC); | 
|  | if (hv_cpu->synic_event_page == NULL) { | 
|  | pr_err("Unable to allocate SYNIC event page\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC); | 
|  | if (hv_cpu->post_msg_page == NULL) { | 
|  | pr_err("Unable to allocate post msg page\n"); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | /* | 
|  | * Any memory allocations that succeeded will be freed when | 
|  | * the caller cleans up by calling hv_synic_free() | 
|  | */ | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  |  | 
|  | void hv_synic_free(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_present_cpu(cpu) { | 
|  | struct hv_per_cpu_context *hv_cpu | 
|  | = per_cpu_ptr(hv_context.cpu_context, cpu); | 
|  |  | 
|  | free_page((unsigned long)hv_cpu->synic_event_page); | 
|  | free_page((unsigned long)hv_cpu->synic_message_page); | 
|  | free_page((unsigned long)hv_cpu->post_msg_page); | 
|  | } | 
|  |  | 
|  | kfree(hv_context.hv_numa_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hv_synic_init - Initialize the Synthetic Interrupt Controller. | 
|  | * | 
|  | * If it is already initialized by another entity (ie x2v shim), we need to | 
|  | * retrieve the initialized message and event pages.  Otherwise, we create and | 
|  | * initialize the message and event pages. | 
|  | */ | 
|  | void hv_synic_enable_regs(unsigned int cpu) | 
|  | { | 
|  | struct hv_per_cpu_context *hv_cpu | 
|  | = per_cpu_ptr(hv_context.cpu_context, cpu); | 
|  | union hv_synic_simp simp; | 
|  | union hv_synic_siefp siefp; | 
|  | union hv_synic_sint shared_sint; | 
|  | union hv_synic_scontrol sctrl; | 
|  |  | 
|  | /* Setup the Synic's message page */ | 
|  | simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP); | 
|  | simp.simp_enabled = 1; | 
|  | simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page) | 
|  | >> HV_HYP_PAGE_SHIFT; | 
|  |  | 
|  | hv_set_register(HV_REGISTER_SIMP, simp.as_uint64); | 
|  |  | 
|  | /* Setup the Synic's event page */ | 
|  | siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP); | 
|  | siefp.siefp_enabled = 1; | 
|  | siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page) | 
|  | >> HV_HYP_PAGE_SHIFT; | 
|  |  | 
|  | hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64); | 
|  |  | 
|  | /* Setup the shared SINT. */ | 
|  | if (vmbus_irq != -1) | 
|  | enable_percpu_irq(vmbus_irq, 0); | 
|  | shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 + | 
|  | VMBUS_MESSAGE_SINT); | 
|  |  | 
|  | shared_sint.vector = vmbus_interrupt; | 
|  | shared_sint.masked = false; | 
|  |  | 
|  | /* | 
|  | * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64), | 
|  | * it doesn't provide a recommendation flag and AEOI must be disabled. | 
|  | */ | 
|  | #ifdef HV_DEPRECATING_AEOI_RECOMMENDED | 
|  | shared_sint.auto_eoi = | 
|  | !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED); | 
|  | #else | 
|  | shared_sint.auto_eoi = 0; | 
|  | #endif | 
|  | hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT, | 
|  | shared_sint.as_uint64); | 
|  |  | 
|  | /* Enable the global synic bit */ | 
|  | sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL); | 
|  | sctrl.enable = 1; | 
|  |  | 
|  | hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64); | 
|  | } | 
|  |  | 
|  | int hv_synic_init(unsigned int cpu) | 
|  | { | 
|  | hv_synic_enable_regs(cpu); | 
|  |  | 
|  | hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hv_synic_cleanup - Cleanup routine for hv_synic_init(). | 
|  | */ | 
|  | void hv_synic_disable_regs(unsigned int cpu) | 
|  | { | 
|  | union hv_synic_sint shared_sint; | 
|  | union hv_synic_simp simp; | 
|  | union hv_synic_siefp siefp; | 
|  | union hv_synic_scontrol sctrl; | 
|  |  | 
|  | shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 + | 
|  | VMBUS_MESSAGE_SINT); | 
|  |  | 
|  | shared_sint.masked = 1; | 
|  |  | 
|  | /* Need to correctly cleanup in the case of SMP!!! */ | 
|  | /* Disable the interrupt */ | 
|  | hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT, | 
|  | shared_sint.as_uint64); | 
|  |  | 
|  | simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP); | 
|  | simp.simp_enabled = 0; | 
|  | simp.base_simp_gpa = 0; | 
|  |  | 
|  | hv_set_register(HV_REGISTER_SIMP, simp.as_uint64); | 
|  |  | 
|  | siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP); | 
|  | siefp.siefp_enabled = 0; | 
|  | siefp.base_siefp_gpa = 0; | 
|  |  | 
|  | hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64); | 
|  |  | 
|  | /* Disable the global synic bit */ | 
|  | sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL); | 
|  | sctrl.enable = 0; | 
|  | hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64); | 
|  |  | 
|  | if (vmbus_irq != -1) | 
|  | disable_percpu_irq(vmbus_irq); | 
|  | } | 
|  |  | 
|  | #define HV_MAX_TRIES 3 | 
|  | /* | 
|  | * Scan the event flags page of 'this' CPU looking for any bit that is set.  If we find one | 
|  | * bit set, then wait for a few milliseconds.  Repeat these steps for a maximum of 3 times. | 
|  | * Return 'true', if there is still any set bit after this operation; 'false', otherwise. | 
|  | * | 
|  | * If a bit is set, that means there is a pending channel interrupt.  The expectation is | 
|  | * that the normal interrupt handling mechanism will find and process the channel interrupt | 
|  | * "very soon", and in the process clear the bit. | 
|  | */ | 
|  | static bool hv_synic_event_pending(void) | 
|  | { | 
|  | struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context); | 
|  | union hv_synic_event_flags *event = | 
|  | (union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT; | 
|  | unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */ | 
|  | bool pending; | 
|  | u32 relid; | 
|  | int tries = 0; | 
|  |  | 
|  | retry: | 
|  | pending = false; | 
|  | for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) { | 
|  | /* Special case - VMBus channel protocol messages */ | 
|  | if (relid == 0) | 
|  | continue; | 
|  | pending = true; | 
|  | break; | 
|  | } | 
|  | if (pending && tries++ < HV_MAX_TRIES) { | 
|  | usleep_range(10000, 20000); | 
|  | goto retry; | 
|  | } | 
|  | return pending; | 
|  | } | 
|  |  | 
|  | int hv_synic_cleanup(unsigned int cpu) | 
|  | { | 
|  | struct vmbus_channel *channel, *sc; | 
|  | bool channel_found = false; | 
|  |  | 
|  | if (vmbus_connection.conn_state != CONNECTED) | 
|  | goto always_cleanup; | 
|  |  | 
|  | /* | 
|  | * Hyper-V does not provide a way to change the connect CPU once | 
|  | * it is set; we must prevent the connect CPU from going offline | 
|  | * while the VM is running normally. But in the panic or kexec() | 
|  | * path where the vmbus is already disconnected, the CPU must be | 
|  | * allowed to shut down. | 
|  | */ | 
|  | if (cpu == VMBUS_CONNECT_CPU) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * Search for channels which are bound to the CPU we're about to | 
|  | * cleanup.  In case we find one and vmbus is still connected, we | 
|  | * fail; this will effectively prevent CPU offlining. | 
|  | * | 
|  | * TODO: Re-bind the channels to different CPUs. | 
|  | */ | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  | list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { | 
|  | if (channel->target_cpu == cpu) { | 
|  | channel_found = true; | 
|  | break; | 
|  | } | 
|  | list_for_each_entry(sc, &channel->sc_list, sc_list) { | 
|  | if (sc->target_cpu == cpu) { | 
|  | channel_found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (channel_found) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | if (channel_found) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * channel_found == false means that any channels that were previously | 
|  | * assigned to the CPU have been reassigned elsewhere with a call of | 
|  | * vmbus_send_modifychannel().  Scan the event flags page looking for | 
|  | * bits that are set and waiting with a timeout for vmbus_chan_sched() | 
|  | * to process such bits.  If bits are still set after this operation | 
|  | * and VMBus is connected, fail the CPU offlining operation. | 
|  | */ | 
|  | if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending()) | 
|  | return -EBUSY; | 
|  |  | 
|  | always_cleanup: | 
|  | hv_stimer_legacy_cleanup(cpu); | 
|  |  | 
|  | hv_synic_disable_regs(cpu); | 
|  |  | 
|  | return 0; | 
|  | } |